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A selfish learner seeks to maximize their own success, disregarding others. When success is measured
as payoff in a game played against another learner, mutual selfishness typically fails to produce the
optimal outcome for a pair of individuals. However, learners often operate in populations, and each
learner may have a limited duration of interaction with any other individual. Here, we compare
selfish learning in stable pairs to selfish learning with stochastic encounters in a population. We study
gradient-based optimization in repeated games like the prisoner’s dilemma, which feature multiple
Nash equilibria, many of which are suboptimal. We find that myopic, selfish learning, when distributed
in a population via ephemeral encounters, can reverse the dynamics that occur in stable pairs. In
particular, when there is flexibility in partner choice, selfish learning in large populations can produce
optimal payoffs in repeated social dilemmas. This result holds for the entire population, not just for
a small subset of individuals. Furthermore, as the population size grows, the timescale to reach the
optimal population payoff remains finite in the number of learning steps per individual. While it is not
universally true that interacting with many partners in a population improves outcomes, this form of
collective learning achieves optimality for several important classes of social dilemmas. We conclude
that naive learning can be surprisingly effective in populations of individuals navigating conflicts of
interest.
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1. Introduction through parameter space as “particles” with some velocity [5].

The velocity is influenced by the best solutions found to date, both

Population-based methods of optimization and learning have
received considerable attention over the years. These methods
are often inspired by natural selection and attribute “fitness” to
candidate solutions, with higher fitness corresponding to better
solutions, for a given problem at hand. Genetic algorithms are
classical examples, which encode solutions using an alphabet
(e.g. as binary strings) and are amenable to crossover, muta-
tion, and fitness-based reproduction [1,2]. Applications are broad,
although these algorithms are especially common in problems
with an overwhelming number of candidate solutions, such as
the traveling salesman problem [3] or the search for appropriate
weights and topologies in artificial neural networks (“neuroevo-
lution”) [4].

In some classes of population-based optimization, the pop-
ulation itself is structured according to the search space, with
individuals corresponding to locations in parameter space. Parti-
cle swarm optimization, for example, involves solutions moving
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by the individual particle and by the population as a whole (or at
least locally within a neighborhood of the particle). One reason
why this approach is successful is that it promotes exploration, as
particles tend to overshoot local optima due to momentum [6].

In such metaheuristics, populations have proven remarkably
effective in finding good solutions to computationally hard prob-
lems. But these problems are frequently characterized by static
fitness landscapes, meaning the presence of other agents does
not affect the viability of a solution found by a particular agent.
In contrast, the goal of multi-agent reinforcement learning is to
optimize an agent’s success or fitness in the presence of other
agents, who themselves might be carrying out a similar kind of
optimization [7,8]. A standard model for this kind of problem
is a Markov game, which involves repeated interactions among
a group of individuals in some (possibly changing) environment
[9,10].

Even in a simple setting without a dynamic environment,
multi-agent learning is far from completely understood. A sim-
ple example is a repeated game between two individuals. Folk
theorems [11,12] imply that such games often have a rich va-
riety of equilibria, which is most striking when the strategic
interaction is “mixed”, meaning it is neither purely cooperative
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(aligned incentives) nor purely competitive (zero-sum) [13]. The
traditional example is the repeated prisoner’s dilemma, which has
only detrimental equilibria when the game horizon is short, but
many different (partly) cooperative equilibria when the horizon is
longer [14]. The ability of long interaction horizons to reinforce
prosocial behaviors has been referred to as the “shadow of the
future” [15], and it is one of the central tenets of the theory of
direct reciprocity [16,17].

Given the rich set of equilibria in repeated games, there re-
mains the question of whether two self-concerned learners will
jointly arrive at good outcomes. The answer, perhaps unsur-
prisingly, is no-at least not reliably. Mutual selfishness means
that agents often cannot overcome the temptation to exploit the
opponent, eroding prosocial actions and leading to detrimental
outcomes for both individuals, despite the existence of coop-
erative equilibria. A recent study [18] proposes a clever way
to overcome this drawback of selfish (“naive”) optimization by
attempting to shape the co-player’s future optimization prob-
lem. This learning rule, dubbed “learning with opponent-learning
awareness”, can better align incentives of two players by utilizing
a short look-ahead into the co-player’s learning, provided the co-
player’s learning rule is known. However, as in much of the work
on multi-agent learning, this learning rule is implemented under
the assumption that learners interact in stable pairs, which means
that an agent spends a significant amount of time optimizing
against a fixed opponent (who is also learning).

In a population of learners, however, there is no guarantee
that any given encounter will be long enough to resemble stable
learning. An agent might enter the world with little training,
equipped only with a learning rule and a rough idea of how to
engage with others. Encounters might be ephemeral, requiring a
learner to efficiently use limited information to update its style of
play, which is then brought forth into future engagements with
different partners. Moreover, the goal in designing a learning al-
gorithm may not be to produce a single agent who performs well,
but rather an entire population that plays well with one another.
Automated vehicles are agents like this, which are extensively
trained prior to ever interacting with another car or person in the
real world but must nonetheless sense and adjust to previously
unseen encounters with other vehicles and pedestrians [19]. The
goal of training for automated vehicles is assuredly not to produce
a single vehicle capable of optimal performance, disregarding
the performance of other vehicles — but, rather, to produce an
entire population of agents who all perform well. Likewise human
beings, whose capabilities are often targeted as goals of and in-
spiration for artificial intelligence, also learn from many different
partners throughout life, and they may benefit from a population
that collectively performs well.

In this study, we consider a blended population-based frame-
work, with learning in place of strategy transmission and tran-
sient encounters in place of stable pairs. We disregard “vertical”
transmission and consider how social encounters influence the
behaviors of individuals within a fixed population of learners. The
population has no central planner or controller to enforce so-
phisticated social preferences; there are only random encounters
and selfish (greedy) strategy updates. Unlike population-based
optimization techniques on static landscapes, in which an out-
come might be considered successful even if only a small portion
of the population finds an optimal solution (including genetic
algorithms and some swarm intelligence methods [20]), our goal
here is not to produce a small subset of fit individuals in a
population. Rather, we seek to understand how social learn-
ing in dynamic optimization landscapes affects members of a
population collectively.

Even when selfish learning in stable pairs leads to poor out-
comes, as in the repeated prisoner’s dilemma, we will show

Physica D xxx (XxXx) xxx

that selfish learning in a population with ephemeral partnerships
can collectively attain the maximum possible average payoff.
Moreover, the timescale to attain such an optimum does not
necessarily slow down for any particular individual as the pop-
ulation size (and thus the number of potential partners) grows.
We conclude that sociable, selfish optimizers, who learn little
from any one encounter, can nonetheless be quite effective and
efficient promoters of prosperity and collective learning within a
population. In particular, the ability of agents to have a variety of
partners within a population can drastically improve the efficacy
of selfish learning in the presence of conflicts of interest.

2. Model

The players in our model learn how to behave in repeated
games. Each learning step consists of several rounds of a repeated
game, followed by a strategy update step. When player X inter-
acts with player Y, they play a repeated game with a stochastic
number of rounds determined by a continuation probability, A <
1. Each round is of a one-shot (stage) game with actions A and B
and payoffs

A B
2 ( ZAA ZAB ) ] (1)
BA BB

In Eq. (1), the values indicate what payoff the row player receives
when facing the column player. After each round, the game
continues with probability A and ends with probability 1 — A.
Here, we care about repeated games with sufficiently long time
horizons, meaning A is close to 1. We take A = 0.9999 < 1 for
an average of 10* rounds in the repeated game, both because all
interactions are finite (even if long) and because the limit A — 1
can introduce technical issues (see Section SM1).

A memory-one strategy for X in this repeated game consists
of an initial probability of playing A, po € [0, 1], together with
a four-tuple of conditional probabilities, (paa, Pas, Pa> PBB) €
[0, 1]*, where p,, indicates X’s probability of playing A when,
in the previous round, X played x and Y played y. We denote
a player's memory-one strategy, (Po, (Paa, Pas, Psa, Pss)), by P €
[0, 1]° to simplify notation. We denote by 7 (p, q) the payoff to an
individual using p against an opponent using q. How this payoff is
calculated, together with its functional form, is detailed in Section
SM1.

A learning rule consists of (i) an initial distribution over strate-
gies, representing a prior policy before any learning takes place,
and (ii) an update rule for how to adjust this policy after an
encounter. Since we consider memory-one strategies here, the
initial policy is chosen from a distribution on p € [0, 1]°. In
practice, we consider two kinds of initial distributions. The pri-
mary distribution we analyze chooses each of the five coordinates
independently from an arcsine (Beta (1/2, 1/2)) distribution. For
each coordinate, this distribution explores the corners of [0, 1]
better than a uniform distribution does, and it is well-established
in models of repeated interactions [21]. However, a uniform
distribution is also a natural choice, and so we also consider
examples in which each coordinate is sampled uniformly (and
independently) in [0, 1].

Suppose that X and Y are selfish learners paired to interact.
After the repeated game is completed, the players perform a
gradient-based strategy update step, with both players updating
simultaneously. If X has strategy p and Y has strategy q prior
to this update, then their respective strategies after one gradient
step are

p = proj (p+ 0V (0, @) ; (2a)
q' = proj (q+ nVqm (4. ) . (2b)
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Fig. 1. Learning in isolated sub-populations. The figure depicts a population of N total individuals arranged in d sub-populations, each of size n (d = n = 4
and N = dn = 16 shown here). Individuals are paired randomly within each sub-population, receive scores from their interactions (based on ), and perform
gradient-based strategy updates. The updated strategies are then brought forth into subsequent encounters, which may involve new partnerships (depicted here, for
example, in the dotted sub-population). In two extreme cases, individuals interact with the same partner in every time step (stable pairs, n = 2) or with potentially
any other member of the entire population (well-mixed population, d = 1). To simplify notation, the projection operator used in the gradient update is omitted.

where 7 is a small learning rate and proj denotes the projection
operator onto the cube [0, 1]°, which ensures that strategies
remain in [0, 1]°. Note that even if two learners both update
strategies using Eq. (2), we consider their learning rules to be
different if they have different initial distributions.

To describe how learners are paired with partners, we consider
a population of d disjoint sub-populations, each of size n, where
n is even. The total population size is thus N = dn. When n =
2, all pairings are between the same two individuals, and the
model reduces to a population whose individuals learn in stable
pairs. In each time step, individuals are randomly paired within
each sub-population to interact and update their strategies via
Eq. (2). In the next time step, players are again paired randomly
within each sub-population, bringing their new strategies from
the previous time step, and the process repeats. Thus, there are
two timescales in our model: one timescale for repeated actions
in a one-shot game, and one timescale for the strategy updates
(“learning”) following the repeated game. To make the distinction
clear, we refer to the repeated one-shot games as “interactions”
and the combination of pairing, a repeated game, and a strategy
update as an “encounter”. This population-based learning process
is depicted schematically in Fig. 1.

For fixed population size N = dn, we are interested in com-
paring n = 2 to n > 2 to understand the effects of distributed
learning in a population compared to the standard case of stable
pairings. When n > 2, an individual’s partner can change across
encounters. An alternative approach would be to set d = 1 and
study the effects of varying N (= n). Apart from one example,
we have avoided this approach because it involves the compar-
ison of populations of different size. We care about the mean
payoff of the population, and changing N while keeping d fixed
would involve averaging over a different number of individuals.

In contrast, with N fixed and n varying, the population always
starts off with the same distribution of mean payoff prior to
learning, regardless of n, which permits a more straightforward
understanding of the effects of randomness in partner choice on
learning.

At any time, everyone has a strategy for the repeated game.
When they are paired to play repeated games based on these
strategies, the average payoff in each pair satisfies

. ayy + a
min 4 Bl <
x,yelA,B} 2

7 (P, q +7(q,p) < Oxy + Gyx
2 = x,y€{A,B} 2 '

(3)

As a result, the mean payoff in the population also lies in this
interval. The main question we study is how increasing n (with
N fixed) affects this mean population payoff in the long run.

3. Results

We analyze our model of collective learning using two com-
plementary approaches, “Lagrangian” and “Eulerian”, borrowing
these terms from fluid dynamics [22]. In the Lagrangian ap-
proach, we track the behaviors of individual learners in finite
populations. Here, we are not concerned with quantitative ef-
fects of learning as a function of population size; instead, we
wish to explore what the learning process looks like when the
population is reasonably large. In particular, we will use the La-
grangian perspective to show that collective learning can produce
optimal or near-optimal solutions (e.g. in prisoner’s dilemma
games) in populations of even moderate size. In the Eulerian
approach, we consider the density of regions within the strategy
space in an infinite population. This approach is used to take
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Fig. 2. Pairwise versus collective learning in a standard prisoner’s dilemma. In both panels, each trajectory (colored) represents the mean payoff of a population
of N = 1000 players as learning unfolds. In A, the population is sorted once into d = N/2 sub-populations, each of size two, and learning takes place only within
these sub-populations. Initial strategies are chosen randomly from an arcsine distribution. In B, there is only one sub-population, and random pairing within this
sub-population occurs prior to every learning step. The curves are generated by calculating the payoffs of paired partners at each step using their current strategies,
and then taking the average payoff of the population. Unlike the case d = N/2, in which all individuals interact with a fixed learning partner throughout the process,
in B the outcome for the population is much better. Following an equilibration period in which the mean population payoff declines, the mean payoff begins to
increase (non-monotonically) until it hits the maximal social value of as4 (= 3). The mean over all 100 runs is shown in black, on top of each individual run (colored).
In both panels, the game parameters are (a4, dag, dga, agg) = (3, 0, 5, 1), the continuation probability is A = 0.9999, and the learning rate is 7 = 10~3. The dashed
lines indicate the minimum and maximum possible average payoffs, respectively (see Eq. (3)).

the large-population limit, and it produces results that reaffirm
the qualitative findings obtained using the Lagrangian approach.
The Eulerian approach will also reveal an important result on
the timescale of learning in prisoner’s dilemma games: conver-
gence to the optimal population outcome requires only finitely
many learning steps per individual, even when the population is
arbitrarily large.

3.1. Lagrangian perspective: tracking individual agents

Within the space of all payoff matrices in the form of Eq. (1),
there are a several distinguished classes of games. The most
common example is a prisoner’s dilemma, which satisfies agq >
asa > agg > dpp. This payoff ranking implies that if the game is
played once, B (called “defection”) is the unique Nash equilibrium
because an individual always improves its payoff by switching
from A to B. Both players would prefer the payoff for A (called
“cooperation”) against A to the payoff for B against B. When
the game is repeated, however, multiple equilibria exist and
may bring different long-term payoffs, ranging from the small
(defecting-type equilibria) to the large (cooperative equilibria).

Selfish learners are not able to reliably find cooperative equi-
libria when they interact in stable pairs. Fig. 2A shows learning
trajectories for a population of stable pairs (n = 2) when each
pair starts with random memory-one strategies prior to optimiza-
tion. These trajectories consistently lead the population to a low
payoff, close to the minimum of agg. In contrast, when learning
is distributed throughout a population via ephemeral, random
encounters, the mean population payoff eventually converges to
the maximum possible, as4 (Fig. 2B). At this point, all individuals
in the population have learned to cooperate in the repeated
game, even though each one is seeking only to maximize its own
payoff. Fig. SM1 gives another depiction of Fig. 2A, showing the

mean payoff trajectory for each pair. A small number of pairs do
converge to optimal payoffs, which is reflected by the solid black
curve in Fig. 2A converging to a value slightly above 1.

Although Fig. 2 depicts two extremes, we note that the sub-
population size, n, should be sufficiently large to achieve optimal
payoffs reliably. Small values of n greater than 2 need not lead
to optimal payoffs for the population (see also Fig. 3). However,
there does not appear to be a simple threshold for n and N that
guarantees convergence of mean population payoffs to optimal
or near-optimal values. Such values are evidently sensitive to the
game parameters.

We also consider the prisoner’s dilemma when each coordi-
nate of the initial strategy is chosen uniformly at random from
[0, 1]. Fig. SM2 illustrates qualitatively similar results for this
initial condition: the population still benefits from flexibility in
partner choice. Furthermore, although we are concerned mainly
with agents who have access to the exact gradients, we also
consider an alternative optimization procedure based on random
search [23]. Instead of calculating gradients, an agent simply
samples a nearby strategy and tests this against the partner. If
it improves the agent’s payoff, then it is adopted; otherwise, the
current strategy is retained. Fig. SM3 shows, once again, that even
for this update rule, collective learning with ephemeral partners
still produces excellent outcomes for a population in this repeated
prisoner’s dilemma.

While it is remarkable that such an outcome can be achieved
via selfishness alone, simply by swapping partners sufficiently
often, a natural question is whether optimal payoffs will also
be attained in different forms of prisoner’s dilemmas, when
mutual cooperation is inefficient. In particular, when asy <
(aap + aga) /2, players fare better with a policy of alternation
rather than mutual cooperation—that is, for one player to coop-
erate in even rounds and defect in odd rounds, and for the other
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Fig. 3. Collective learning in an alternating prisoner’s dilemma. All four panels depict a repeated prisoner’s dilemma with (asg + aga) /2 > asa, which means
that mutual cooperation is no longer optimal. Rather, a policy of strictly alternating cooperation and defection, with X cooperating in even rounds only and Y
cooperating in odd rounds only, is the best social outcome. Although sorting individuals into d = N/2 sub-populations of stable pairs still results in bad outcomes
(primarily defection), as the population becomes more well-mixed, the optimal outcome of (ass + aga) /2 (= 4) is achieved. Thus, this collective learning process is
not simply discovering how to cooperate mutually—it can also find superior outcomes in interactions for which more complex coordination is required. In all panels,
the population size is N = 1000, the number of runs is 100, the game parameters are (daa, dag, dga, agg) = (3, —1, 9, 0), the continuation probability is A = 0.9999,

and the learning rate is n = 1073,

player to cooperate in odd rounds and defect in even rounds.
Fig. 3 shows how increasing the size of the sub-populations
(while keeping N fixed) in this kind of prisoner’s dilemma influ-
ences the mean population payoff. When n 2 (stable pairs),
most runs converge to defection. As n grows, the population
finds cooperative strategies, and for yet larger n the population
discovers policies of alternation, which produce the maximum
possible mean payoff. As in Fig. 2, throughout the learning process
the population initially experiences a decline in payoffs before
reaching a trough, beyond which the mean payoff rises until it
reaches (aap + aga) /2.

It is also notable in this example that, for fixed N, increasing
group size n does not necessarily lead to a longer timescale
for achieving the optimal population payoff. Increasing n means
more randomness in partner selection, and so one might expect
slower convergence to a final outcome. And yet, for this repeated
prisoner’s dilemma, a larger group actually hastens the ascent to
the maximal mean payoff.

Both Figs. 2 and 3 depict prisoner’s dilemmas and suggest
that (i) populations of randomly-interacting selfish learners can
attain qualitatively better outcomes than stable selfish learning
pairs and (ii) for fixed N, the mean population payoff is a non-
decreasing function of n. Given this finding in strong social dilem-
mas, it is natural to ask whether different behavior is observed
in other classes of interactions. A weaker social dilemma [24]
called the snowdrift game, for example, is similar to the prisoner’s
dilemma except that the payoff ranking is ags > ama > amp >
agg instead of aga > ama > agg > aup. As a result, B is no
longer a dominant strategy. There are two primary variants of
the snowdrift game, one with (asp + aga) /2 < aas and one with
(asg + aga) /2 > aa. In both cases, collective learning via random
encounters within a sub-population results in optimal payoffs.
(In the latter case, this is also true for learning within stable
pairs.) We also observe optimal outcomes in stag hunt games
(apa > apa > apg > aup) provided (asp + ags) /2 > agg. See Fig.
SM4 for details.

A population of selfish, ephemeral learners is not optimal
for all types of games, however. The battle of the sexes game
[25,26] provides a contrast to the preceding results. This game
is characterized by two players with competing preferences for
what to do (e.g. what kind of event to attend). We consider
a symmetric version of this game (also known as the “hero”
game [27]), in which the action A may be thought of as “go with
own preference” while B is “go with partner’s preference”. But
they would prefer to be together than apart, which leads to a

coordination game with payoff ranking ass > ags > aan >
agg. Fig. 4A shows how learning in stable pairs quickly brings a
population close to its optimal average payoff. But this is not the
case for a population of randomly-interacting learners (Fig. 4B),
which may be attributed to the difficulty of achieving consistent
anti-coordination when learning partners are not fixed. We note
that this kind of anti-coordination is different from that of the
alternating prisoner’s dilemma (Fig. 3). Due to the nature of the
underlying one-shot game, a pair of selfish learners in the battle
of the sexes games tends to arrive at asymmetric outcomes,
with one player receiving a4z and the other getting ags. In con-
trast, the policies of anti-coordination in the alternating prisoner’s
dilemma give both players (asg + ags) /2. The average pair payoff
is (asp + aga) /2 in both cases, but in the former it is more difficult
to achieve a policy of anti-coordination in a population.

Finally, there are both prisoner’s dilemma and stag hunt games
satisfying (asg + ags) < app. For these games, neither learning
in stable pairs nor collective learning efficiently achieves a maxi-
mum average payoff (see Fig. SM5). As a result, across a variety of
different kinds of games, learning in stable pairs is not universally
better than collective learning or vice versa. But they do generally
result in very different outcomes — and collectively learning can
often produce optimal outcomes where learning in stable pairs
does not.

3.2. Eulerian perspective: tracking distributions of agents

Our goal has been to compare two extremes: learning in
stable pairs and collective learning in large populations. So far,
we have focused on large but finite populations and an infinite
strategy space. We now turn to a dual approach, using an infinite
population and a discretized, finite strategy space. Specifically, we
focus on a single sub-population (n = N — o0), motivated by
a desire to understand the extreme case in which two learners
never interact more than once.

Let p be the density of memory-one strategies in the infinite
population. Although the space of memory-one strategies may be
identified with [0, 1]%, it is convenient to think of p as a density
on R® that is supported on [0, 1]°. At time ¢, the gradient direction
of an individual using strategy p is a random variable, V [p] (p),
with p (q, t) the density of direction V,m (p, q). This gradient
field requires defining the payoff, , outside of [0, 1]°, but the
extension of 7 to R® is irrelevant due to the support of p.

To ensure that the support of the density is always contained
in [0, 1]° for all t whenever it is at time t = 0, we need a modified
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Fig. 4. Pairwise versus collective learning in the battle of the sexes game. In contrast to repeated prisoner’s dilemmas, learning in stable pairs leads to near-optimal
outcomes for a population in the repeated battle of the sexes game, whereas collective learning has difficulty achieving and maintaining a high mean payoff. In
both panels, the population size is N = 1000, the number of runs is 100, the game parameters are (daa, dag, dga, dgg) = (1, 3,2, 0), the continuation probability is

A = 0.9999, and the learning rate is n = 107>.

gradient field of the form V = WV for some matrix W, which
represents the projection operator in Eq. (2). We wish for W to be
the identity matrix away from the boundary, but for it to ensure
the gradient is always inward pointing on [0, 1]° to retain the
salient features of the search process. We take W to be a diagonal
matrix depending on both p and q (the partner strategy of p)
on the boundary, with W; = 1 unless either (i) p; = 0 and
(Vo (p.q)), < O or (i) p; = 1 and (V7 (p, @), > 0, in which
case W;; = 0.

With this modified gradient field, we consider a continuous-
time process in which a learner randomly chooses a partner,
computes the gradient direction V [p] (pf),Nand then lets its strat-
egy at time t + At be p'*4' = p' + (At) V [p] (p'). Thus, a time
step of At = n corresponds to the discrete-time model presented
previously. In the limit as At — 0, the strategy density evolves
according to the advection equation

@O _

o —Vp- (p (p, t)/ W (p,q) Vpr (p,q) p(q, t) dq) .
qer>

(4)

Notably, this partial differential equation depends on only the
mean (projected) gradient direction, which is important because
in the mechanistic description of the model we do not require
an individual to interact with a large subset of the population.
There is no notion of a “mean” player in the definition of the
model, and only one encounter takes place per individual prior to
each learning step. We include a more detailed description of the
Eulerian approach in Section SM2. In addition to the PDE, we also
derive the large-N limit of the system describing the dynamics in
discrete time (Eq. SM16).

The trade-off of this approach is that, to work with this
equation numerically, we must discretize the strategy space. To
simplify this numerical problem, we study lower-dimensional
strategy spaces. If p is a “reactive” strategy, then p,, depends on y
only and not on x [28]. Thus, paa = Ppa := pa and pag = P := Da,
so p is specified by a triplet, (po, (pa, pg)) € [0, 1]3. If we also
assume that the game length is infinite (taking the limit A — 1),

then the initial probability of playing A is irrelevant and payoffs
depend on p = (pa, ps) € [0, 1]* (see Eq. SM3).

Reducing the sophistication of strategies for repeated games
also limits both transient dynamics and long-term outcomes.
For example, the rigidity of reactive strategies makes it more
difficult to efficiently achieve policies of alternating cooperation
in prisoner’s dilemma games with ass < (aap + aga) /2 (c.f. Fig. 3).
But reactive strategies do preserve the qualitative behavior seen
in the standard prisoner’s dilemma of Fig. 2, and so we can use
this simpler strategy space to study collective learning from a
Eulerian perspective.

Fig. SM6 illustrates the numerical scheme to compute how
p, the density of strategies, changes over time. In Fig. 5, we see
results from the PDE that are in close qualitative agreement with
individual-based (that is, Lagrangian) simulations. In addition to
providing a different perspective on the learning problem (involv-
ing a different kind of calculation), the Eulerian approach also
illustrates that the learning timescale does not diverge as N — oo
in repeated prisoner’s dilemmas. In the Lagrangian (individual-
based) approach, we observed relatively quick convergence to
the mean payoff maximum in prisoner’s dilemma games when
n = N > 0, and indeed this is also reflected in the solution of
the Eulerian PDE (Fig. 5).

The evolution of the density leading to Fig. 5 is depicted in Vid.
SM1, as well as in snapshots in Fig. 6. This density reveals that
the initial dip in mean payoff is due to a general trend toward
unconditional defection (p = (0,0)); see Fig. 6A. The result-
ing decline in payoffs is consistent with what is seen for pairs
(Fig. 2A and Fig. SM1) following a random initial state. However,
some of the density remains concentrated near (1, 0). Since these
strategies reciprocate cooperation and punish defection, they are
capable of incentivizing cooperation in selfish agents, even in
those who tend to defect with high probability. As a result, we
observe a wave develop outwards from unconditional defection
toward more cooperative strategies (Fig. 6B), which increases the
mean population payoff. And even though some of these incen-
tivizing strategies are present in the early stages of the process,
at that time most individuals are likely to interact with strategies
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2.6

m—— Simulated (n = N)
= Numerical (dp, = dpg = 1/50)

2.4

2.2

Mean population payoff

Time

Fig. 5. Learning dynamics of reactive strategies in an infinite population. Solving Eq. (4) numerically (Fig. SM6), we plot the mean population payoff over time
when players use a simple class of reactive strategies. The mean payoff (purple) predicted by the PDE closely tracks the mean payoff observed in agent-based
simulations (black) when n = N = 1000. The payoffs in the numerical scheme end up slightly below the maximum payoff of 3, due to the use of a finite grid for
the strategy space, obtained by dividing [0, 1], the domain of each coordinate p4 and pg, into 50 equally spaced subintervals. The time scale is chosen such that one
unit of time in the continuous model corresponds to one time step in the discrete model.

that cannot elicit cooperation; as a result, learners, on average,
tend to decrease their cooperation levels more frequently than
they increase them, leading to a net degradation of payoff. Once
defection is predominant, individuals near (1, 0) benefit from
being both more cooperative (increasing p,) and more forgiving
(increasing pg). This, in turn, incentivizes cooperation in the rest
of the population, provided there is not too much forgiveness for
defection (Fig. 6C).

4. Discussion

In this study, we have compared selfish learning with stable
pairs to selfish learning with stochastic encounters in a popula-
tion to determine (i) whether there are differences in outcomes
between these two learning processes and (ii) whether observed
differences are robust across all classes of interactions. The result
of our investigation can be broadly summarized as saying “yes”
to question (i) and “no” to question (ii).

Our study is related to several existing lines of inquiry in
the literature on learning and evolutionary dynamics. The first is
evolutionary dynamics in a single sub-population (n = N), where
similar strategic trajectories have been noticed in populations of
replicators who “learn” by copying more successful individuals.
In that setting, Nowak and Sigmund [29] observed a transition
from random reactive strategies, to unconditional defection, and
then to tit-for-tat (copy the opponent), and finally to generous
tit-for-tat (copy the opponent, but forgive errors). Indeed, the
population payoff trajectories found in that context [see29, Fig. 1]
resemble the qualitative behavior seen in Figs. 2 and 5. How-
ever, in stark contrast to the replicators of Nowak and Sigmund
[29], our model is based on individual learning through steps
of gradient ascent (locally rational, selfish updates), as opposed
biased imitation of fitter individuals. In our setting, when two
players meet, neither one replicates the strategy of the other,
regardless of how successful the two strategies are; in fact, the
learning process may bring a player’s strategy further away from
their opponent’s. This is a fundamental difference between the
learning process we consider here and models based on biased
replicators. Although biased replication of successful strategies

can be seen as a simplistic form of learning, the process that we
study is completely different in that it requires individuals to have
cognitive ability, to be aware of the payoffs in the game they
are playing, and to compute how they can improve their payoff
against their current opponent by a small change in strategy.

There is another important distinction between our study
and the literature on traditional replicator models of strategy
dynamics: whereas populations are frequently used to study the
evolution of cooperation [30-35], our focus is decidedly not on
cooperation per se. Cooperation is an action in several of the
games we consider, but we are concerned with achieving optimal
payoffs for a population, regardless of whether those are achieved
by cooperation or not. Indeed, this is one reason for studying
the version of the prisoner’s dilemma shown in Fig. 3, where
mutual cooperation is actually suboptimal and collective learning
nonetheless achieves the optimal outcome.

Furthermore, we note the distinction between the determin-
istic formulation described in Eq. (4) and evolutionary invasion
analysis [36], which also uses gradient-based dynamics. The lat-
ter, sometimes referred to as “adaptive dynamics”, concerns the
invasion of initially-rare mutant traits in a resident population.
Our approach, by contrast, allows for multiple types coexisting in
the population, and so it is more akin to the model of population
games of Friedman and Ostrov [37] than to invasion analysis,
except we use a higher-dimensional strategy space due to the
complexity of repeated games. Vid. SM1 and Fig. 6 demonstrate
how the mechanics of strategy evolution in our learning model
differ significantly from those of both evolutionary [29, Fig. 1] and
adaptive [38, Fig. 6] dynamics.

Our study is also related to the literature on multi-agent
learning. For many problems, the goal might be to understand the
effects of learning rules when encounters are decidedly stochastic
and ephemeral. Player i might never meet player j again, but
the next partner will have faced someone like player i in the
past. An agent learns from past experiences and adjusts, bringing
new behavior into future encounters. In our example of the
repeated prisoner’s dilemma, we have seen that moving from
pairwise stable learning to population-based collective learning
allows selfish learning to be quite efficient at attaining optimal
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400 learning steps 3,000 learning steps 10,000 learning steps
A mean payoff decreasing B mean payoff increasing C mean payoff near optimum
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Fig. 6. Snapshots of the strategy density. Panels A, B, and C depict the strategy density in Vid. SM1 after 400, 3000, and 10,000 learning steps, respectively.
Following an initial attraction to defection (A), individuals near p = (1,0) who reciprocate cooperation and punish defection can incentivize their interaction
partners to cooperate. As a result, we observe an outflux from defection in B, which increases the mean population payoff. Finally, as the mean population payoff
settles near its optimal value (3, in this example), strategies tend to reciprocate cooperation but forgive some amount of defection (pg positive but not too large).
Note that strategies develop a limited amount of forgiveness in order to avoid being exploited.

outcomes for all. But these findings are somewhat sensitive to the
interaction type (c.f. Fig. 4) as well as to the exact implementation
of the learning rules themselves, and so we make no claim that
collective learning is universally more efficient than learning in
stable pairs.

Instead, we emphasize that the population-based model is
highly relevant to many real-world situations of multi-agent
learning, and the outcomes of this learning process depend dra-
matically on how likely one is to re-encounter the same learning
partner. Of course, models of multi-agent learning can be more
complex, involving dynamic environments [39-41]. Even social
dilemmas can be extended spatially and temporally [42]. Never-
theless, the simplicity of our model, based on repeated matrix
games with purely myopic, selfish strategy updates, has some
advantages. To understand multi-agent learning in more realis-
tic application cases, we must also understand the effects of a
population in simpler (even if idealized) settings. The complexity
introduced by stochastic encounters in a population makes this
problem difficult even for repeated matrix games, but here it is
still tractable. An important area of future research will be to
study this problem in more complicated settings, including spatial
and temporal extensions.

From our study of repeated matrix games, it is clear that
the outcomes of learning in a population will depend on the
initial distribution to a significant degree. If all individuals were
to start with deterministic policies of playing B (defecting) in
every round of a prisoner’s dilemma, then no amount of flexibility
in partner choice could bring the population out of this state
under selfish learning. The distributions we consider (arcsine
and uniform) both introduce a large diversity of strategies in
the initial population prior to any learning, which we view as
important determinants of long-term prosperity. However, we
note that even for stable pairs in the iterated prisoner’s dilemma,
the long-run outcomes cannot be predicted from the initial level
of cooperation alone. For example, if two players both initially
use unconditional cooperation (“ALLC”), then their optimization
process will lead them to mutual defection; but if they both
use the strategy tit-for-tat (“TFT”), then they remain at mutual
cooperation. This property holds even though ALLC against ALLC
results in the same initial level of cooperation as TFT against TFT.

We have focused on repeated games that are sufficiently long
because these games are known to have rich spaces of equi-
libria [11]. While our concern has been payoffs (in particular,
mean population payoffs) rather than Nash or subgame-perfect
equilibria, long time horizons ensure that current behaviors can
be punished or rewarded in the future with high probability, and
thus, in principle, there are interesting strategies available for
players to learn in the first place. In many classes of interactions,
interesting strategies exist even when the length of the game is
slightly shorter, and an open question is how the length of the
game influences the learning process.

Finally, the population size ties into both the initial distri-
bution and the length of interactions, and it may have effects
on long-term learning outcomes. When individuals choose initial
strategies at random, larger population sizes lead to a broader
variety of behaviors present prior to learning. The effect of this
diversity is almost trivial if individuals interact in stable pairs
since the mean population payoff then just converges to the ex-
pected payoff for a single pair as the population grows (c.f. Fig. 2A
and Fig. SM1). But with larger sub-populations, especially when
any two individuals in a population can interact, this strategy
variety matters a lot. In such situations, individuals are also less
likely to interact in two subsequent time steps if N is large, which
leaves open the possibility that somewhat large mean payoffs are
possible even for shorter games.
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