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ASYMPTOTIC BEHAVIOR OF FRONTS AND PULSES OF THE
BIDOMAIN MODEL*

HIROSHI MATANOT, YOICHIRO MORI¥, MITSUNORI NARAS§, AND KOYA
SAKAKIBARAY

Abstract. The bidomain model is the standard model for cardiac electrophysiology. This pa-
per investigates the instability and asymptotic behavior of planar fronts and planar pulses of the
bidomain Allen—Cahn equation and the bidomain FitzHugh—Nagumo equation in two spatial dimen-
sions. Previous work showed that planar fronts of the bidomain Allen—Cahn equation could become
unstable in contrast to the classical Allen—Cahn equation. After the planar front is destabilized, a
rotating zigzag front develops whose shape can be explained by simple geometric arguments using
a suitable Frank diagram. We also show that the Hopf bifurcation through which the front be-
comes unstable can be either supercritical or subcritical by demonstrating a parameter regime in
which a stable planar front and zigzag front can coexist. Our computational studies of the bidomain
FitzHugh—Nagumo pulse solution show that the pulses can also become unstable, like the bidomain
Allen—Cahn fronts. However, unlike the bidomain Allen—Cahn case, the destabilized pulse does not
necessarily develop into a zigzag pulse. For certain choice of parameters, the destabilized pulse can
disintegrate entirely. These studies are made possible by developing a numerical scheme that allows
for the accurate computation of the bidomain equation in a two-dimensional strip domain of an
infinite extent.

Key words. Bidomain model, Allen-Cahn model, FitzHugh-Nagumo model, front and pulse
solutions, Hopf bifurcation.
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1. Introduction. The cardiac bidomain model is the standard mathematical
model for cardiac electrophysiology:

%Z — f(u,8) =V - (A4Vw), u=uj— U,
V- (AIVul) +V- (AeVue) =0,

Js

T g(u,s), s=(s1,.-..,8a),

where u; ¢ are intracellular/extracellular voltages, u is the transmembrane voltage,
81,...,8¢g are gating variables, and A;. are conductivity tensors. Nonlinear terms
f(u, s) and g(u, s) are of Hodgkin—-Huxley (or FitzHugh-Nagumo) type.

It is challenging to study this model mathematically, which has led many to study
the monodomain reduction. Let us assume that condition A, = S8A; holds; intracel-
lular and extracellular anisotropies are proportional. Then, the bidomain system
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2 H. MATANO, Y. MORI, M. NARA, AND K. SAKAKIBARA

reduces to the monodomain system:

% =V (Amonovu) + f(ua 3)7 Amono iAia
) ot 148

& — glus)

at g )

The monodomain reduction is an equation of reaction-diffusion type with Hodgkin—
Huxley or FitzHugh—Nagumo type nonlinearities and thus support traveling pulse
solutions and other patterns characteristic of excitable systems [20, 7]. These traveling
pulse solutions describe the propagating electrical signal in the heart. Extensive
simulations indicate that the bidomain model support qualitatively similar solutions.
However, the bidomain model is quantitatively better than the monodomain model,
especially under extreme conditions like defibrillation [21, 20, 16]. A natural question
arises as to how different the behavior of the bidomain model is qualitatively from
that of the monodomain model.

The bidomain model, initially introduced in [10, 27, 22], is the standard tissue-
level model of cardiac electrophysiology widely used in simulations (see, for instance,
[6, 18, 19, 8, 26]). Well-posedness is studied in [9, 5, 28, 7, 14, 15]. It is possible to
derive the bidomain model from an underlying microscopic model through homog-
enization. This calculation was first performed formally in [24, 20] and was given
analytical justification in [25].

Very little is known mathematically of the qualitative properties of the bidomain
equation. As discussed earlier, from both mathematical and physiological points of
view, it is important to study the traveling front and pulse solutions of the bidomain
equations. In [23], the authors study the bidomain Allen-Cahn equation in R? (to
be introduced shortly), which should be seen as the bidomain analog of the classical
Allen—Cahn equation. The bidomain Allen—Cahen equation supports traveling planar
front solutions in every direction, much like the classical Allen-Cahn equation. How-
ever, in sharp contrast to the classical case, the planar front solutions of the bidomain
Allen—Cahn equation were unstable under certain parametric conditions.

The study in [23] was perturbative, confined to spectral computations of the
linearized operator around the traveling front solution. Nothing is known beyond
this perturbative regime. Tentative numerical simulations have shown that a zigzag
front appears when the planar front is unstable [23, Section 6], but the mechanism
determining the shape of zigzag fronts is unknown. Furthermore, nothing is known
about the pulses’s stability when we turn our attention to the bidomain FitzHugh-
Nagumo equation.

In this paper, we perform a computational study of the asymptotic behavior of
fronts and pulses in bidomain equations in R?. The bidomain equation refers to the
bidomain Allen—Cahn equation

Ou _
(1.2) o
AV (AIVul) + V- (AeVue) =0,

(u) =V - (AVw), u=1u — U,
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FRONTS AND PULSES OF THE BIDOMAIN MODEL 3

or the bidomain FitzHugh-Nagumo equation

% — flu,v) =V - (AVuw), u=1u— ue,
(1,3) V- (AiVui) + V- (Aevue) =0,

ov

a - g(u,v),

where A; and A, are 2 x 2 positive definite symmetric matrices called the conductivity
matrices. This paper focuses on the case where the nonlinearities are given by

flu) =u(l —u)(u— ) in (1.2),
flu,v) =u(l —u)(u—a) —v, g(u,v)=¢c(u—yv) in (1.3),

where a € (0,1), € > 0, and v > 0 are constants.

In section 2, we briefly summarize the results of [23], which we will use later. In
particular, it was shown that the convexity of a suitably defined Frank diagram is
closely tied to the stability of planar fronts (see Figure 2.1). Let us consider a planar
front solution propagating in a certain direction. If the Frank diagram is convex in
this direction, the front is stable to long-wavelength perturbations and is unstable
otherwise. We will use the characterization of planar fronts’ stability by the Frank
diagram to guide our study on the shape of the zigzag fronts. We will also quote an
explicit expression on the asymptotic behavior of the principal eigenvalue to be used
as a benchmark for the algorithm we propose for computing the principal eigenvalues.

Section 3 summarizes various numerical methods used in this paper. In [23], the
bidomain equation was simulated on a bounded rectangular domain with periodic
boundary conditions. A similar method is described in subsection 3.1, which we will
use to compute spreading front and pulse solutions. However, such a method is not
suitable for a detailed computational study of traveling front or pulse solutions since
these solutions reside in regions of an infinite extent.

The planar fronts and the planar pulses are originally defined in the whole plane,
but it is not easy to compute them numerically in the whole plane. Therefore, we
consider the bidomain equations in the strip region, which is infinite in the direction
of propagation £ but periodic in the orthogonal direction 7.

We first apply a coordinate transformation, in the direction of propagation &, cen-
tered at the appropriately defined front or pulse location, mapping the infinite strip
into a bounded rectangle. We solve the time-discretized equation in the resulting
rectangular domain using finite differences in the modified £ direction and the Fourier
transform in the n direction. We use a splitting method and alternate between the
evolution of the bidomain operator (see (2.1)) and nonlinearities. Strang splitting is
used to obtain second order accuracy in time, and the evolution substeps correspond-
ing to the bidomain and nonlinear terms are solved with second-order methods. We
re-center the coordinate transformation at each time step so that the front position is
fully numerically resolved. This step requires an interpolation operation from the old
to the new grid, for which we employ Lagrange interpolation to minimize the error
incurred through this step. We perform a numerical convergence study in subsec-
tion 3.5 to confirm that our numerical scheme is second-order accurate in space and
time. The dynamics of planar fronts and pulses and their instabilities can now be ac-
curately captured. Based on the above, we can also compute the principal eigenvalues
and corresponding eigenfunctions of the linearization around the planar fronts, the
numerical results of which are tested against analytical calculations in subsection 3.5.
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4 H. MATANO, Y. MORI, M. NARA, AND K. SAKAKIBARA

Furthermore, we develop algorithms to compute the rotational fronts to which the
planar fronts asymptotically approach by devising a suitable iterative algorithm.

Section 4 deals with the bidomain Allen—Cahn equation. By performing numerical
computations of the principal eigenvalues and the planar front, we investigate the
relationship between the sign of the real part of the principal eigenvalue, the width
of the strip region, and the stability of planar fronts. Stability criteria based on
eigenvalue calculations are shown to be consistent with the onset of planar front
instabilities as exhibited by the numerical computation of the full bidomain model.

Our numerical experiments strongly suggest that unstable planar fronts asymp-
totically approach a rotating zigzag front with a constant translational speed cg and
a rotational speed cfr The shape of the zigzag front is characterized by the two angles
fm and 6, between the 7 axis and the level sets of the zigzag front (see Figure 4.8).
The shape and speed of the eventual zigzag front can be predicted from elementary
geometric arguments using the Frank diagram. In particular, the angles 6., and 6,
correspond to the contact points between the Frank diagram and its convex hull.
We numerically verify this geometric prediction by comparing the predicted values
of cg,cg,ﬂm,ﬂp against the values obtained by a full numerical computation. The
asymptotic zigzag front shape and its speeds are computed by the iterative algorithm
mentioned previously.

Then, we investigate the relationship between the region where the zigzag front
exists, the convex hull of the Frank diagram, and the curvature of the Frank diagram.
We observe the supercritical Hopf bifurcation and the subcritical Hopf bifurcation
depending on parameters, and degenerate Hopf bifurcation at the boundary of these
bifurcations. The zigzag front caused by the instability of planar fronts has several
peaks at the beginning and finally converges to a shape with a single peak after
repeated coarsening. We examine the relationship between the number of peaks and
their duration and discuss which number of peaks is, in some sense, stable. Finally,
we discuss the spreading front. In the paper [23], the authors predicted that the
spreading front would converge to the Wulff shape, and we confirm numerically that
this is indeed the case.

Section 5 deals with the bidomain FitzHugh—Nagumo equation. In the bido-
main Allen—Cahn equation, the planar front exists in all directions, and we study its
qualitative behavior, such as the asymptotic behavior and the stability, from several
points of view in section 4. Therefore, it is natural to conduct a similar study on the
bidomain FitzHugh—Nagumo equation. We first recall that, for, given 0 < o < 1/2,
€ > 0 must be made small enough for a stable planar pulse solution to exist for the
classical FitzHugh-Nagumo equation. We verify that the planar pulse solution for the
classical FitzHugh—Nagumo equations is also a planar pulse solution for the bidomain
FitzHugh—Nagumo equations. We are thus led to studying the stability of the planar
pulse solutions and their asymptotic evolution.

Much like the bidomain Allen-Cahn equation, we verify through numerical exper-
iments that the planar pulse solutions are unstable in directions in which the Frank
diagram is non-convex. In contrast to the bidomain Allen-Cahn case, however, we
find that the destabilized planar pulse solution may not necessarily approach a zigzag
pulse for large time. Depending on the parameter values of € and «, the planar pulse
develops into a zigzag pulse or disintegrates completely. We find the pulse disinte-
grates when e and « are close to the edge of the parametric region in which planar
pulse solutions exist.

Finally, we examine the spreading pulse. We numerically explore the existence
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FRONTS AND PULSES OF THE BIDOMAIN MODEL 5

and asymptotic shape of the spreading pulse, corresponding to the region where the
pulse exists.

In section 6, we summarize our results and discuss the possible significance of our
results in studying cardiac arrhythmias.

2. Preliminaries. Before going into the main issue, we briefly summarize the re-
sults obtained in Mori-Matano [23] in this section. We apply their results throughout
this paper.

2.1. Expressions using pseudo-differential operators. We can represent
bidomain equations as a closed-form for u by using pseudo-differential operators.
These are useful in computing spreading fronts and spreading pulses in a rectangular
region with periodic boundary conditions.

Denote by F the two-dimensional Fourier transform; Fv is defined for a function
v on R? by

(fbxk):iXk):zj@f(mﬁmp@%k-m)dw, k= (k1" cR%

Applying the Fourier transform F to the relation V - (4;Vu;) = =V - (A.Vue), we
can represent the term V - (A4;Vu;) using a pseudo-differential operator £ as follows:

(2.1) V- (AVu) = —F'QFu = —Lu.
Namely, the bidomain operator L is a Fourier multiplier operator with symbol @ given

by

_ QRQ(k) oty
Q(k> - Ql(k) +Qe(k)’ Ql,e(k) - k Al,ek~

Thus the bidomain Allen—Cahn equation (2.2) and the bidomain FitzHugh—-Nagumo
equation (1.3) are rewritten as

ou
(2.2) of = Lut fw)
and
ou
a - —,C'LL + f(uvv)a
ov
E - g(uv U)'

A suitable linear transformation on the coordinate system can transform the conduc-
tivity matrices A; and A, into the following standard forms:

_(1+b+a 0
A*‘( 0 1+b—a)’

1-b—a 0
Ae_( 0 1b+a)’

Accordingly, we always assume that the conductivity matrices A; and A, are given by
(2.3). In simulations in this paper, we set b = 0 for simplicity. In this case, the Frank
diagram (see Figure 2.1) has a four-fold symmetry, making it easier to interpret the
numerical results.

(2.3) la+b| < 1.

This manuscript is for review purposes only.
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6 H. MATANO, Y. MORI, M. NARA, AND K. SAKAKIBARA

2.2. Directional bidomain equations. We will scrutinize the asymptotic be-
havior of fronts and pulses in the bidomain equations propagating in several directions.
To this end, we must write them down in a new coordinate £ = (£,1) T, which we
obtain by rotating the original coordinate & by angle . Consequently, the bidomain
operator £ reduces to the form £ = F~1Q?F, where

QY (k)Q4 (k)

O(k) = i\ W we\®) 0
SO Qe aiw %
cos 0 —Sin6‘)

sinf cos6

(k) =k Al K,
Al =R°Ai R’ R’ = (

Here, F denotes the two-dimensional Fourier transform in & The n’-directional
bidomain Allen—Cahn equation is given by

)
and the nf-directional bidomain FitzHugh-Nagumo equation is given by
0
5 = Ll S, ),
0
8%) = 9(u,v),

where n? = (cosf,sin6)". Besides, we define af, b?

i,e’ “i,e’

0 0
ai,e bi,e o Ag
bg Ce M <N
ie ie

2.3. Planar fronts in the bidomain Allen—Cahn equation. Let us consider

a planar front u?(¢) = uf(n? - & — ¢ft), which propagates in the direction n?. We

impose boundary conditions at infinity:

and ¢/ as follows:

lim w?(¢)=1, lim u{(¢)=0.
(——o0 (—o0

Substituting u¢ into the bidomain Allen-Cahn equation (1.2), we obtain the following
ordinary differential equation:

2,6
d“ug

g duf dTug
dn?

+Q(n?)

Let uf be the normalized planar front and c¢f be its speed; (uf, cf) solves the boundary
value problem

duf  d?uf
+

dp — dn?

uf(—00) =1, uf(o0) = 0.

o + fluf) =0,

This problem is the one the planar front in the Allen-Cahn equation satisfies. cf is
unique, and uf is uniquely determined up to translation. We can explicitly represent
them as

)= 1 cf = 1—oz
0= Ty 7))
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and as a result, we may express u? and c? as follows:

W) = (n/ Q<n9>), & = \JQm?)e.

2.4. Principal eigenvalues in the bidomain Allen—Cahn equation. We
will examine the stability of planar fronts in the bidomain Allen-Cahn equation asso-
ciated with the principal eigenvalue of the corresponding linearized operator. To this
end, we introduce a moving coordinate & that travels with the planar front so that
the £-axis aligns with the direction of propagation n? and the 7-axis is parallel to the
planar front. In this new coordinate, the bidomain Allen—Cahn equation becomes

ou  40u
—=d= -
ot o€
We linearize this equation around the planar front (uf,c?) to obtain
o’ g OV?
N il
ot~ T o
Applying the Fourier transform in the n direction to this equation, we obtain the Ith
mode’s eigenvalue problem for each [ € R:

L0+ f(u).
— L%% + f(ud)? = PP,

0,0 0,0 0 0 8“?
(2.4) Pl Ul = >\l Ul 5 )\0 = 0, UU = — Q=
o8

where

0 _
0?575 — L]+ (), L] =F Q0 (k1) Fe,

and F¢ is the one-dimensional Fourier transform in £&. We impose the normalizing
condition

(2.5) v? (0) = vf(0).

Pl =

The following theorem describes the detailed asymptotic behavior of the principal
eigenvalue \? as [ tends to 0. See [23, Theorem 4.2] for details.

THEOREM 2.1. There is a 6 > 0 such that for |l| < & there is an eigenvector-
eigenvalue pair (v!,\)) € H?(R) x C satisfying (2.4) and (2.5) with the following
properties:

(i) )\? is a simple principal eigenvalue of Plo; there is a constant vs > 0 indepen-

dent of | such that

SPH\{N} c {2z € C|Rez < —v5},

where 3(-) refers to the spectrum of the operator.
(i) )\le is a C? function for | and satisfies the following asymptotic expansion:

N =io 1 — apl> +0(1*) asl— 0,

where

o = % 1 L (302 cos®(20) + 2ab cos(20) — 40 sin®(26) — 1?)

[\

2a? sin?(26) (b + a cos(26))?
B 1—(b+acos(20))2

- 2asin(26)(b + a cos(20))
YT T 1= (b+ acos(20))?
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8 H. MATANO, Y. MORI, M. NARA, AND K. SAKAKIBARA

Fic. 2.1. The Frank diagram when a = 0.9 and b = 0. The blue solid and broken lines represent
the Frank diagram’s convex hull, and the black dots represent the tangent points of the Frank diagram
and the convex hull.

2.5. Stability of planar fronts. We will investigate the stability of planar
fronts. As an analytical result, in [23], the authors investigated the stability of planar
fronts in the bidomain Allen-Cahn equation in terms of the Frank diagram.

A Frank plot .7 is a curve defined as follows [3, 17]:

F = {(cosf,sinf) " /1/Q(n?) | 6 € [0,2x]}.

The figure surrounded by the Frank plot is a Frank diagram. Figure 2.1 shows an
example of the Frank diagram. In particular, when a > 1/2, the Frank diagram is non-
convex, and there is always an angle at which the planar front becomes unstable [23,
Eq. (4.98)]. More precisely, in [23], the following theorem about the relationship
between the stability of planar fronts and the convexity of the Frank diagram is
presented.

THEOREM 2.2. The planar front propagating in the direction n® where the Frank
plot is non-conver at (cos,sin@) " /\/Q(n?) is spectrally unstable.

3. Numerical scheme. In this section, we develop several numerical methods
for solving bidomain equations. Numerical methods for the bidomain FitzHugh—
Nagumo equation can be obtained by naturally modifying numerical methods for the
bidomain Allen—Cahn equation. Therefore, in the following, we explain our numer-
ical methods for the bidomain Allen—Cahn equation in detail and only make brief
comments for the bidomain FitzHugh-Nagumo equation.

3.1. Spreading fronts and spreading pulses. We consider the bidomain
Allen-Cahn equation (2.2) in a periodic rectangular region Q = S} x S} , where
Sl := R/dZ. Namely, we solve the following problem:

ou .
(3.1) 5 = —Lu+ f(u) inQ,t>0,
u(+,-,0) = ug in Q,

where ug is the initial value with compact support. We adopt the operator splitting
method to discretize in time and the Fourier transform to discretize in space to solve
this problem.
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FRONTS AND PULSES OF THE BIDOMAIN MODEL 9

The essence of the operator splitting method is to decompose the problem (3.1)
into two parts:

ov .
(3.2) 5= —Lv inQ, t>0,
and
(3.3) 88—1: = f(w) inQ, t>0.

Denote time evolution maps, which advance solutions by time At, for (3.2) and (3.3)
by 2t and gp?t, respectively. Here we write the subscript f in @?t in order to
emphasize that the nonlinearity is f. According to the operator splitting method of
Strang type, a second-order discretization in time, we compute the time evolution as
follows:

(3.4) utt = (932 0 B0 PPy,

where u™(+) is an abbreviation of u(-,¢"), and t™ = nAt denotes the nth time step
with uniform time increment At.

Construction of time evolution maps. We construct wft based on the second—l

order explicit Runge-Kutta method. Namely, define an approximation @J%t of go?t
as

(3.5) OPH(F) =F+ Atf(F.), F.=F+ %f(F)

for a general function F. Concerning 1>, we adopt the Fourier transform. Namely,
define an approximation U2 of 12t as

UA(F) = F;, ' exp(—QrAt)FyF
for a general function F, where 73, and F, ! are the discrete Fourier transform and

its inverse, respectively. @y, is a restriction of the Fourier multiplier to the space of
discrete wavenumbers. Utilizing the above constructed time evolution maps q)?t and

UAt we compute the bidomain Allen-Cahn equation (3.1) by (3.4). In other words,
by denoting an approximate solution at t" by U™, U"*! is compubed by

Un+1 _ (@?ﬁ/? ° \IlAt ° @?ﬁ/?)UW

We similarly compute the bidomain FitzHugh-Nagumo equation in a rectangular
region with periodic boundary conditions. Since the Strang splitting yields

(@0 = (777 @ 8 0 (¥ @id) o (077 © 912 (", 0",

the numerical scheme reads

(3.6) (U™, yntly = ((@?”2 © 22) 0 (UM @id) o (922 @ <I>§t/2)) o, vm).

This manuscript is for review purposes only.



w W w
NG

w
w

W oW W
5y

w
T v v Ot Ot Ut Ot Ut Ot
-~ =

oo

366

368
369

370

382

383

384

10 H. MATANO, Y. MORI, M. NARA, AND K. SAKAKIBARA

3.2. Planar/zigzag fronts and planar/zigzag pulses. The fronts and pulses
are defined in the whole plane; therefore, it is natural to compute them in the whole
plane with boundary conditions at infinity. However, because of computational diffi-
culty, in most previous studies, the bidomain equations are solved in a bounded region,
which does not correctly reflect the boundary conditions at infinity, raising questions
about reliability of numerical solutions. To study the asymptotic behavior of fronts
and pulses in the direction n?, we solve the n’-directional bidomain equations in the
strip region that is not bounded in ¢ direction while periodic in n direction. To be
precise, define the strip region Sy by

Si=R xS}, S)=R/dZ.

As in the previous section, we adopt the operator splitting method in time discretiza-
tion. We adopt the Fourier transform in the 7 direction and the finite difference
method in the £ direction concerning spatial discretization.

We obtain the following partial differential equations for v and u; by eliminating u,
from the n?-directional bidomain Allen-Cahn equation (2.2) using relation u = u; —u:

%_ (u) = V - (A'Vu;) in Sy, t >0,

V- (A 4+ ADVu;) = V- (A%Vu) in Sy, t >0,
u(—oo,m,t) =1, wu(oo,m,t)=0 forneSLt>0
u(-,-,O) = Up in Sd.
As stated above, we adopt the operator splitting method in time discretization.

Namely, we split the above equations into

ov

5=V (AfVvy) in Sy, t >0,
(3.7) V- (A + AD)Voy) = V - (Vo) in S, t >0,
v(—o0,n,t) =1, wv(oo,n,t)=0 forneSk t>0,
and
ow .
(3.8) e f(w) in Sy, t>0.

We then adopt the second-order Strang splitting; that is, denoting by *t and go?t
the time evolution maps, which advance solutions by time At, for (3.7) and (3.8),
respectively, we compute the time evolution according to (3.4).

Construction of time evolution maps. Concerning cp?t, we adopt the second-
order explicit Runge-Kutta method. Namely, we construct an approximation q)?t of

goft by (3.5). On the other hand, for 1»**, we adopt the trapezoidal rule; that is, we
solve the following partial differential equations:

v—1v 1 . .
) (V- (APV (v; + o)) in &4,
V- ((AY + ADVy) = V- (AV0)  in Sy,

U(_Oovn) =1, 0(00777) =0 for ne Stljv

where the hat symbol * denotes the solution at a previous time step.
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FRONTS AND PULSES OF THE BIDOMAIN MODEL 11

Since all the functions v, v;, 0, and 9; are periodic in 7 direction, we can represent
them as the Fourier series in the n variable with variable coefficients of £&. Denote
their Fourier coefficients by {0i(&)hiez, {v14(6) hiezs {01(€)hez, and {014(€)hiez, re-
spectively. We then obtain the following system of ordinary differential equations for
each Fourier mode:

v(€) —o(§)  af (d*uy d?0;, o ((dvig di
&= (Gt o)+ (o + o) w
&
S () + l©) uf, ECR,
0 0 dQUi,l 0 o+ dvi 2
(ai +ae) dgz (g) +2(b +b ) 5 ( )lwl (C +C )'Ui,l(g)wl
= SO + 2 @i — u(u?, €
1 ifl=0,
v(=o0) = {O otherwise, u(00) =0,

where w; = 27l/d (I € Z) is a discrete wavenumber. To solve the above problem, we

need to discretize in £ direction to approximate derivatives for £. In this subsection,

we develop the one-dimensional finite difference method on an unbounded interval.
We introduce a coordinate transformation g: (—1,1) — R by

g(z) = K tan (g;:) , z€(—1,1),

where K is a positive number. We formally extend this function to the one from
[~1,1] onto R = R U {4o0} by defining g(—1) = —oc and g(1) = o for the sake of
convenience. We denote the extended function by the same symbol g. We define a
uniform mesh {27 }N5+ and its adjoint {27}, Nerly,

2= 1+ jAz, §=0,1,...,Ne +1,
;31:_1+(]_>Az j=1,2,...,Ne+1,

where Az = 2/(N¢ 4+ 1). By mapping the uniform mesh {ZJ}NEJrl

}N5+1

by the coordinate

transformation g, we obtain a nonuniform mesh {{J on R as

§J:g(zj), j=0,1,...,Ne+ 1.

In particular, €9 = —oo and €V¢t! = 0o hold. Based on the chain rule
dF 1 d d?F 1 d 1 d
TO= SO, §5© = s | s L Fee)]

at £ = g¢g(z) for a function F defined on R, we approximate the first derivative
(dF/d€)(€) and the second derivative (d2F/d€?)(€) on the nodal points £ = &7 (j =
1,2,..., N¢) by the central finite differences:

dF 1 1 FIfl_F 1 F—Fi—! i

J - . =: 0F’

6(5 /%5 L}’(iﬁl) A: oG Az ] o
i(fj) _ 1 1 FY-F 1 F-FT 2
g gEhAz [gET) T A g(®@) A |0
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where F/ = F(¢7) = F(g(27)). We then obtain the following linear system: for each
leZ,

vl =0 af r2 ;2 S TN i
lAt L 5‘ (5 vijyl +90 vil> + ¢ (51}{1 + 511{71) iw; — 51 (vil + Uil) wi,
J=1,2,..., Ng,
72 . — s .
(af +ad)o o], +2(6) + )50 jiwy — (¢ + )v] jwf
= a252v-;' + nggvljiwl — cgvljwlz, Jj=12,...,Ng,
1 ifl=0,
v? = . le§+1 =0.
0 otherwise,

Writing D as the solution map that maps the solution of this linear system to a given
{#]}, an approximation WAt of 92! can be formally expressed as

(3.9) VA = (F)"to Do Fy,

where F,! denotes the one-dimensional discrete Fourier transform in 7 variable.

Regridding. To study the long-time behavior of the front, it becomes necessary
to re-grid as the front advances. First, we estimate the position of the 1/2-level set
by using third-order Lagrange interpolation and set £ = 0 there. The values of u in
the new coordinate system are then defined using quadratic interpolation.

For the bidomain FitzHugh-Nagumo equation, we compute (u"*!,v"*1) from
(u™,v™) as in (3.6).

3.3. Principal eigenvalues and corresponding eigenfunctions. Although
we know that the principal eigenvalue Ay at [ = 0 being equal to 0 and the asymptotic
behavior of principal eigenvalues where |I| is sufficiently small by Theorem 2.1, in order
to discuss the stability of the planar front in the bidomain Allen—Cahn equation, we
need to compute the principal eigenvalues beyond the range covered by the theorem.
We solve the eigenvalue problem (2.4) by the same strategy in the previous subsection.
Namely, we represent the eigenfunction v’ as the Fourier series in 7 with variable
Fourier coefficients of £ and approximate derivatives concerning £ by the central finite
differences. As a result, we obtain the following linear system for the Ith mode’s
eigenvalue problem:

. —_— . 72 . — . . . .
)\levlj = C?é’l}ij’l + a’lg5 Ug,l + 2bi95vi],liwl - cigvi],lle + f/(’U,'lZ)U'l], j = 17 27 ey Nﬁa
—2 — .
(af +ad)d vl +2(6) +b2)0v] jiwr — (¢ + cd)v] i

i

=ald v + 2b25vij,liwl — (¢ + cg)vilw%, j=1,2,... Ng,

Ne
0_  Net+tl 0 _  Netl Jj12 _
v =1 =i =Yy =0, E ‘Ul| =1
Jj=1

We know from (2.4) the analytical expressions of the principal eigenvalue and
corresponding eigenfunction at [ = 0. Hence, we solve the above problem using the
Newton method while slightly increasing (.

3.4. An iterative method for the asymptotic shape of fronts in the
bidomain Allen—Cahn equation. We will investigate the existence/nonexistence

This manuscript is for review purposes only.
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FRONTS AND PULSES OF THE BIDOMAIN MODEL 13

of zigzag and usual planar fronts in the n-directional bidomain Allen-Cahn equation
(2.2). To this end, we develop an iterative algorithm for computing the asymptotic
shape of the front in the bidomain Allen—Cahn equation without computing its time
evolution.

Let u’ = u%(¢,7) be the front in the bidomain Allen-Cahn equation and let 09
and c be its speed in ¢ and 7 directions, respectively. Namely, (u’ cg,c 9) satlsﬁes
the followmg partial differential equations:

c? 85; +c 9‘9“ + V- (AU + f(u?) =0 in Sy,
(3.10) V(47 + Ag)w?> — V- (A in Su,
u?(—oo,n) =1, u?(c0,n) =0 for n € S}.

To solve this problem, define a constant f; as

o FOESW)

which is negative. Then, we rewrite the first equation in (3.10) as follows:

eau

8u
0

+ec + V- (AIVU) + foul = — f(uf) + foul.

Performing the Fourier transform in 7 direction, we obtain the following system: for
each £ € Rand [ € Z,

/] d29 dG
LG € chuf O+ af S5t (©) + 2 " @)

—cludy (Owi + fou] (§) = —Fylf (u’ (& Dt + foui (€),

o ol o oy 0 0\, 0 2
a6 20 o) S ey o+
2.0
=50 + 2 o - ey
o f1 if1=0, o
Ui (=o0) = {O otherwise, Uy (00) =0.

We have to add two more conditions to determine the front v’ and the speeds ¢f and
cf?. By integrating the first equation in (3.10) in £ and 7 directions, we obtain c§

explicit representation as
3.12) 2= [ Rl Node

We compute cz as a unique minimizer of the following optimization problem:

2
o Ou? oul
c

(313) C 5876 + Cnain

+ V- (A V) + f(u?)

= argmin
cp€R

)

L2

I
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14 H. MATANO, Y. MORI, M. NARA, AND K. SAKAKIBARA

where we define the L? norm ||F||z2 for a function F defined on S, as

IF e = V/(F.F)ze, FGL2:—// (€, m)G(€,m) dypd.

Summarizing the above, we compute the front u’ and its speeds cg and cf] corre-

sponding to angle # from the ones for angle 7 by the following procedure, where 6 is
close to 6. }
(i) For n =0, define u(® = u?, éo) = cg, and ¢ == c77
(ii) For n > 1, we compute (u(™, gn)’ %n)) from (u(~1) c(n 2 n ) by the
following three steps.
(a) Compute u(™ as the solution to the following problem in view of (3.11):

o dﬁ; . el Duy™ (©)iwn + af dzi(f) (€) + 20/ dfg) (©)iwy
~ufy) (©uf + fouf™ (€) = ~F,[F V€ N+ foug" ™ (©),
(af +ag) d:”;'(;) (&) +2(b7 +b2) dzg) (i — (¢ + yui} (€)uf
= af dffg) (6) + 20 df;) (&)iwr — cluf™ (©)uf.
A ={) By )0

(b) Compute cgn) by (3.12); that is,

&= [ Rl e ode

(¢) Compute cﬁ,") as a unique minimizer of (3.13); that is,
) Ou™ ou™ 2
(") — argmin || (™ ey 1V (AU £ f(u™
c%eR £ ag n an ( i i ) f( ) 12
(iii) Define u?, cg, and cf, as limits of u(™, cén), and c%n), respectively. Namely,
! = lim u(, cg = lim c(n), cf, = lim ™.
n— oo n— oo n—oo

In actual computation, we approximate derivatives for £ by central finite differences
developed in subsection 3.2 and integration for £ by the trapezoidal rule.

5. Accuracy of the numerical scheme. We first check whether the nu-
merical scheme developed in subsection 3.3 works correctly by comparing it with the
asymptotic behavior of principal eigenvalue in Theorem 2.1. We can observe from Fig-
ure 3.1 that when [ is small, the numerical results for the real and imaginary parts of
the principal eigenvalues are in good agreement with the asymptotic behavior shown
in Theorem 2.1, and in this sense, we can conclude that our numerical method works
well.

This manuscript is for review purposes only.
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1x 10710
5x 1071 B
< 0
—5x 10711 —
_1x10-10 L L 1 1
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01
l i
0.0012
0.001 - B
0.0008 - B
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0.0004 g
0.0002 -
—4x 10~ 1 1 1 1 0 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01

1 1

Fia. 3.1. Asymptotic behavior of principal eigenvalues and comparison with the numerical
results. The first row shows the result for 6 = w/4 and the second row for 0 = w/5, while the first
column shows the real parts of the principal eigenvalues and the second row their imaginary parts.
Dots (upper curve) and circles (lower curve) represent the numerical results. The solid lines drawn
near them correspond to the principal eigenvalues’ asymptotic behavior shown in Theorem 2.1.

We also check the accuracy of the scheme developed in subsection 3.2 numeri-
cally. Since we employ the operator splitting method of Strang type for time dis-
cretization, we expect temporal accuracy to be second order. Concerning the spatial
discretization, we use central finite-difference approximations in the £ direction and
spectral discretizations in the n direction, so we also expect second-order accuracy.
We emphasize, however, that our numerical scheme is not conventional in that we
are performing a coordinate transformation to map an infinite domain to a finite one
and that we are inserting a regridding/interpolation operation at each time step. It
is thus of importance to numerically verify the expected accuracy of our numerical
scheme. Concerning the bidomain Allen—Cahn equation, by using the function shown
in Figure 3.2 (a) as the initial value, we change N¢ to 99, 199, 399, 799, 1599, i.e., Az
to 1/50, 1/100, 1/200, 1/400, 1/800, and At = Az, and compare the L> error of the
solution at ¢ = 20. Here, the L error L*°(Az) for mesh size Az is estimated by

L>(Az) = [lua, — UAZ/2||Lm(Sd)7

where ua, denotes numerical solution with spatial mesh size Az. Figure 3.2 (b)
depicts the results of numerical experiments. We vary the parameter «, which controls
the speed of fronts, and observe that the accuracy of the numerical scheme is indeed
second order.

A similar numerical experiment is conducted for the bidomain FitzHugh—Nagumo
equation. Figure 3.3 (b) shows the result of plotting the L error of 4 when the initial

This manuscript is for review purposes only.
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Fic. 3.3. Numerical investigation of accuracy of numerical scheme for planar pulses of the

bidomain FitzHugh—Nagumo equation.

value of u in Figure 3.3 (a) is used, and it is confirmed that the accuracy is of the

second order.

4. Bidomain Allen—Cahn equation. This section investigates the asymptotic
behavior and stability of fronts in the bidomain Allen-Cahn equation.

4.1. Stability of planar fronts. We study how the principal eigenvalue and
the width of the strip region affect the stability of planar fronts and observe that
Hopf bifurcation occurs when the planar front is unstable. To this end, we employ
the numerical method developed in subsection 3.3 for computing principal eigenvalues
and the one in subsection 3.2 for computing the time evolution of a slightly perturbed

This manuscript is for review purposes only.
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FIG. 4.1. Graphs of Re Ay q as functions of d. The solid line shows the result for 6 = 7 /4, and
the broken line does the result for 0 = 7 /5. We choose the other parameters as a = 0.9 and b = 0.
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Fic. 4.2. Numerical computations of the bidomain Allen—Cahn equation when d = 27/0.1,
0=mn/4,a=009,b=0, and o = 0.4.

537 planar front.

538 We now investigate the stability of planar fronts of the bidomain Allen—Cahn
539 equation (2.2) on the strip region S;. Define the discrete wavenumber as w; 4 :== 27l/d
540 (I € Z, d > 0) and denote the principal eigenvalue of Py, , as A; 4. First, let us
541 numerically investigate how the sign of the real part of the first mode’s principal
542 eigenvalue A; 4 changes as d varies. As shown in Figure 4.1, when 27/d is small (i.e.,
543 d is large), Re A1 g is positive, and its value gradually increases. However, the increase
544 eventually stops and starts to decrease, and after a specific value of d, it becomes
545 mnegative. This observation indicates that when d is large, the planar front is unstable,
546 and the zigzag front appears, but as d decreases, all the unstable modes disappear,
547 and the planar front becomes stable. We select the parameters as a = 0.9, b = 0, and
548 «a = 0.4. Figures 4.2 to 4.4 consider the case of § = 7 /4, and Figures 4.5 to 4.7 consider

549  the case of § = 7/5. We vary the width d of the strip region S; as 27/0.1, 27/0.5, and
550  2m/0.6. We set the initial values to be completely flat with a slight perturbation added.
551  Comparing these numerical results with those in Figure 4.1, we can say that the above
552  scenario is, to some extent, correct. These angles correspond to points where the Frank
553  plot is non-convex, and Theorem 2.2 implies that planar fronts in these directions
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= t = 100 t = 500 t = 1000

Fic. 4.3. Numerical computations of the bidomain Allen—Cahn equation when d = 27/0.5,
0=mn/4,a=009,b=0, and « = 0.4.

= t = 100 t = 500 t = 1000

Fic. 4.4. Numerical computations of the bidomain Allen—Cahn equation when d = 27/0.6,
0=n/4,a=009,b=0, and o = 0.4.

are unstable. After destabilization, the planar front becomes a zigzag front, which
eventually forms one peak with coarsening. Such a zigzag front does not exist in the
monodomain Allen-Cahn equation [23, subsection 6.1], a significant characteristic of
the bidomain Allen-Cahn equation. Moreover, as we also observe in subsection 4.3 in
detail, the zigzag front’s appearance is caused by the Hopf bifurcation.

4.2. Zigzag fronts. As we observed in the previous subsection, zigzag fronts
appear when planar fronts are unstable. In this subsection, we study their asymptotic
behavior.

4.2.1. Speed of the zigzag front. As we saw in the previous subsection, when
the planar front is unstable, it eventually forms a single peak while coarsening. Con-
sidering this front in the situation as d tends to infinity, we can analytically compute
the zigzag front speed by elementary geometric arguments. Therefore, we below per-
form the calculation to confirm that the numerical experiments agree with them and
provide a benchmark for the correctness of the numerical method developed in sub-
section 3.4.

Let us consider the coarsened ideal zigzag front, as depicted in Figure 4 8 As
time passes by At, the planar front in the direction nf+?
and the one in n?~% does cf ~m At. From these facts, we can write down the vector
7 in Figure 4.8 concretely as follows:

B At ?Jr P gin 0., +ce Om ™ sin 0,
sin(Om + 6p) \ — f+ P 08 Oy + 2 0m .

» travels distance cf pAt

cos 0,

Therefore, by dividing the vector » by At and taking the limit of At — 0, we obtain
the velocity vector v as

B 1 ?+"sm9 —|—c‘9 Om sin 6,
sin(fm + 0;,) —c?+pcosﬁ —i—ca Om cosf, |

If b = 0, then, as will be confirmed in subsection 4.2.2, 6§ + 6, and ¢ — 60,,, approach
the angles of contact between the Frank diagram and its convex hull, where the speed
of the planar front is equal:

~ . 0+0, _ 0-0
C=c =c M.
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Fic. 4.5. Numerical computations of the bidomain Allen—Cahn equation when d = 27/0.1,
0=n/5,a=009,b=0, and « = 0.4.

= t = 200 t = 600 t = 1000

F1G. 4.6. Numerical computations of the bidomain Allen—Cahn equation when d = 27/0.5,
0=mn/5a=009,b=0, and a = 0.4.

Hence, in this case, the velocity vector v is rewritten in a more straightforward form:

B ¢ sin Oy, + sin 6,
(4.1) v sin(fm + 0) <— cos 6, + cos 9p> ’

The first element corresponds to the speed in £ direction and the second one to the
speed in 7 direction.

Figure 4.9 compares the theoretical value of the front velocity of equation (4.1)
with the one calculated from the numerical results for a = 0.7, a = 0.8, and a = 0.9.
We set the width d of the strip region S; to 100. When a is not so far from 1/2
(e.g., a = 0.7, 0.8), the numerical results agree well with the theoretical values.
When a = 0.9, some disparities exist, but the numerical results well understand
the qualitative properties of fronts. This deviation from the theory can be attributed
to the asymmetry of the front solution. When « = 1/2, the speed is equal to 0,
and the front is flat, so the argument using the Frank diagram is valid. However,
for 0 < a < 1/2, the speed is positive, and the front travels in the direction of
the positive -axis. It is numerically confirmed that the wavefront is not flat but
slightly bent (Figure 4.10). The degree of bend increases as a becomes closer to 1.
These numerical results suggest that the front bending is the main reason for the
discrepancy with the theory.

4.2.2. Correspondence between angles of zigzag fronts and the Frank
diagram. Subsection 4.1 investigated a relationship between the real part the princi-
pal eigenvalue and the instability of the planar front. In this section, we focus on the
zigzag front itself. Looking at the figure for ¢ = 1000 in Figure 4.2, we can observe
several corners (peaks) on the zigzag interface. In particular, looking at the time
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t = 200 t = 600 t = 1000

F1G. 4.7. Numerical computations of the bidomain Allen—Cahn equation when d = 27/0.6,
0=mn/5a=009,b=0, and o = 0.4.

Fic. 4.8. A schematic of the coarsened zigzag fromt

evolution, there is some law at work in the mechanism of corners. In this section, we
study the asymptotic behavior of zigzag fronts in terms of angles of the peak and the
Frank diagram.

As we checked in subsection 4.1, the situation of Theorem 2.2 is consistent with
Figures 4.2 to 4.7, where § = w/4 and 6 = /5 correspond to places where the Frank
plot is non-convex (see also Figure 2.1). Planar fronts are unstable, and zigzag fronts
appear, but the zigzag fronts themselves appear to have some stability; they propagate
over a long period while maintaining their shape. Combining this observation with
Theorem 2.2, we reach the following conjecture.

CONJECTURE 4.1. The angles of the peak of the zigzag front caused by destabi-
lization asymptotically approach the angles of the contact points between the Frank
diagram and its convex hull.

Let us verify this conjecture numerically. Define angles 0,,, and 6, as in Figure 4.8.
Namely, the angles of the zigzag front forming the peak are 0 — 0, and 6 + 0,,. Focus
on Figure 4.11 and assume that the direction of the zigzag front is # and that the
point Py = (cosf,sinf) " /K (6) on the Frank plot corresponding to the angle 6 is in
the region where the Frank plot is non-convex. Let us denote the angles of the two
closest contacts from point Py on the Frank plot as 6,, 8* from the smaller one. Then,
we expect that

0 —Om(t) — 0., 04 0,(t) — 0"
hold as t — oco. Figure 4.12 shows the results of one numerical experiment, which
verifies that our predictions are correct.

4.3. Coexistence of zigzag and planar fronts. In the monodomain Allen—
Cahn equation, the planar front exists in all directions, while the zigzag front in the
bidomain Allen—Cahn equation may degenerate into the planar front, as we can see
in Figure 4.4, for instance. Moreover, the stability of planar fronts is described by
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F1c. 4.9. Comparison of the theoretical speed of the zigzag front with the numerical results. Solid
lines show the theoretical speeds in & direction, broken lines show theoretical speeds in n direction,
dots show the numerical results of speed in & direction, and crosses show the numerical results of
speed in n direction.

a=0.5
a=0.5 0=0.4 a=0.9
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«=0.3 a=0.7

a=0.7

Fic. 4.10. Bending of the wavefront. The three figures on the left show how the wavefront
bends when « is changed for each a. The figure on the right compares the bending for each a when
a=04.

the sign of the curvature of the Frank plot as in Theorem 2.2. However, as shown in
Figure 2.1, there is a portion inside the convex hull of the Frank diagram such that the
curvature of the Frank plot is positive. In [13, 2, 4], the authors call such directions
“locally stable” but “globally unstable”. We can then conjecture that both a zigzag
front and a planar front that are asymptotically stable may exist in such propagation
directions. We investigate this conjecture numerically in this section.

We search the boundary of existence/nonexistence by varying two parameters a
and 6, using the numerical method developed in subsection 3.4. Figure 4.13 depicts
the result. The thin solid line represents the angles of contact between the Frank
diagram and its convex hull; points above this line are inside the convex hull. The
broken line expresses the position where the curvature of the Frank plot is equal to
0; above this line, the curvature is negative, while it is positive below this line. The
thick solid lines represent the boundary of existence/nonexistence of the zigzag front.
More precisely, the zigzag front exists above this line.
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| | | |
0 1000 2000 3000 4000 5000

Fi1G. 4.12. Graphs of 0 — 6m and 0 + 0.

Furthermore, we can observe bifurcation phenomena. For a “large” a, the sub-
critical Hopf bifurcation occurs as 6 being a bifurcation parameter. Indeed, when
numerical computations are performed from the initial values shown in the leftmost
figure of Figure 4.2 at a = 0.9, the zigzag front does not occur in the region to the
left of the broken line due to the stability of the planar front, but slightly beyond
the broken line to the right, the planar front becomes unstable, and a zigzag front
with a large peak occurs. At a = 0.9, the thick line passes to the left of the dashed
line, suggesting that planar fronts and zigzag fronts coexist between these lines. If
we use the zigzag front as the initial value and gradually decrease the parameter 6 ,
the zigzag front does not disappear even if the value of 6 crosses the broken line to
the left but will continue to exist until it reaches the bold line. On the other hand,
for a “small” a, the bold line passes to the right of the broken line, suggesting that
a supercritical Hopf bifurcation occurs. Indeed, the numerical results for a = 0.6 do
not show the same hysteresis as observed for a = 0.9.

We can infer from these facts that the type of Hopf bifurcation is switched near
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Fi1G. 4.13. Phase diagram concerning the existence of the zigzag front and the planar front. We
choose parameters as b =0, d = 100, and a = 0.4.

25000
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0 | é i:tl—i —= ——

2 3 4 5 6
the number of peaks

FiG. 4.14. The boz plot on the time evolution of the number of peaks in the bidomain Allen—Cahn
equation.

the intersection of the bold and broken lines, and a degenerate Hopf bifurcation, which
is a bifurcation of codimension 2, is expected to occur.

4.4. Coarsening. We, so far, investigated the stability, the asymptotic behav-
ior, and the bifurcation phenomena. In this section, we briefly deal with coarsening
phenomena for zigzag fronts.
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F1G. 4.15. The Frank diagram (left) and the Wulff shape (right) when a = 0.9 and b = 0.

For example, in Figure 4.2, the zigzag front that appears in the bidomain Allen—
Cahn equation undergoes coarsening with time evolution; that is, the number of peaks
gradually decreases, common in all cases. Therefore, we present the statistical data
of the time evolution of the number of peaks. Figure 4.14 shows the box plot on the
time evolution of the number of peaks in the bidomain Allen-Cahn equation, where
we choose parameters so that d = 100, 6 = 7/4, a = 0.9, b = 0, and o = 0.4.
We made this box plot by performing several numerical experiments of the bidomain
Allen—Cahn equation with randomly perturbed initial data.

We can interpret the result of this numerical experiment as follows. First, near
the initial time, many peaks are generated from the random initial data, but they
coarsen one after another in a relatively short time. After that, the number of peaks
decreases to two, but the state with two peaks maintains its shape for a relatively
long time; that is, the two-peak state retains stability in a sense.

4.5. Spreading fronts. So far, we have investigated the qualitative properties
of planar and zigzag fronts in the strip region. However, studying how the front
spreads from the initial value with compact support is also essential. In particular, it
is mathematically interesting to investigate the asymptotic shape of spreading fronts.
The Wulff shape is a tool to elucidate a part of this.

The Wulff shape # is defined by

(4.2) W = ﬂ {(m,y)T€R2|xc050+ysin0<\/Q(n9)}.
0<0<2r

Figure 4.15 shows the Wulff shape and the corresponding Frank diagram when a = 0.9
and b = 0. There is a kind of duality between the Wulff shape and the Frank diagram,
which we below show their relation roughly. .

Denote the convex hull of the Frank diagram by .# and a point on the Frank plot
Z by Py = (cosf,sin0)" /K (0). Moreover, we define a set S by

S:={0e|0,2r)| Py € 0F}.

Then, we can prove that the Wulff shape also has the following expression:

W = ﬂ {(Ly)—r €R? | zcos +ysinh < \/Q(ne)}.

0eS
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Fic. 4.16. The spreading front and the Wulff shape when a = 0.9, b =0, and o = 0.49.

the Wulff shape

Mori and Matano proposed the following conjecture in [23] based on the above ex-
pression of the Wulff shape.

CONJECTURE 4.2. Suppose that the normalized speed c. is positive and that the
planar front in the direction n? is spectrally stable for all® € S. Then, the asymptotic
shape of the spreading front of the bidomain Allen—Cahn equation is described by the
Wulff shape (4.2).

In the anisotropic Allen—Cahn equation, it is well-known that the Wulff shape
gives the asymptotic shape of the spreading front [11, 12, 3, 1]. In this sense, the
above prediction is not so far off the mark. Furthermore, in [23], what can happen
is predicted if the stability condition in the above conjecture is not satisfied. A
probable scenario is the following. The spreading front approaches the Wulff shape
at large length scales. However, at finer length scales, the front is modulated by
small-amplitude oscillatory waves corresponding to instabilities in the intermediate
wavelengths.

Let us show one result of numerical experiments. Figure 4.16 shows the numerical
results of the spreading front for a = 0.9, b = 0, and a = 0.49, and the corresponding
Wulff shape. As time goes by, we can observe that the spreading front gradually
converges to the Wulff shape while coarsening and oscillation, which agrees with the
above scenario. This numerical computation adopts the numerical scheme developed
in subsection 3.1 and solves the bidomain Allen—Cahn equation in a rectangular region
(3.1) with periodic boundary conditions in both £ and 7 directions.

5. Bidomain FitzHugh—Nagumo equation.

5.1. Existence and stability of the planar pulse. A planar front always ex-
ists in the bidomain Allen—Cahn equation, whereas this is not the case in the bidomain
FitzHugh—Nagumo equation. In the bidomain FitzHugh—Nagumo equation, depend-
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Fic. 5.1. Time evolution in the bidomain FitzHugh—Nagumo equation. The first and the second
rows are results for a« = 0.3 and o = 0.33, respectively. We define other parameters as a = 0.9,
b=0,0=7/4,e=10"3, and vy =3

724 ing on (€, @), the pulse may exist or vanish. As can be seen in Figure 5.2, planar pulses
725 exist stably in the regions (I) and (II) below the solid line but not in the region (IIT)
726 above. Also, the smaller « is, the larger the e-region where the planar pulse exists.
727 First of all, let us ensure that if a planar pulse exists in the monodomain FitzHugh—}
728 Nagumo equation, it must also exist in the bidomain FitzHugh—Nagumo equation
729 (1.3). Let (uf,v9) be a planar pulse in the bidomain FitzHugh-Nagumo equation
730 (2.1) propagating in the direction n?, and cf) be its velocity. The planar pulse satis-
731 fies the homogeneous Dirichlet boundary conditions at infinity:

732 lim ug(n) = lim vg(n) =0.
733 || —o0 Inl— o0

734 The planar pulse is a solution to the following boundary value problem:

du? d2u?
cgd—np +Q(nf) d772p + f(ub,vf) =0,
s do?
35
7 Cf’d_;) + g(uf),vg) =0,
lim ug(n) = lim vg(n) =0.
736 In]—o0 In]—o0

*.ct) solves

737 Let (u},v)) be the normalized planar pulse, and ¢, be its speed; (uy, v},
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F1G. 5.2. The existence region of planar pulse (below the solid line) and the one of zigzag pulse
(below the broken line).

738 the boundary value problem

2
c*% + U + f(ul,v5) =0
P dy dn? p> Up ’
- dv’
49 C;T; +g(uj,vy) =0,
lim wuy(n) = lim vg(n) = 0.
740 [n|—c0 [n|—+o00

741  Since there is no diffusion term in the equation for v in the bidomain FitzHugh—
742 Nagumo equation, we can construct the planar pulse by performing the same scaling

g = (Nt = (wyamn). &= e
745 as in the bidomain Allen—Cahn equation. In other words, in the region of (e, o) where

746 the planar pulse exists in the monodomain FitzHugh—Nagumo equation, the planar

747 pulse always exists in the bidomain FitzHugh—Nagumo equation.

Since we have found no difference between the monodomain and bidomain FitzHugh—i
Nagumo equations for planar pulses, our subsequent interest is in the region of (e, a)
where zigzag pulses exist. For example, the first row of Figure 5.1 shows the result
when a = 0.3. When we add a small perturbation to the planar pulse, it becomes
a zigzag pulse with coarsening, and this state has existed for a long time. However,
in the second row, when o = 0.33, although coarsening occurs, the pulse is torn off
before long and eventually disappears. These observations motivate us to examine
the region of (¢, a) where the zigzag pulse stably exists numerically.

Figure 5.2 shows the results of the numerical experiments, where we fix the pa-
rameters a = 0.9, b =0, § = /4, and v = 3 and vary « and € as free parameters. We
indicate the parametric regions («, €) in which the planar pulses exist and zigzag pulses
are stable. The solid line indicates the boundary of existence/nonexistence of planar
pulses, and the planar pulse exists below the solid line, i.e., in the regions (I) and
761 (II). Note that this solid line is determined completely by the 1D FitzHugh-Nagumo

g
IS NN
; S B %

[S20NN) SG, SNe)
S O W N

oo

b A A e A B e A B |

ot ot ot gt ot
~

-~

This manuscript is for review purposes only.



762
763
764
765
766
767
768
769
770
771
i’
773
774
775
776
T
778
779
780
781

200

1200 '
180 N
o8 08
160 I
140 14
06 06
120
04100 041
80
02 02
60
0
o o
20
02 o 02
200 o 50 100 150 200

28 H. MATANO, Y. MORI, M. NARA, AND K. SAKAKIBARA
t = 280 t = 600 t = 1200

200 '
180 v
160 "
140 14
06
120
100 04
80
0z
0
a0
o
20
o 02
o 50 100 150 200 o
200 1 200 1 200 '
180 180 180
08 08 08
160 160 180
140 140 140 1
o8 os 05
120 120 120 1
100 04100 04100 04
80 0 80
0z 02 02
& &0 60
40 w0 0 40
o o o
20 20 20 20
o 02 0 02 o 0z 0
o 50 100 150 200 o 50 100 150 200 o 50 100 150 200 o

t=0 t = 260 t =400 t =500

-

50 100 150

F1c. 5.3. Spreading pulse in the bidomain FitzHugh—Nagumo equation. The first row represents
results for a = 0.32 and the second row for a = 0.34. We define other parameters as a = 0.9, b =0,
e=10"3, and v =3.

model. As we saw above, planar pulse solutions of the bidomain FitzHugh-Nagumo
model and the pulse solutions of the 1D FitzHugh-Nagumo equations are identical.
The broken line shows whether the zigzag pulse is stable in the bidomain FitzHugh—
Nagumo equation, and it is below the broken line, i.e., in the region (II). The above
means that there are no stable planar or zigzag pulses in the region (I).

We note that a controls the excitability of the FitzHugh—Nagumo system; the
system is more excitable when « is close to 0 and less excitable as « approaches
1/2. The parameter e controls the separation of time scales of the slow and fast
variables. Figure 5.2 indicates that the bidomain FitzHugh Nagumo pulse is prone
to propagation failure when the system is less excitable and the separation of time
scales is less pronounced.

5.2. Correspondence between spreading pulses and the Wulff shape. In
the bidomain Allen—-Cahn equation, we observed that the Wulff shape describes the
asymptotic shape of the spreading front. We see if the same consideration holds for the
bidomain FitzHugh—-Nagumo equation. We show our numerical results in Figure 5.3.
We fix parameters as a = 0.9, b = 0, € = 1073, and v = 3. There exists in this
setting a threshold value «, around 0.33 on existence/nonexistence of zigzag pulse
as in Figure 5.2. Reflecting on this observation, we can see that the spreading pulse
exists and converges to the Wulff shape for a = 0.32 (the first row in Figure 5.3) and
that it disappears for e = 0.34 (the second row in Figure 5.3).

6. Discussion. In this paper, we performed a detailed computational study of
the asymptotic behavior of planar fronts and pulses of the bidomain Allen—Cahn
and bidomain FitzHugh-Nagumo equation. For this purpose, we developed a nu-
merical scheme that simulates the propagation of fronts and pulses on an infinite
two-dimensional strip domain. We confirm that planar fronts of the bidomain Allen—
Cahn equation are unstable when the Frank diagram is not convex in the direction
of propagation. The destabilized planar fronts generically approach a zigzag rotating
front whose shape and speed can be explained by the geometry of the Frank diagram.
Destabilization of the planar front thus takes place through a Hopf bifurcation. We
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have shown that this Hopf bifurcation can be either supercritical or subcritical de-
pending on the parameter regime. For the bidomain FitzHugh-Nagumo equation, we
have shown that the pulse solution does not necessarily develop into a zigzag rotating
pulse. The pulse solution can entirely disappear, especially when the parameters are
close to the boundary of the parametric region in which planar pulses exist.

Theoretical studies on arrhythmogenesis using FitzHugh-Nagumo and similar ex-
citable systems have focused on the monodomain case, in which case the bidomain
equation reduces to a reaction-diffusion system (see (1.1)). In this paper, we have
demonstrated that replacing the Laplacian in the monodomain model with the bido-
main operator leads to qualitatively different asymptotic behaviors that could play an
important role in arrhythmogenesis. It is well-known that regions of cardiac ischemia
or infarction induce cardiac arrhythmias, and the authors of [7] have suggested that
the Frank diagram can become non-convex in regions of cardiac ischemia or healed
infarcts. Our results suggest that planar fronts, passing through such a region, can
become unstable and deform into a zigzag front. Furthermore, the zigzag front may
maintain its zigzag shape even if it passes into a healthy region of the heart, as is
suggested from our demonstration of a subcritical Hopf bifurcation. We have also
demonstrated that zigzag pulses may completely disintegrate when passing through
regions where the Frank diagram is non-convex, and the underlying tissue is less ex-
citable (see discussion at the end of subsection 5.1), leading to propagation failure.
We note that regions of ischemia are precisely those locations for which the tissue is
less excitable. These scenarios thus point to novel modes in which cardiac propagation
can fail due solely to the bidomain nature of cardiac tissue.
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