On the Hardness of Scheduling With Non-Uniform Communication Delays

Sami Davies* Janardhan Kulkarnif Thomas Rothvoss*
Sai Sandeep? Jakub Tarnawski' Yihao Zhang*

Abstract

In the problem of scheduling with non-uniform communication delays, the input is a set of jobs with
precedence constraints. Associated with every precedence constraint between a pair of jobs is a communication
delay, the time duration the scheduler has to wait between the two jobs if they are scheduled on different
machines. The objective is to assign the jobs to machines to minimize the makespan of the schedule. Despite
being a fundamental problem in theory and a consequential problem in practice, the approximability of
scheduling problems with communication delays is not very well understood. One of the top ten open problems
in scheduling theory, in the influential list by Schuurman and Woeginger and its latest update by Bansal, asks
if the problem admits a constant-factor approximation algorithm. In this paper, we answer this question in the
negative by proving a logarithmic hardness for the problem under the standard complexity theory assumption
that NP-complete problems do not admit quasi-polynomial-time algorithms.

Our hardness result is obtained using a surprisingly simple reduction from a problem that we call Unique
Machine Precedence constraints Scheduling (UMPS). We believe that this problem is of central importance
in understanding the hardness of many scheduling problems and we conjecture that it is very hard to
approximate. Among other things, our conjecture implies a logarithmic hardness of related machine scheduling
with precedences, a long-standing open problem in scheduling theory and approximation algorithms.

1 Introduction

We study the problem of scheduling jobs with precedence and non-uniform communication delay constraints
on identical machines to minimize the makespan objective function. This classic model was first introduced by
Rayward-Smith [RS87] and Papadimitriou and Yannakakis [PY90]. In this problem, we are given a set .J of n jobs,
where each job j has a processing length p; € Z,. The jobs need to be scheduled on m identical machines. The
jobs have precedence and communication delay constraints, which are given by a partial order <. A constraint
j < 7’ encodes that job j' can only start after job j is completed. Moreover, if j < 5/ and 7, j' are scheduled
on different machines, then j' can only start executing at least ¢;;, time units after j had finished. On the other
hand, if j and j' are scheduled on the same machine, then j’ can start executing immediately after j finishes.
The goal is to schedule jobs non-preemptively to minimize the makespan objective function, which is defined as
the completion time of the last job. In a non-preemptive schedule, each job j needs to be assigned to a single
machine 7 and executed during a contiguous time interval of length p;. In the classical scheduling notation, the
problem is denoted by P | prec, ¢;p | Crmax-* A closely related problem is Poo | prec, ¢jk | Cmax, where the scheduler
has access to an unbounded number of machines.

Scheduling jobs with precedence and communication delays has been studied extensively over many years
[RS87,PY90, MK97, HMO01, TY92, HLV94, GKMP08]. Furthermore, due to its relevance in datacenter scheduling
problems and large-scale training of ML models, there has been a renewed interest in more applied communities;
we refer the readers to [CZMT11, GFCT12, HCG12,SZA118,ZZC*12, ZCB*15, LYZ*16, NHP™19, MPL"17,
GCL18,JZA19, TPD*20]. However, from a theoretical standpoint, besides NP-hardness results, very little was
known in terms of the algorithms for the problem until the recent work by Maiti et al. [MRS20] and Davies
et al. [DKR*20, DKR'21]. These very recent papers designed polylogarithmic approximation algorithms for
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Figure 1: Role of the UMPS problem in our hardness reduction.

the special case when all the communication delays are equal. We survey these results in Section 1.2. In
fact, the problems of scheduling jobs with communication delays are some of the well-known open questions in
approximation algorithms and scheduling theory, and have resisted progress for a long time. For this reason, the
influential survey by Schuurman and Woeginger [SW99] and its recent update by Bansal [Ban17] list understanding
the approximability of the problems in this space as one of the top-10 open questions in scheduling theory.

In particular, an open problem in these surveys asks if the non-uniform communication delay problem on
identical machines, even assuming an unbounded number of machines (Poo | prec, ¢;i, | Cmax), admits a constant-
factor approximation algorithm. The main result of this paper resolves this question.

THEOREM 1.1. For every constant € > 0, assuming NP ¢ ZTIME (n(log")o(l)>, the mon-uniform commaunication

delay problem (Poo | prec, ¢ji, | Cmax) does not admit a polynomial-time (logn)'~¢-approzimation algorithm.

We remark that our hard instances contain only two distinct values of communication delays (essentially 0
and co0). Furthermore, as Poo | prec, ¢;i | Cmax, the problem with an unbounded number of machines, is a special
case of P | prec, ¢, | Cmax, Where the number of machines is specified, our theorem also implies the same hardness
for P | prec, ¢ji | Crmax-

1.1 Ouwur Techniques Our hardness result is obtained using a reduction via a problem we call Unique Machines
Precedence constraints Scheduling (UMPS). In this problem, there are m machines and n jobs ji, jo, ..., jn with
precedence relations between them. Each job j; has length p(l) and can be scheduled only on a unigue machine
M(l) € [m]. The objective is to schedule the jobs non-preemptively on the corresponding unique machines,
respecting the precedence relations, so as to minimize the makespan objective function. Our proof of Theorem
1.1 proceeds via two steps:

1. First we show a reduction from an instance I of the UMPS problem to an instance I’ of the non-uniform
communication delay problem. The key step is to make sure that the set of jobs J(i) that need to
be scheduled on machine 7 in I do not get scheduled on multiple machines in I’. We achieve this by
introducing a dummy job jf and introducing precedence constraints from all jobs in J(i) to j and a
very large communication delay. This ensures that J(i) and j* are scheduled on the same machine in I’
although this machine need not be i. Despite this, we show that any valid schedule of I’ can be mapped
back to a feasible schedule of I, with almost the same makespan. Our reduction creates only two types of
communication delays and works for the unit-length case.

2. Next we observe that the UMPS problem generalizes the classical job shops problem (see e.g. [LLKS93,
LMR94, MS11]), whose approximation is well understood [SSW94, CS00, GPSS01, FS02|. The logarithmic
hardness result for the acyclic job shops problem by Mastrolilli and Svensson [MS11] implies a logarithmic
hardness of the UMPS problem. We remark that the hardness result of [MS11] only works when jobs have
lengths, and hence our Theorem 1.1 only applies to the setting where jobs have lengths.

In hindsight, our proof of Theorem 1.1 is surprisingly simple. However, the main conceptual contribution
of our proof is in identifying the UMPS problem as a central problem that has implications for the hardness of
various scheduling problems. Furthermore, the UMPS problem, which can be viewed as a generalization of the
job shop scheduling model or as a highly restricted version of multidimensional scheduling with precedences, or
as a restricted assignment problem with precedence constraints, is a fundamental problem to study on its own,
both from a theoretical perspective and also from a practical point of view. We believe the UMPS problem is a
key intermediate step towards resolving several long-standing open problems in scheduling theory. We make the
following two conjectures regarding the approximability of UMPS.
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CONJECTURE 1.1. There exists a constant € < 1 such that it is NP-hard to approximate UMPS within a factor
of n¢, even when all jobs have unit lengths, where n is the number of jobs.

CONJECTURE 1.2. There exists an absolute constant C' > 1 such that the following holds. For every constant
€ > 0, it is NP-hard to approzimate UMPS within a (logn)'=¢-factor, even when the number of machines m is at
most (logn)® and all the jobs have unit lengths, where n is the number of jobs.

Our second main contribution is to show that the above conjectures imply hardness results for various
problems. In particular, Conjecture 1.2 implies logarithmic hardness for scheduling with precedences on related
machines, another top-10 problem in scheduling theory [SW99,Ban17| and in the approximation algorithm book
of Shmoys and Williamson [WS11].

THEOREM 1.2. Assuming Conjecture 1.2 and NP ¢ DTIME (n(log")om), there exists an absolute constant v > 0

such that the problem of scheduling related machines with precedences (Q | prec | Cimax) has no polynomial-time
O ((logm)7)-factor approzimation algorithm.

Previously, Bazzi and Norouzi-Fard [BN15] introduced a k-partite hypergraph partition problem whose
hardness implies a superconstant hardness for scheduling with precedences on related machines. Our reduction
uses the same idea of job replication as [BN15], while our soundness analysis is technically more involved. We also
show that the hypothesis of [BN15] implies a superconstant hardness of the UMPS problem. Thus, our problem
can be viewed as a weaker version of the hypothesis of [BN15] with the same implication towards the hardness of
related machines. Furthermore, stronger hardness of the UMPS problem implies better (almost optimal) hardness
results for the related machines scheduling problem.

Finally, we note that Conjecture 1.1 implies that precedence-constrained scheduling (even without commu-
nication delays) is very hard to approximate when generalized to the restricted assignment setting or unrelated
machines.

Our confidence in the above conjectures stems from the fact that existing techniques, both the classical
jobshops algorithms [LMR94| and the recent LP-hierarchies-based algorithms [MRS™20, DKR'20] fail to give
non-trivial approximation guarantees for the UMPS problem. Furthermore, a candidate hard instance for the
problem is a layered instance, where there are precedences between jobs j; < jo only if j; can be scheduled
on the machine 7 and j; can be scheduled on the machine ¢ + 1. These layered instances are closely related to
the k-partite partitioning hypothesis of [BN15] and the integrality gap instances [MRST20] for the problem of
scheduling with uniform communication delays.

1.2 A Brief History of the Communication Delay Problem In this subsection, we give a brief overview
of the literature on the problem of scheduling with communication delays.

Scheduling with precedences. Scheduling with precedences to minimize makespan (P|prec|Chax) is a
classic combinatorial optimization problem and is a special case of the communication delay problem with ¢ = 0 for
all pairs of jobs. In one of the earliest results in the scheduling theory, Graham’s list scheduling algorithm [Gra66]
was shown to be a 2-factor approximation for the problem. Recently, Svensson [SvelO] gave a matching hardness
of approximation result assuming (a variant of) the Unique Games Conjecture [BK09]. When the number of
machines is a constant, a series of recent works have obtained (1 + €)-approximation in nearly quasi-polynomial
time [LR16, Gar18, KLTY20, Li21].

Uniform communication delay setting. The problem becomes much harder with communication delays,
even when all the communication delays are equal. This problem is denoted by P | prec, ¢ | Cinax and is referred to
as scheduling with uniform communication delays. In this setting, Graham’s list scheduling algorithm obtains a
(c+ 1)-factor approximation. This was improved to 2/3 - (c+ 1) by Giroudeau et al. [GKMPOS§] in the case when
the jobs have unit lengths (Poo | prec,p; = 1,¢ > 2 | Cmax). In recent concurrent and independent works, poly-
logarithmic-factor approximation algorithms have been obtained for the uniform communication delays problem
P | prec, ¢ | Cinax by Maiti et al. [MRS'20] and Davies et al. [DKR 20, DKR*21].

On the hardness front, when ¢ = 1, Hoogeveen, Lenstra and Veltman [HLV94| showed that the problem
Poo | prec,p; = 1,¢ = 1 | Cmax is NP-hard to approximate to a factor better than 7/6. The result has been
generalized for ¢ > 2 to (1 + 1/(c + 4))-hardness [GKMPO08§].?

2Papadimitriou and Yannakakis [PY90] claim a 2-hardness for Poo | prec,p; = 1,¢ | Cmax, but give no proof. Schuurman and
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Scheduling with non-uniform communication delay. We do not know of any algorithm for the non-
uniform communication delays (Poo | prec, ¢;i, | Cmax) problem. On the hardness side, the best hardness known
is the above small constant hardness of the uniform communication delay setting. While our main result shows
logarithmic hardness for this problem, it is conceivable that it admits a polylog-approximation algorithm, although
our conjectures suggest otherwise.

Duplication model. Scheduling with communication delays problem has also been studied in the duplication
model, where we allow jobs to be duplicated (replicated), i.e., executed on more than one machine to avoid
communication delays. In this easier model, for the general Poo | prec,pj, ¢jk,dup | Cmax problem, there is a
simple 2-factor approximation algorithm by Papadimitriou and Yannakakis [PY90]. On the other hand, [PY90]
also show the NP-hardness of Poo | prec, p; = 1, ¢,dup | Cnax. Note that the O(1)-approximation algorithm for the
version with duplication is in sharp contrast to our hardness result (Theorem 1.1) illustrating that the problem
is significantly harder without duplication.

1.3 Discussion and Open Problems While we make progress on the hardness of approximation of scheduling
with non-uniform communication delay, the main conceptual contribution of this work is initiating the formal study
of the UMPS problem. When jobs have lengths, the problem does not admit a polylogarithmic approximation.
However, much less is known for the unit-length case. We now mention a few open problems in this direction.

1. The key open problem is to prove (or disprove) Conjecture 1.2. A positive resolution of the conjecture
would prove the hardness of scheduling related machines with precedences, a long-standing open problem
in scheduling theory. By the same reduction as in the proof of Theorem 1.1, Conjecture 1.2 also implies a
logarithmic hardness of approximation for the non-uniform communication delay problem even when the
jobs have unit lengths (Poo | prec,p; = 1, ¢ji | Cmax)-

2. On the other hand, obtaining good approximation algorithms for the UMPS problem would be even more
exciting. Is Conjecture 1.1 true, or is there a polylog-factor approximation algorithm for the unit-length
case?

1.4 Organization The rest of the paper is organized as follows. We first formally define the UMPS problem
and relate it to the jobshops problem in Section 2. We then use the hardness of the UMPS problem to prove
Theorem 1.1 in Section 3. Finally, in Section 4, we show that Conjecture 1.2 implies an improved hardness of
related machine scheduling with precedences and that the hypothesis of [BN15] implies a superconstant hardness
of the UMPS problem with unit lengths.

2 Unique Machine Precedence Constraints Scheduling problem

We first formally define the Unique Machine Precedence constraint Scheduling (UMPS) problem.

DEFINITION 2.1. (Unigque Machine Precedence constraint Scheduling) In the Unique Machine Precedence con-
straint Scheduling (UMPS) problem, the input is a set of m machines and n jobs ji,ja,-..,Jn with precedence
relations between them. Furthermore, each job j; can be scheduled only on a fized machine M (1) € [m], and takes
p(l) time to complete. The jobs should be scheduled non-preemptively, i.e., once a machine starts processing a
job ji, it has to finish it before processing other jobs. The objective is to schedule the jobs on the corresponding
machines in this non-preemptive manner while respecting the precedence relations, so as to minimize the makespan.

We note that the UMPS problem is a generalization of the classical jobshops problem that we formally define
below.

DEFINITION 2.2. (Job shops) In the jobshops problem, the input is a set of n jobs to be processed on a set M
of m machines. Each job j consists of u; operations O1 5,02 j,...,0,, ;. Operation O;; must be processed for
Di,; units of time without interruptions on the machine m; ; € M, and can only be scheduled if all the preceding
operations Oy j,i < i have finished processing. The objective is to schedule all the operations on the corresponding
machines to minimize the makespan.

Woeginger [SW99| remark that “it would be nice to have a proof for this claim”.
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Figure 2: Illustration of the reduction from UMPS to non-uniform communication delays. In the communication
delay instance on the right, the dashed arrow precedences have communication delay C', while the normal arrow
precedences have communication delay 0.

Note that jobshops problem is a special case of the UMPS problem, corresponding to the case when the precedence
DAG is a disjoint union of chains. The jobshops problem has received a lot of attention and played an important
role in the development of key algorithmic techniques [LLKS93,LMR94|. On the hardness front, Mastrolilli and
Svensson showed almost optimal hardness results for the problem in a breakthrough result [MS11].

THEOREM 2.1. For every constant ¢ > 0, assuming NP ¢ ZTIME (n(log”)o(l)), there is mo polynomial-time

(log n)'=¢-factor approzimation algorithm for the jobshops problem, where n is the total number of operations in
the given jobshops instance.

As a corollary, we obtain the following hardness result.

COROLLARY 2.1. For every constant € > 0, assuming NP ¢ ZTIME (n(log")o(l)), there s no polynomial-time
(log n)!=<-factor approzimation algorithm for the UMPS problem.

3 Hardness of Scheduling With Non-Uniform Communication Delays

We now give a reduction from the UMPS problem to the non-uniform communication delay problem, thereby
proving the hardness of the non-uniform communication delay problem. We restate the theorem for convenience.

THEOREM 3.1. For every constant € > 0, assuming NP ¢ ZTIME (n(log")o(l)), the mon-uniform commaunication

delay problem (Poo | prec, cjk, | Cimax) does not admit a polynomial-time (logn)'~¢-approzimation algorithm.

Reduction. Let I be an instance of the UMPS problem with n jobs j1, jo, .. ., jn, and m machines. Furthermore,
each job j; has a processing time p(l) and can be scheduled only on the machine M(l) € [m]. For an index i € [m],
let J(i) C {j1,J2,---,Jn} denote the set of jobs that can be scheduled on the machine i.

Roughly speaking, our idea in the reduction is to output a non-uniform communication delay instance where
we force the jobs in J () to be scheduled on the same machine, for every i € [m]. We achieve this by adding a set
of m dummy jobs j},j5,..., % and adding precedences with very large communication delay from all the jobs
in J(i) to j; for every i € [m]. More formally, we define an instance I’ of the non-uniform communication delay
problem as follows. First, we choose a large integer Coo =n Y ; p(l). There are n+m jobs in I’: a set of n jobs
Ji,3%s -, gy, such that for each [ € [n], the processing time of j; is equal to p(l), and a set {j7,j5,..., 55} of m
dummy jobs, each with processing time 1. For every precedence relation j, < j, in the original instance I, there
is a precedence relation j!, < j/ in I’ with communication delay 0. Finally, for every i, and every job j; € J(i),
there is a precedence relation j; < j* with communication delay Ci.

Completeness. Suppose that there is a schedule for I with makespan at most L. Then, we claim that there is
a schedule for I’ with makespan at most L + 1. We use m machines and schedule the job j; on the machine M (1)
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in the same time slot used by the schedule for I. As the communication delay of the precedences among the jobs
{41, 45, .-, gL} is zero, we can schedule these jobs using m machines with makespan at most L. Now, after all the
jobs {41,7%, ..., 4.} have been scheduled, we schedule the job jF in the machine 4, for every ¢ € [m]. As we are
scheduling all the jobs in J(7) and j} on the same machine for every i € [m], we incur no communication delay
when we are scheduling the dummy jobs, and we can schedule all the dummy jobs ji, j5,...,j;, simultaneously
in the time slot between L and L + 1.

Soundness. Suppose that there is a schedule for I’ with makespan at most L. Then, we claim that there is a
schedule for I with makespan at most L as well.

Note that there is a trivial schedule for I where we schedule each job one by one after topologically sorting
them, that has a makespan of 377, p(j). Thus, henceforth, we assume that L < > ", p(j). For an index i € [m],
let J'(7) be the subset of jobs in I' whose corresponding jobs in I are to be scheduled on the machine i:

J(0) = {ji s M) = i}

We claim that in the schedule for I’ with makespan at most L, for every ¢ € [m], all the jobs in J’(7) must be
scheduled on the same machine. Suppose for the sake of contradiction that this is not the case. If there are
jobs j; and ji, such that M(l;) = M(lz) = i are scheduled on different machines i1, i> in the schedule for I', at
least one of jl’1 and jz/2 is scheduled on a different machine than j’. However, as there are precedence relations
Ji, =< Jji and j;, < j; with communication delay C., at least one of the precedence relations has to wait for the
communication delay, and thus, the makespan is at least C,, > L, a contradiction.

Thus, for every ¢ € [m], all the jobs in J'(i) are processed on the same machine in I’. This implies that at any
point of time, at most one job from J'(7) is being processed, for every ¢ € [m]. Using this observation, we output
a schedule for I: for every job j; € J(i), we schedule j; in the same time slot used by the job j; in the schedule for
I'. By the above observation, every machine i € [m] is used at most once at any time point. Furthermore, as the
schedule for I’ respects the precedence conditions, the new schedule for I also respects the precedence conditions.
Note that the makespan of this schedule for I is equal to L. This completes the proof that there exists a schedule
for I with makespan at most L, if there exists a schedule for I’ with makespan at most L.

This completes the proof of Theorem 1.1. We remark that the same reduction also proves a (logn)!~¢-factor
inapproximability of the bounded-machines version P | prec, ¢ i | Cmax of the non-uniform communication delay
problem.

4 Conditional Hardness of Scheduling With Precedence Constraints on Related Machines

In this section, we first prove that Conjecture 1.2 implies improved hardness of scheduling related machines with
precedences.
We begin by formally defining the scheduling related machines with precedences problem (Q | prec | Crmax)-

DEFINITION 4.1. (Scheduling related machines with precedences) In the scheduling related machines with prece-
dences problem, the input is a set of m machines M and a set of n jobs J with precedences among them.
Furthermore, each machine i has speed s; € Z", and each job j has processing time p; € Z*, and scheduling the
job j on machine i takes ’;—] units of time. The objective is to schedule the jobs on the machines non-preemptively
respecting the precedences lconstmmts, to minimize the makespan.

An algorithm with O(logm) approximation guarantee for the problem was given independently by Chudak and
Shmoys [CS99], and Chekuri and Bender [CBO1]. On the hardness side, a hardness factor of 2 follows from the
identical machines setting [Svel0], assuming a variant of the Unique Games Conjecture. Furthermore, Bazzi and
Norouzi-Fard [BN15| put forth a hypothesis on the hardness of a k-partite graph partitioning problem, which
implies a super constant hardness of the scheduling related machines with precedences problem.

We now prove that Conjecture 1.2 implies poly logarithmic hardness of scheduling related machines with
precedences problem.

THEOREM 4.1. Assuming Conjecture 1.2 and NP ¢ DTIME (n(log”)o(l) , there exists an absolute constant v > 0

such that the problem of scheduling related machines with precedences (Q | prec | Cmax) has no polynomial-time
O ((logm)7)-factor approximation algorithm.
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Reduction. Our reduction is essentially the same reduction as in [BN15] where the authors obtained conditional
hardness of the related machine scheduling with precedences problem assuming the hardness of a certain k-partite
graph partitioning problem. However, our soundness analysis needs more technical work.

We start with an instance I of the UMPS problem with n unit sized jobs ji, jo, ..., jn, and m machines, and
every job j; can only be scheduled on the machine M(I) € [m]. Furthermore, we let J(i) C [n],7 € [m] denote the
set of all the jobs that can be scheduled on the machine 1.

We now output an instance I’ of the related machine scheduling problem. We choose a parameter x = 10n3m.
For every I € [n], we have a set J; of k2(m~M1) jobs in I’. The processing time of each of these jobs is equal to
kMO=1 For every i € [m], we have M, a set of x2(m=9) machines, each with speed x*~'. Furthermore, for every
precedence constraint j, < j, in I, we have j; < ji, for every j; € J, and jj, € J,.

Completeness. Suppose that there is a scheduling of I with makespan equal to L. Then, we claim that there is
a scheduling of I’ with makespan at most L as well. Note that all the jobs in 7; can be scheduled on the machines
M@y in unit time. We obtain a scheduling of I’ by assigning the jobs J; to the machines M;(;) in the time
slot used in I to schedule the job j;. This scheduling of I’ is indeed a valid scheduling, and has a makespan of at
most L.

Soundness. We prove the soundness part in the lemma below.

LEMMA 4.1. Suppose that there is a scheduling of I' with makespan L. Then, we will show that there is a
scheduling of I with makespan at most 2L.

Proof. Note that there is a trivial scheduling of I where we schedule jobs in a topological sort one by one, with
makespan equal to n. Thus, henceforth, we assume that L < n.

Let v = ﬁ. We claim that for every I € [n], at most yx2(™~M 1) jobs in J; are processed by machines that
do not belong to My in the scheduling I’. The proof of this claim follows from Lemma 1 of [BN15|, and we
present it here for the sake of completeness. Fix an index [ € [n], and for ease of notation, let i = M (l). First, as
each job in J; has length x*~!, and the processing speed of each machine in M, j <iis at most KIT1 < K12,
no job in J; is scheduled on machines in M, j < i, as the makespan of I’ is at most n < . Now, consider an
integer j € [m], j > 4. There are x2(m=7) machines in M, and they have a processing speed of k771, Thus, in
time L < n, they can process at most

n- K/Q(m_]) . K/J_l n
K

< . K/Q(m—i)

ri—1

jobs of J;. Taking union over all j > i, we get that at most

@ . 2(m—1) < 1 2(m—1)
PR = 1002"

jobs in J; are processed by machines outside M;. In other words, for every job j; of I, at most « fraction of the
jobs in J; are processed by machines outside M ().

Now, consider a scheduling of the jobs in I’ where for every I € [n], we get rid of the jobs in J; that are
processed by machines outside M ;). After removing the jobs processed by other machines, we still have that
for every [ € [n], at least 1 — fraction of the jobs in J; are processed. Also observe that since we are only deleting
some jobs, the makespan of the new scheduling is at most L as well. Recall that processing each job in J; takes
unit time on the machines in M ().

Using this observation, we obtain a fractional scheduling of I in time L as follows. For every | € [n] and
t € [L], define the variable z;; to be the fraction of the jobs of J; that are scheduled by the machines M) in
the time slot ¢. By the above discussion, we get the following properties of this fractional scheduling.

1. Every job I € [n] is almost fully processed. For every [ € [n], we have
L
Z T >1—7
t=1
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2. Every machine is used only for processing a single unit of job in a time slot.

> my <1Viem)te Ll
leJ (i)

3. If there is a precedence constraint j;, < ji, in I, la’s processing is done only in the time slots after {; is fully
processed. More formally,
Tyt >0= Ly, t! = OVt’ S t

We will now show that the fractional scheduling implies that the instance I has an integral scheduling with
makespan at most O(L), thereby proving the Lemma. We will prove this in two steps: first, we modify the
fractional scheduling to obtain another fractional scheduling with better structure, and then next, we use this to
obtain the integral scheduling.

For a job [ € [n], define the starting time ¢} and the end time ¢{ as the minimum and the maximum times at
which [ is being processed.

t; = min{t : x> 0}, 7 = max{t: x;;, > 0}
Note that if we have ji, < ji,, tj, > t;,. We now modify the fractional scheduling to ensure that each machine

processes the job with the lowest ending time first, from the available set of the jobs. More formally, for a machine
i € [m], consider the pair of jobs l1,ls € J(i) and time slot ¢ € [L] satisfying the following conditions.

(C1) The job I has lower ending time: t§ <1j , or t; =t and [} <ls.

PR

(C2) The job I; can be processed on the time slot ¢, but the job Iy is processed instead of finishing the job [;:

t, St <ty , x>0

If there are jobs l1,ls and time slot ¢ satisfying these conditions, we swap the processing times, and process the
job Iy in the time slot ¢ instead of ;. More formally, let ¢’ > ¢ be such that z;, »» > 0. Let y = min(zy, ¢, 1, ,¢)-
We obtain a new fractional scheduling by setting

Tiyo =Tl —Y, Tyt =Tyt T Y

Tipt! = Ty t! T Y5 Tiyt = Liyt — Y

Note that the operation does not increase the ending time of either job and does not decrease the starting time
of either job and thus, results in a valid fractional scheduling respecting the precedence conditions. We repeat
the swapping operations until there is no triple 4, j, ¢ left where both (C1) and (C2) are true. We also update the
starting and ending times of the jobs ¢; and t] appropriately when we apply the swapping operations.

Next, we apply another transformation to the fractional scheduling by filling the empty slots in the machines,
if there are any. More formally, consider a time slot ¢ € [L] and job [ € [n] such that the following hold.

Z Tyt < 1

VeJ(M(1))

(D1) The time slot ¢ is not fully utilized:

(D2) The job I can be scheduled on the time slot ¢ instead of leaving the machine idle: ¢7 <t < tf.

If there is a time slot ¢ and job [ such that the above two conditions hold, we fill the empty slot in the time slot
t by processing the job I. Let t’ > ¢ be such that x;» > 0. Let y = min(x;,1 — ZZ,EJ(M(U) xyp ). We set

Tyt =Tt +Y, Ty =Ty —Y

We repeat these operations iteratively until no empty slots can be filled. Similar to the previous case, we update
the starting and ending times of the jobs appropriately.

After the two types of operations, we obtain a fractional scheduling with the following property: at every
time slot ¢, for a machine ¢ € [m], let S;; be the set of jobs that can be scheduled on ¢ in the time slot ¢:

Sipi={leJ@):tf <t <t}
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We sort the jobs in S;; as {l1,ls,...,l;x} by increasing order of ending times, and breaking ties based on the

index. The fractional scheduling greedily schedules the jobs l1,ls, ..., in that order. More formally, we have
L t—1
‘rh,t = Z 'rl1,t/ - Z xll,t/
t'=1 t'=1
and

L t—1
Ty,,¢ = min (1 — Xy ts E Ty 4 — E s%,tf)

=1 t'=1
and so on.
Our goal is to show that in this final fractional scheduling that we obtained, each machine schedules at most
two jobs in any time slot. In order to prove this, we first define the following parameter, P; ;, the amount of jobs
partially completed in the machine ¢ by the time ¢.

t
Py = E E Ty

leJ(i):te>t t'=1

We claim that for every i € [m],t € [L], we have P;; < ~t. Fix a machine ¢ € [m]. We will prove the claim by
induction on ¢.

1. Base case when ¢ = 1. If no job is processed by the machine i in the time slot ¢ = 1, the claim is trivially
satisfied. Else, let I; be the job in J(i) with the lowest ending time, breaking ties by the lowest index. Note
that the fractional scheduling fully schedules the job I; in the time slot ¢ = 1. As each job is processed for
at least 1 — v duration, we get that F;; is at most 1.

2. Inductive proof. Suppose that the claim holds for all ¢ < ¢ and consider the time slot ¢ + 1. For ease of
notation, let S = S; ;11 be the set of jobs that can be processed on the machine ¢ in the time slot ¢ + 1.
If S is empty, the inductive claim trivially holds. Else, let [ € S be the job with the lowest ending time
(breaking ties by the least index). Note that the modified fractional scheduling finishes the job [ in the time
slot ¢ + 1. Let zj, denote the amount of the job [ that is processed by time ¢ i.e., 2}, = Zi’:l x¢. The
amount of jobs that are partially finished at the end of time slot ¢ + 1 is at most

P11 <Py — x;,t + (1= 21e41)
<Pyi+y<(t+1)y

We will now show that every machine processes at most 2 jobs in a time slot. Consider a machine i € [m]
and time slot ¢ € [L]. Let S;; := {l1,l2,...,lx}. By the previous claim, we know that at most (¢ — 1)y portion of
the job [, is finished before time ¢, for every u € [k]. Note that (¢ — 1)y < Ly < 13—. Thus, the greedy fractional
scheduling can only schedule at most two jobs, as each of them takes at least 1 — ﬁ time. Finally, using this
observation, we can duplicate every time slot to obtain an integral scheduling of I with makespan at most 2L.
d
Parameter analysis. The number of machines in the related machines scheduling instance is M = 9™ =
n@m)  while the hardness gap is (logn)!~¢ for every ¢ > 0. By setting € appropriately, we get a hardness of
(log M) for the scheduling related machines with precedences problem.

4.1 Hypothesis of [BN15] implies superconstant hardness of the UMPS problem with unit lengths
Bazzi and Norouzi-Fard [BN15] introduced the following hypothesis and proved that it implies a superconstant
hardness for scheduling related machines with precedences.

HypoTHESIS 4.1. ( [BN15]) For every e,0 > 0 and constant integers k,Q > 0, the following problem is NP-hard.
Given a k-partite graph G = (V1,Va, ..., Vi, E1,Ea, ..., Ex_1) with |V;| = n for all 1 <i < k, and E; being the
set of edges between V; and Vi1 for every 1 <i < k, distinguish between the two cases:

Copyright © 2022 by SIAM
Copyright for this paper is retained by authors



1. (YES case) Every V; can be partitioned into V; o, Vi 1,...,Vi.g—1 such that

o There is no edge between V; j, and Viyq j, for all1 <i <k, j1 > jo € [Q].
o [Vijl = U520 for alli € [K],j € [Q].

2. (NO case) For every 1 < i < k, and any two sets S,T with S CV;, T C V;_1, |S| = |T| = dn, there is an
edge between S and T .

We now prove that the above hypothesis implies that it is NP-hard to obtain a constant factor approximation
algorithm for the UMPS problem, even when all the jobs have unit length.

Reduction. Given an instance of k-partite problem I, we output an instance I’ of the UMPS problem as follows:
there are n’ = nk unit sized jobs in I’, one job corresponding to each vertex of G. There are k machines, and all
the jobs in Vj,i € [k] can only be scheduled on the machine i. For every edge e = (u,v) in the graph such that

u € Vi, v € Vi1, we have a precedence condition v < v in I’. We choose the parameter Q = k, and § = ¢ = +

-
Completeness. Suppose that the YES case of Hypothesis 4.1 holds i.e., there is a partition of V; into
Vio,Vii,.-.,Vig—1 respecting the two conditions above. Then, we claim that there is a scheduling of I’ with

makespan at most 3n. For every machine i € [k], we schedule the jobs in V; ¢ (in arbitrary order), and then the
jobs in V; 1 (in arbitrary order) and so on. However, we start the execution of the jobs in Vj ¢ at time ¢;, and
then, execute the jobs in V;; immediately after the execution of the jobs in V;;_; for all [ > 1. The parameters
t;, i € [k] are chosen such that for every pair of jobs u,v with u < v, u is guaranteed to have scheduled before v.

In particular, we choose t; = (i — 1)n <e + %)
We now prove that this results in a valid scheduling that respects the precedence conditions. Consider a pair

of jobs u,v such that u € V;,v € V41 such that u < v. As the k-partite graph satisfies the YES condition, we
have integers j1, jo such that v € V; ;, and v € V;4 ;,, and j1 < jo. Note that u is processed by time at most

tu = ti +|Viol + |Via| +... + Vil
Furthermore, v is processed only after time
ty =tiy1 + |Vigr0l + [Vigr 1| + - 4+ [Vig1 jo—1l
We have

ty —tu = tiy1 + [Vigrol + [Vieral + oo+ Vigrjo—1| = (& + [Vio| + [Vin

+o Vi)

1
n (e+ Q) T Wirrol Vi + o4 [Virgaea] — (0= [Vijuoal + Vigael + -+ Vi)

zn(ﬁé)m(l—;)n_ (n_ CRY —Ql><1—e>n>
>n<6+ql)>+j1(l_¢;)n_ <j1(1;26)n+m+(1—Qe)n> -

Thus, the schedule is a valid scheduling of I’ The makespan of this scheduling is at most ¢, +n =
(k—l)n(e—l—é)—&—nSSn.

Soundness. Suppose that the NO case of Hypothesis 4.1 holds. We claim that in this case, the makespan of I’
is at least (1 — 2d)kn. For every i € [k], let s; denote the time at which the machine ¢ has finished (1 — d)n jobs
of V;. For an index i € [k], let S(i) C V; denote the set of jobs that are not processed by the time s;. By the
definition of s;, we have |S(i)| > dn. By the NO case of Hypothesis 4.1, we get that there are at least (1 — d)n
jobs in V;11 that have dependencies in S(i). Note that all these jobs can be scheduled only after s;. Thus, we get

Si+1 2 S; + (1 725)77, Vi € []C* 1}

Summing over all i, we get that the makespan of the scheduling is at least (1 — 2§)kn, which is at least % when
k > 4. By choosing k large enough, this completes the proof that assuming Hypothesis 4.1, it is NP-hard to

obtain a O(1) factor approximation algorithm for the UMPS problem when the jobs have unit lengths.
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