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Abstract. The bidomain model is the standard model for cardiac electrophysiology. This pa-5
per investigates the instability and asymptotic behavior of planar fronts and planar pulses of the6
bidomain Allen–Cahn equation and the bidomain FitzHugh–Nagumo equation in two spatial dimen-7
sions. Previous work showed that planar fronts of the bidomain Allen–Cahn equation could become8
unstable in contrast to the classical Allen–Cahn equation. After the planar front is destabilized, a9
rotating zigzag front develops whose shape can be explained by simple geometric arguments using10
a suitable Frank diagram. We also show that the Hopf bifurcation through which the front be-11
comes unstable can be either supercritical or subcritical by demonstrating a parameter regime in12
which a stable planar front and zigzag front can coexist. Our computational studies of the bidomain13
FitzHugh–Nagumo pulse solution show that the pulses can also become unstable, like the bidomain14
Allen–Cahn fronts. However, unlike the bidomain Allen–Cahn case, the destabilized pulse does not15
necessarily develop into a zigzag pulse. For certain choice of parameters, the destabilized pulse can16
disintegrate entirely. These studies are made possible by developing a numerical scheme that allows17
for the accurate computation of the bidomain equation in a two-dimensional strip domain of an18
infinite extent.19
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1. Introduction. The cardiac bidomain model is the standard mathematical23
model for cardiac electrophysiology:24 

∂u

∂t
− f(u, s) = ∇ · (Ai∇ui), u = ui − ue,

∇ · (Ai∇ui) +∇ · (Ae∇ue) = 0,

∂s

∂t
= g(u, s), s = (s1, . . . , sG),

25

26

where ui,e are intracellular/extracellular voltages, u is the transmembrane voltage,27
s1, . . . , sG are gating variables, and Ai,e are conductivity tensors. Nonlinear terms28
f(u, s) and g(u, s) are of Hodgkin–Huxley (or FitzHugh–Nagumo) type.29

It is challenging to study this model mathematically, which has led many to study30
the monodomain reduction. Let us assume that condition Ae = βAi holds; intracel-31
lular and extracellular anisotropies are proportional. Then, the bidomain system32
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2 H. MATANO, Y. MORI, M. NARA, AND K. SAKAKIBARA

reduces to the monodomain system:33


∂u

∂t
= ∇ · (Amono∇u) + f(u, s), Amono =

β

1 + β
Ai,

∂s

∂t
= g(u, s).

(1.1)34

35

The monodomain reduction is an equation of reaction-diffusion type with Hodgkin–36
Huxley or FitzHugh–Nagumo type nonlinearities and thus support traveling pulse37
solutions and other patterns characteristic of excitable systems [20, 7]. These traveling38
pulse solutions describe the propagating electrical signal in the heart. Extensive39
simulations indicate that the bidomain model support qualitatively similar solutions.40
However, the bidomain model is quantitatively better than the monodomain model,41
especially under extreme conditions like defibrillation [21, 20, 16]. A natural question42
arises as to how different the behavior of the bidomain model is qualitatively from43
that of the monodomain model.44

The bidomain model, initially introduced in [10, 27, 22], is the standard tissue-45
level model of cardiac electrophysiology widely used in simulations (see, for instance,46
[6, 18, 19, 8, 26]). Well-posedness is studied in [9, 5, 28, 7, 14, 15]. It is possible to47
derive the bidomain model from an underlying microscopic model through homog-48
enization. This calculation was first performed formally in [24, 20] and was given49
analytical justification in [25].50

Very little is known mathematically of the qualitative properties of the bidomain51
equation. As discussed earlier, from both mathematical and physiological points of52
view, it is important to study the traveling front and pulse solutions of the bidomain53
equations. In [23], the authors study the bidomain Allen–Cahn equation in R2 (to54
be introduced shortly), which should be seen as the bidomain analog of the classical55
Allen–Cahn equation. The bidomain Allen–Cahen equation supports traveling planar56
front solutions in every direction, much like the classical Allen-Cahn equation. How-57
ever, in sharp contrast to the classical case, the planar front solutions of the bidomain58
Allen–Cahn equation were unstable under certain parametric conditions.59

The study in [23] was perturbative, confined to spectral computations of the60
linearized operator around the traveling front solution. Nothing is known beyond61
this perturbative regime. Tentative numerical simulations have shown that a zigzag62
front appears when the planar front is unstable [23, Section 6], but the mechanism63
determining the shape of zigzag fronts is unknown. Furthermore, nothing is known64
about the pulses’s stability when we turn our attention to the bidomain FitzHugh–65
Nagumo equation.66

In this paper, we perform a computational study of the asymptotic behavior of67
fronts and pulses in bidomain equations in R2. The bidomain equation refers to the68
bidomain Allen–Cahn equation69


∂u

∂t
− f(u) = ∇ · (Ai∇ui), u = ui − ue,

∇ · (Ai∇ui) +∇ · (Ae∇ue) = 0,
(1.2)70

71
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FRONTS AND PULSES OF THE BIDOMAIN MODEL 3

or the bidomain FitzHugh–Nagumo equation72 
∂u

∂t
− f(u, v) = ∇ · (Ai∇ui), u = ui − ue,

∇ · (Ai∇ui) +∇ · (Ae∇ue) = 0,

∂v

∂t
= g(u, v),

(1.3)73

74

where Ai and Ae are 2×2 positive definite symmetric matrices called the conductivity75
matrices. This paper focuses on the case where the nonlinearities are given by76

f(u) = u(1− u)(u− α) in (1.2),77

f(u, v) = u(1− u)(u− α)− v, g(u, v) = ε(u− γv) in (1.3),7879

where α ∈ (0, 1), ε > 0, and γ > 0 are constants.80
In section 2, we briefly summarize the results of [23], which we will use later. In81

particular, it was shown that the convexity of a suitably defined Frank diagram is82
closely tied to the stability of planar fronts (see Figure 2.1). Let us consider a planar83
front solution propagating in a certain direction. If the Frank diagram is convex in84
this direction, the front is stable to long-wavelength perturbations and is unstable85
otherwise. We will use the characterization of planar fronts’ stability by the Frank86
diagram to guide our study on the shape of the zigzag fronts. We will also quote an87
explicit expression on the asymptotic behavior of the principal eigenvalue to be used88
as a benchmark for the algorithm we propose for computing the principal eigenvalues.89

Section 3 summarizes various numerical methods used in this paper. In [23], the90
bidomain equation was simulated on a bounded rectangular domain with periodic91
boundary conditions. A similar method is described in subsection 3.1, which we will92
use to compute spreading front and pulse solutions. However, such a method is not93
suitable for a detailed computational study of traveling front or pulse solutions since94
these solutions reside in regions of an infinite extent.95

The planar fronts and the planar pulses are originally defined in the whole plane,96
but it is not easy to compute them numerically in the whole plane. Therefore, we97
consider the bidomain equations in the strip region, which is infinite in the direction98
of propagation ξ but periodic in the orthogonal direction η.99

We first apply a coordinate transformation, in the direction of propagation ξ, cen-100
tered at the appropriately defined front or pulse location, mapping the infinite strip101
into a bounded rectangle. We solve the time-discretized equation in the resulting102
rectangular domain using finite differences in the modified ξ direction and the Fourier103
transform in the η direction. We use a splitting method and alternate between the104
evolution of the bidomain operator (see (2.1)) and nonlinearities. Strang splitting is105
used to obtain second order accuracy in time, and the evolution substeps correspond-106
ing to the bidomain and nonlinear terms are solved with second-order methods. We107
re-center the coordinate transformation at each time step so that the front position is108
fully numerically resolved. This step requires an interpolation operation from the old109
to the new grid, for which we employ Lagrange interpolation to minimize the error110
incurred through this step. We perform a numerical convergence study in subsec-111
tion 3.5 to confirm that our numerical scheme is second-order accurate in space and112
time. The dynamics of planar fronts and pulses and their instabilities can now be ac-113
curately captured. Based on the above, we can also compute the principal eigenvalues114
and corresponding eigenfunctions of the linearization around the planar fronts, the115
numerical results of which are tested against analytical calculations in subsection 3.5.116
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Furthermore, we develop algorithms to compute the rotational fronts to which the117
planar fronts asymptotically approach by devising a suitable iterative algorithm.118

Section 4 deals with the bidomain Allen–Cahn equation. By performing numerical119
computations of the principal eigenvalues and the planar front, we investigate the120
relationship between the sign of the real part of the principal eigenvalue, the width121
of the strip region, and the stability of planar fronts. Stability criteria based on122
eigenvalue calculations are shown to be consistent with the onset of planar front123
instabilities as exhibited by the numerical computation of the full bidomain model.124

Our numerical experiments strongly suggest that unstable planar fronts asymp-125
totically approach a rotating zigzag front with a constant translational speed cθξ and126

a rotational speed cθη. The shape of the zigzag front is characterized by the two angles127
θm and θp between the η axis and the level sets of the zigzag front (see Figure 4.8).128
The shape and speed of the eventual zigzag front can be predicted from elementary129
geometric arguments using the Frank diagram. In particular, the angles θm and θp130
correspond to the contact points between the Frank diagram and its convex hull.131
We numerically verify this geometric prediction by comparing the predicted values132
of cθξ , cθη, θm, θp against the values obtained by a full numerical computation. The133
asymptotic zigzag front shape and its speeds are computed by the iterative algorithm134
mentioned previously.135

Then, we investigate the relationship between the region where the zigzag front136
exists, the convex hull of the Frank diagram, and the curvature of the Frank diagram.137
We observe the supercritical Hopf bifurcation and the subcritical Hopf bifurcation138
depending on parameters, and degenerate Hopf bifurcation at the boundary of these139
bifurcations. The zigzag front caused by the instability of planar fronts has several140
peaks at the beginning and finally converges to a shape with a single peak after141
repeated coarsening. We examine the relationship between the number of peaks and142
their duration and discuss which number of peaks is, in some sense, stable. Finally,143
we discuss the spreading front. In the paper [23], the authors predicted that the144
spreading front would converge to the Wulff shape, and we confirm numerically that145
this is indeed the case.146

Section 5 deals with the bidomain FitzHugh–Nagumo equation. In the bido-147
main Allen–Cahn equation, the planar front exists in all directions, and we study its148
qualitative behavior, such as the asymptotic behavior and the stability, from several149
points of view in section 4. Therefore, it is natural to conduct a similar study on the150
bidomain FitzHugh–Nagumo equation. We first recall that, for, given 0 < α < 1/2,151
ε > 0 must be made small enough for a stable planar pulse solution to exist for the152
classical FitzHugh-Nagumo equation. We verify that the planar pulse solution for the153
classical FitzHugh–Nagumo equations is also a planar pulse solution for the bidomain154
FitzHugh–Nagumo equations. We are thus led to studying the stability of the planar155
pulse solutions and their asymptotic evolution.156

Much like the bidomain Allen-Cahn equation, we verify through numerical exper-157
iments that the planar pulse solutions are unstable in directions in which the Frank158
diagram is non-convex. In contrast to the bidomain Allen-Cahn case, however, we159
find that the destabilized planar pulse solution may not necessarily approach a zigzag160
pulse for large time. Depending on the parameter values of ε and α, the planar pulse161
develops into a zigzag pulse or disintegrates completely. We find the pulse disinte-162
grates when ε and α are close to the edge of the parametric region in which planar163
pulse solutions exist.164

Finally, we examine the spreading pulse. We numerically explore the existence165
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and asymptotic shape of the spreading pulse, corresponding to the region where the166
pulse exists.167

In section 6, we summarize our results and discuss the possible significance of our168
results in studying cardiac arrhythmias.169

2. Preliminaries. Before going into the main issue, we briefly summarize the re-170
sults obtained in Mori–Matano [23] in this section. We apply their results throughout171
this paper.172

2.1. Expressions using pseudo-differential operators. We can represent173
bidomain equations as a closed-form for u by using pseudo-differential operators.174
These are useful in computing spreading fronts and spreading pulses in a rectangular175
region with periodic boundary conditions.176

Denote by F the two-dimensional Fourier transform; Fv is defined for a function177
v on R2 by178

(Fv)(k) = v̂(k) :=

∫
R2

v(x) exp(−ik · x) dx, k = (k, l)> ∈ R2.179
180

Applying the Fourier transform F to the relation ∇ · (Ai∇ui) = −∇ · (Ae∇ue), we181
can represent the term ∇ · (Ai∇ui) using a pseudo-differential operator L as follows:182

∇ · (Ai∇ui) = −F−1QFu ≡ −Lu.(2.1)183184

Namely, the bidomain operator L is a Fourier multiplier operator with symbol Q given185
by186

Q(k) =
Qi(k)Qe(k)

Qi(k) +Qe(k)
, Qi,e(k) = k>Ai,ek.187

188

Thus the bidomain Allen–Cahn equation (2.2) and the bidomain FitzHugh–Nagumo189
equation (1.3) are rewritten as190

∂u

∂t
= −Lu+ f(u)(2.2)191

192

and193 
∂u

∂t
= −Lu+ f(u, v),

∂v

∂t
= g(u, v).

194

195

A suitable linear transformation on the coordinate system can transform the conduc-196
tivity matrices Ai and Ae into the following standard forms:197

Ai =

(
1 + b+ a 0

0 1 + b− a

)
,

Ae =

(
1− b− a 0

0 1− b+ a

)
,

|a± b| < 1.(2.3)198

199

Accordingly, we always assume that the conductivity matrices Ai and Ae are given by200
(2.3). In simulations in this paper, we set b = 0 for simplicity. In this case, the Frank201
diagram (see Figure 2.1) has a four-fold symmetry, making it easier to interpret the202
numerical results.203
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2.2. Directional bidomain equations. We will scrutinize the asymptotic be-204
havior of fronts and pulses in the bidomain equations propagating in several directions.205
To this end, we must write them down in a new coordinate ξ = (ξ, η)>, which we206
obtain by rotating the original coordinate x by angle θ. Consequently, the bidomain207
operator L reduces to the form Lθ = F−1QθF , where208

Qθ(k) =
Qθ

i (k)Q
θ
e(k)

Qθ
i (k) +Qθ

e(k)
, Qθ

i,e(k) = k>Aθ
i,ek,209

Aθ
i,e = RθAi,eR

−θ, Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.210

211

Here, F denotes the two-dimensional Fourier transform in ξ. The nθ-directional212
bidomain Allen–Cahn equation is given by213

∂u

∂t
= −Lθu+ f(u),214

215

and the nθ-directional bidomain FitzHugh–Nagumo equation is given by216 
∂u

∂t
= −Lθu+ f(u, v),

∂v

∂t
= g(u, v),

217

218

where nθ = (cos θ, sin θ)>. Besides, we define aθi,e, bθi,e, and cθi,e as follows:219 (
aθi,e bθi,e

bθi,e cθi,e

)
:= Aθ

i,e.220
221

2.3. Planar fronts in the bidomain Allen–Cahn equation. Let us consider222
a planar front uθf (ζ) = uθf (n

θ · x − cθf t), which propagates in the direction nθ. We223
impose boundary conditions at infinity:224

lim
ζ→−∞

uθf (ζ) = 1, lim
ζ→∞

uθf (ζ) = 0.225
226

Substituting uθf into the bidomain Allen-Cahn equation (1.2), we obtain the following227
ordinary differential equation:228

cθf
duθf
dη

+Q(nθ)
d2uθf
dη2

+ f(uθf ) = 0.229
230

Let u∗f be the normalized planar front and c∗f be its speed; (u∗f , c∗f ) solves the boundary231
value problem232 c∗f

du∗f
dη

+
d2u∗f
dη2

+ f(u∗f ) = 0,

u∗f (−∞) = 1, u∗f (∞) = 0.

233

234

This problem is the one the planar front in the Allen-Cahn equation satisfies. c∗f is235
unique, and u∗f is uniquely determined up to translation. We can explicitly represent236
them as237

u∗f (η) =
1

1 + exp(η/
√
2)
, c∗f =

√
2

(
1

2
− α

)
,238

239
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and as a result, we may express uθf and cθf as follows:240

uθf (η) = u∗f

(
η/
√
Q(nθ)

)
, cθf =

√
Q(nθ)c∗f .241

242

2.4. Principal eigenvalues in the bidomain Allen–Cahn equation. We243
will examine the stability of planar fronts in the bidomain Allen–Cahn equation asso-244
ciated with the principal eigenvalue of the corresponding linearized operator. To this245
end, we introduce a moving coordinate ξ that travels with the planar front so that246
the ξ-axis aligns with the direction of propagation nθ and the η-axis is parallel to the247
planar front. In this new coordinate, the bidomain Allen–Cahn equation becomes248

∂u

∂t
= cθf

∂u

∂ξ
− Lθu+ f(u).249

250

We linearize this equation around the planar front (uθf , c
θ
f ) to obtain251

∂vθ

∂t
= cθf

∂vθ

∂ξ
− Lθvθ + f ′(uθf )v

θ ≡ Pθvθ.252
253

Applying the Fourier transform in the η direction to this equation, we obtain the lth254
mode’s eigenvalue problem for each l ∈ R:255

Pθ
l v

θ
l = λθl v

θ
l , λθ0 = 0, vθ0 = −∂u

θ
f

∂ξ
,(2.4)256

257

where258

Pθ
l = cθf

∂

∂ξ
− Lθ

l + f ′(uθf ), Lθ
l = F−1

ξ Qθ(k, l)Fξ,259
260

and Fξ is the one-dimensional Fourier transform in ξ. We impose the normalizing261
condition262

vθl (0) = vθ0(0).(2.5)263264

The following theorem describes the detailed asymptotic behavior of the principal265
eigenvalue λθl as l tends to 0. See [23, Theorem 4.2] for details.266

Theorem 2.1. There is a δ > 0 such that for |l| < δ there is an eigenvector-267
eigenvalue pair (vθl , λ

θ
l ) ∈ H2(R) × C satisfying (2.4) and (2.5) with the following268

properties:269
(i) λθl is a simple principal eigenvalue of Pθ

l ; there is a constant νδ > 0 indepen-270
dent of l such that271

Σ(Pθ
l ) \ {λθl } ⊂ {z ∈ C | Re z < −νδ},272273

where Σ(·) refers to the spectrum of the operator.274
(ii) λθl is a C2 function for l and satisfies the following asymptotic expansion:275

λθl = iα1c
θ
f l − α0l

2 +O(l3) as l → 0,276277

where278

α0 =
1

2
+

1

2

(
3a2 cos2(2θ) + 2ab cos(2θ)− 4a2 sin2(2θ)− b2

)
279

− 2a2 sin2(2θ)(b+ a cos(2θ))2

1− (b+ a cos(2θ))2
,280

α1 =
2a sin(2θ)(b+ a cos(2θ))

1− (b+ a cos(2θ))2
.281

282
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8 H. MATANO, Y. MORI, M. NARA, AND K. SAKAKIBARA

Fig. 2.1. The Frank diagram when a = 0.9 and b = 0. The blue solid and broken lines represent
the Frank diagram’s convex hull, and the black dots represent the tangent points of the Frank diagram
and the convex hull.

2.5. Stability of planar fronts. We will investigate the stability of planar283
fronts. As an analytical result, in [23], the authors investigated the stability of planar284
fronts in the bidomain Allen–Cahn equation in terms of the Frank diagram.285

A Frank plot F is a curve defined as follows [3, 17]:286

F = {(cos θ, sin θ)>/
√
Q(nθ) | θ ∈ [0, 2π]}.287288

The figure surrounded by the Frank plot is a Frank diagram. Figure 2.1 shows an289
example of the Frank diagram. In particular, when a > 1/2, the Frank diagram is non-290
convex, and there is always an angle at which the planar front becomes unstable [23,291
Eq. (4.98)]. More precisely, in [23], the following theorem about the relationship292
between the stability of planar fronts and the convexity of the Frank diagram is293
presented.294

Theorem 2.2. The planar front propagating in the direction nθ where the Frank295
plot is non-convex at (cos θ, sin θ)>/

√
Q(nθ) is spectrally unstable.296

3. Numerical scheme. In this section, we develop several numerical methods297
for solving bidomain equations. Numerical methods for the bidomain FitzHugh–298
Nagumo equation can be obtained by naturally modifying numerical methods for the299
bidomain Allen–Cahn equation. Therefore, in the following, we explain our numer-300
ical methods for the bidomain Allen–Cahn equation in detail and only make brief301
comments for the bidomain FitzHugh-Nagumo equation.302

3.1. Spreading fronts and spreading pulses. We consider the bidomain303
Allen-Cahn equation (2.2) in a periodic rectangular region Ω = S1d1

× S1d2
, where304

S1d := R/dZ. Namely, we solve the following problem:305 
∂u

∂t
= −Lu+ f(u) in Ω, t > 0,

u(·, ·, 0) = u0 in Ω,
(3.1)306

307

where u0 is the initial value with compact support. We adopt the operator splitting308
method to discretize in time and the Fourier transform to discretize in space to solve309
this problem.310
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The essence of the operator splitting method is to decompose the problem (3.1)311
into two parts:312

∂v

∂t
= −Lv in Ω, t > 0,(3.2)313

314

and315

∂w

∂t
= f(w) in Ω, t > 0.(3.3)316

317

Denote time evolution maps, which advance solutions by time ∆t, for (3.2) and (3.3)318
by ψ∆t and ϕ∆t

f , respectively. Here we write the subscript f in ϕ∆t
f in order to319

emphasize that the nonlinearity is f . According to the operator splitting method of320
Strang type, a second-order discretization in time, we compute the time evolution as321
follows:322

un+1 = (ϕ
∆t/2
f ◦ ψ∆t ◦ ϕ∆t/2

f )un,(3.4)323324

where un(·) is an abbreviation of u(·, tn), and tn = n∆t denotes the nth time step325
with uniform time increment ∆t.326

Construction of time evolution maps. We construct ϕ∆t
f based on the second-327

order explicit Runge–Kutta method. Namely, define an approximation Φ∆t
f of ϕ∆t

f328
as329

Φ∆t
f (F) = F+∆tf(F∗), F∗ = F+

∆t

2
f(F)(3.5)330

331

for a general function F. Concerning ψ∆t, we adopt the Fourier transform. Namely,332
define an approximation Ψ∆t of ψ∆t as333

Ψ∆t(F) = F−1
h exp(−Qh∆t)FhF334335

for a general function F, where Fh and F−1
h are the discrete Fourier transform and336

its inverse, respectively. Qh is a restriction of the Fourier multiplier to the space of337
discrete wavenumbers. Utilizing the above constructed time evolution maps Φ∆t

f and338
Ψ∆t, we compute the bidomain Allen–Cahn equation (3.1) by (3.4). In other words,339
by denoting an approximate solution at tn by Un, Un+1 is compubed by340

Un+1 = (Φ
∆t/2
f ◦Ψ∆t ◦ Φ∆t/2

f )Un.341342

We similarly compute the bidomain FitzHugh–Nagumo equation in a rectangular343
region with periodic boundary conditions. Since the Strang splitting yields344

(un+1, vn+1) =
(
(ϕ

∆t/2
f ⊗ ϕ∆t/2

g ) ◦ (ψ∆t ⊗ id) ◦ (ϕ∆t/2
f ⊗ ϕ∆t/2

g )
)
(un, vn),345

346

the numerical scheme reads347

(Un+1, V n+1) =
(
(Φ

∆t/2
f ⊗ Φ∆t/2

g ) ◦ (Ψ∆t ⊗ id) ◦ (Φ∆t/2
f ⊗ Φ∆t/2

g )
)
(Un, V n).(3.6)348

349
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3.2. Planar/zigzag fronts and planar/zigzag pulses. The fronts and pulses350
are defined in the whole plane; therefore, it is natural to compute them in the whole351
plane with boundary conditions at infinity. However, because of computational diffi-352
culty, in most previous studies, the bidomain equations are solved in a bounded region,353
which does not correctly reflect the boundary conditions at infinity, raising questions354
about reliability of numerical solutions. To study the asymptotic behavior of fronts355
and pulses in the direction nθ, we solve the nθ-directional bidomain equations in the356
strip region that is not bounded in ξ direction while periodic in η direction. To be357
precise, define the strip region Sd by358

Sd = R× S1d, S1d = R/dZ.359360

As in the previous section, we adopt the operator splitting method in time discretiza-361
tion. We adopt the Fourier transform in the η direction and the finite difference362
method in the ξ direction concerning spatial discretization.363

We obtain the following partial differential equations for u and ui by eliminating ue364
from the nθ-directional bidomain Allen–Cahn equation (2.2) using relation u = ui−ue:365 

∂u

∂t
− f(u) = ∇ · (Aθ

i ∇ui) in Sd, t > 0,

∇ · ((Aθ
i +Aθ

e)∇ui) = ∇ · (Aθ
e∇u) in Sd, t > 0,

u(−∞, η, t) = 1, u(∞, η, t) = 0 for η ∈ S1d, t > 0

u(·, ·, 0) = u0 in Sd.

366

367

As stated above, we adopt the operator splitting method in time discretization.368
Namely, we split the above equations into369 

∂v

∂t
= ∇ · (Aθ

i ∇vi) in Sd, t > 0,

∇ · ((Aθ
i +Aθ

e)∇vi) = ∇ · (Aθ
e∇v) in Sd, t > 0,

v(−∞, η, t) = 1, v(∞, η, t) = 0 for η ∈ S1d, t > 0,

(3.7)370

371

and372

∂w

∂t
= f(w) in Sd, t > 0.(3.8)373

374

We then adopt the second-order Strang splitting; that is, denoting by ψ∆t and ϕ∆t
f375

the time evolution maps, which advance solutions by time ∆t, for (3.7) and (3.8),376
respectively, we compute the time evolution according to (3.4).377

Construction of time evolution maps. Concerning ϕ∆t
f , we adopt the second-378

order explicit Runge–Kutta method. Namely, we construct an approximation Φ∆t
f of379

ϕ∆t
f by (3.5). On the other hand, for ψ∆t, we adopt the trapezoidal rule; that is, we380

solve the following partial differential equations:381 
v − v̂

∆t
=

1

2

[
∇ · (Aθ

i ∇(vi + v̂i))
]

in Sd,

∇ · ((Aθ
i +Aθ

e)∇vi) = ∇ · (Aθ
e∇v) in Sd,

v(−∞, η) = 1, v(∞, η) = 0 for η ∈ S1d,

382

383

where the hat symbol ·̂ denotes the solution at a previous time step.384
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Since all the functions v, vi, v̂, and v̂i are periodic in η direction, we can represent385
them as the Fourier series in the η variable with variable coefficients of ξ. Denote386
their Fourier coefficients by {vl(ξ)}l∈Z, {vi,l(ξ)}l∈Z, {v̂l(ξ)}l∈Z, and {v̂i,l(ξ)}l∈Z, re-387
spectively. We then obtain the following system of ordinary differential equations for388
each Fourier mode:389 

vl(ξ)− v̂l(ξ)

∆t
=
aθi
2

(
d2vi,l
dξ2

(ξ) +
d2v̂i,l
dξ2

(ξ)

)
+ bθi

(
dvi,l
dξ

(ξ) +
dv̂i,l
dξ

(ξ)

)
iwl

−c
θ
i

2
(vi,l(ξ) + v̂i,l(ξ))w

2
l , ξ ∈ R,

(aθi + aθe)
d2vi,l
dξ2

(ξ) + 2(bθi + bθe)
dvi,l
dξ

(ξ)iwl − (cθi + cθe)vi,l(ξ)w
2
l

= aθe
d2vl
dξ2

(ξ) + 2bθe
dvl
dξ

(ξ)iwl − cθevl(ξ)w
2
l , ξ ∈ R,

vl(−∞) =

{
1 if l = 0,
0 otherwise,

vl(∞) = 0,

390

391

where wl = 2πl/d (l ∈ Z) is a discrete wavenumber. To solve the above problem, we392
need to discretize in ξ direction to approximate derivatives for ξ. In this subsection,393
we develop the one-dimensional finite difference method on an unbounded interval.394

We introduce a coordinate transformation g : (−1, 1) → R by395

g(z) = K tan
(π
2
z
)
, z ∈ (−1, 1),396

397

where K is a positive number. We formally extend this function to the one from398
[−1, 1] onto R = R ∪ {±∞} by defining g(−1) = −∞ and g(1) = ∞ for the sake of399
convenience. We denote the extended function by the same symbol g. We define a400
uniform mesh {zj}Nξ+1

j=0 and its adjoint {ẑj}Nξ+1
j=1 by401

zj = −1 + j∆z, j = 0, 1, . . . , Nξ + 1,402

ẑj = −1 +

(
j − 1

2

)
∆z, j = 1, 2, . . . , Nξ + 1,403

404

where ∆z = 2/(Nξ + 1). By mapping the uniform mesh {zj}Nξ+1
j=0 by the coordinate405

transformation g, we obtain a nonuniform mesh {ξj}Nξ+1
j=0 on R as406

ξj = g(zj), j = 0, 1, . . . , Nξ + 1.407408

In particular, ξ0 = −∞ and ξNξ+1 = ∞ hold. Based on the chain rule409

dF

dξ
(ξ) =

1

g′(z)

d

dz
(F(g(z))),

d2F

dξ2
(ξ) =

1

g′(z)

d

dz

[
1

g′(z)

d

dz
(F(g(z)))

]
410
411

at ξ = g(z) for a function F defined on R, we approximate the first derivative412
(dF/dξ)(ξ) and the second derivative (d2F/dξ2)(ξ) on the nodal points ξ = ξj (j =413
1, 2, . . . , Nξ) by the central finite differences:414

dF

dξ
(ξj) ≈ 1

2

[
1

g′(ẑj+1)

Fj+1 − Fj

∆z
+

1

g′(ẑj)

Fj − Fj−1

∆z

]
=: δFj ,415

d2F

dξ2
(ξj) ≈ 1

g′(zj)∆z

[
1

g′(ẑj+1)

Fj+1 − Fj

∆z
− 1

g′(ẑj)

Fj − Fj−1

∆z

]
=: δ

2
Fj ,416

417
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where Fj := F(ξj) = F(g(zj)). We then obtain the following linear system: for each418
l ∈ Z,419 

vjl − v̂jl
∆t

=
aθi
2

(
δ
2
vji,l + δ

2
v̂ji,l

)
+ bθi

(
δvji,l + δv̂ji,l

)
iwl −

cθi
2

(
vji,l + v̂ji,l

)
w2

l ,

j = 1, 2, . . . , Nξ,

(aθi + aθe)δ
2
vji,l + 2(bθi + bθe)δv

j
i,liwl − (cθi + cθe)v

j
i,lw

2
l

= aθeδ
2
vjl + 2bθeδv

j
l iwl − cθev

j
lw

2
l , j = 1, 2, . . . , Nξ,

v0l =

{
1 if l = 0,
0 otherwise,

v
Nξ+1
l = 0.

420

421

Writing D as the solution map that maps the solution of this linear system to a given422
{v̂jl }, an approximation Ψ∆t of ψ∆t can be formally expressed as423

Ψ∆t = (Fη
h )

−1 ◦D ◦ Fη
h ,(3.9)424425

where Fη
h denotes the one-dimensional discrete Fourier transform in η variable.426

Regridding. To study the long-time behavior of the front, it becomes necessary427
to re-grid as the front advances. First, we estimate the position of the 1/2-level set428
by using third-order Lagrange interpolation and set ξ = 0 there. The values of u in429
the new coordinate system are then defined using quadratic interpolation.430

For the bidomain FitzHugh–Nagumo equation, we compute (un+1, vn+1) from431
(un, vn) as in (3.6).432

3.3. Principal eigenvalues and corresponding eigenfunctions. Although433
we know that the principal eigenvalue λ0 at l = 0 being equal to 0 and the asymptotic434
behavior of principal eigenvalues where |l| is sufficiently small by Theorem 2.1, in order435
to discuss the stability of the planar front in the bidomain Allen–Cahn equation, we436
need to compute the principal eigenvalues beyond the range covered by the theorem.437
We solve the eigenvalue problem (2.4) by the same strategy in the previous subsection.438
Namely, we represent the eigenfunction vθ as the Fourier series in η with variable439
Fourier coefficients of ξ and approximate derivatives concerning ξ by the central finite440
differences. As a result, we obtain the following linear system for the lth mode’s441
eigenvalue problem:442 

λθl v
j
l = cθf δv

j
i,l + aθi δ

2
vji,l + 2bθi δv

j
i,liwl − cθi v

j
i,lw

2
l + f ′(ujf )v

j
l , j = 1, 2, . . . , Nξ,

(aθi + aθe)δ
2
vji,l + 2(bθi + bθe)δv

j
i,liwl − (cθi + cθe)v

j
i,lw

2
l

= aθeδ
2
vl + 2bθeδv

j
i,liwl − (cθi + cθe)v

j
i,lw

2
l , j = 1, 2, . . . , Nξ,

v0l = v
Nξ+1
l = v0i,l = v

Nξ+1
i,l = 0,

Nξ∑
j=1

|vjl |
2 = 1.

443

444

We know from (2.4) the analytical expressions of the principal eigenvalue and445
corresponding eigenfunction at l = 0. Hence, we solve the above problem using the446
Newton method while slightly increasing l.447

3.4. An iterative method for the asymptotic shape of fronts in the448
bidomain Allen–Cahn equation. We will investigate the existence/nonexistence449
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of zigzag and usual planar fronts in the nθ-directional bidomain Allen–Cahn equation450
(2.2). To this end, we develop an iterative algorithm for computing the asymptotic451
shape of the front in the bidomain Allen–Cahn equation without computing its time452
evolution.453

Let uθ = uθ(ξ, η) be the front in the bidomain Allen–Cahn equation, and let cθξ454

and cθη be its speed in ξ and η directions, respectively. Namely, (uθ, cθξ , cθη) satisfies455
the following partial differential equations:456 

cθξ
∂uθ

∂ξ
+ cθη

∂uθ

∂η
+∇ · (Aθ

i ∇uθi ) + f(uθ) = 0 in Sd,

∇ · ((Aθ
i +Aθ

e)∇uθi ) = ∇ · (Aθ
e∇uθ) in Sd,

uθ(−∞, η) = 1, uθ(∞, η) = 0 for η ∈ S1d.

(3.10)457

458

To solve this problem, define a constant f0 as459

f0 :=
f ′(0) + f ′(1)

2
,460

461

which is negative. Then, we rewrite the first equation in (3.10) as follows:462

cθξ
∂uθ

∂ξ
+ cθη

∂uθ

∂η
+∇ · (Aθ

i ∇uθi ) + f0u
θ = −f(uθ) + f0u

θ.463
464

Performing the Fourier transform in η direction, we obtain the following system: for465
each ξ ∈ R and l ∈ Z,466 

cθξ
duθl
dξ

(ξ) + cθηu
θ
l (ξ)iwl + aθi

d2uθi,l
dξ2

(ξ) + 2bθi
duθi,l
dξ

(ξ)iwl

−cθi uθi,l(ξ)w2
l + f0u

θ
l (ξ) = −Fη[f(u

θ(ξ, ·))]l + f0u
θ
l (ξ),

(aθi + aθe)
d2uθi,l
dξ2

(ξ) + 2(bθi + bθe)
duθi,l
dξ

(ξ)iwl − (cθi + cθe)u
θ
i,l(ξ)w

2
l

= aθe
d2uθl
dξ2

(ξ) + 2bθe
duθl
dξ

(ξ)iwl − cθeu
θ
l (ξ)w

2
l ,

uθl (−∞) =

{
1 if l = 0,
0 otherwise,

uθl (∞) = 0.

(3.11)467

468

We have to add two more conditions to determine the front uθ and the speeds cθξ and469

cθη. By integrating the first equation in (3.10) in ξ and η directions, we obtain cθξ ’s470
explicit representation as471

cθξ =

∫ ∞

−∞
Fη[f(u

θ(ξ, ·))]0 dξ.(3.12)472
473

We compute cθη as a unique minimizer of the following optimization problem:474

cθη = argmin
cη∈R

∥∥∥∥cθξ ∂uθ∂ξ + cη
∂uθ

∂η
+∇ · (Aθ

i ∇uθi ) + f(uθ)

∥∥∥∥2
L2

,(3.13)475
476
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where we define the L2 norm ‖F‖L2 for a function F defined on Sd as477

‖F‖L2 :=
√
(F,F)L2 , (F,G)L2 :=

∫ ∞

−∞

∫ d

0

F(ξ, η)G(ξ, η) dη dξ.478
479

Summarizing the above, we compute the front uθ and its speeds cθξ and cθη corre-480

sponding to angle θ from the ones for angle θ̃ by the following procedure, where θ̃ is481
close to θ.482

(i) For n = 0, define u(0) := uθ̃, c(0)ξ := cθ̃ξ , and c
(0)
η := cθ̃η.483

(ii) For n ≥ 1, we compute (u(n), c
(n)
ξ , c

(n)
η ) from (u(n−1), c

(n−1)
ξ , c

(n−1)
η ) by the484

following three steps.485
(a) Compute u(n) as the solution to the following problem in view of (3.11):486 

c
(n−1)
ξ

du
(n)
l

dξ
(ξ) + c(n−1)

η u
(n)
l (ξ)iwl + aθi

d2u
(n)
i,l

dξ2
(ξ) + 2bθi

du
(n)
i,l

dξ
(ξ)iwl

−cθi u
(n)
i,l (ξ)w

2
l + f0u

(n)
l (ξ) = −Fη[f(u

(n−1)(ξ, ·))]l + f0u
(n−1)
l (ξ),

(aθi + aθe)
d2u

(n)
i,l

dξ2
(ξ) + 2(bθi + bθe)

du
(n)
i,l

dξ
(ξ)iwl − (cθi + cθe)u

(n)
i,l (ξ)w

2
l

= aθe
d2u

(n)
l

dξ2
(ξ) + 2bθe

du
(n)
l

dξ
(ξ)iwl − cθeu

(n)
l (ξ)w2

l ,

u
(n)
l (−∞) =

{
1 if l = 0,
0 otherwise,

u
(n)
l (∞) = 0.

487

488

(b) Compute c(n)ξ by (3.12); that is,489

c
(n)
ξ =

∫ ∞

−∞
Fη[f(u

(n)(ξ, ·))]0 dξ.490
491

(c) Compute c(n)η as a unique minimizer of (3.13); that is,492

c(n)η := argmin
cη∈R

∥∥∥∥c(n)ξ

∂u(n)

∂ξ
+ cη

∂u(n)

∂η
+∇ · (Aθ

i ∇u
(n)
i ) + f(u(n))

∥∥∥∥2
L2

.493
494

(iii) Define uθ, cθξ , and cθη as limits of u(n), c(n)ξ , and c
(n)
η , respectively. Namely,495

uθ = lim
n→∞

u(n), cθξ = lim
n→∞

c
(n)
ξ , cθη = lim

n→∞
c(n)η .496

497

In actual computation, we approximate derivatives for ξ by central finite differences498
developed in subsection 3.2 and integration for ξ by the trapezoidal rule.499

3.5. Accuracy of the numerical scheme. We first check whether the nu-500
merical scheme developed in subsection 3.3 works correctly by comparing it with the501
asymptotic behavior of principal eigenvalue in Theorem 2.1. We can observe from Fig-502
ure 3.1 that when l is small, the numerical results for the real and imaginary parts of503
the principal eigenvalues are in good agreement with the asymptotic behavior shown504
in Theorem 2.1, and in this sense, we can conclude that our numerical method works505
well.506
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Fig. 3.1. Asymptotic behavior of principal eigenvalues and comparison with the numerical
results. The first row shows the result for θ = π/4 and the second row for θ = π/5, while the first
column shows the real parts of the principal eigenvalues and the second row their imaginary parts.
Dots (upper curve) and circles (lower curve) represent the numerical results. The solid lines drawn
near them correspond to the principal eigenvalues’ asymptotic behavior shown in Theorem 2.1.

We also check the accuracy of the scheme developed in subsection 3.2 numeri-507
cally. Since we employ the operator splitting method of Strang type for time dis-508
cretization, we expect temporal accuracy to be second order. Concerning the spatial509
discretization, we use central finite-difference approximations in the ξ direction and510
spectral discretizations in the η direction, so we also expect second-order accuracy.511
We emphasize, however, that our numerical scheme is not conventional in that we512
are performing a coordinate transformation to map an infinite domain to a finite one513
and that we are inserting a regridding/interpolation operation at each time step. It514
is thus of importance to numerically verify the expected accuracy of our numerical515
scheme. Concerning the bidomain Allen–Cahn equation, by using the function shown516
in Figure 3.2 (a) as the initial value, we change Nξ to 99, 199, 399, 799, 1599, i.e., ∆z517
to 1/50, 1/100, 1/200, 1/400, 1/800, and ∆t = ∆z, and compare the L∞ error of the518
solution at t = 20. Here, the L∞ error L∞(∆z) for mesh size ∆z is estimated by519

L∞(∆z) := ‖u∆z − u∆z/2‖L∞(Sd),520521

where u∆z denotes numerical solution with spatial mesh size ∆z. Figure 3.2 (b)522
depicts the results of numerical experiments. We vary the parameter α, which controls523
the speed of fronts, and observe that the accuracy of the numerical scheme is indeed524
second order.525

A similar numerical experiment is conducted for the bidomain FitzHugh–Nagumo526
equation. Figure 3.3 (b) shows the result of plotting the L∞ error of u when the initial527
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Fig. 3.2. Numerical investigation of accuracy of numerical scheme for planar fronts of the
bidomain Allen–Cahn equation.
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(b) L∞ error of u

Fig. 3.3. Numerical investigation of accuracy of numerical scheme for planar pulses of the
bidomain FitzHugh–Nagumo equation.

value of u in Figure 3.3 (a) is used, and it is confirmed that the accuracy is of the528
second order.529

4. Bidomain Allen–Cahn equation. This section investigates the asymptotic530
behavior and stability of fronts in the bidomain Allen–Cahn equation.531

4.1. Stability of planar fronts. We study how the principal eigenvalue and532
the width of the strip region affect the stability of planar fronts and observe that533
Hopf bifurcation occurs when the planar front is unstable. To this end, we employ534
the numerical method developed in subsection 3.3 for computing principal eigenvalues535
and the one in subsection 3.2 for computing the time evolution of a slightly perturbed536
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Fig. 4.1. Graphs of Reλ1,d as functions of d. The solid line shows the result for θ = π/4, and
the broken line does the result for θ = π/5. We choose the other parameters as a = 0.9 and b = 0.
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Fig. 4.2. Numerical computations of the bidomain Allen–Cahn equation when d = 2π/0.1,
θ = π/4, a = 0.9, b = 0, and α = 0.4.

planar front.537
We now investigate the stability of planar fronts of the bidomain Allen–Cahn538

equation (2.2) on the strip region Sd. Define the discrete wavenumber as wl,d := 2πl/d539
(l ∈ Z, d > 0) and denote the principal eigenvalue of Pwl,d

as λl,d. First, let us540
numerically investigate how the sign of the real part of the first mode’s principal541
eigenvalue λ1,d changes as d varies. As shown in Figure 4.1, when 2π/d is small (i.e.,542
d is large), Reλ1,d is positive, and its value gradually increases. However, the increase543
eventually stops and starts to decrease, and after a specific value of d, it becomes544
negative. This observation indicates that when d is large, the planar front is unstable,545
and the zigzag front appears, but as d decreases, all the unstable modes disappear,546
and the planar front becomes stable. We select the parameters as a = 0.9, b = 0, and547
α = 0.4. Figures 4.2 to 4.4 consider the case of θ = π/4, and Figures 4.5 to 4.7 consider548
the case of θ = π/5. We vary the width d of the strip region Sd as 2π/0.1, 2π/0.5, and549
2π/0.6. We set the initial values to be completely flat with a slight perturbation added.550
Comparing these numerical results with those in Figure 4.1, we can say that the above551
scenario is, to some extent, correct. These angles correspond to points where the Frank552
plot is non-convex, and Theorem 2.2 implies that planar fronts in these directions553
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t = 0 t = 100 t = 500 t = 1000

Fig. 4.3. Numerical computations of the bidomain Allen–Cahn equation when d = 2π/0.5,
θ = π/4, a = 0.9, b = 0, and α = 0.4.

t = 0 t = 100 t = 500 t = 1000

Fig. 4.4. Numerical computations of the bidomain Allen–Cahn equation when d = 2π/0.6,
θ = π/4, a = 0.9, b = 0, and α = 0.4.

are unstable. After destabilization, the planar front becomes a zigzag front, which554
eventually forms one peak with coarsening. Such a zigzag front does not exist in the555
monodomain Allen-Cahn equation [23, subsection 6.1], a significant characteristic of556
the bidomain Allen-Cahn equation. Moreover, as we also observe in subsection 4.3 in557
detail, the zigzag front’s appearance is caused by the Hopf bifurcation.558

4.2. Zigzag fronts. As we observed in the previous subsection, zigzag fronts559
appear when planar fronts are unstable. In this subsection, we study their asymptotic560
behavior.561

4.2.1. Speed of the zigzag front. As we saw in the previous subsection, when562
the planar front is unstable, it eventually forms a single peak while coarsening. Con-563
sidering this front in the situation as d tends to infinity, we can analytically compute564
the zigzag front speed by elementary geometric arguments. Therefore, we below per-565
form the calculation to confirm that the numerical experiments agree with them and566
provide a benchmark for the correctness of the numerical method developed in sub-567
section 3.4.568

Let us consider the coarsened ideal zigzag front, as depicted in Figure 4.8. As569
time passes by ∆t, the planar front in the direction nθ+θp travels distance cθ+θp

f ∆t,570
and the one in nθ−θm does cθ−θm

f ∆t. From these facts, we can write down the vector571
r in Figure 4.8 concretely as follows:572

r =
∆t

sin(θm + θp)

(
c
θ+θp
f sin θm + cθ−θm

f sin θp
−cθ+θp

f cos θm + cθ−θm
f cos θp

)
.573

574

Therefore, by dividing the vector r by ∆t and taking the limit of ∆t→ 0, we obtain575
the velocity vector v as576

v =
1

sin(θm + θp)

(
c
θ+θp
f sin θm + cθ−θm

f sin θp
−cθ+θp

f cos θm + cθ−θm
f cos θp

)
.577

578

If b = 0, then, as will be confirmed in subsection 4.2.2, θ + θp and θ − θm approach579
the angles of contact between the Frank diagram and its convex hull, where the speed580
of the planar front is equal:581

c̃ := c
θ+θp
f = cθ−θm

f .582583
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t = 0 t = 200 t = 600 t = 1000

Fig. 4.5. Numerical computations of the bidomain Allen–Cahn equation when d = 2π/0.1,
θ = π/5, a = 0.9, b = 0, and α = 0.4.

t = 0 t = 200 t = 600 t = 1000

Fig. 4.6. Numerical computations of the bidomain Allen–Cahn equation when d = 2π/0.5,
θ = π/5, a = 0.9, b = 0, and α = 0.4.

Hence, in this case, the velocity vector v is rewritten in a more straightforward form:584

v =
c̃

sin(θm + θp)

(
sin θm + sin θp

− cos θm + cos θp

)
.(4.1)585

586

The first element corresponds to the speed in ξ direction and the second one to the587
speed in η direction.588

Figure 4.9 compares the theoretical value of the front velocity of equation (4.1)589
with the one calculated from the numerical results for a = 0.7, a = 0.8, and a = 0.9.590
We set the width d of the strip region Sd to 100. When a is not so far from 1/2591
(e.g., a = 0.7, 0.8), the numerical results agree well with the theoretical values.592
When a = 0.9, some disparities exist, but the numerical results well understand593
the qualitative properties of fronts. This deviation from the theory can be attributed594
to the asymmetry of the front solution. When α = 1/2, the speed is equal to 0,595
and the front is flat, so the argument using the Frank diagram is valid. However,596
for 0 < α < 1/2, the speed is positive, and the front travels in the direction of597
the positive ξ-axis. It is numerically confirmed that the wavefront is not flat but598
slightly bent (Figure 4.10). The degree of bend increases as a becomes closer to 1.599
These numerical results suggest that the front bending is the main reason for the600
discrepancy with the theory.601

4.2.2. Correspondence between angles of zigzag fronts and the Frank602
diagram. Subsection 4.1 investigated a relationship between the real part the princi-603
pal eigenvalue and the instability of the planar front. In this section, we focus on the604
zigzag front itself. Looking at the figure for t = 1000 in Figure 4.2, we can observe605
several corners (peaks) on the zigzag interface. In particular, looking at the time606
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t = 0 t = 200 t = 600 t = 1000

Fig. 4.7. Numerical computations of the bidomain Allen–Cahn equation when d = 2π/0.6,
θ = π/5, a = 0.9, b = 0, and α = 0.4.

θm

θp

r

cθ−θm
f

c
θ+θp
f

Fig. 4.8. A schematic of the coarsened zigzag front

evolution, there is some law at work in the mechanism of corners. In this section, we607
study the asymptotic behavior of zigzag fronts in terms of angles of the peak and the608
Frank diagram.609

As we checked in subsection 4.1, the situation of Theorem 2.2 is consistent with610
Figures 4.2 to 4.7, where θ = π/4 and θ = π/5 correspond to places where the Frank611
plot is non-convex (see also Figure 2.1). Planar fronts are unstable, and zigzag fronts612
appear, but the zigzag fronts themselves appear to have some stability; they propagate613
over a long period while maintaining their shape. Combining this observation with614
Theorem 2.2, we reach the following conjecture.615

Conjecture 4.1. The angles of the peak of the zigzag front caused by destabi-616
lization asymptotically approach the angles of the contact points between the Frank617
diagram and its convex hull.618

Let us verify this conjecture numerically. Define angles θm and θp as in Figure 4.8.619
Namely, the angles of the zigzag front forming the peak are θ− θm and θ+ θp. Focus620
on Figure 4.11 and assume that the direction of the zigzag front is θ and that the621
point Pθ = (cos θ, sin θ)>/K(θ) on the Frank plot corresponding to the angle θ is in622
the region where the Frank plot is non-convex. Let us denote the angles of the two623
closest contacts from point Pθ on the Frank plot as θ∗, θ∗ from the smaller one. Then,624
we expect that625

θ − θm(t) → θ∗, θ + θp(t) → θ∗626627

hold as t → ∞. Figure 4.12 shows the results of one numerical experiment, which628
verifies that our predictions are correct.629

4.3. Coexistence of zigzag and planar fronts. In the monodomain Allen–630
Cahn equation, the planar front exists in all directions, while the zigzag front in the631
bidomain Allen–Cahn equation may degenerate into the planar front, as we can see632
in Figure 4.4, for instance. Moreover, the stability of planar fronts is described by633
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Fig. 4.9. Comparison of the theoretical speed of the zigzag front with the numerical results. Solid
lines show the theoretical speeds in ξ direction, broken lines show theoretical speeds in η direction,
dots show the numerical results of speed in ξ direction, and crosses show the numerical results of
speed in η direction.

a = 0.9 a = 0.8
a = 0.7

α = 0.4

Fig. 4.10. Bending of the wavefront. The three figures on the left show how the wavefront
bends when α is changed for each a. The figure on the right compares the bending for each a when
α = 0.4.

the sign of the curvature of the Frank plot as in Theorem 2.2. However, as shown in634
Figure 2.1, there is a portion inside the convex hull of the Frank diagram such that the635
curvature of the Frank plot is positive. In [13, 2, 4], the authors call such directions636
“locally stable” but “globally unstable”. We can then conjecture that both a zigzag637
front and a planar front that are asymptotically stable may exist in such propagation638
directions. We investigate this conjecture numerically in this section.639

We search the boundary of existence/nonexistence by varying two parameters a640
and θ, using the numerical method developed in subsection 3.4. Figure 4.13 depicts641
the result. The thin solid line represents the angles of contact between the Frank642
diagram and its convex hull; points above this line are inside the convex hull. The643
broken line expresses the position where the curvature of the Frank plot is equal to644
0; above this line, the curvature is negative, while it is positive below this line. The645
thick solid lines represent the boundary of existence/nonexistence of the zigzag front.646
More precisely, the zigzag front exists above this line.647
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Fig. 4.11. Correspondence of angles in the Frank plot.
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Fig. 4.12. Graphs of θ − θm and θ + θp.

Furthermore, we can observe bifurcation phenomena. For a “large” a, the sub-648
critical Hopf bifurcation occurs as θ being a bifurcation parameter. Indeed, when649
numerical computations are performed from the initial values shown in the leftmost650
figure of Figure 4.2 at a = 0.9, the zigzag front does not occur in the region to the651
left of the broken line due to the stability of the planar front, but slightly beyond652
the broken line to the right, the planar front becomes unstable, and a zigzag front653
with a large peak occurs. At a = 0.9, the thick line passes to the left of the dashed654
line, suggesting that planar fronts and zigzag fronts coexist between these lines. If655
we use the zigzag front as the initial value and gradually decrease the parameter θ ,656
the zigzag front does not disappear even if the value of θ crosses the broken line to657
the left but will continue to exist until it reaches the bold line. On the other hand,658
for a “small” a, the bold line passes to the right of the broken line, suggesting that659
a supercritical Hopf bifurcation occurs. Indeed, the numerical results for a = 0.6 do660
not show the same hysteresis as observed for a = 0.9.661

We can infer from these facts that the type of Hopf bifurcation is switched near662
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Fig. 4.13. Phase diagram concerning the existence of the zigzag front and the planar front. We
choose parameters as b = 0, d = 100, and α = 0.4.
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Fig. 4.14. The box plot on the time evolution of the number of peaks in the bidomain Allen–Cahn
equation.

the intersection of the bold and broken lines, and a degenerate Hopf bifurcation, which663
is a bifurcation of codimension 2, is expected to occur.664

4.4. Coarsening. We, so far, investigated the stability, the asymptotic behav-665
ior, and the bifurcation phenomena. In this section, we briefly deal with coarsening666
phenomena for zigzag fronts.667
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Fig. 4.15. The Frank diagram (left) and the Wulff shape (right) when a = 0.9 and b = 0.

For example, in Figure 4.2, the zigzag front that appears in the bidomain Allen–668
Cahn equation undergoes coarsening with time evolution; that is, the number of peaks669
gradually decreases, common in all cases. Therefore, we present the statistical data670
of the time evolution of the number of peaks. Figure 4.14 shows the box plot on the671
time evolution of the number of peaks in the bidomain Allen–Cahn equation, where672
we choose parameters so that d = 100, θ = π/4, a = 0.9, b = 0, and α = 0.4.673
We made this box plot by performing several numerical experiments of the bidomain674
Allen–Cahn equation with randomly perturbed initial data.675

We can interpret the result of this numerical experiment as follows. First, near676
the initial time, many peaks are generated from the random initial data, but they677
coarsen one after another in a relatively short time. After that, the number of peaks678
decreases to two, but the state with two peaks maintains its shape for a relatively679
long time; that is, the two-peak state retains stability in a sense.680

4.5. Spreading fronts. So far, we have investigated the qualitative properties681
of planar and zigzag fronts in the strip region. However, studying how the front682
spreads from the initial value with compact support is also essential. In particular, it683
is mathematically interesting to investigate the asymptotic shape of spreading fronts.684
The Wulff shape is a tool to elucidate a part of this.685

The Wulff shape W is defined by686

W =
⋂

0≤θ<2π

{
(x, y)> ∈ R2 | x cos θ + y sin θ ≤

√
Q(nθ)

}
.(4.2)687

688

Figure 4.15 shows the Wulff shape and the corresponding Frank diagram when a = 0.9689
and b = 0. There is a kind of duality between the Wulff shape and the Frank diagram,690
which we below show their relation roughly.691

Denote the convex hull of the Frank diagram by F̂ and a point on the Frank plot692
F by Pθ = (cos θ, sin θ)>/K(θ). Moreover, we define a set S by693

S := {θ ∈ [0, 2π) | Pθ ∈ ∂F̂}.694695

Then, we can prove that the Wulff shape also has the following expression:696

W =
⋂
θ∈S

{
(x, y)> ∈ R2 | x cos θ + y sin θ ≤

√
Q(nθ)

}
.697

698
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Fig. 4.16. The spreading front and the Wulff shape when a = 0.9, b = 0, and α = 0.49.

Mori and Matano proposed the following conjecture in [23] based on the above ex-699
pression of the Wulff shape.700

Conjecture 4.2. Suppose that the normalized speed c∗ is positive and that the701
planar front in the direction nθ is spectrally stable for all θ ∈ S. Then, the asymptotic702
shape of the spreading front of the bidomain Allen–Cahn equation is described by the703
Wulff shape (4.2).704

In the anisotropic Allen–Cahn equation, it is well-known that the Wulff shape705
gives the asymptotic shape of the spreading front [11, 12, 3, 1]. In this sense, the706
above prediction is not so far off the mark. Furthermore, in [23], what can happen707
is predicted if the stability condition in the above conjecture is not satisfied. A708
probable scenario is the following. The spreading front approaches the Wulff shape709
at large length scales. However, at finer length scales, the front is modulated by710
small-amplitude oscillatory waves corresponding to instabilities in the intermediate711
wavelengths.712

Let us show one result of numerical experiments. Figure 4.16 shows the numerical713
results of the spreading front for a = 0.9, b = 0, and α = 0.49, and the corresponding714
Wulff shape. As time goes by, we can observe that the spreading front gradually715
converges to the Wulff shape while coarsening and oscillation, which agrees with the716
above scenario. This numerical computation adopts the numerical scheme developed717
in subsection 3.1 and solves the bidomain Allen–Cahn equation in a rectangular region718
(3.1) with periodic boundary conditions in both ξ and η directions.719

5. Bidomain FitzHugh–Nagumo equation.720

5.1. Existence and stability of the planar pulse. A planar front always ex-721
ists in the bidomain Allen–Cahn equation, whereas this is not the case in the bidomain722
FitzHugh–Nagumo equation. In the bidomain FitzHugh–Nagumo equation, depend-723
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t = 0 t = 200 t = 400 t = 600

t = 0 t = 120 t = 200 t = 300

Fig. 5.1. Time evolution in the bidomain FitzHugh–Nagumo equation. The first and the second
rows are results for α = 0.3 and α = 0.33, respectively. We define other parameters as a = 0.9,
b = 0, θ = π/4, ε = 10−3, and γ = 3.

ing on (ε, α), the pulse may exist or vanish. As can be seen in Figure 5.2, planar pulses724
exist stably in the regions (I) and (II) below the solid line but not in the region (III)725
above. Also, the smaller α is, the larger the ε-region where the planar pulse exists.726

First of all, let us ensure that if a planar pulse exists in the monodomain FitzHugh–727
Nagumo equation, it must also exist in the bidomain FitzHugh–Nagumo equation728
(1.3). Let (uθp, v

θ
p) be a planar pulse in the bidomain FitzHugh–Nagumo equation729

(2.1) propagating in the direction nθ, and cθp be its velocity. The planar pulse satis-730
fies the homogeneous Dirichlet boundary conditions at infinity:731

lim
|η|→∞

uθp(η) = lim
|η|→∞

vθp(η) = 0.732
733

The planar pulse is a solution to the following boundary value problem:734



cθp
duθp
dη

+Q(nθ)
d2uθp
dη2

+ f(uθp, v
θ
p) = 0,

cθp
dvθp
dη

+ g(uθp, v
θ
p) = 0,

lim
|η|→∞

uθp(η) = lim
|η|→∞

vθp(η) = 0.

735

736

Let (u∗p, v
∗
p) be the normalized planar pulse, and c∗p be its speed; (u∗p, v

∗
p, c

∗
p) solves737
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Fig. 5.2. The existence region of planar pulse (below the solid line) and the one of zigzag pulse
(below the broken line).

the boundary value problem738 

c∗p
du∗p
dη

+
d2u∗p
dη2

+ f(u∗p, v
∗
p) = 0,

c∗p
dv∗p
dη

+ g(u∗p, v
∗
p) = 0,

lim
|η|→∞

u∗p(η) = lim
|η|→∞

v∗p(η) = 0.

739

740

Since there is no diffusion term in the equation for v in the bidomain FitzHugh–741
Nagumo equation, we can construct the planar pulse by performing the same scaling742

uθp(η) = u∗p

(
η/
√
Q(nθ)

)
, vθp(η) = v∗p

(
η/
√
Q(nθ)

)
, cθp =

√
Q(nθ)c∗p743

744

as in the bidomain Allen–Cahn equation. In other words, in the region of (ε, α) where745
the planar pulse exists in the monodomain FitzHugh–Nagumo equation, the planar746
pulse always exists in the bidomain FitzHugh–Nagumo equation.747

Since we have found no difference between the monodomain and bidomain FitzHugh–748
Nagumo equations for planar pulses, our subsequent interest is in the region of (ε, α)749
where zigzag pulses exist. For example, the first row of Figure 5.1 shows the result750
when α = 0.3. When we add a small perturbation to the planar pulse, it becomes751
a zigzag pulse with coarsening, and this state has existed for a long time. However,752
in the second row, when α = 0.33, although coarsening occurs, the pulse is torn off753
before long and eventually disappears. These observations motivate us to examine754
the region of (ε, α) where the zigzag pulse stably exists numerically.755

Figure 5.2 shows the results of the numerical experiments, where we fix the pa-756
rameters a = 0.9, b = 0, θ = π/4, and γ = 3 and vary α and ε as free parameters. We757
indicate the parametric regions (α, ε) in which the planar pulses exist and zigzag pulses758
are stable. The solid line indicates the boundary of existence/nonexistence of planar759
pulses, and the planar pulse exists below the solid line, i.e., in the regions (I) and760
(II). Note that this solid line is determined completely by the 1D FitzHugh-Nagumo761
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t = 0 t = 280 t = 600 t = 1200

t = 0 t = 260 t = 400 t = 500

Fig. 5.3. Spreading pulse in the bidomain FitzHugh–Nagumo equation. The first row represents
results for α = 0.32 and the second row for α = 0.34. We define other parameters as a = 0.9, b = 0,
ε = 10−3, and γ = 3.

model. As we saw above, planar pulse solutions of the bidomain FitzHugh-Nagumo762
model and the pulse solutions of the 1D FitzHugh-Nagumo equations are identical.763
The broken line shows whether the zigzag pulse is stable in the bidomain FitzHugh–764
Nagumo equation, and it is below the broken line, i.e., in the region (II). The above765
means that there are no stable planar or zigzag pulses in the region (I).766

We note that α controls the excitability of the FitzHugh–Nagumo system; the767
system is more excitable when α is close to 0 and less excitable as α approaches768
1/2. The parameter ε controls the separation of time scales of the slow and fast769
variables. Figure 5.2 indicates that the bidomain FitzHugh Nagumo pulse is prone770
to propagation failure when the system is less excitable and the separation of time771
scales is less pronounced.772

5.2. Correspondence between spreading pulses and the Wulff shape. In773
the bidomain Allen–Cahn equation, we observed that the Wulff shape describes the774
asymptotic shape of the spreading front. We see if the same consideration holds for the775
bidomain FitzHugh–Nagumo equation. We show our numerical results in Figure 5.3.776
We fix parameters as a = 0.9, b = 0, ε = 10−3, and γ = 3. There exists in this777
setting a threshold value α∗ around 0.33 on existence/nonexistence of zigzag pulse778
as in Figure 5.2. Reflecting on this observation, we can see that the spreading pulse779
exists and converges to the Wulff shape for α = 0.32 (the first row in Figure 5.3) and780
that it disappears for α = 0.34 (the second row in Figure 5.3).781

6. Discussion. In this paper, we performed a detailed computational study of782
the asymptotic behavior of planar fronts and pulses of the bidomain Allen–Cahn783
and bidomain FitzHugh-Nagumo equation. For this purpose, we developed a nu-784
merical scheme that simulates the propagation of fronts and pulses on an infinite785
two-dimensional strip domain. We confirm that planar fronts of the bidomain Allen–786
Cahn equation are unstable when the Frank diagram is not convex in the direction787
of propagation. The destabilized planar fronts generically approach a zigzag rotating788
front whose shape and speed can be explained by the geometry of the Frank diagram.789
Destabilization of the planar front thus takes place through a Hopf bifurcation. We790
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have shown that this Hopf bifurcation can be either supercritical or subcritical de-791
pending on the parameter regime. For the bidomain FitzHugh-Nagumo equation, we792
have shown that the pulse solution does not necessarily develop into a zigzag rotating793
pulse. The pulse solution can entirely disappear, especially when the parameters are794
close to the boundary of the parametric region in which planar pulses exist.795

Theoretical studies on arrhythmogenesis using FitzHugh-Nagumo and similar ex-796
citable systems have focused on the monodomain case, in which case the bidomain797
equation reduces to a reaction-diffusion system (see (1.1)). In this paper, we have798
demonstrated that replacing the Laplacian in the monodomain model with the bido-799
main operator leads to qualitatively different asymptotic behaviors that could play an800
important role in arrhythmogenesis. It is well-known that regions of cardiac ischemia801
or infarction induce cardiac arrhythmias, and the authors of [7] have suggested that802
the Frank diagram can become non-convex in regions of cardiac ischemia or healed803
infarcts. Our results suggest that planar fronts, passing through such a region, can804
become unstable and deform into a zigzag front. Furthermore, the zigzag front may805
maintain its zigzag shape even if it passes into a healthy region of the heart, as is806
suggested from our demonstration of a subcritical Hopf bifurcation. We have also807
demonstrated that zigzag pulses may completely disintegrate when passing through808
regions where the Frank diagram is non-convex, and the underlying tissue is less ex-809
citable (see discussion at the end of subsection 5.1), leading to propagation failure.810
We note that regions of ischemia are precisely those locations for which the tissue is811
less excitable. These scenarios thus point to novel modes in which cardiac propagation812
can fail due solely to the bidomain nature of cardiac tissue.813
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