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Abstract 

Terahertz (THz) spectroscopy is a powerful tool for unambiguously extracting complex-valued 

material properties (e.g., refractive index, conductivity, etc.) from a wide range of samples with 

applications ranging from materials science to biology. However, extracting complex refractive indices 

from THz time-domain spectroscopy data can prove challenging, especially for multi-layer samples. 

These challenges arise from the large number of transmission-reflection paths the THz pulse can take 

through the sample layers, leading to unwieldy strings of Fresnel coefficients. This issue has often been 

addressed by using various approximations. However, these approximations are only applicable to 

specific classes of samples and can give erroneous results when misapplied. An alternative to this 

approach is to programmatically model all possible paths through the sample. The many paths through the 

sample layers can be modeled as a tree which branches at every point where the paths diverge—i.e., 

whenever the pulse can either be transmitted or reflected. This tree can then be used to generate 

expressions relating the unknown refractive index to the observed time domain data. Here, we provide a 

freely available, open-source package implementing this method as both a MATLAB library and 

corresponding graphical user interface which can also be run without a MATLAB license 

(https://github.com/YaleTHz/nelly). We have tested this method for a range of samples and compared the 

results to commonly used approximations to demonstrate its accuracy and wide applicability. Our method 

consistently gives better agreement than common approximations. 

 

INTRODUCTION 
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Many important physical processes leave spectroscopic signatures in the terahertz (THz) region of the 

electromagnetic spectrum (0.1 – 10 THz = 3 – 333 cm-1 = 0.1 – 10 ps). These include the nanoscale 

conductivity critical to emerging materials,1 collective motions in molecules2,3 and proteins,4 as well as 

phonons, polarons,5 and magnons.6 Of the various THz spectroscopy techniques which can probe these 

processes, THz time-domain spectroscopy (THz-TDS) and time-resolved terahertz spectroscopy (TRTS) 

provide especially rich insight because they detect the broadband THz radiation coherently (i.e., measure 

both the sign-resolved amplitude and phase of the electric field), giving access to the full complex 

dielectric spectrum of the material of interest. This is particularly useful in the study of the frequency-

dependent conductivity, since various conductivity models have distinct features in their complex form—

the negative imaginary conductivity in the Drude-Smith model, for example.7 However, it is not 

necessarily trivial to extract this useful dielectric information from the measured time-domain data, since 

the expressions relating the two can become fairly complex. This problem is particularly pronounced for 

multilayered samples, where the expression must include terms for each of the many possible 

transmission-reflection paths through the sample layers. While these expressions can be simplified with 

various approximations,8–10 these do not apply to all samples and can give erroneous results when 

misapplied. To avoid these approximations, several works have described methods which generate and 

process the full expressions programmatically for arbitrary sample geometries.11–13 However, these works 

were not accompanied with software implementations of the algorithms discussed, limiting their 

usefulness.  

Developments in recent years have exacerbated this issue, further increasing the need for accurate and 

user-friendly THz-TDS data analysis. First, researchers have turned their attention to novel materials and 

sample geometries for which traditional approximations may not be appropriate.9,10 At the same time, 

THz-TDS and TRTS spectrometers have become commercially available, bringing what was once a 

specialist technique to a wider range of labs. These two developments have placed competing demands on 

THz data analysis techniques. Properly analyzing novel samples requires the development of better 
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approximations or more advanced data analysis techniques, increasing the complexity of THz data 

analysis. However, the increasing complexity of THz-TDS data analysis poses challenges for newer users. 

Since THz-TDS may be only one of many techniques that they use, they may not have the time to devote 

to developing appropriate approximations or techniques. The software presented here seeks to reconcile 

these competing needs, by providing an approximation-free method which can be easily used by any 

researcher. 

The approach presented here avoids approximations by using a tree structure to model all possible 

transmission-reflection paths the pulse can take through the sample. This technique is applicable to any 

sample geometry without modification or approximation. While this technique is somewhat involved, the 

MATLAB package provided here—Nelly, in reference to Fresnel coefficients—and its accompanying 

graphical user interface (GUI)—Cordouan, in reference to the first lighthouse to utilize a Fresnel lens—

provide an accessible interface which any researcher can use. 

We begin with a brief overview of THz-TDS measurements and the expressions which relate them to 

a sample’s dielectric properties. We then illustrate how these expressions can become unwieldy, and 

discuss common approximations that have been used to simplify them—as well as the shortcomings of 

these approximations. Finally, we describe the method our software uses to accurately extract dielectric 

information without approximation and benchmark it against common approximations. 

EXPERIMENTAL SECTION 

Numerical Implementation in MATLAB. The code described in this manuscript was developed in 

MATLAB and has been tested for versions between 2016b and 2021a. It can also be used without a 

MATLAB license. The code is available at https://github.com/YaleTHz/nelly. For users with a MATLAB 

license, the library can be accessed by downloading the package and following the directions in the 

README file, which is available in the Supporting Information (SI) and on the GitHub repository. For 

users without a MATLAB license, the library can also be used in Python using the freely available 
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MATLAB runtime. The GUI, called Cordouan, was built in MATLAB’s App Designer and acts as a user-

friendly front end for the Nelly library, allowing users to import their own data, setup sample and 

reference geometries, run the Nelly data analysis method, and export the results. It has been tested for 

MATLAB versions 2018b to 2021a. As with the library, users without a MATLAB license can use the 

free MATLAB runtime to run the GUI in a standalone executable included in the package. 

THz Spectroscopy Measurements. THz-TDS measurements were performed to benchmark the data 

analysis method. The spectrometer used has been described in detail previously.14 Briefly, THz-TDS 

measurements were made on a home-built spectrometer based on a Ti:Al2O3 oscillator (Spectra Physics 

MaiTai, 800 nm center wavelength, ~10 nJ pulse energy, ~35 fs pulse duration, 42 MHz repetition rate) 

and a pair of photoconductive antennae (Batop). The water sample was measured in a quartz cuvette with 

a 100 μm path length (Starna Cell 48-Q-0.1), with a measurement on the empty cuvette used as a 

reference. 

Finite-Element Simulations. Finite-element simulations of THz pulses passing through various sample 

types were performed in order to benchmark the method described here against various approximations. 

The simulated electric fields were processed with the method discussed here as well as several common 

approximations to retrieve the complex refractive index. This was compared with the known dielectric 

parameters provided in the simulation. Simulations were carried out in CST Studio Suite 2020, a finite-

element solver for Maxwell’s equations.15 The CST files and macros used are provided in the SI. For all 

calculations, the time domain solver was used, with electric boundary conditions in the X direction and 

magnetic boundary conditions in the Y direction to ensure a linearly polarized terahertz pulse, 

propagating in the Z direction. 

Implementing Approximations. We compare Nelly against four common approximations. The first 

considers only propagation terms and is implemented in the just_propagation function included 

with the package. The next two approximations add terms for reflection losses (i.e., transmission Fresnel 

coefficients) and single-layer etalons. These are implemented using options within Nelly which exclude 
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certain paths—e.g., paths which include reflections for the reflection losses case, and paths which include 

cross-layer etalons for the single-layer etalon case. Finally, the Tinkham equation8 is implemented in the 

tinkham function included with the package.  

RESULTS AND DISCUSSION 

Description of Theory. THz-TDS systems measure the sign-resolved electric field of a THz pulse as a 

function of time. A typical experiment consists of two measurements: a pulse passed through the sample 

of interest, and a pulse passed through a well-characterized reference or blank substrate material. The 

dielectric properties of the sample can then be extracted by comparing the two resulting pulses. 

Specifically, we calculate the change in each frequency component’s amplitude and phase by Fourier 

transforming each pulse and taking the complex ratio of the two. This quantity is referred to as the 

transfer function (TF) and is defined as 𝑇𝐹(𝜔) =
ாೞೌ೘೛೗೐

ாೝ೐೑೐ೝ೐೙೎೐
, where Esample and Ereference are the complex-

valued Fourier-transformed spectra of the sample and reference, respectively, and ω is the angular 

frequency. The change measured in TF occurs because of three processes: propagation through the layers 

of the sample, and reflection and transmission at the interfaces between them. The effect of each of these 

processes can be expressed in terms of simple expressions related to the sample’s refractive index: 

Fresnel coefficients for reflection and transmission at the interfaces, and complex exponential terms for 

propagation and absorption through the layers. Given a path through the layers of the sample, we can 

generate an expression for the change in amplitude and phase across the spectrum as a function of the 

sample’s refractive index by multiplying the appropriate reflection, transmission, and propagation terms. 

For example, for the thick pellets often used in THz-TDS experiments, the sample pulse first transmits 

through an air-sample interface, then propagates through the sample, and finally transmits through the 

sample-air interface, while the reference pulse simply propagates through air. Figure 1 shows a schematic 

of this example showing a cartoon of the observed signal and corresponding pathways through the sample 

and reference for a measurement of a thick sample pellet. The main pulse is shown in red, while the first 

internal reflection (or etalon) is shown in blue. 
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Figure 1. A schematic illustrating a THz-TDS transmission measurement of a thick sample. The left 

panel shows the sample and reference pulses within a possible measurement time window shaded in grey, 

which allows one to ignore the etalon shown in blue. The right panel shows the paths through the sample 

that correspond to the observed pulses (e.g., the blue reflection pulse at left corresponds to the blue 

reflection path at right). The terms above the paths make up their transfer functions (see Equation 1). Note 

that the beams are shown at an angle only for ease of visualization. The software discussed here assumes 

normal incidence. 

Based on the transmission, reflection, and propagation pathways shown in Figure 1 and excluding the 

etalon pulse arriving outside the measurement time (blue path), the expression for the transfer function 

can be written as: 

𝐸௦

𝐸௔
= 𝑇𝐹(𝜔, 𝑛௦) =

𝑡௔௦(𝜔)𝑃௦(𝜔)𝑡௦௔(𝜔)

𝑃௔(𝜔)
                                               (Equation 1) 

The subscripts a and s used in Equation 1 and shown in Figure 1 refer to “air” and “sample,” respectively. 

The terms 𝑡௝௞ =  
ଶ௡ೕ(ఠ)

௡ೕ(ఠ)ା௡ೖ(ఠ)
 are Fresnel coefficients for transmission from layer j to layer k and the 

𝑃௝(𝜔) = 𝑒ି௜ఠௗೕ௡ೕ/௖ terms describe propagation through layer j, where j and k are generalized to represent 

two adjacent layers. 𝑑௝ and 𝑛௝ are the thickness and refractive of layer 𝑗. Once we have such an 

expression, we can extract the complex refractive index of the sample by using an optimization routine to 
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find the refractive index ns that minimizes the deviation between TF(ω,ns) and TFmeasured(ω) for each 

frequency point ω. 

However, not all samples will yield such simple expressions. Additional terms arise when we are 

forced to consider etalons due to decreased layer thicknesses. For example, in Equation 1, we ignored the 

second path (i.e., the etalon) shown in Figure 1, since reflections at the air-pellet interfaces will either not 

reach the detector (e.g., they propagate back toward the source) or will have to take at least two round 

trips through the thick pellet, leading to a large time delay between the main pulse and the reflected pulse. 

We can thus remove reflections by truncating the time window in which the data are collected (as in the 

shaded time window in Figure 1). However, if our pellet were thinner (less than ~100 μm), the time delay 

between the main and reflected pulses would be very small (less than ~1 ps for ns < 2), making the two 

signals inseparable. For materials with sharp resonances, issues may arise even for thick samples with 

good separation between the etalons. Such samples exhibit long lasting ringing which cannot be truncated 

without artificially broadening the resonances. When these reflection paths cannot be excluded in the time 

domain, we must account for them by adding additional expressions to the transfer function. When the 

layer is thin enough, we can assume that an infinite number of reflections will appear in the time window 

and compress the resulting infinite sum into a relatively simple expression of the form 𝐹𝑃௜௝௞(𝜔) =

ଵ

ଵି௥ೕೖ௉ೕ
మ௥ೕ೔

 which accounts for the etalons within layer j, due to reflections at its interfaces with bordering 

layers i and k (also called Fabry-Perot reflections).16 Here 𝑟௝௞ =
௡ೖି௡ೕ

௡ೕା௡ೖ
 is the Fresnel coefficient for 

reflection at the interface between layers j and k and Pj is the propagation term for layer j. Such 

expressions have been used successfully in a range of works discussing refractive index extraction from 

single layer samples.17–20 Indeed, for many cases where we can write out the transfer function, such an 

analysis is accurate and Peretti et. al. have provided an open source package implementing this approach 

for several sample geometries.21 Such approaches are limited to predefined sample geometries, however, 

and as we add more layers—to the sample itself,22 to other features of the setup (e.g. a cuvette containing 
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a liquid sample23)—the transfer function can become complicated. Each of these additional layers will 

require its own set of Fresnel coefficients and may require Fabry-Perot terms as well. A particularly 

difficult situation arises when we have adjacent thin layers. In these cases, we need not only additional 

Fresnel coefficients and Fabry-Perot terms for each layer, but also terms describing reflections involving 

both layers (see the path described in Figure 2). These terms are not as easily compressed as the single-

layer Fabry-Perot terms, and lead to lengthy transfer function expressions.  

Overview of Approximate Methods. Facing these ballooning expressions, one approach has been to 

simplify these expressions by exploiting the properties of specific types of samples. For example, if the 

layer of interest is thick, the simplest approximation assumes that the propagation term dominates and 

ignores all reflection and transmission terms.24 For the opposite case, an optically thin, highly conductive 

layer, a Taylor expansion of the transfer function yields the widely used Tinkham formula.8,25 Using such 

approximations has substantial benefits: these approximations often yield closed form expressions for the 

complex refractive index, which greatly simplifies data analysis. However, these approximate approaches 

are not without their drawbacks, which arise because these approximations are rooted in particular 

assumptions about the sample. For example, while the Tinkham formula can be used for thin conductive 

films, it is not applicable in other cases, such as photoconductive films thicker than ~10 μm,26 samples 

with a high dark conductivity,10  or samples with background phonon modes.9 Thus, before analyzing 

samples, researchers must carefully consider which of the approximations are appropriate. At best, this 

introduces extra effort; at worst, it can introduce erroneous conclusions into the literature when misuses of 

the approximations proliferate. Even if researchers are careful to apply only appropriate approximations, 

the progress of the field may demand new approximations, since compelling new materials may have 

properties outside of the region where common approximations are valid. Researchers would then be left 

to choose from a bewildering range of possible approximations. 

However, approximation-free approaches have surfaced a number of times in the literature.11–13 

Instead of addressing the problem of unwieldy strings of Fresnel coefficients by means of 
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approximations, these works recognize that assembling and processing these expressions is precisely the 

sort of straightforward but tedious task that computers are well suited to. That is, these works discussed 

programs that take in any arbitrary sample geometry—i.e., the thicknesses and refractive indices of the 

layers in the sample—consider all possible paths the pulse could take through the sample, and construct 

the appropriate transfer function based on these paths. It is then relatively straightforward to calculate the 

unknown complex refractive index of a sample without the need for approximations by minimizing the 

difference between the generated transfer function and experimental results. While this approach is more 

accurate, it is also much more difficult to implement than the closed-form approximations discussed 

above and previous works utilizing this approach have not included any source code,11–13 leaving 

interested groups to implement it for themselves. Facing this barrier, adoption of the method has been 

limited. To address this issue, we provide an open-source implementation of this method in MATLAB, 

along with a graphical user interface for our MATLAB library. Below, we will provide some details about 

our implementation and improvements upon existing algorithms, benchmark our method against previous 

approximations, and then provide an overview of how users can use the software provided here. 

Implementation Details. Given a particular sample geometry—the thickness for each layer in the sample 

as well as any known refractive indices—the goal is to create a transfer function connecting the refractive 

indices of the sample’s layers to the change in amplitude and phase a THz pulse will experience upon 

passing through the sample. Upon emerging from the sample, the pulse will have been split into a number 

of reflections in addition to the main pulse. Therefore, to create the transfer function the program must: 

(1) enumerate all possible paths through the sample, (2) determine which of these paths reach the 

detector, and (3) calculate the change in amplitude and phase associated with each of these paths. The 

final transfer function will then be the sum of the transfer functions associated with each path reaching the 

detector. This transfer function is then used to extract the refractive index by numerically finding the 

value of the unknown refractive index that most closely matches the predicted transfer function to the 

transfer function observed experimentally. 
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As with previously described methods,11–13 the implementation presented here uses a tree structure to 

accomplish these tasks. Figure 2 shows one possible tree for a simple two-layer sample (layers 1 and 4 

represent the air surrounding the sample). 

 

Figure 2. The tree structure which is used to enumerate all the paths the pulse can take through a two-

layer sample. These paths are then summed to construct the full transfer function. Each node represents a 

transmission, reflection, or propagation event—for example, tij presents transmission at the interface 

between layers i and j. Each inset shows the path represented by the corresponding node. The empty 

dashed node shows one of the places where the tree building process has been terminated by a time or 

amplitude cutoff at that node. The expression at the bottom gives the transfer function (TF) that this tree 

would yield. 

The tree representation consists of two types of nodes: layer nodes (P) and interface nodes (t or 

r), representing transmission or reflection at an interface, respectively. For example, any path through the 

sample must begin by transmitting from the initial air layer (layer 1) into the first sample layer (layer 2). 

This is represented by the root node denoted t12. Having transmitted from layer 1 to layer 2, the path will 

then proceed through layer 2. Thus, the root node has only one child, layer node P2, which represents 
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propagation through layer 2. Here the paths diverge: having passed through layer 2, the pulse reaches the 

2→3 interface and will now split into a reflected portion and a transmitted portion. These are represented 

by interface nodes r23 and t23, respectively. From each of these nodes, the algorithm continues as before, 

following interface nodes into the natural layers, and splitting layer nodes into the reflections and 

transmissions generated at their interface with the next layer. In this way—recursively generating the 

children for each node—the algorithm continues building the tree until we meet certain termination 

criteria (discussed below). Once built, the tree contains an enumeration of all possible paths through the 

sample: each node represents a path, which can be found by following the parent edges up to the root—

i.e., all the events that led to that node. Thus, this recursive process of building the tree enumerates all 

possible paths through the sample, the first task mentioned above. Using this tree, the second task—

determining which paths reach the detector—is straightforward. In order to reach the detector in a 

transmission geometry, the pulse must transmit through the interface between the final layer of the sample 

and the medium surrounding the sample. Finding the paths that reach the detector is then simply a matter 

of finding the nodes which represent this transmission—e.g., all t34 nodes in Figure 2. The transfer 

function associated with each node can then be found by taking the product of all the nodes on the path 

between the node in question and the root node. These products are shown for each of the t34 nodes in 

Figure 2, where the nodes contributing to the product are outlined in black. The final transfer function—

which is simply a sum of these products—is shown as well. 

As mentioned above, an important factor in building the tree is determining when to terminate 

branches, since the recursive process would otherwise generate an infinite tree. One straightforward 

approach adopted by Cassar et al.11 and Wilk et al.12 is to simply propagate all branches to a certain depth 

(i.e. terminate all branches when the tree reaches a certain height). However, this can introduce a large 

number of extraneous nodes at a considerable computational cost. Accurate representation of the thinnest 

layers will require a higher depth than the thicker layers, but this higher depth will be applied to all layers 

regardless. Since the number of nodes increases exponentially with the depth, the number of extraneous 
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nodes can grow extremely large. Greenall et al. avoided this by terminating on a branch-by-branch basis, 

determining for each node whether or not to create its children.13 We follow this approach, terminating on 

the basis of a time cutoff and an amplitude cutoff. As shown in Figure 1, only a certain window in the 

time domain is measured/processed, so any reflections arriving outside of this time window are excluded. 

Similarly, each succeeding reflection will be attenuated in amplitude, and at a certain point this amplitude 

will be below the instrument’s detection limit. Thus, when building the tree, the program keeps track of 

the time and amplitude corresponding to each node’s path and terminates any node whose time or 

amplitude would make it undetectable. For the amplitude cutoff, for example, the first node is assigned 

amplitude A = 1. Then, when generating the children for a given parent node, the child is given amplitude 

Achild = |AparentTFchild| where TFchild is either tij, rij, or Pi depending on the type of the child node. If the 

amplitude A of a given node is less than the given value of Acutoff, no children are generated. Acutoff can be 

determined by the noise floor of the instrument, for example. Similarly, the root node starts at time t = 0. 

Since propagating through layer i will add time 
௡೔ௗ೔

௖
 to the time elapsed, the children of any layer node 

will be given 𝑡௖௛௜௟ௗ = 𝑡௣௔௥௘௡௧ +
௡೔ௗ೔

௖೔
. Any nodes with t > tcutoff are terminated, where tcutoff is determined 

by the data collection time window. Finally, any branches that correspond to the pulse leaving the sample 

on the entrance side are also discarded as these signals never reach the detector. For example, in Figure 2, 

t21 would represent a transmission back out of the front of the sample away from the detector. 

To summarize the full process: at each frequency point, we assume a trial value for the unknown 

refractive index and construct the full tree. From the tree, we determine the predicted transfer function 

value for the trial refractive index. We then adjust the trial value using an optimization routine to 

minimize the deviation between the predicted transfer function and the measured value, constructing a 

new tree for each trial value. 

Benchmarking against common approximations. In order to demonstrate the importance of this 

method, we compared it against a range of commonly used approximations. Figure 3 shows the results of 
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applying various approximations to THz-TDS measurements of water in a quartz cuvette (see 

Experimental Section for details). 

 

Figure 3. The refractive index extracted with Nelly shown in dark blue, compared with the refractive 

indices obtained with two common approximations. For the “just propagation” trace shown in orange, 

only propagation terms are considered. The “+Reflection losses” trace shown in magenta considers both 

propagation terms as well as transmission terms at each interface. The real and imaginary part of the 

refractive indices are shown as solid and dashed lines, respectively.  

Even for this strongly absorbing sample where propagation terms might be expected to dominate, Figure 

3 shows reasonably significant deviations between the various approximations and Nelly, particularly at 

low frequencies. 

In order to further test Nelly, we simulated sample and reference pulses for various geometries in 

CST Microwave Studio, a finite-element electromagnetic field simulation software package. We then 

used various methods to extract the refractive index from these simulated data. By comparing the values 

extracted with the dielectric parameters specified in the simulations, we can assess the accuracy of each 

method for each sample geometry. This approach has the advantage of giving us a “true,” refractive index 

against which we can benchmark our results (i.e., the dielectric parameters specified in setting up the 

simulation). The results of this comparison are shown in Figure 4, where the difference between the 
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expected results and the results for each method are highlighted in red and blue (real and imaginary, 

respectively). While various approximations perform well for particular samples, the method discussed 

here gives accurate results in all cases.  

 

Figure 4. For a range of simulated samples modeling common sample types (Teflon mixed with 

absorbing amino acid, aqueous solution in a cuvette, and a photoexcited layer), the refractive index 

extracted with Nelly is compared with the refractive indices extracted from the same data with common 

approximations. The black lines show the dielectric parameters specified in the simulation (solid for real; 

dashed for imaginary). For each refractive index extraction method, the deviation between the input value 

and the extracted values is shaded in red (real) and blue (imaginary). The residuals are shown in Figure 

S2. The propagation only column shows the results obtained with a transfer function which only includes 

the propagation terms. The next two columns each add additional terms—transmission terms (tij), and 

Fabry-Perot terms (FPijk), respectively. The first column shows the results from Nelly, illustrating the 
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excellent agreement for the method presented here, avoiding inaccuracies associated with the commonly 

used approximations.  

The sample geometries were chosen to highlight situations in which each approximation is 

commonly applied. The first sample is a thick pellet with a small absorption feature around 0.3 THz. 

Here, all processes except propagation will have a negligible contribution to the overall change in 

amplitude and phase. Because the sample is thick, we can remove any etalons by windowing in the time 

domain and safely ignore them. While there will still be reflection losses at the front and back interfaces 

(i.e., tas and tsa terms), the phase and amplitude associated with these will be small relative to the 

propagation term, again due to the thickness of the sample. As expected, all approximations work 

reasonably well in this case.  

In the next sample—water in a cuvette—the simpler approximations begin to fail. With a thinner 

sample layer, the relative contribution of the Fresnel transmission terms grows, and the etalons can no 

longer be removed in the time domain and must be considered. Thus, we only achieve accurate results 

once we have added the single-layer etalon terms. This can also be observed in the experimental results 

shown in Figure 3. The final geometry, common for TRTS experiments, introduces additional 

complications. These experiments measure the on-off difference in the time domain THz pulse as the 

sample is subjected to a chopped photoexcitation pulse. From such measurements, the refractive index of 

the photoexcited layer can be extracted. The thickness of this layer is typically taken to be the penetration 

length of the material undergoing photoexcitation. In the simulations shown here, we seek to extract the 

photoconductivity of a thin sample where the pump-beam penetration length is such that the sample is not 

fully photoexcited, but has a significant finite value precluding the use of the Tinkham equation (often 

referred to as the thin film approximation). Thus, we have a thin layer of the photoexcited material next to 

a thin layer of the remaining non-photoexcited material. As with the previous thin sample, we cannot 

ignore transmission terms or single-layer etalons, so the first two approximations (propagation only and 

adding reflection losses) do not perform well. Unlike the previous sample, however, including terms for 
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single-layer etalons does not resolve the issues. This is because the adjacent thin layers in this sample will 

also give cross-layer etalons. Taking these into account using the method discussed here finally yields 

accurate results. For this sample, we also compare our results with the commonly used Tinkham equation. 

This approximation gives better results than the other approximations, but still a noticeable error (11% 

error in the real part for example) which can be avoided with our method. This illustrates the strength of 

the presented algorithm, in particular for emerging materials. 

Using the Software. While similar methods have been demonstrated previously,11–13 this work is the first 

to include software other research groups can use to apply the method. The software package, Nelly, 

offers users two interfaces with which to analyze THz spectroscopy data: a MATLAB library and a GUI 

called Cordouan, both of which can be used with or without a MATLAB license. Users of the MATLAB 

library can process their data by constructing an input file which specifies the sample and reference 

geometries and passing this—along with their experimental data—as an argument to the nelly_main 

function. The input file also specifies parameters like the frequency range in which to extract the 

refractive index and amplitude cutoff for reflections (discussed above). A sample input file is included 

and discussed in greater detail in the README file (SI). The nelly_main function outputs the 

extracted complex-valued refractive index (n_fit) as a function of frequency in THz (freq) as well as 

some intermediate results from the processing to help users to diagnose any issues. The library has been 

designed to be modular, allowing for easy extensibility. For example, the task of building the tree 

discussed above is delegated to a self-contained class (tf_node). Thus, while nelly_main assumes a 

transmission geometry by default, users interested in reflection geometries could input their geometry into 

the tf_node class, and then select the appropriate nodes in the resulting tree for their transfer 

function—that is, nodes representing transmission out of the first layer rather than the last. We assume 

here that the reflection is normal to the input wave, but in principle could also be rewritten for arbitrary 

angles of incidence. We welcome such modifications and will happily review extensions like this for 

inclusion in the package. Users can submit modifications for review through pull requests to the 
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package’s GitHub repository (https://github.com/YaleTHz/nelly/pulls). Users who encounter issues can 

find help in the manual included in the Supporting Information, as well as by posting an issue on the 

GitHub page or contacting the authors. 

We have also implemented a GUI called Cordouan to allow easy access to the features provided 

by Nelly. Cordouan is organized into three different tabs that guide the user through the process of 

importing data, setting parameters for running Nelly, analyzing the data, and finally exporting the results. 

Figure 5 shows each of the tabs and illustrates the typical workflow, where the user imports data, checks 

data, sets parameters, and then views the resulting complex refractive index (see SI for more details). In 

addition to setting basic parameters such as FFT settings and frequency limits, Cordouan includes an 

easy-to-use method for building transfer functions for a particular geometry as shown in the middle tab in 

Figure 5. The user can input their sample geometry using an easily interpretable syntax, which is then 

converted to the structure required for Nelly. In addition, the user can use the parameters that they input 

into Cordouan, including the transfer function builder, to save a new input file that can be loaded for later 

use. After running Nelly, Cordouan automatically plots the results in terms of the complex refractive 

index, complex permittivity, and absorption coefficient. In addition, diagnostic data are provided for the 

user to quantify how well the experimental and calculated transfer function match and to inspect the raw 

fast Fourier transformed amplitude and phase spectra of the sample and reference. From here, raw data 

can be saved for further processing (e.g., calculating complex conductivity) and plotting, or the plots can 

be saved directly in a variety of different file formats. 
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Figure 5. Screenshots of Cordouan showing the process of using the GUI to run Nelly. From left to right 

are the tabs for Data Input and Output, Run Parameters, and Data Analysis. These tabs guide the user 

through the process of importing their data, configuring settings to run Nelly, building a transfer function 

for their specific sample geometry, and analyzing and exporting results. 

Conclusion 

As commercially available THz spectrometers open up the technique to a wide range of research groups, 

the need for accurate and user-friendly data analysis methods has become ever more acute, especially as 

researchers have turned their attention towards novel materials where commonly used approximate 

methods do not apply. The software package presented here (Nelly) addresses this need. Our method 

considers all relevant reflections within the sample, which avoids potentially inappropriate assumptions 

and makes it applicable to any sample geometry. We demonstrate for a range of common samples that 

Nelly agrees excellently with the expected dielectric properties, while common approximations do not. 

The presented algorithm is implemented as a MATLAB library and a GUI, making it accessible to a wide 

range of users. Both the library and GUI can also be used without a MATLAB license. It is our hope that 
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this will allow researchers in the field to study a wider range of samples, unconstrained by the limitations 

of available data processing methods.  
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AUTHOR INFORMATION 

Corresponding Author 

*E-Mail: uriel.tayvah@yale.edu 

* E-Mail: Jens.Neu@yale.edu 

Notes 

The authors declare no competing financial interest. 

†Deceased: July 26, 2020 

ACKNOWLEDGEMENTS 

This material is based upon work supported by the National Science Foundation under Grant No. 

1954453. U.T.T. acknowledges the support of the National Science Foundation Graduate Research 



 

20 
 

Fellowship (DGE-1752134). The authors would like to thank Gary W. Brudvig for his input on this work, 

Daiwei Zhang for beta testing parts of the software, and Sarah Ostresh for contributing to the cover art. 

REFERENCES 

(1)  Spies, J. A.; Neu, J.; Tayvah, U. T.; Capobianco, M. D.; Pattengale, B.; Ostresh, S.; Schmuttenmaer, 
C. A. Terahertz Spectroscopy of Emerging Materials. J. Phys. Chem. C 2020, 124 (41), 22335–
22346. https://doi.org/10.1021/acs.jpcc.0c06344. 

(2)  Neu, J.; Schmuttenmaer, C. A. Terahertz Spectroscopy and Density Functional Theory Investigation 
of the Dipeptide L-Carnosine. J. Infrared Millim. Terahertz Waves 2020. 
https://doi.org/10.1007/s10762-019-00636-7. 

(3)  Neu, J.; Stone, E. A.; Spies, J. A.; Storch, G.; Hatano, A. S.; Mercado, B. Q.; Miller, S. J.; 
Schmuttenmaer, C. A. Terahertz Spectroscopy of Tetrameric Peptides. J. Phys. Chem. Lett. 2019, 
10 (10), 2624–2628. https://doi.org/10.1021/acs.jpclett.9b01091. 

(4)  Falconer, R. J.; Markelz, A. G. Terahertz Spectroscopic Analysis of Peptides and Proteins. J. 
Infrared Millim. Terahertz Waves 2012, 33 (10), 973–988. https://doi.org/10.1007/s10762-012-
9915-9. 

(5)  Ziwritsch, M.; Müller, S.; Hempel, H.; Unold, T.; Abdi, F. F.; van de Krol, R.; Friedrich, D.; 
Eichberger, R. Direct Time-Resolved Observation of Carrier Trapping and Polaron Conductivity in 
BiVO4. ACS Energy Lett. 2016, 1 (5), 888–894. https://doi.org/10.1021/acsenergylett.6b00423. 

(6)  Grishunin, K.; Huisman, T.; Li, G.; Mishina, E.; Rasing, T.; Kimel, A. V.; Zhang, K.; Jin, Z.; Cao, 
S.; Ren, W.; Ma, G.-H.; Mikhaylovskiy, R. V. Terahertz Magnon-Polaritons in TmFeO3. ACS 
Photonics 2018, 5 (4), 1375–1380. https://doi.org/10.1021/acsphotonics.7b01402. 

(7)  Smith, N. V. Classical Generalization of the Drude Formula for the Optical Conductivity. Phys. 
Rev. B 2001, 64 (15), 155106. https://doi.org/10.1103/PhysRevB.64.155106. 

(8)  Glover, R. E.; Tinkham, M. Conductivity of Superconducting Films for Photon Energies between 
0.3 and 40kTc. Phys. Rev. 1957, 108 (2), 243–256. https://doi.org/10.1103/PhysRev.108.243. 

(9)  La-o-vorakiat, C.; Cheng, L.; Salim, T.; Marcus, R. A.; Michel-Beyerle, M.-E.; Lam, Y. M.; Chia, 
E. E. M. Phonon Features in Terahertz Photoconductivity Spectra Due to Data Analysis Artifact: A 
Case Study on Organometallic Halide Perovskites. Appl. Phys. Lett. 2017, 110 (12), 123901. 
https://doi.org/10.1063/1.4978688. 

(10)  Ulatowski, A. M.; Herz, L. M.; Johnston, M. B. Terahertz Conductivity Analysis for Highly Doped 
Thin-Film Semiconductors. J. Infrared Millim. Terahertz Waves 2020, 41 (12), 1431–1449. 
https://doi.org/10.1007/s10762-020-00739-6. 

(11)  Cassar, Q.; Chopard, A.; Fauquet, F.; Guillet, J.; Pan, M.; Perraud, J.; Mounaix, P. Iterative Tree 
Algorithm to Evaluate Terahertz Signal Contribution of Specific Optical Paths Within Multilayered 
Materials. IEEE Trans. Terahertz Sci. Technol. 2019, 9 (6), 684–694. 
https://doi.org/10.1109/TTHZ.2019.2937208. 

(12)  Wilk, R.; Pupeza, I.; Cernat, R.; Koch, M. Highly Accurate THz Time-Domain Spectroscopy of 
Multilayer Structures. IEEE J. Sel. Top. Quantum Electron. 2008, 14 (2), 392–398. 
https://doi.org/10.1109/JSTQE.2007.910981. 

(13)  Greenall, N. R.; Li, L. H.; Linfield, E. H.; Davies, A. G.; Cunningham, J. E.; Burnett, A. D. 
Multilayer Extraction of Complex Refractive Index in Broadband Transmission Terahertz Time-
Domain Spectroscopy. In 2016 41st International Conference on Infrared, Millimeter, and 
Terahertz waves (IRMMW-THz); 2016; pp 1–2. https://doi.org/10.1109/IRMMW-
THz.2016.7758468. 



 

21 
 

(14)  Williams, M. R. C.; Aschaffenburg, D. J.; Ofori-Okai, B. K.; Schmuttenmaer, C. A. Intermolecular 
Vibrations in Hydrophobic Amino Acid Crystals: Experiments and Calculations. J. Phys. Chem. B 
2013, 117 (36), 10444–10461. https://doi.org/10.1021/jp406730a. 

(15)  Weiland, T. Time Domain Electromagnetic Field Computation with Finite Difference Methods. Int. 
J. Numer. Model. Electron. Netw. Devices Fields 1996, 9 (4), 295–319. 
https://doi.org/10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8. 

(16)  Neu, J.; Schmuttenmaer, C. A. Tutorial: An Introduction to Terahertz Time Domain Spectroscopy 
(THz-TDS). J. Appl. Phys. 2018, 124 (23), 231101. https://doi.org/10.1063/1.5047659. 

(17)  Duvillaret, L.; Garet, F.; Coutaz, J.-L. A Reliable Method for Extraction of Material Parameters in 
Terahertz Time-Domain Spectroscopy. IEEE J. Sel. Top. Quantum Electron. 1996, 2 (3), 739–746. 
https://doi.org/10.1109/2944.571775. 

(18)  Dorney, T. D.; Baraniuk, R. G.; Mittleman, D. M. Material Parameter Estimation with Terahertz 
Time-Domain Spectroscopy. J. Opt. Soc. Am. A 2001, 18 (7), 1562. 
https://doi.org/10.1364/JOSAA.18.001562. 

(19)  Pupeza, I.; Wilk, R.; Koch, M. Highly Accurate Optical Material Parameter Determination with 
THz Time-Domain Spectroscopy. Opt. Express 2007, 15 (7), 4335–4350. 
https://doi.org/10.1364/OE.15.004335. 

(20)  Scheller, M.; Jansen, C.; Koch, M. Analyzing Sub-100-Μm Samples with Transmission Terahertz 
Time Domain Spectroscopy. Opt. Commun. 2009, 282 (7), 1304–1306. 
https://doi.org/10.1016/j.optcom.2008.12.061. 

(21)  Peretti, R.; Mitryukovskiy, S.; Froberger, K.; Mebarki, M. A.; Eliet, S.; Vanwolleghem, M.; 
Lampin, J.-F. THz-TDS Time-Trace Analysis for the Extraction of Material and Metamaterial 
Parameters. IEEE Trans. Terahertz Sci. Technol. 2019, 9 (2), 136–149. 
https://doi.org/10.1109/TTHZ.2018.2889227. 

(22)  van Mechelen, J. L. M. Dynamics of the Stratification Process in Drying Colloidal Dispersions 
Studied by Terahertz Time-Domain Spectroscopy. Langmuir 2014, 30 (43), 12748–12754. 
https://doi.org/10.1021/la503322v. 

(23)  Tielrooij, K. J.; Timmer, R. L. A.; Bakker, H. J.; Bonn, M. Structure Dynamics of the Proton in 
Liquid Water Probed with Terahertz Time-Domain Spectroscopy. Phys. Rev. Lett. 2009, 102 (19), 
198303. https://doi.org/10.1103/PhysRevLett.102.198303. 

(24)  Baxter, J.; Schmuttenmaer, C.A.Time-Resolve Terahertz Spectroscopy and Terahertz Emission 
Spectroscopy. In Terahertz Spectroscopy: Principles and Applications; Dexheimer, S. L., Ed; CRC 
Press, 2017; pp. 73-115. 

(25)  Lloyd-Hughes, J.; Jeon, T.-I. A Review of the Terahertz Conductivity of Bulk and Nano-Materials. 
J. Infrared Millim. Terahertz Waves 2012, 33 (9), 871–925. https://doi.org/10.1007/s10762-012-
9905-y. 

(26)  Neu, J.; Regan, K. P.; Swierk, J. R.; Schmuttenmaer, C. A. Applicability of the Thin-Film 
Approximation in Terahertz Photoconductivity Measurements. Appl. Phys. Lett. 2018, 113 (23), 
233901. https://doi.org/10.1063/1.5052232. 

 

  



 

22 
 

For Table of Contents Only 

 

 


