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The scale and sophistication of global human societies are due 
in no small part to cooperation. Altruistic behaviour that 
benefits the collective, and entails personal costs to the indi-

vidual, has long been recognized as an important aspect of both 
human and non-human societies1. Just as prosocial behaviours 
have unquestionably shaped the past, they will also play a major 
role in shaping the present and future. From the collective action 
necessary to prevent the spread of infectious diseases2,3, to efforts 
to combat climate change4,5, cooperation is a critical precursor to 
social prosperity.

At the same time, the emergence and stability of prosocial behav-
iours is perplexing in light of Darwin’s notion of ‘survival of the fit-
test’6,7. Several mechanisms have been proposed to explain their 
widespread abundance8, most notably spatial structure, which con-
strains interaction and dispersal patterns within a population9–17. 
The effects of population structure on cooperation have been stud-
ied theoretically, using computer simulations18, by approximation 
techniques19, and by direct analysis of special cases20,21; and they 
have been tested empirically in laboratory experiments22. The lat-
est mathematical results allow for extensive analysis of large fami-
lies of heterogeneous population structures23–25 and arbitrary initial 
configurations of individuals26. A large portion of population struc-
tures favour antisocial traits, such as spite27, which is simultaneously 
intriguing and concerning.

Nonetheless, a single network cannot capture the complexity 
of social structures in human societies. Individuals typically form 
many different types of social relationships. They enjoy leisure time 
with friends and encounter colleagues in the workplace. They have 
physical contact with those who are nearby and participate in online 
social networks to keep in touch with friends or strangers who are 
more distant28–32. Each type of relationship forms a domain in which 
interactions take place, and individuals may behave differently in 
different domains. Success in one domain, such as wealth accu-
mulated in business settings, may nonetheless have an impact on 
success in other domains, such as influence and trustworthiness of 
opinions expressed on social media. The tendency of an individual’s 
behaviour to spread is therefore often dependent on their aggregate 

success across the domains in which they interact—which intro-
duces a form of coupling between different social domains.

Altruistic acts in different domains often involve different costs 
and benefits, such as donating a dollar to someone in person ver-
sus sharing a useful tip on social media. As a result, an individual 
is likely to exhibit different behaviours in distinct domains. These 
complexities of human social life violate the classic assumptions 
made in most prior game-theoretic studies of prosocial behaviour, 
which typically focus on a single domain of interaction or assume 
that individuals use the same strategy against all opponents9–21,23–27. 
Compared with a growing literature on the dynamics and structural 
analysis of multiple-domain coupling33,34, the evolution of prosocial 
behaviour has received less attention and has been investigated only 
through numerical simulations in specific cases35–39. The general 
question of how coupling between domains influences behaviour in 
a population, for an arbitrary number of domains each with arbitrary 
spatial structure and potentially different pay-offs, remains unre-
solved and outside the scope of simulations studies35–39. Although 
numerical simulations are useful for rapid exploration within a set 
of parameters, the notion of ‘generalizability’, which is important 
for progress in the social and behavioural sciences40, demands that 
theoretical results be established mathematically so that the extent 
of their generality is known. However, mathematical results on this 
topic remain absent, so far, even for the simplest cases.

In this study, we use a multilayer network to describe a popu-
lation with multiple domains of strategic interactions. Each layer 
describes the network of interactions that occur in a given domain, 
and players can adopt different behavioural strategies in different 
domains. An individual’s behaviour in a given domain is prefer-
entially copied by others in that domain, based on the individual’s 
aggregate success across domains. We provide mathematical results 
applicable to any multilayer structure (that is, the number of lay-
ers and connections within each layer), any initial strategy con-
figuration and any strategy update rule in each layer. A thorough 
analysis of all two-layer networks with small size, a sample of large 
two-layer random networks and six empirical multilayer social net-
works, demonstrates that coupling layers tends to strongly promote 
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cooperation. If cooperation is disfavoured in each layer alone, or 
even if layers individually favour spite, coupling layers can often 
promote cooperation in all layers. The multiple domains that struc-
ture human societies thus serve as a natural breeding ground for 
cooperation to flourish.

Results
Model. We model a population of N individuals engaged in pairwise 
social interactions in multiple domains, or layers. Each individual 
uses separate strategies and plays distinct games in each layer. An 
individual’s accumulated pay-off over all layers governs how much 
influence she has on her peers’ strategy updates in each layer.

In our model, nodes represent individuals and edges describe 
their social interactions. The population structure is described by a 
two-layer network, so that each individual corresponds to a node in 
layer one and an associated node in layer two (see Supplementary 
Information section 2.3.2 for analysis of more than two layers). 
Interactions within layer one occur along weighted edges w[1]

ij  
(w[1]

ij > 0); and interactions in layer two occur along weighted edges 

w[2]
ij  (w[2]

ij > 0). The degree of node i in layer one is w[1]
i =

∑N
j=1 w

[1]
ij , 

whereas it is w[2]
i =

∑N
j=1 w

[2]
ij  in layer two.

Players engage in a donation game in every domain. In each 
layer, a player must choose either to cooperate (C) or defect (D) 
with her neighbours in that layer. A cooperative act means paying 
a cost of c to provide the opponent with a benefit. The size of the 
benefit may differ across layers: b1 in layer one and b2 in layer two. 
Defection incurs no cost and provides no benefit to the opponent. A 
player’s strategy may differ across layers, and so we let s[1]i ∈ {0, 1} 
denote player i’s strategy in layer one and s[2]i ∈ {0, 1} in layer two, 
where 1 denotes cooperation and 0 defection. This multilayer dona-
tion game is depicted in Fig. 1.

In each successive time step, each individual plays game one with 
all her neighbours in layer one, and she plays game two with all her 
neighbours in layer two. Each player i obtains edge-weighted aver-
age pay-off u[1]

i  in layer one and u[2]
i  in layer two, given by

u[1]
i = −cs[1]i + b1

N∑

j=1
p[1]ij s

[1]
j ,

u[2]
i = −cs[2]i + b2

N∑

j=1
p[2]ij s

[2]
j ,

(1)

where p[1]ij = w[1]
ij /w

[1]
i  and p[2]ij = w[2]

ij /w
[2]
i . Player i’s total pay-off 

is the sum of those obtained in each layer, namely ui = u[1]
i + u[2]

i . 
The total pay-off across layers determines the rate at which a play-
er’s strategy spreads (that is its ‘reproductive rate’), fi = exp (δui), 
where 0 < δ < 1 is the intensity of selection41. The regimes δ ≪ 1 cor-
responds to weak selection42,43 and δ = 0 corresponds to neutral drift.

At the end of one time step, a random player i is selected to 
update her strategy in layer one. With probability proportional to 
w[1]
ij fj, player i’s strategy in layer one is replaced by player j’s strat-

egy in layer one. This update rule ensures that a player preferen-
tially copies the strategy of successful individuals. At the same time, 
a random player k is selected to update his strategy in layer two. 
With probability proportional to w[2]

kh fh, player k’s strategy in layer 
two is replaced by h’s strategy in layer two. We focus on this form 
of ‘death–birth’ updating19, and we also analyse other mechanisms 
such as pairwise-comparison updating, birth–death updating and a 
mixture of the two (that is, different update rules for different layers; 
see Supplementary Information section 2.1).

General rule for the evolution of cooperation in multilayer pop-
ulations. In the absence of innovation (mutation), the population 
eventually settles into an absorbing state in which all players either 

cooperate or defect, in each layer. The absorbing state in the two 
layers may be different; for example, cooperation in layer one and 
defection in layer two. In general, selection can favour cooperation 
provided the benefit-to-cost ratio, b/c, is sufficiently large19. Here, 
we analyse how the critical benefit-to-cost ratio to support coopera-
tion in layer one, (b1/c)∗, depends on coupling with a second layer.

Let ρ[1]
C  denote the probability that all players eventually coop-

erate in layer one, starting from some fixed configuration of 
co-operators and defectors. We use 

(
ρ[1]
C

)
◦

 to denote this prob-
ability under neutral drift, that is when δ = 0. Selection is said to 
favour the emergence and fixation of cooperation (or cooperation 
replacing defection) in layer one when the inequality ρ[1]

C >
(

ρ[1]
C

)
◦

 
holds10,19,41. We focus primarily on the probability that cooperation 
will fix under weak selection, compared to neutral drift. We also 
compare the fixation probability of cooperation with the fixation 
probability of defection, and we find qualitatively similar results 
using this relative measure (Supplementary Information section 1).

To analyse the evolution of cooperation in multilayer networks, 
we adapt techniques from the study of strategy assortment in single- 
layer networks23,25,26, based on random walks within the network. It 
is necessary to first understand what a random walk in a multilayer 
network looks like. In a two-layer network, we define a random walk 
as follows: a step from node i to j in layer one (respectively layer 
two) occurs with probability p[1]ij  ( p[2]ij ). An (n,m)-step random walk 
in the network means an n-step random walk in layer one followed 
by an m-step random walk in layer two, where the beginning of the 
second random walk corresponds to the end of the first (Fig. 2b).

We let θn denote the probability that the starting and ending 
nodes of an n-step random walk in layer one both employ the same 
strategy. For example, θ1 quantifies the correlation, or assortment, 
of strategies between neighbouring nodes in layer one. Similarly, we 
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Fig. 1 | Evolutionary games in multilayer populations. A population with 
two domains of social interaction is described by a two-layer network, 
with edge weights w[1]

ij  in layer one and w[2]
ij  in layer two (see numbers 

next to edges for this example). Each player occupies a node in layer 
one and an associated node in layer two, as indicated by dashed lines. 
Each player adopts a (possibly different) strategy in each layer, such as 
cooperation (blue) or defection (red). In each successive time step, each 
player i plays game one with all her neighbours in layer one and derives 
an average pay-off u[1]i  in layer one; the player also plays game two with 
all her neighbours in layer two and obtains average pay-off u[2]i . Player i’s 
total pay-off is the sum across layers, ui = u[1]i + u[2]i , which determines 
her reproductive rate, fi = exp (δui). After all social interactions occur, a 
random player i is selected to update her strategy in layer one by copying 
that of a random neighbour j with probability proportional to j’s total fitness 
w[1]
ij fj (that is preferential copying of successful individuals). At the same 

time, a (possibly different) player k updates his strategy in layer two, by 
copying that of a random neighbour h proportional to w[2]

kh fh. We focus our 
analysis on donation games, in which each player chooses whether to pay a 
cost (c) to provide a benefit to her neighbour. The benefit may be different 
in layer one (b1) than in layer two (b2).
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let ϕn,m denote the probability that the starting and ending nodes of 
an (n,m)-step random employ the same strategy. For example, ϕ0,1 
quantifies the strategy assortment between a node in layer one and 
a random neighbour in layer two. We can obtain θn and ϕn,m by solv-
ing systems of O

(
N2) linear equations (Methods).

For any two-layer population structure and any initial strategy 
configuration, we have derived a general condition for when coop-
eration in layer one is favoured by selection:

θ1b1 + ϕ0,1b2 − θ0c− ϕ0,0c > θ3b1 + ϕ2,1b2 − θ2c− ϕ2,0c. (2)

Informally, this condition states that a cooperative neighbour of a 
node in layer one must have a higher pay-off than a random neigh-
bour. The four terms on the left side quantify the benefits and costs to 
a cooperative neighbour, where θ1b1 and θ0c denote the benefits and 
costs from layer one, and ϕ0,1b2 and ϕ0,0c denote the benefits and costs 
from layer two. The four terms on the right quantify the benefits and 
costs to a random neighbour, where θ3b1 and θ2c (respectively ϕ2,1b2 
and ϕ2,0c) denote the benefits and costs from layer one (layer two). 
These eight quantities collectively govern the fate of cooperation in 
multilayer networks, as depicted in Fig. 2. A special case of equation 
(2) is when layer one evolves independently from layer two, so that 
there are no benefits and costs arising from layer two, in which case 
selection favours cooperation whenever θ1b1 − θ0c > θ3b1 − θ2c.

Coupled ring networks. The general rule derived above allows 
us to study how multiple domains of social interactions influence 
the prospects for cooperation, in arbitrary interaction networks. 
In the following, we focus on unweighted networks. We start with 
an illustrative example based on a two-layer ring network. We 
consider N = 10 individuals are arranged in a ring, each with two 
neighbours in each layer. Initially, a single individual in each layer 
is cooperative, and the co-operator in layer one is connected to the 
co-operator in layer two (Fig. 3a). When the two layers evolve inde-
pendently, or in the absence of layer two, cooperation is favoured by 
selection in layer one if the benefit-to-cost ratio, b1/c, exceeds a criti-
cal value, (b1/c)∗ = 8/3 (dashed vertical line in Fig. 3b). But when 
the two layers are coupled and b2/c = 10, then critical value (b1/c)∗ 
is reduced to 1.74 (solid vertical line in Fig. 3b). In other words, 
coupling games between layers promotes cooperation in layer one, 
making it far easier to evolve than in the absence of layer two. The 
reason is that, when layers are coupled, a player’s success in one layer 
depends not only on her pay-offs obtained in that layer, but also 
on her interactions in the other layer. In this case, the co-operator 
in layer one is being exploited by two neighbouring defectors, as 
seen in Fig. 3a, but nonetheless she receives an extra benefit from 
a cooperative neighbour in layer two, who increases her fitness and 
promotes the spread of her (cooperative) strategy in layer one (see 
also Supplementary Fig. 1 for further details).
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Fig. 2 | General rule for the evolution of cooperation in multilayer populations. a–c, We consider what happens when individual i is chosen to update 
her strategy in layer one, and her neighbours compete to have their strategy copied. Cooperation will be selectively favoured in layer one if a cooperative 
neighbour, node j, has greater expected pay-off than a random neighbour, node l. Node j receives an average benefit b1θ1 from its own one-step 
neighbours in layer one (a, left). Node j also receives an average benefit b2ϕ0,1 from its own one-step neighbours in layer two (a, right). The expression 
for θ1 (respectively ϕ0,1) accounts for the probability p[1]jk  (p[2]jk ) that a random walk moves from node j to k in layer one (layer two); and for the probability 
βjk (γjk) that node k is cooperative in layer one (layer two) as node j in layer one (Supplementary Information section 2.1.1). Node j pays the cost cθ0 as a 
co-operator in layer one and cϕ0,0 in layer two. Node j’s net pay-off is therefore θ1b1 + ϕ0,1b2 − (θ0c + ϕ0,0c). Any competitor of j, such as node l, is also vying 
to have its strategy copied. Note that in layer one, node l is two steps away from node j. Node l receives an average benefit b1θ3 (respectively b2ϕ2,1) from 
its one-step neighbours in layer one (layer two), who are three steps away in layer one (two steps away in layer one and one step away in layer two) from 
node j, as shown in (b). Whenever ℓ is a co-operator she pays cost c, leading to an average cost θ2c in layer one and ϕ2,0c in layer two (c). Node l’s net 
pay-off is therefore θ3b1 + ϕ2,1b2 − (θ2 + ϕ2,0)c. Selection will favour cooperation if θ1b1 + ϕ0,1b2 − θ0c − ϕ0,0c > θ3b1 + ϕ2,1b2 − (θ2 + ϕ2,0)c.
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Coupling layers can have a substantial effect on the probability that 
cooperation will spread and overtake a population, even in regimes 
where selection disfavours cooperation in the absence of coupling. For 
the example shown in Fig. 3, when the selection intensity is very small, 
for example δ = 0.02, the fixation probability of cooperation can be 
increased by a small amount (3%) relative to the case of independent 
layers; but when the selection intensity is moderate, such as δ = 0.20, 
the effect size can be as large as 27.76% (Fig. 3b). Although the abso-
lute increase in fixation probability is always small, for weak selection, 
it makes sense to quantify the effect size relative to neutrality.

Figure 4 illustrates more generally how multilayer coupling affects 
evolutionary dynamics in ring networks. When the two layers evolve 
separately, cooperation is favoured in layer one only if b1/c exceeds 
the olive dashed line; cooperation is favoured in layer two only if b2/c 
exceeds the blue dashed line. Selection thus favours cooperation in 
both layers only when b1/c and b2/c lie in region κ. Coupling layers 
moves the benefit-to-cost ratio required for cooperation in layer one 
to the olive solid line, and it moves the benefit-to-cost ratio required 
in layer two to the blue solid line—in both cases expanding the param-
eter range of costs and benefits that favour cooperation. In particular, 
the region λ reveals the remarkable fact that even if cooperation is dis-
favoured by selection in each layer alone, cooperation can nonetheless 
be favoured in both layers simultaneously when they are coupled.

In the two-layer ring network, for any configuration with only 
one co-operator in layer one and one co-operator in layer two, we 
have derived a simple formula to calculate the critical benefit-to-cost 
ratio (b1/c)∗ required to favour cooperation (Methods). For more 
complicated initial configurations we can still resort to the general 
condition (equation 2) to obtain theoretical predictions, although 
the expressions are more complicated. Even among these simple 
graphs we find a diverse range of scenarios in which multilayer cou-
pling promotes cooperation (Supplementary Fig. 2).

Coupled heterogeneous networks. For ring networks, cooperation 
is favoured in each layer alone provided the benefit-to-cost ratio 
exceeds some critical value. Coupling between layers can reduce the 

critical value and thereby promote cooperation. However, the pros-
pects for cooperation may be far worse in other population struc-
tures. In fact, there are many single-layer population structures in 
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absence of selection (horizontal line). Squares (for δ = 0.02) and circles (for δ = 0.20) indicate fixation probabilities estimated from 107 replicate Monte 
Carlo simulations, and lines indicate analytical predictions. Our analysis under weak selection predicts that cooperation will be favoured whenever the 
benefit-to-cost ratio (b1/c) exceeds a critical value, indicated by the solid vertical line (for coupled layers) and by the dashed vertical line (for independent 
layers). For the benefit-to-cost ratios indicated in light blue, coupling between layers promotes cooperation in layer one even though it would be 
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Fig. 4 | When coupling promotes cooperation. We analyse a two-layer 
ring network with the initial strategy configuration shown in Fig. 3a. If 
the population evolves in layer one alone, then cooperation is favoured 
by selection only when b1/c exceeds the olive dashed line. Coupling with 
layer two facilitates the evolution of cooperation in layer one, decreasing 
the required benefit-to-cost ratio from the olive dashed line to the olive 
solid line. If the population evolves in layer two alone, cooperation is 
favoured by selection only when b2/c exceeds the blue dashed line. 
Coupling with layer one facilitates the evolution of cooperation in layer two, 
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coupling, selection favours cooperation in both layers only in region κ. But 
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disfavoured in each layer on its own, but it is favoured in both layers when 
they are coupled.
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which cooperation is never favoured in a social dilemma, no matter 
how large the benefit-to-cost ratio11,23,24.

The star graph is an example of a population structure that 
always suppresses cooperation. The graph consists of a central 
hub and N − 1 leaf nodes. Regardless of the initial strategy con-
figuration, no finite value of the benefit-to-cost ratio can selec-
tively favour cooperation (that is (b1/c)∗ = ∞). Nonetheless, if we 
couple two stars in a certain way (Fig. 5a) then selection favours 
cooperation in both stars simultaneously provided b1/c and b2/c 
exceed 

(
18N4 − 55N3

+ 64N2 − 33N+ 6
)
/
(
4N3 − 2N2) (see 

Supplementary Information section 2.2.2 for detailed derivations). 
The region λ in Fig. 5a depicts the benefit-to-cost ratios that favour 
cooperation in these two-layer graphs.

An even more striking example occurs on the wheel network, 
shown in Fig. 5b. For any initial strategy configuration on such 
networks, the critical benefit-to-cost ratio is negative, (b1/c)∗ < 0 

—meaning that selection actually favours spite, an antisocial behav-
iour in which an individual pays a cost to decrease her neighbour’s 
pay-off. But if we couple one wheel network with another, as shown 
in Fig. 5b, cooperation can be favoured on both layers, provided b1/c 
and b2/c lie in region λ. Together with the star network, this example 
shows that coupling can promote cooperation in multiple layers, 
even if selection always disfavours cooperation in each layer alone.

Our framework also applies to multilayer populations with dif-
ferent population sizes in different layers. That is, a player may have 
social interactions in layer one, but no social interactions in layer 
two (see examples in Fig. 5c,d)—corresponding, for example, to an 
individual who forgoes online social networking altogether. Figure 
5c,d confirms that in such cases, coupling can still allow coopera-
tion to be favoured in both layers, even if cooperation is disfavoured 
in each layer alone for any benefit-to-cost ratio. In such popula-
tions with different population sizes in different layers the general 
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layers, provided b1/c and b2/c fall within the region λ. b, In each layer alone, the critical benefit-to-cost ratio is negative, that is (b1/c)∗, (b2/c)∗ < 0. These 
negative ratios indicate that selection can favour the fixation of spite in each layer alone—so that an individual will pay a cost of c > 0 to decrease his 
partner’s pay-off. Nevertheless, when the two layers are coupled, selection then favours cooperation in both layers, provided b1/c and b2/c fall within the 
region λ. c–e, Multilayer networks can also rescue cooperation when there are different population sizes in different layers (c,d), or for populations with 
more than two layers (e). Open circles in c and d indicate the absence of a node in that layer.
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rule for the evolution of cooperation is analogous to equation (2) 
(Supplementary Information section 2.3.1).

Our framework also applies to multilayer populations with 
an arbitrary number of layers. Figure 5e illustrates an example of 
a three-layer population. When the three layers evolve indepen-
dently, cooperation is favoured neither in layer one ((b1/c)∗ < 0) 
nor in layer three ((b3/c)∗ = ∞). Coupling the three layers allows 
selection to favour cooperation, provided benefit-to-cost ratios lie 
in the three-dimensional region λ. In particular, coupling not only 
makes it possible for cooperation to be favoured in layer one and 
layer three, but it also reduces the value of b2/c required for coop-
eration to be favoured in layer two. In Supplementary Information 
section 2.3.2, we derive the general condition for selection to favour 
cooperation on population structures with an arbitrary number of 
layers. Although coupling of layers can provide more opportunities 
for the evolution of cooperation, some choices of benefits and costs 
in layers may lead to negative effects. In the example shown in Fig. 
5e, if b1/c and b3/c are selected beyond the region λ, then coupling 
domains may increase the critical benefit-to-cost ratio (b2/c)∗, mak-
ing it harder for cooperation to evolve in layer two.

Small multilayer populations. To study behavioural dynamics 
across a variety of structures, we systematically analysed all two-layer 
networks of size N = 3, 4, 5 and 6, and all initial configurations of a 
single co-operator in each layer (see Methods for details). We first 
report the proportion of single-layer networks and strategy configu-
rations in which cooperation can be favoured in layer one alone for 
some choice of benefit-to-cost ratio (that is, (b1/c)∗ > 0, blue bars 
in Fig. 6). Coupling layer one with a randomly chosen network and 
strategy configuration in layer two can increase the frequency of 
structures on which selection favours cooperation in layer one, for 
some values b1/c > 0 and b2/c > 0 (red bar). Coupling layer one with 
a deliberately designed network and configuration in layer two can 
further increase the frequency of cooperation (green bar). In a large 
proportion of these cases, coupling to either a random or a designed 
network in layer two, selection actually favours cooperation in both 
layers simultaneously (Supplementary Fig. 3). Therefore, in a sys-
tematic analysis of all small structures, multilayer networks have a 
positive impact on prospects for cooperation.

Larger multilayer populations. The networks explored above are 
all relatively small, but they nonetheless exhibit a diverse range of 
behavioural dynamics and surprising effects induced by multilayer 
coupling. To study behaviour on larger networks, of size N = 50, we 
sampled many two-layer Erdös–Rényi (ER) random networks44 and 
many two-layer Goh–Kahng–Kim (GKK) networks45 generated with 
exponent γ = 2.5. We sampled these networks across a diverse range 
of average node degrees in layer one and in layer two (Fig. 7a). The 
two classes of networks differ in their node degree distribution. For 
example, for average degree 4, the maximum node degree is 10 in ER 
random networks and up to 28 in GKK networks we study. In each 
two-layer network we placed a single mutant co-operator in each 
layer and analysed all 50 × 50 = 2,500 initial strategy configurations. 
Figure 7a,b reports the frequency of structures for which selection 
can favour cooperation in both layers for some positive values of 
b1/c and b2/c. Compared with the corresponding frequencies when 
the two layers evolve separately (Supplementary Fig. 4), we find that 
coupling two layers is broadly conducive to cooperation, as shown 
in the highlighted area in Fig. 7a,b. In particular, in the random net-
works with average degree >26, cooperation is never favoured for 
any benefit-to-cost ratio, whereas coupling such networks to a ran-
dom network in layer two can often rescue cooperation (dark red 
area in Fig. 7a). Figure 7c,d shows examples of random two-layer 
networks that favour the evolution of spite on each layer alone, but 
that can favour cooperation on both layers when coupled (see also 
Supplementary Figs. 5 and 6 for further analysis and examples).

We also investigated larger networks, with size up to N = 300 and 
average degree ¯k1 = ¯k2 = 4, generated by the Goh–Kahng–Kim 
algorithm with exponent γ = 2.5 and, alternatively, by the Barabási–
Albert algorithm46. These networks exhibit broad distributions of 
node degree (Supplementary Fig. 7). For each two-layer network, 
we randomly sampled 500 initial strategy configurations. Among 
the GKK networks, in 99.23% of cases coupling layers decreases the 
benefit-to-cost ratio required for cooperation in layer one; further-
more, in 10.15% of cases, coupling promotes cooperation in both 
layers simultaneously. Among the Barabási–Albert networks, in 
99.26% of cases coupling layers decreases the benefit-to-cost ratio 
required for cooperation in layer one; and in 11.24% of cases, cou-
pling promotes cooperation in both layers simultaneously.

Empirical multilayer populations. We also studied six real-world 
examples of communities engaged in multiple domains of social 
interaction. The six empirical two-layer networks28–32 range from 
online and offline relationships among members of the computer 
science department at Aarhus University, to the marriage and 
business relationships among prominent families in Renaissance 
Florence, and they range in population size from N = 21 to N = 71 
(see Supplementary Information section 2.4 for details of network 
description and analysis). We analysed the prospects for cooperation 
when individuals play donation games in each layer, including all 
initial configurations with a single co-operator in each layer. In all of 
these empirical networks, even if two layers evolve separately, coop-
eration can be favoured in each layer provided the benefit-to-cost 
ratios are sufficiently large. Coupling the two layers can nonethe-
less reduce the benefit-to-cost ratios required to support coopera-
tion. Figure 8a shows the proportions of initial configurations for 
which coupling facilitates cooperation in this way. Figure 8c shows 

3 4 5

N

6
0

20

40

P
ro

po
rt

io
n 

of
 c

on
fig

ur
at

io
ns

th
at

 fa
vo

ur
 c

oo
pe

ra
tio

n 
in

 la
ye

r 
on

e 
(%

)

60

80

100

Fig. 6 | Proportion of small networks that permit the evolution of 
cooperation. We systematically analysed all networks of size N = 3, 4, 5 
and 6, including all initial configurations containing a single co-operator. 
Blue bars indicate the proportion of single-layer networks and mutant 
configurations in which selection can favour cooperation in layer one 
for some benefit-to-cost ratio, that is (b1/c)∗ > 0. For N = 3, selection 
does not favour cooperation for any network and configuration, for any 
value of b1/c. Coupling layer one with a randomly chosen network and 
strategy configuration in layer two increases the frequency of selection 
for cooperation (that is, selection favours cooperation in layer one for 
some choice of b1/c > 0 and b2/c > 0, shown in red). Coupling layer one 
with a deliberately designed network and strategy configuration in layer 
two further increases the frequency of cooperation in layer one (shown 
in green). In a majority of these cases, coupling to either a random or a 
designed network in layer two, selection actually favours cooperation in 
both layers simultaneously (Supplementary Fig. 5).
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an example of this phenomenon, using the two-layer network of 
socio-emotional and professional relationships among customers 
surveyed in a Zambian tailor shop; coupling these two domains of 
social interaction facilitates cooperation in both domains, by reduc-
ing the benefit-to-cost ratios required to favour prosocial behaviour.

In practice, the behavioural outcome in one layer may be more 
important than in another layer, such as when more individuals 
interact in one layer, or when prosociality in one domain is more 
important for the overall welfare of a society. To study this in the 
context of real-world multilayer networks, we analysed to what 
degree the benefit-to-cost ratio for cooperation to be favoured in 
layer one alone can be reduced. In these analyses the prospect for 
cooperation in the second layer is left uncontrolled, and so coopera-
tion might be disfavoured in layer two. We find that in all six empir-
ical two-layer networks, and for nearly all initial configurations,  

a proper choice of benefits and costs in layer two can serve to lower 
the critical benefit-to-cost ratio required for the evolution of coop-
eration in layer one (Fig. 8b).

The effect size of one layer on another can be substantial. In the 
case of the empirical networks of social and professional interac-
tions in a Zambian tailor shop, for example, if interactions occur 
in a single layer (social interactions only), then the benefit-to-cost 
ratio required for cooperation to spread is unreasonably large: 
(b1/c)∗ = 93.3. And yet, when behaviour is coupled with profes-
sional interactions, by setting b2/c = 30 the benefit-to-cost ratio to 
favour cooperation in social interactions is dramatically reduced to 
(b1/c) = 53.6; at the same time, the fixation probability of coopera-
tion in that layer is increased by 135.2% relative to neutrality (for 
selection intensity δ = 0.2), which is a measure of the effect size of 
coupling.
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Fig. 7 | Multilayer coupling can catalyse the evolution of cooperation in random networks. We sampled 100 two-layer ER random networks of size 
N = 50, and 100 two-layer GKK networks generated by the Goh–Kahng–Kim algorithm45 of size N = 50, for each pair of average node degrees, k̄1 and k̄2, 
in layers one and two, respectively. For each two-layer network we analysed all 2,500 initial configurations consisting of a single mutant co-operator in 
each layer. a, The proportion (percentage) of sampled two-layer ER networks and initial configurations in which selection can favour cooperation in both 
layers, for some positive values of b1/c and b2/c. Highlighted entries indicate regimes when coupling increases the frequency of selection for cooperation 
in both layers compared with independent evolution in each layer. Coupling can have a dramatic effect—for example, favouring cooperation in both layers 
for nearly 50% of sampled networks, compared with virtually never favouring cooperation without coupling (Supplementary Fig. 6). For some regimes, 
coupling permits selection for cooperation in both layers even though one or both layers oppose its selection in the absence of coupling (dark red). b, The 
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Remarkably, the critical benefit-to-cost ratio in layer one 
can sometimes be reduced to zero by coupling to a second layer 
(Supplementary Fig. 8), which indicates that cooperation can be 
favoured in layer one despite providing no immediate benefit in that 
domain at all. This dramatic effect of coupling occurs for more than 
25% initial configurations in the six empirical networks. The spatial 
arrangement of co-operators strongly affects whether the required 
benefit-to-cost ratio can be reduced all the way to zero by coupling. 
In general, the closer two initial co-operators, one in each layer, the 
more likely that coupling can catalyse cooperation in layer one even 
without providing any immediate layer-one benefit (Supplementary 
Fig. 9). Aside from analysing six empirical networks, we also illus-
trate this phenomenon in two-layer random networks with dif-
ferent degree distributions (Supplementary Figs. 10 and 11). So 
far, we have assumed that individuals in each layer use averaged 
(edge-weighted) pay-offs. We find similar, cooperation-promoting 
effects of coupling layers when pay-offs are accumulated across 
interactions (Supplementary Information section 2.1.7).

Discussion
One of the many complexities of human societies is the structure 
of social interactions. Structure is not confined to a single type 
of interaction, but includes the distinct domains of relationships 
in which humans interact. This feature would not complicate the 

problem of understanding behaviour if interactions and stand-
ing in one domain had no influence on other domains. But that is 
emphatically not the case. A person with a large online following, 
for example, can leverage this for success and appeal in professional 
relationships; and someone with success in business can garner sup-
port in politics or even religion. The empirical impact of coupling 
between domains can be dramatic, as exemplified by the famous 
Medici family of Renaissance Florence32, but also in modern times. 
Understanding coupling between domains of social interaction is 
therefore critical to understanding what drives prosocial and selfish 
behaviour in societies.

We have modelled the evolution of prosocial behaviours across 
domains using multilayer networks, where each individual uses sep-
arate strategies and plays distinct games in different layers. An indi-
vidual’s total pay-off across domains determines his or her influence 
over peers. We find that the threshold for selection to favour coop-
eration in a multilayer population can be much lower than it is in a 
single-layer population19,23. For a large portion of multilayer popu-
lations, coupling can promote cooperation in all layers, even when 
cooperation is disfavoured in each layer alone. And so the prospects 
for cooperation are fundamentally changed when social interac-
tions occur in distinct, but coupled, domains.

Our work has several potential implications for the evolution 
of prosocial behaviour. The first noteworthy implication is that 
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Fig. 8 | Evolution of cooperation in six real-world two-layer networks. We analysed networks of online and offline relationships among 61 employees 
of the computer science department at Aarhus University (CA)28; social–emotional and professional relationships among 39 customers surveyed in a 
Zambian tailor shop (KTS)29; friendship and professional relationships among 21 managers at a high-tech company (KHT)30; friendship and professional 
relationships among 71 partners at the Lazega law firm (LLF)31; marriage and business relationships among 16 families in Renaissance Florence (PFF)32; 
and friendship and scholastic relationships among 29 seventh-grade students in Victoria, Australia (VC7). We considered all initial configurations 
with a single mutant co-operator in each layer, where individuals play the donation game. a, Proportion of configurations in which coupling layers 
reduces benefit-to-cost ratios required for cooperation to be favoured in both layers, relative to when layers evolve independently. b, Proportion of 
initial configurations in which coupling layers reduces the benefit-to-cost ratio required for cooperation to be favoured in layer one. c–e, Three example 
configurations, KTS (c), LLF (d) and VC7 (e), with a single mutant co-operator (blue) among defectors (red), where open circles indicate isolated 
individuals. In these examples, selection favours cooperation in each layer alone provided the benefit-to-cost ratio exceeds a critical value, for example 
(b1/c)∗ = 93.3 in KTS layer one. Coupling layers reduces the benefit-to-cost ratio required for cooperation to evolve in one or both layers. For example, 
when b1/c = 74.9 and b2/c = 14.2, selection favours cooperation in both layers of the coupled KTS network.
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coupling between layers can often facilitate cooperation by proper 
coordination of the benefit-to-cost ratios between the two layers 
(equation (2)). In practice, the benefit-to-cost ratio required for 
cooperation to spread in a single-layer network may be unreason-
ably large, as exemplified by the social interaction network mea-
sured in a Zambian tailor shop. But when coupled to the layer of 
professional interactions (layer two), an appropriate choice of the 
benefit-to-cost ratio in layer two can reduce the ratio required to 
support cooperation in layer one by as much as 40%, while also 
increasing the probability that cooperation fixes in layer one 
by over 130%. More generally, we find that in up to 40% of the 
two-layer networks we examined, cooperation can be favoured in 
layer one even when there is no immediate benefit of cooperation 
in that layer (b1/c near zero), provided the benefits in layer two are 
sufficiently large.

Another potential implication concerns how interactions may be 
engineered or modified in one domain to promote cooperation in 
another, or in both. Indeed, not every multilayer structure is benefi-
cial for cooperation; and even if the structure can favour coopera-
tion, the benefit-to-cost ratio required may be unreasonably large. 
But it may be possible to slightly modify interactions in one layer to 
promote cooperation in both layers. Although modifying in-person 
interactions may be unfeasible, online interactions are often ame-
nable to oversight or control. Although this question is quite deep 
and difficult for full mathematical analysis, we have analysed it sys-
tematically in all two-layer networks of size 6 (Supplementary Fig. 
12). In these cases we find that adding or severing a small number 
of connections in one layer, if chosen properly, can rescue coop-
eration in both layers (see Supplementary Fig. 12 for intuition). 
Investigating this question in greater generality is a worthwhile 
avenue for future study.

Several prior studies have demonstrated that selection cannot 
favour cooperation in a single-layer structured population under 
birth–death or pairwise-comparison updating19,47–49. More recent 
studies have found that game transitions50 and heterogeneous dis-
tributions of social goods25 can catalyse cooperation under these 
update rules. Here, too, we find that a simple coupling of layers 
works efficiently to make cooperation favoured by selection under 
birth–death or pairwise-comparison updating (Supplementary 
Fig. 13). In practice, there may be considerable cultural differences 
between social domains, and it is not unreasonable to expect that 
the mechanisms of imitation and learning differ between layers. The 
multilayer approach allows for such a mixture of update rules in dif-
ferent layers (Supplementary Information, section 2.1).

Because our aim has been to analyse multilayer populations in 
a mathematically rigorous manner, our study has several limita-
tions. Because the population structures are fixed as traits evolve, 
there is an implicit assumption that networks change much more 
slowly than behaviours. Although this is a common assumption in 
the literature, it does exclude interesting cases involving dynamic 
topologies. Our analysis also requires weak selection. Stronger 
selection can complicate the formal analysis of evolutionary mod-
els in structured populations51, but it is nonetheless an important 
aspect of natural populations and should be considered in future 
models of multilayer populations. The method we have employed 
for weak selection is computationally feasible for populations of 
moderate size, but calculations become more cumbersome in large 
populations (at least when allowing for arbitrarily complicated net-
work topologies). Generally, for an L-layer network of size N, the 
complexity of computing fixation probabilities is bounded by solv-
ing a linear system of size O

(
L2N2). Furthermore, our metric for 

evolutionary success, fixation probability, is a long-term measure 
and does not capture the timescale of evolutionary processes as the 
population sojourns through transient states. Fixation probabilities 
themselves are relevant only when mutations appear sufficiently 
infrequently, which may or may not be true–especially in settings 

of cultural evolution in which ‘mutation’ is interpreted as ‘explora-
tion.’ So while our analysis reveals many interesting properties of 
multilayer populations, there is fertile ground for future theoretical 
investigations.

Methods
Here, we briefly summarize our theoretical results on weak selection in multilayer 
populations, and we refer to Supplementary Information section 1 for detailed 
derivations. We consider a population structure described by a two-layer network 
of size N, with edge weights w[1]

ij  in layer one and w[2]
ij  in layer two. All edges are 

symmetric, that is w[1]
ij = w[1]

ji  and w[2]
ij = w[2]

ji , and self loops are not allowed. The 

weighted degree of node i is w[1]
i =

∑N
j=1 w

[1]
ij  in layer one and w[2]

i =

∑N
j=1 w

[2]
ij  

in layer two. The relative weighted degree of node i is thus π[1]
i = w[1]

i /
∑N

j=1 w
[1]
j  

in layer one and π[2]
i = w[2]

i /
∑N

j=1 w
[2]
j  in layer two. Under death–birth updating, 

the relative weighted degree of i in a given layer corresponds to the so-called 
reproductive value of i in that layer24,52,53, which represents the contribution of i to 
future generations, in the absence of selection.

The evolutionary dynamics of death–birth updating in network-structured 
populations can be described in terms of random walks on networks23. Here, too, 
random walks come into play, but because we are dealing with multilayer networks 
we need to be clear about their definitions. In a two-layer network, we define a 
random walk as follows. In layer one (respectively two), starting at node i, a 
one-step walk terminates at node j with probability p[1]ij = w[1]

ij /w[1]
i  (respectively 

p[2]ij = w[2]
ij /w[2]

i ). Let 
(
p[1]

)(n)

ij
 denote the probability that a walker starting at node 

i terminates at node j after an n-step random walk in layer one. We define an (n, m)

-step random walk to be an n-step walk in layer one followed by an m-step walk in 
layer two, where the beginning of the second random walk corresponds to the end 

of the first. Let 
(
p[1,2]

)(n,m)

ij
 denote the probability that a walker starting at node i 

terminates at node j after an (n, m)-step walk.
The effects of selection depend on the assortment of strategies within the 

network. In a two-layer network, the spatial assortment involves not only strategies 
within the same layer, but also those in the other layer. Let βij denote the probability 
that, in layer one, both nodes i and j are co-operators under neutral drift. Similarly, 
let γij be the probability that both nodes i in layer one and node j in layer two 
are co-operators. When i = j, we let βi denote βij and γi denote γij. For a formal 
mathematical description of the underlying distribution, see Supplementary 
Information section 1.

If ξ is any initial strategy configuration, then ξ[L]
i  denotes is the strategy 

of node i in layer L. The quantity then ξ̂[L]
=

∑N
i=1 π[L]

i ξ[L]
i  represents the 

fixation probability of co-operators in layer L under neutral drift (δ = 0)24. In 
Supplementary Information section 1, we show that one can obtain βij and γij by 
solving the following linear system of equations,






βij =
N
2

�
ξ[1]
i ξ[1]

j −
�ξ[1]�

+
1
2
�N

k=1 p
[1]
ik βkj +

1
2
�N

k=1 p
[1]
jk βik,

βi = N
�

ξ[1]
i −

�ξ[1]�
+

�N
k=1 p

[1]
ik βk,

γij = N2

2N−1

�
ξ[1]
i ξ[2]

j −
�ξ[1]�ξ[2]�

+
1

2N−1
�N

k1 ,k2=1 p
[1]
ik1
p[2]jk2

γk1k2

+
N−1
2N−1

�N
k1=1 p

[1]
ik1

γk1 j +
N−1
2N−1

�N
k2=1 p

[2]
jk2

γik2 ,

(3)

together with the additional constraints 
∑N

i=1 π[1]
i βi = 0 and 

∑N
i=1 π[1]

i γi = 0.
Using these quantities, we let

ϕn,m =

∑N

i,j=1
π[1]
i

(
p[1,2]

)(n,m)

ij
γij ,

which means the probability that both the starting and the ending nodes of an 
n-step random walk in layer one are co-operators, where the starting node i is 
selected based on the reproductive value, π[1]

i . Analogously, for the interlayer 
random walk defined previously, we let

ϕn,m =

∑N

i,j=1
π[1]
i

(
p[1,2]

)(n,m)

ij
γij .

This quantity represents the probability that the beginning of the walk in layer one 
and the end of the walk in layer two both correspond to co-operators. Substituting 
θn and ϕn,m into equation (2) then gives the condition for selection to favour 
cooperation. In Supplementary Information section 2.2.2, we give examples 
illustrating how one can use network symmetry to obtain explicit expressions for 
these quantities in simple multilayer populations. For general multilayer networks, 
we also provide code for determining θ, ϕ, and evaluating equation (2).
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Rule for evolutionary dynamics in a two-layer ring network. We now consider 
an example on a two-layer ring network, where: (1) in each layer, a node is 
connected to two other nodes; and (2) node i is connected to j in layer one if and 
only if i’s associated node is connected to j’s associated node in layer two (Fig. 3a). 
We study the initial strategy configuration of a single mutant co-operator in each 
layer. Let d be the shortest distance between these two co-operator nodes. That 
is, if i is a co-operator in layer one and j is a co-operator in layer two, then d is the 
length of the shortest path from i to j on the ring. When a node in layer one and its 
associated node in layer two are co-operators, d = 0. The configuration shown in 
Fig. 3a is an example with d = 1.

We find that cooperation is favoured in the two-layer ring network 
only if equation (2) holds, where θ1 = − (N − 1) /2, θ2 = − (N − 2) /2, 
θ3 = −3 (N − 2) /4,

ϕ0,1 = −

N−1∑

ℓ=1

cos 2πℓd
N

2N − 1 + cos 2πℓ
N

, (4)

ϕ2,0 =

{
−2 (N − 1) ϕ0,1 − N + 1 d = 0,

−2 (N − 1) ϕ0,1 + 1 d � 1,
(5)

and

ϕ2,1 =






(
4N2

− 6N + 3
)

ϕ0,1 + 2N2
− 4N + 3 d = 0,

(
4N2

− 6N + 3
)

ϕ0,1 −
5
2N + 3 d = 1,

(
4N2

− 6N + 3
)

ϕ0,1 − 2N + 3 d � 2.

(6)

Small multilayer populations. When mutant appearance is stochastic, the 
average fixation probability is used to measure which spatial structure facilitates 
cooperation. For example, many prior studies have relied on the assumption that 
a mutant co-operator appears in every node with equal probability. By averaging 
over all initial locations with respect to a fixed mutant-appearance distribution, 
the remaining variables are population structure and the update rule. In addition 
to these two components, we also consider a more fine-grained approach that 
takes into account the mutants’ initial positions within the population. In other 
words, we study the effects of spatial structure, update rule and the initial strategy 
configuration on evolutionary dynamics26,54.

We call the combination of a population structure and a mutant configuration  
a ‘profile’. In a single-layer network, two profiles G and H are isomorphic if  
there is a bijection f : V (G) → V (H) between the node sets of G and H such  
that: (1) any two nodes i and j of G are adjacent if and only if f (i) and f (j) are 
adjacent in H; and (2) strategies of any node u of G and f (u) of H are  
identical. Otherwise, the two profiles are non-isomorphic (see examples in 
Supplementary Fig. 14).

Similarly, a pair of two-layer profiles G and H are isomorphic if there is 
a bijection f : V (G) → V (H) between the node sets of G and H such that: 
(1) in each layer, any two nodes i and j of G are adjacent if and only if in the 
same layer f (i) and f (j) of H are adjacent ; and (2) in each layer, the state of 
any node u of G and f (u) of H are identical. Otherwise, the two profiles are 
non-isomorphic. Supplementary Table 1 shows the number of non-isomorphic 
single-layer and non-isomorphic two-layer profiles for networks of size N = 3, 
4, 5 and 6. Note that the network in each layer is required to be connected. The 
total number of non-isomorphic profiles is far greater for two-layer networks 
than for single-layer ones. For example, for N = 3 there are 26 non-isomorphic 
two-layer profiles compared with 3 such single-layer profiles; and for N = 6 
there are 36,394,472 non-isomorphic two-layer profiles compared with 407 such 
single-layer profiles.

We analyse all non-isomorphic single-layer profiles for N = 3, 4, 5 and 6 to 
obtain the proportion of profiles in which cooperation can be favoured for some 
b1/c > 0 (or equivalently, the critical benefit-to-cost satisfies 0 < (b1/c)∗ < ∞; see 
blue bars in Fig. 6). When randomly choosing two single-layer profiles, for N = 6, 
there are 407 × 407 = 165,649 combinations. We take one as layer one and another 
as layer two. Because there are many ways for a node in layer one to correspond 
to a node in layer two (that is a multilayer ‘superposition’), each combination 
can actually produce many two-layer non-isomorphic profiles. Assuming that 
such a combination generates X two-layer non-isomorphic profiles, and of 
them Y profiles make cooperation favoured for some positive b1/c and b2/c (or 
equivalently, the region (b1/c, b2/c) constrained by equation (2) partially overlaps 
with the first quadrant), we say coupling such two single-layer profiles makes 
cooperation favoured with probability Y/X. Analysing all such combinations, 
we obtain the proportion of couplings of a single-layer profile to a random 
single-layer profile that favour cooperation in both layers (see red bar in Fig. 6 
and Supplementary Table 2).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All the network datasets used in this paper are freely and publicly available at 
https://manliodedomenico.com/data.php
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