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Abstract

Terahertz (THz) spectroscopy is a powerful tool for unambiguously extracting complex-valued
material properties (e.g., refractive index, conductivity, etc.) from a wide range of samples with
applications ranging from materials science to biology. However, extracting complex refractive indices
from THz time-domain spectroscopy data can prove challenging, especially for multi-layer samples.
These challenges arise from the large number of transmission-reflection paths the THz pulse can take
through the sample layers, leading to unwieldy strings of Fresnel coefficients. This issue has often been
addressed by using various approximations. However, these approximations are only applicable to
specific classes of samples and can give erroneous results when misapplied. An alternative to this
approach is to programmatically model all possible paths through the sample. The many paths through the
sample layers can be modeled as a tree which branches at every point where the paths diverge—i.e.,
whenever the pulse can either be transmitted or reflected. This tree can then be used to generate
expressions relating the unknown refractive index to the observed time domain data. Here, we provide a
freely available, open-source package implementing this method as both a MATLAB library and
corresponding graphical user interface which can also be run without a MATLAB license

(https://github.com/YaleTHz/nelly). We have tested this method for a range of samples and compared the

results to commonly used approximations to demonstrate its accuracy and wide applicability. Our method

consistently gives better agreement than common approximations.

INTRODUCTION



Many important physical processes leave spectroscopic signatures in the terahertz (THz) region of the
electromagnetic spectrum (0.1 — 10 THz =3 — 333 cm™ = 0.1 — 10 ps). These include the nanoscale
conductivity critical to emerging materials,' collective motions in molecules®* and proteins,* as well as
phonons, polarons,’ and magnons.® Of the various THz spectroscopy techniques which can probe these
processes, THz time-domain spectroscopy (THz-TDS) and time-resolved terahertz spectroscopy (TRTS)
provide especially rich insight because they detect the broadband THz radiation coherently (i.e., measure
both the sign-resolved amplitude and phase of the electric field), giving access to the full complex
dielectric spectrum of the material of interest. This is particularly useful in the study of the frequency-
dependent conductivity, since various conductivity models have distinct features in their complex form—
the negative imaginary conductivity in the Drude-Smith model, for example.” However, it is not
necessarily trivial to extract this useful dielectric information from the measured time-domain data, since
the expressions relating the two can become fairly complex. This problem is particularly pronounced for
multilayered samples, where the expression must include terms for each of the many possible
transmission-reflection paths through the sample layers. While these expressions can be simplified with
various approximations,® ' these do not apply to all samples and can give erroneous results when
misapplied. To avoid these approximations, several works have described methods which generate and
process the full expressions programmatically for arbitrary sample geometries.!'"!3 However, these works
were not accompanied with software implementations of the algorithms discussed, limiting their

usefulness.

Developments in recent years have exacerbated this issue, further increasing the need for accurate and
user-friendly THz-TDS data analysis. First, researchers have turned their attention to novel materials and
sample geometries for which traditional approximations may not be appropriate.”'® At the same time,
THz-TDS and TRTS spectrometers have become commercially available, bringing what was once a
specialist technique to a wider range of labs. These two developments have placed competing demands on

THz data analysis techniques. Properly analyzing novel samples requires the development of better



approximations or more advanced data analysis techniques, increasing the complexity of THz data
analysis. However, the increasing complexity of THz-TDS data analysis poses challenges for newer users.
Since THz-TDS may be only one of many techniques that they use, they may not have the time to devote
to developing appropriate approximations or techniques. The software presented here seeks to reconcile
these competing needs, by providing an approximation-free method which can be easily used by any

researcher.

The approach presented here avoids approximations by using a tree structure to model all possible
transmission-reflection paths the pulse can take through the sample. This technique is applicable to any
sample geometry without modification or approximation. While this technique is somewhat involved, the
MATLAB package provided here—Nelly, in reference to Fresne/ coefficients—and its accompanying
graphical user interface (GUI)—Cordouan, in reference to the first lighthouse to utilize a Fresnel lens—

provide an accessible interface which any researcher can use.

We begin with a brief overview of THz-TDS measurements and the expressions which relate them to
a sample’s dielectric properties. We then illustrate how these expressions can become unwieldy, and
discuss common approximations that have been used to simplify them—as well as the shortcomings of
these approximations. Finally, we describe the method our software uses to accurately extract dielectric

information without approximation and benchmark it against common approximations.

EXPERIMENTAL SECTION

Numerical Implementation in MATLAB. The code described in this manuscript was developed in
MATLAB and has been tested for versions between 2016b and 2021a. It can also be used without a

MATLAB license. The code is available at https://github.com/YaleTHz/nelly. For users with a MATLAB

license, the library can be accessed by downloading the package and following the directions in the
README file, which is available in the Supporting Information (SI) and on the GitHub repository. For

users without a MATLAB license, the library can also be used in Python using the freely available



MATLARB runtime. The GUI, called Cordouan, was built in MATLAB’s App Designer and acts as a user-
friendly front end for the Nelly library, allowing users to import their own data, setup sample and
reference geometries, run the Nelly data analysis method, and export the results. It has been tested for
MATLAB versions 2018b to 2021a. As with the library, users without a MATLAB license can use the

free MATLAB runtime to run the GUI in a standalone executable included in the package.

THz Spectroscopy Measurements. THz-TDS measurements were performed to benchmark the data
analysis method. The spectrometer used has been described in detail previously.'* Briefly, THz-TDS
measurements were made on a home-built spectrometer based on a Ti:Al>O; oscillator (Spectra Physics
MaiTai, 800 nm center wavelength, ~10 nJ pulse energy, ~35 fs pulse duration, 42 MHz repetition rate)
and a pair of photoconductive antennae (Batop). The water sample was measured in a quartz cuvette with
a 100 um path length (Starna Cell 48-Q-0.1), with a measurement on the empty cuvette used as a

reference.

Finite-Element Simulations. Finite-element simulations of THz pulses passing through various sample
types were performed in order to benchmark the method described here against various approximations.
The simulated electric fields were processed with the method discussed here as well as several common
approximations to retrieve the complex refractive index. This was compared with the known dielectric
parameters provided in the simulation. Simulations were carried out in CST Studio Suite 2020, a finite-
element solver for Maxwell’s equations.!> The CST files and macros used are provided in the SI. For all
calculations, the time domain solver was used, with electric boundary conditions in the X direction and
magnetic boundary conditions in the Y direction to ensure a linearly polarized terahertz pulse,

propagating in the Z direction.

Implementing Approximations. We compare Nelly against four common approximations. The first
considers only propagation terms and is implemented in the Just_propagation function included
with the package. The next two approximations add terms for reflection losses (i.e., transmission Fresnel
coefficients) and single-layer etalons. These are implemented using options within Nelly which exclude
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certain paths—e.g., paths which include reflections for the reflection losses case, and paths which include
cross-layer etalons for the single-layer etalon case. Finally, the Tinkham equation® is implemented in the

tinkham function included with the package.
RESULTS AND DISCUSSION

Description of Theory. THz-TDS systems measure the sign-resolved electric field of a THz pulse as a
function of time. A typical experiment consists of two measurements: a pulse passed through the sample
of interest, and a pulse passed through a well-characterized reference or blank substrate material. The
dielectric properties of the sample can then be extracted by comparing the two resulting pulses.
Specifically, we calculate the change in each frequency component’s amplitude and phase by Fourier

transforming each pulse and taking the complex ratio of the two. This quantity is referred to as the

. . E
transfer function (7F) and is defined as TF (w) = —22_ \where Esumpie and Ereference are the complex-

Ereference
valued Fourier-transformed spectra of the sample and reference, respectively, and o is the angular
frequency. The change measured in TF occurs because of three processes: propagation through the layers
of the sample, and reflection and transmission at the interfaces between them. The effect of each of these
processes can be expressed in terms of simple expressions related to the sample’s refractive index:
Fresnel coefficients for reflection and transmission at the interfaces, and complex exponential terms for
propagation and absorption through the layers. Given a path through the layers of the sample, we can
generate an expression for the change in amplitude and phase across the spectrum as a function of the
sample’s refractive index by multiplying the appropriate reflection, transmission, and propagation terms.
For example, for the thick pellets often used in THz-TDS experiments, the sample pulse first transmits
through an air-sample interface, then propagates through the sample, and finally transmits through the
sample-air interface, while the reference pulse simply propagates through air. Figure 1 shows a schematic
of this example showing a cartoon of the observed signal and corresponding pathways through the sample
and reference for a measurement of a thick sample pellet. The main pulse is shown in red, while the first

internal reflection (or etalon) is shown in blue.
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Figure 1. A schematic illustrating a THz-TDS transmission measurement of a thick sample. The left
panel shows the sample and reference pulses within a possible measurement time window shaded in grey,
which allows one to ignore the etalon shown in blue. The right panel shows the paths through the sample
that correspond to the observed pulses (e.g., the blue reflection pulse at left corresponds to the blue
reflection path at right). The terms above the paths make up their transfer functions (see Equation 1). Note
that the beams are shown at an angle only for ease of visualization. The software discussed here assumes

normal incidence.

Based on the transmission, reflection, and propagation pathways shown in Figure 1 and excluding the
etalon pulse arriving outside the measurement time (blue path), the expression for the transfer function

can be written as:

E = TF(w,ny) = tas(W)Ps(w)tsq(w)

Equation 1
B, Pa(@) (g )

The subscripts a and s used in Equation 1 and shown in Figure 1 refer to “air” and “sample,” respectively.

2nj(w)

The terms tj; = are Fresnel coefficients for transmission from layer j to layer £ and the

nj(w)+ng(w)
Pi(w) = e ~lwdni/¢ terms describe propagation through layer j, where j and k are generalized to represent
two adjacent layers. d; and n; are the thickness and refractive of layer j. Once we have such an

expression, we can extract the complex refractive index of the sample by using an optimization routine to



find the refractive index n, that minimizes the deviation between TF(w,ns) and TFyeasures(®) for each

frequency point w.

However, not all samples will yield such simple expressions. Additional terms arise when we are
forced to consider etalons due to decreased layer thicknesses. For example, in Equation 1, we ignored the
second path (i.e., the etalon) shown in Figure 1, since reflections at the air-pellet interfaces will either not
reach the detector (e.g., they propagate back toward the source) or will have to take at least two round
trips through the thick pellet, leading to a large time delay between the main pulse and the reflected pulse.
We can thus remove reflections by truncating the time window in which the data are collected (as in the
shaded time window in Figure 1). However, if our pellet were thinner (less than ~100 um), the time delay
between the main and reflected pulses would be very small (less than ~1 ps for n,; < 2), making the two
signals inseparable. For materials with sharp resonances, issues may arise even for thick samples with
good separation between the etalons. Such samples exhibit long lasting ringing which cannot be truncated
without artificially broadening the resonances. When these reflection paths cannot be excluded in the time
domain, we must account for them by adding additional expressions to the transfer function. When the
layer is thin enough, we can assume that an infinite number of reflections will appear in the time window

and compress the resulting infinite sum into a relatively simple expression of the form FP;j (w) =

Py — which accounts for the etalons within layer j, due to reflections at its interfaces with bordering
—rjErjrji

layers i and k (also called Fabry-Perot reflections).'® Here 7, = nk_:j is the Fresnel coefficient for
k

n;+
reflection at the interface between layers j and k and P; is the propagation term for layer j. Such
expressions have been used successfully in a range of works discussing refractive index extraction from
single layer samples.!”2° Indeed, for many cases where we can write out the transfer function, such an
analysis is accurate and Peretti et. al. have provided an open source package implementing this approach
for several sample geometries.?! Such approaches are limited to predefined sample geometries, however,

and as we add more layers—to the sample itself,* to other features of the setup (e.g. a cuvette containing



a liquid sample**)—the transfer function can become complicated. Each of these additional layers will
require its own set of Fresnel coefficients and may require Fabry-Perot terms as well. A particularly
difficult situation arises when we have adjacent thin layers. In these cases, we need not only additional
Fresnel coefficients and Fabry-Perot terms for each layer, but also terms describing reflections involving
both layers (see the path described in Figure 2). These terms are not as easily compressed as the single-

layer Fabry-Perot terms, and lead to lengthy transfer function expressions.

Overview of Approximate Methods. Facing these ballooning expressions, one approach has been to
simplify these expressions by exploiting the properties of specific types of samples. For example, if the
layer of interest is thick, the simplest approximation assumes that the propagation term dominates and
ignores all reflection and transmission terms.?* For the opposite case, an optically thin, highly conductive
layer, a Taylor expansion of the transfer function yields the widely used Tinkham formula.®* Using such
approximations has substantial benefits: these approximations often yield closed form expressions for the
complex refractive index, which greatly simplifies data analysis. However, these approximate approaches
are not without their drawbacks, which arise because these approximations are rooted in particular
assumptions about the sample. For example, while the Tinkham formula can be used for thin conductive
films, it is not applicable in other cases, such as photoconductive films thicker than ~10 pm,?® samples

% or samples with background phonon modes.’ Thus, before analyzing

with a high dark conductivity,'
samples, researchers must carefully consider which of the approximations are appropriate. At best, this
introduces extra effort; at worst, it can introduce erroneous conclusions into the literature when misuses of
the approximations proliferate. Even if researchers are careful to apply only appropriate approximations,
the progress of the field may demand new approximations, since compelling new materials may have

properties outside of the region where common approximations are valid. Researchers would then be left

to choose from a bewildering range of possible approximations.

However, approximation-free approaches have surfaced a number of times in the literature.''"'3

Instead of addressing the problem of unwieldy strings of Fresnel coefficients by means of



approximations, these works recognize that assembling and processing these expressions is precisely the
sort of straightforward but tedious task that computers are well suited to. That is, these works discussed
programs that take in any arbitrary sample geometry—i.e., the thicknesses and refractive indices of the
layers in the sample—consider all possible paths the pulse could take through the sample, and construct
the appropriate transfer function based on these paths. It is then relatively straightforward to calculate the
unknown complex refractive index of a sample without the need for approximations by minimizing the
difference between the generated transfer function and experimental results. While this approach is more
accurate, it is also much more difficult to implement than the closed-form approximations discussed
above and previous works utilizing this approach have not included any source code,''"! leaving
interested groups to implement it for themselves. Facing this barrier, adoption of the method has been
limited. To address this issue, we provide an open-source implementation of this method in MATLAB,
along with a graphical user interface for our MATLAB library. Below, we will provide some details about
our implementation and improvements upon existing algorithms, benchmark our method against previous

approximations, and then provide an overview of how users can use the software provided here.

Implementation Details. Given a particular sample geometry—the thickness for each layer in the sample
as well as any known refractive indices—the goal is to create a transfer function connecting the refractive
indices of the sample’s layers to the change in amplitude and phase a THz pulse will experience upon
passing through the sample. Upon emerging from the sample, the pulse will have been split into a number
of reflections in addition to the main pulse. Therefore, to create the transfer function the program must:
(1) enumerate all possible paths through the sample, (2) determine which of these paths reach the
detector, and (3) calculate the change in amplitude and phase associated with each of these paths. The
final transfer function will then be the sum of the transfer functions associated with each path reaching the
detector. This transfer function is then used to extract the refractive index by numerically finding the
value of the unknown refractive index that most closely matches the predicted transfer function to the

transfer function observed experimentally.



As with previously described methods,''""* the implementation presented here uses a tree structure to
accomplish these tasks. Figure 2 shows one possible tree for a simple two-layer sample (layers 1 and 4

represent the air surrounding the sample).

rr [ |

Figure 2. The tree structure which is used to enumerate all the paths the pulse can take through a two-
layer sample. These paths are then summed to construct the full transfer function. Each node represents a
transmission, reflection, or propagation event—for example, #; presents transmission at the interface
between layers i and j. Each inset shows the path represented by the corresponding node. The empty
dashed node shows one of the places where the tree building process has been terminated by a time or
amplitude cutoff at that node. The expression at the bottom gives the transfer function (7F) that this tree

would yield.

The tree representation consists of two types of nodes: layer nodes (P) and interface nodes (¢ or
r), representing transmission or reflection at an interface, respectively. For example, any path through the
sample must begin by transmitting from the initial air layer (layer 1) into the first sample layer (layer 2).
This is represented by the root node denoted ¢;,. Having transmitted from layer 1 to layer 2, the path will

then proceed through layer 2. Thus, the root node has only one child, layer node P, which represents
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propagation through layer 2. Here the paths diverge: having passed through layer 2, the pulse reaches the
2—3 interface and will now split into a reflected portion and a transmitted portion. These are represented
by interface nodes 723 and 23, respectively. From each of these nodes, the algorithm continues as before,
following interface nodes into the natural layers, and splitting layer nodes into the reflections and
transmissions generated at their interface with the next layer. In this way—recursively generating the
children for each node—the algorithm continues building the tree until we meet certain termination
criteria (discussed below). Once built, the tree contains an enumeration of all possible paths through the
sample: each node represents a path, which can be found by following the parent edges up to the root—
i.e., all the events that led to that node. Thus, this recursive process of building the tree enumerates all
possible paths through the sample, the first task mentioned above. Using this tree, the second task—
determining which paths reach the detector—is straightforward. In order to reach the detector in a
transmission geometry, the pulse must transmit through the interface between the final layer of the sample
and the medium surrounding the sample. Finding the paths that reach the detector is then simply a matter
of finding the nodes which represent this transmission—e.g., all ¢34 nodes in Figure 2. The transfer
function associated with each node can then be found by taking the product of all the nodes on the path
between the node in question and the root node. These products are shown for each of the ¢34 nodes in
Figure 2, where the nodes contributing to the product are outlined in black. The final transfer function—

which is simply a sum of these products—is shown as well.

As mentioned above, an important factor in building the tree is determining when to terminate
branches, since the recursive process would otherwise generate an infinite tree. One straightforward
approach adopted by Cassar et al.!! and Wilk et al.!? is to simply propagate all branches to a certain depth
(i.e. terminate all branches when the tree reaches a certain height). However, this can introduce a large
number of extraneous nodes at a considerable computational cost. Accurate representation of the thinnest
layers will require a higher depth than the thicker layers, but this higher depth will be applied to all layers

regardless. Since the number of nodes increases exponentially with the depth, the number of extraneous
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nodes can grow extremely large. Greenall et al. avoided this by terminating on a branch-by-branch basis,
determining for each node whether or not to create its children.'*> We follow this approach, terminating on
the basis of a time cutoff and an amplitude cutoff. As shown in Figure 1, only a certain window in the
time domain is measured/processed, so any reflections arriving outside of this time window are excluded.
Similarly, each succeeding reflection will be attenuated in amplitude, and at a certain point this amplitude
will be below the instrument’s detection limit. Thus, when building the tree, the program keeps track of
the time and amplitude corresponding to each node’s path and terminates any node whose time or
amplitude would make it undetectable. For the amplitude cutoff, for example, the first node is assigned
amplitude 4 = 1. Then, when generating the children for a given parent node, the child is given amplitude
Achita = |Aparem TF cnita) where TFepiq 1s either ty, ry, or P; depending on the type of the child node. If the
amplitude 4 of a given node is less than the given value of Acuop; no children are generated. Acuop can be

determined by the noise floor of the instrument, for example. Similarly, the root node starts at time ¢ = 0.

Since propagating through layer i will add time ndei to the time elapsed, the children of any layer node

. . o . . . .
will be given tepig = tparent + % Any nodes with ¢ > t.,,y are terminated, where #...5 is determined
i
by the data collection time window. Finally, any branches that correspond to the pulse leaving the sample
on the entrance side are also discarded as these signals never reach the detector. For example, in Figure 2,

t2; would represent a transmission back out of the front of the sample away from the detector.

To summarize the full process: at each frequency point, we assume a trial value for the unknown
refractive index and construct the full tree. From the tree, we determine the predicted transfer function
value for the trial refractive index. We then adjust the trial value using an optimization routine to
minimize the deviation between the predicted transfer function and the measured value, constructing a

new tree for each trial value.

Benchmarking against common approximations. In order to demonstrate the importance of this

method, we compared it against a range of commonly used approximations. Figure 3 shows the results of
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applying various approximations to THz-TDS measurements of water in a quartz cuvette (see

Experimental Section for details).
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Figure 3. The refractive index extracted with Nelly shown in dark blue, compared with the refractive
indices obtained with two common approximations. For the “just propagation” trace shown in orange,
only propagation terms are considered. The “+Reflection losses” trace shown in magenta considers both
propagation terms as well as transmission terms at each interface. The real and imaginary part of the

refractive indices are shown as solid and dashed lines, respectively.

Even for this strongly absorbing sample where propagation terms might be expected to dominate, Figure
3 shows reasonably significant deviations between the various approximations and Nelly, particularly at

low frequencies.

In order to further test Nelly, we simulated sample and reference pulses for various geometries in
CST Microwave Studio, a finite-element electromagnetic field simulation software package. We then
used various methods to extract the refractive index from these simulated data. By comparing the values
extracted with the dielectric parameters specified in the simulations, we can assess the accuracy of each
method for each sample geometry. This approach has the advantage of giving us a “true,” refractive index
against which we can benchmark our results (i.e., the dielectric parameters specified in setting up the
simulation). The results of this comparison are shown in Figure 4, where the difference between the
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expected results and the results for each method are highlighted in red and blue (real and imaginary,
respectively). While various approximations perform well for particular samples, the method discussed

here gives accurate results in all cases.
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Figure 4. For a range of simulated samples modeling common sample types (Teflon mixed with
absorbing amino acid, aqueous solution in a cuvette, and a photoexcited layer), the refractive index
extracted with Nelly is compared with the refractive indices extracted from the same data with common
approximations. The black lines show the dielectric parameters specified in the simulation (solid for real;
dashed for imaginary). For each refractive index extraction method, the deviation between the input value
and the extracted values is shaded in red (real) and blue (imaginary). The residuals are shown in Figure
S2. The propagation only column shows the results obtained with a transfer function which only includes
the propagation terms. The next two columns each add additional terms—transmission terms (z;), and

Fabry-Perot terms (FPji), respectively. The first column shows the results from Nelly, illustrating the
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excellent agreement for the method presented here, avoiding inaccuracies associated with the commonly

used approximations.

The sample geometries were chosen to highlight situations in which each approximation is
commonly applied. The first sample is a thick pellet with a small absorption feature around 0.3 THz.
Here, all processes except propagation will have a negligible contribution to the overall change in
amplitude and phase. Because the sample is thick, we can remove any etalons by windowing in the time
domain and safely ignore them. While there will still be reflection losses at the front and back interfaces
(i.e., 4 and t,, terms), the phase and amplitude associated with these will be small relative to the
propagation term, again due to the thickness of the sample. As expected, all approximations work

reasonably well in this case.

In the next sample—water in a cuvette—the simpler approximations begin to fail. With a thinner
sample layer, the relative contribution of the Fresnel transmission terms grows, and the etalons can no
longer be removed in the time domain and must be considered. Thus, we only achieve accurate results
once we have added the single-layer etalon terms. This can also be observed in the experimental results
shown in Figure 3. The final geometry, common for TRTS experiments, introduces additional
complications. These experiments measure the on-off difference in the time domain THz pulse as the
sample is subjected to a chopped photoexcitation pulse. From such measurements, the refractive index of
the photoexcited layer can be extracted. The thickness of this layer is typically taken to be the penetration
length of the material undergoing photoexcitation. In the simulations shown here, we seek to extract the
photoconductivity of a thin sample where the pump-beam penetration length is such that the sample is not
fully photoexcited, but has a significant finite value precluding the use of the Tinkham equation (often
referred to as the thin film approximation). Thus, we have a thin layer of the photoexcited material next to
a thin layer of the remaining non-photoexcited material. As with the previous thin sample, we cannot
ignore transmission terms or single-layer etalons, so the first two approximations (propagation only and

adding reflection losses) do not perform well. Unlike the previous sample, however, including terms for
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single-layer etalons does not resolve the issues. This is because the adjacent thin layers in this sample will
also give cross-layer etalons. Taking these into account using the method discussed here finally yields
accurate results. For this sample, we also compare our results with the commonly used Tinkham equation.
This approximation gives better results than the other approximations, but still a noticeable error (11%
error in the real part for example) which can be avoided with our method. This illustrates the strength of

the presented algorithm, in particular for emerging materials.

Using the Software. While similar methods have been demonstrated previously,''™!? this work is the first
to include software other research groups can use to apply the method. The software package, Nelly,
offers users two interfaces with which to analyze THz spectroscopy data: a MATLAB library and a GUI
called Cordouan, both of which can be used with or without a MATLAB license. Users of the MATLAB
library can process their data by constructing an input file which specifies the sample and reference
geometries and passing this—along with their experimental data—as an argument to the nelly_main
function. The input file also specifies parameters like the frequency range in which to extract the
refractive index and amplitude cutoff for reflections (discussed above). A sample input file is included
and discussed in greater detail in the README file (SI). The nelly_main function outputs the
extracted complex-valued refractive index (n_f1 t) as a function of frequency in THz (freq) as well as
some intermediate results from the processing to help users to diagnose any issues. The library has been
designed to be modular, allowing for easy extensibility. For example, the task of building the tree
discussed above is delegated to a self-contained class (tf_node). Thus, while ne1Ty_main assumes a
transmission geometry by default, users interested in reflection geometries could input their geometry into
the tf_node class, and then select the appropriate nodes in the resulting tree for their transfer
function—that is, nodes representing transmission out of the first layer rather than the last. We assume
here that the reflection is normal to the input wave, but in principle could also be rewritten for arbitrary
angles of incidence. We welcome such modifications and will happily review extensions like this for

inclusion in the package. Users can submit modifications for review through pull requests to the
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package’s GitHub repository (https:/github.com/YaleTHz/nelly/pulls). Users who encounter issues can

find help in the manual included in the Supporting Information, as well as by posting an issue on the

GitHub page or contacting the authors.

We have also implemented a GUI called Cordouan to allow easy access to the features provided
by Nelly. Cordouan is organized into three different tabs that guide the user through the process of
importing data, setting parameters for running Nelly, analyzing the data, and finally exporting the results.
Figure 5 shows each of the tabs and illustrates the typical workflow, where the user imports data, checks
data, sets parameters, and then views the resulting complex refractive index (see SI for more details). In
addition to setting basic parameters such as FFT settings and frequency limits, Cordouan includes an
easy-to-use method for building transfer functions for a particular geometry as shown in the middle tab in
Figure 5. The user can input their sample geometry using an easily interpretable syntax, which is then
converted to the structure required for Nelly. In addition, the user can use the parameters that they input
into Cordouan, including the transfer function builder, to save a new input file that can be loaded for later
use. After running Nelly, Cordouan automatically plots the results in terms of the complex refractive
index, complex permittivity, and absorption coefficient. In addition, diagnostic data are provided for the
user to quantify how well the experimental and calculated transfer function match and to inspect the raw
fast Fourier transformed amplitude and phase spectra of the sample and reference. From here, raw data
can be saved for further processing (e.g., calculating complex conductivity) and plotting, or the plots can

be saved directly in a variety of different file formats.
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Figure 5. Screenshots of Cordouan showing the process of using the GUI to run Nelly. From left to right
are the tabs for Data Input and Output, Run Parameters, and Data Analysis. These tabs guide the user
through the process of importing their data, configuring settings to run Nelly, building a transfer function

for their specific sample geometry, and analyzing and exporting results.
Conclusion

As commercially available THz spectrometers open up the technique to a wide range of research groups,
the need for accurate and user-friendly data analysis methods has become ever more acute, especially as
researchers have turned their attention towards novel materials where commonly used approximate
methods do not apply. The software package presented here (Nelly) addresses this need. Our method
considers all relevant reflections within the sample, which avoids potentially inappropriate assumptions
and makes it applicable to any sample geometry. We demonstrate for a range of common samples that
Nelly agrees excellently with the expected dielectric properties, while common approximations do not.
The presented algorithm is implemented as a MATLAB library and a GUI, making it accessible to a wide

range of users. Both the library and GUI can also be used without a MATLAB license. It is our hope that
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this will allow researchers in the field to study a wider range of samples, unconstrained by the limitations

of available data processing methods.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

e st files.zip: Zip file containing CST projects for simulation

e nelly manual.pdf: User manual for Nelly

e cordouan manual.pdf: User manual for Cordouan

e nelly 1.01.zip: Current version of the described programs. The most up-to-date version can be

found at https://github.com/YaleTHz/nelly
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