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Abstract: In this work, we review the effective field theory framework to search for Lorentz and CPT

symmetry breaking during the propagation of gravitational waves. The article is written so as to

bridge the gap between the theory of spacetime-symmetry breaking and the analysis of gravitational-

wave signals detected by ground-based interferometers. The primary physical effects beyond General

Relativity that we explore here are dispersion and birefringence of gravitational waves. We discuss

their implementation in the open-source LIGO-Virgo algorithm library suite, and we discuss the

statistical method used to perform a Bayesian inference of the posterior probability of the coefficients

for symmetry-breaking. We present preliminary results of this work in the form of simulations of

modified gravitational waveforms, together with sensitivity studies of the measurements of the

coefficients for Lorentz and CPT violation. The findings show the high potential of gravitational

wave sources across the sky to sensitively probe for these signals of new physics.

Keywords: Lorentz invariance violation; CPT symmetry breaking; spacetime birefringence; gravita-

tional waves; gravity

1. Introduction

Gravitational waves (GWs) are now a ripe testing ground for many aspects of grav-
itational physics [1–4]. One of the principle foundations of General Relativity is the Ein-
stein Equivalence Principle, which includes the universality of freefall and the spacetime-
symmetry principle of the local Lorentz invariance of physics [5]. The latter principle has
seen a boom in tests in the last 20+ years [6], owing primarily to an interesting piece of
motivation: that, in a fundamental unified theory of physics, local Lorentz invariance may
be broken [7–9]. The development of an effective field theory framework that describes
spacetime-symmetry violations makes comparisons between vastly different kinds of tests
possible, generalizing older kinematical test frameworks with a modern viewpoint [10–12].

The specific consequences of local Lorentz-symmetry breaking for GWs have been
studied in several works, within a general effective field theory framework [13–18], and in
specific models [19–25]. In particular, the effects on propagation have been determined for
generic Lorentz-violating terms in the linearized gravity limit [26], which is the focus in
this work.

Examples of searches for Lorentz violation in gravity include table-top tests like
gravimetry [27–33], short-range gravity tests [34–36], near-Earth tests [37–40], solar system
planetary tests [41–43], and astrophysical tests with pulsars [44–46]. Measurements of
simultaneous gravitational and electromagnetic radiation have yielded limits on certain
types of Lorentz violation in gravity versus light [47]. Recent work has begun to look at the
available GW catalog to place constraints on coefficients describing Lorentz violation for
gravity [48–50]. Additionally, closely related searches for parameterizations of deviations
from General Relativity have been completed [3,4,24,51].
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In this article, we discuss the derivation of the polarization-dependent dispersion
of GWs due to Lorentz and Charge-Parity-Time reversal (CPT) symmetry breaking. We
describe the implementation of the modified GW strain in the LIGO-Virgo [2,3] algorithm
library, LALSuite [52], and we describe the statistical method used to infer the posterior
probability of the coefficients for symmetry-breaking. In order to link the theoretical deriva-
tion to the analysis of astrophysical signals, we provide detailed explanations of the steps
necessary to measure the coefficients for CPT and Lorentz violation, alongside simulations
of the modified signals and studies of the sensitivity of current GW interferometers for
parameter inference.

The layout of the article is as follows. In Section 2, we describe the theoretical method-
ology for effective field theory descriptions of local Lorentz violation, including a scalar
field example, and an effective quadratic action for the spacetime metric fluctuations. This
section also includes a discussion of the modified plane wave solutions, and the conversion
of various expressions to Système International (SI) units. Following this, in Section 3, we
describe the implementation of the modified GW signals and the statistical method used
for the inference of the coefficients controlling the Lorentz and CPT-breaking effects on
propagation. Section 4 includes simulations for a particular subset of the possible forms of
Lorentz and CPT violations. A summary and outlook is included in Section 5.

For the bulk of the paper, we work in natural units where h̄ = c = 1, and Newton’s
gravitational constant is GN 6= 1, except when we explicitly write some expressions in
SI units. Our convention is to work with Greek letters for spacetime indices and Latin
letters for spatial indices. The flat spacetime metric signature aligns with the common
General-Relativity-related convention −+++.

2. Theoretical Framework

2.1. Background and General Relativity

As in the typical gravitational wave scenario, we expand the spacetime metric gµν

around a flat Minkowski background ηµν as

gµν = ηµν + hµν. (1)

Far from the source at the detectors, GWs are treated as perturbations hµν around the
Minkowski metric where hµν << ηµν (e.g., components on the order of 10−21). However,
one does not assume hµν is small compared to unity in all regions. In particular, in solving
for the complete solution in the far radiation zone, one needs to solve in the near zone as
well, for example in a post-Newtonian series [53,54].

In standard General Relativity, one solves the Einstein field equations for the metric;
the form in (1) is a rewritten form, not yet a specific solution. The full Einstein field
equations can be written in the “relaxed” form, as

(GL)
µν = κ[(TM)µν + τµν], (2)

where (TM)µν is the matter stress-energy tensor, τµν is the energy-momentum pseudo
tensor [55], and κ = 8πGN . Note that, in this equation, (GL)

µν is the Einstein tensor
linearized in hµν.

In the wave zone, where the gravitational fields are weak, Equation (2) becomes simply
the “vacuum” equations (GL)

µν = 0, which admit wave solutions with two transverse
degrees of freedom after choosing a gauge. The transverse-traceless gauge (TT-gauge)
is used to describe the propagation of GWs; in this gauge, GR predicts two linearly
independent polarizations labelled “+” and “×”, with a phase angle difference of π/4:

hµν =









0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0









. (3)
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The observable signal comes from the LIGO and Virgo detector responses to the
incoming GW,

SA(t, θ, φ, ψ) = FA,+(θ, φ, ψ) h+(t, θ, φ, ψ, τ) + FA,×(θ, φ, ψ) h×(t, θ, φ, ψ, τ), (4)

where FA,∗ are the antenna response patterns of the detectors. The angles θ and φ are the
source sky locations, τ is the time delay between detectors receiving the signal, and ψ
is the GW frame rotation with respect to the detectors’ frame. Note that the individual,
polarization terms above are not gauge-independent, as they depend on ψ, yet the entire
observed signal is gauge-independent. We return to this point below when discussing
Lorentz violation effects for GWs.

2.2. Spacetime-Symmetry Breaking Scenario

We consider the observable effects on gravitational wave propagation subject to
Lorentz- and CPT-breaking terms in an effective field theory framework known as the
Standard-Model Extension (SME) [10–14,56,57].

2.2.1. Scalar Field Example

To help understand this framework, and how the action is developed, we consider
first a scalar field action in flat spacetime. A free, massless scalar field Φ is described by
the action

Isc = − 1
2

∫

d4x ηµν(∂µΦ)(∂νΦ). (5)

When varying this action Φ → Φ + δΦ, one obtains, to the first order in δΦ, and ap-
plying the Leibniz rule,

δIsc = −
∫

d4x ηµν(∂µδΦ)(∂νΦ)

= −
∫

d4x [∂µ(δΦ(∂µΦ))− δΦ∂µ∂µΦ]. (6)

Because of the total derivative, the first term is total 4 divergence and hence is nor-
mally considered a surface term, to be evaluated on the three-dimensional hypersurface Σ

bounding the volume of spacetime considered. Since the variational principle in field the-
ory normally assumes that the variation δΦ vanishes on the boundary, this term vanishes.
What is left is proportional to the arbitrary variation δΦ; therefore, if δI = 0 is imposed, we
obtain the field equations:

�Φ = 0, (7)

where � = ∂α∂α.
In the effective field theory framework description of Lorentz violation, terms are

added to the action (5) that are formed from contractions of general background coefficients
with arbitrary numbers of indices kµνλ... and terms involving the scalar field such as
∂µΦ∂νΦ. This is based on the premise that any form of Lorentz violation can be described by

the coupling of known matter fields to a fixed background field kµνλ... [10,11]. Under particle
Lorentz transformations, the matter fields transform as tensors, while the background
field remains fixed. On the other hand, under observer transformations, both background
and matter fields transform. The latter condition reflects the idea that physics should be
independent of coordinates. These concepts are detailed in the literature. Most notably, see
Refs. [58,59] for illustrations in classical mechanics contexts.

There are several treatments of the origin of Lorentz violation that can play a role in the
phenomenology of the effective field theory test framework (SME). The Lorentz violation
can be explicit, in which the coefficients, a priori unknown background fields, are prescribed
and unaccompanied by additional dynamical modes. On the other hand, a more elegant
mechanism of spontaneous Lorentz-symmetry breaking can be considered. In this latter
case, the underlying action for the model is Lorentz-invariant, but, through a dynamical
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process, nonzero vacuum expectation values for tensor fields can arise [7]. Other scenarios
with alternative geometries such as Riemann–Finsler geometry have been explored [60–65].
Much theoretical discussion of these topics exists in the literature [12,66–71], but we do not
delve into details here.

As a simple start, one might consider trying to add a vector coupled to a first derivative
of the scalar to Equation (5), as in

∆Isc =
∫

d4x kν(Φ∂νΦ) (8)

for an arbitrary background vector kν (we assume the explicit symmetry breaking case for
the moment). However, this can be shown to be equivalent to a surface term:

∆Isc = 1
2

∫

d4x kν∂ν(Φ2)

= 1
2

∫

d3Σν kν Φ2, (9)

where d3Σν is the hypersurface “area” element. Since the variation δΦ is assumed to vanish
on the hypersurface, this contribution will vanish from the field equations. Alternatively,
variation of (8) yields a null result more directly:

δ∆Isc =
∫

d4x kν[δΦ ∂νΦ + Φ δ(∂νΦ)]

=
∫

d4x kν(∂
νΦ − ∂νΦ) δΦ, (10)

where the last line identically is zero.
To obtain Lorentz-violating terms that yield physical results, we modify the action

in (5) as

Isc = − 1
2

∫

d4x
(

ηµν(∂µΦ)(∂νΦ) + (∂µΦ)kµν∂νΦ)
)

, (11)

where kµν are the coefficients for Lorentz violation [11,72], containing 10 independent
coefficients describing the degree of Lorentz violation. Note that we assume here that
the coefficients are constants in the chosen coordinate system (i.e., the partials vanish,
∂αkµν = 0). Upon variation, as in (5), we obtain the modified field equations

�Φ + kµν∂µ∂νΦ = 0. (12)

To complete the discussion here, we also consider the plane wave solutions to (12).
This is achieved by assuming that Φ takes the form Φ = Aeipµxµ

, where xµ is the spacetime
position and pµ = (ω,~p) is the four-momentum for the plane wave. This yields the
momentum-space equation

pµ pµ + kµν pµ pν = 0. (13)

Using the definition of the four-momentum, we can write this out in a space and time
decomposed form:

ω2(1 − k00)− 2k0j p
jω − kij p

i pj − ~p2 = 0. (14)

We can solve for the dispersion relation ω(~p) and then expand the result to the leading
order in the coefficients kµν. We obtain

ω ≈ |~p|
(

1 + 1
2 (k00 + 2k0j p̂

j + kij p̂
i p̂j)

)

. (15)

This dispersion would modify the propagation of the scalar mode; in particular, its
speed v = ω/|~p| can be written as

v ≈ 1 + 1
2 (k00 + 2k0j p̂

j + kij p̂
i p̂j). (16)
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Note the directional dependence of the speed due to the anisotropic coefficients k0j

and kij. Even in the case of the isotropic limit, where only k00 appears, due to the observer
Lorentz covariance, this limit is is a special feature of a particular observer frame. For
example, when viewed by an observer boosted by small βj, anisotropic terms will arise
(e.g., (k′)0j ∼ −βjk00).

In the typical effective field theory treatment of searches for Lorentz violation, ad-
ditional, “higher order” terms are also included [73]. Thus, the Lagrange density takes
the form

Isc = − 1
2

∫

d4x

(

ηµν(∂µΦ)(∂νΦ) + (∂µΦ)∑
d

(k(d))µνλ...(∂ν∂λ. . .Φ)

)

, (17)

where now the coefficients are labeled d for the mass dimension of the term in the action,
with the scalar field itself having mass dimension 1 and each derivative introducing mass
dimension M1. Thus, the result in (11) is the d = 4 limit, and the coefficients kµν are
dimensionless. In general, the coefficients (k(d))µνλ... have mass dimension M4−d.

2.2.2. Gravity Sector Case

The action from the gravity sector that includes both linearized Lorentz invariant and
Lorentz-violating terms can be described similarly to the scalar case. However, with a
multicomponent field, the details of the tensor algebra are more complicated. First, we
note that the linearized General Relativity can be derived from the action

IGR = − 1
4κ

∫

d4x hµνGµν, (18)

where the Einstein tensor is expressed in a linearized form with terms of order h2 and
higher discarded. Note that an action quadratic in hµν yields field equations that are linear
in hµν.

We now explain in some detail the construction outlined in [14]. The starting point for
an action that generalizes (18) is

I = 1
8κ

∫

d4x hµνK̂(d)µνρσhρσ, (19)

where K̂(d)µνρσ is an operator given by

K̂(d)µνρσ = K(d)µνρσǫ1 ...ǫd−2 ∂ǫ1
. . .∂ǫd−2

. (20)

The operator contains partial derivatives that act on the gravitational field fluctuations
hµν; K(d)µνρσǫ1 ...ǫd−2 are a set of constants in the chosen coordinates. The mass dimension
label d refers to the natural units of mass that each term has. At this stage, the nature
of these constants is unknown and in what follows we explain the conditions applied to
constrain them.

One derives the field equations via variation of the action with respect to the fields,
similar to the scalar example above. Varying the action (19) with respect to the metric
fluctuations hµν yields

δI = 1
8κ

∫

d4x [δhµν K(d)µνρσǫ1 ...ǫd−2 ∂ǫ1
. . .∂ǫd−2

hρσ

+ hµν K(d)µνρσǫ1 ...ǫd−2 ∂ǫ1
. . .∂ǫd−2

δhρσ]. (21)

In order to completely factor out the variation of the metric field δhµν, integration
by parts is performed on the second term. (Note that in doing the integration by parts,
we discard surface terms with derivatives of the fluctuations, which is a nontrivial step
reflecting the fact that the action contains an arbitrary number of derivatives, going beyond
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the usual first order derivative form of conventional dynamics). When d is even, the
integration by parts is done an even number of times, creating an overall positive value for
the term; if d is odd, the over term is negative in value. We can represent this with (−1)d

and then obtain

δI = 1
8κ

∫

d4xδhαβ

[

K(d)(αβ)(µν)ǫ1 ...ǫd−2 + (−1)dK(d)(µν)(αβ)ǫ1 ...ǫd−2

]

∂ǫ1
. . .∂ǫd−2

hµν. (22)

Since hµν is symmetric, we can indicate the symmetry with parenthesis in K̂(d)(µν)(αβ).
There are two considerations in (22) to investigate, the first being that only terms

contributing to the field equations should survive. Thus, we must have

K(d)(αβ)(µν)ǫ1 ...ǫd−2 + (−1)d K(d)(µν)(αβ)ǫ1 ...ǫd−2 6= 0. (23)

The second consideration is the imposition of the linearized gauge symmetry, i.e.,
hµν → hµν − ∂µξν − ∂νξµ, where ξµ is an arbitrary vector. General gauge-breaking terms are
considered in Ref. [15]. If we apply this transformation on the metric within the action (19),
i.e., δξ hµν = −∂µξν − ∂νξµ, we obtain, from (22),

δξ I = 1
8κ

∫

d4x ∂αξβ

[

(−1)dK̂(d)(µν)(αβ) + K̂(d)(αβ)(µν)
]

hµν,

= − 1
8κ

∫

d4x ξν

[

(−1)dK̂(d)(ρσ)(µν) + K̂(d)(µν)(ρσ)
]

∂µhρσ. (24)

Since ξµ is arbitrary, and derivatives of hρσ are not necessarily zero, the second condi-
tion becomes

[

(−1)dK̂(d)(ρσ)(µν) + K̂(d)(ρσ)(µν)
]

∂µ = 0. (25)

Under these two conditions (23) and (25), there are three categories of coefficients.
These categories are based in part on discrete spacetime symmetry properties of the terms
in the action: their behavior under CPT transformations, for which they can be even or odd.
Additionally, the possible tensor index symmetries categorize these coefficients [14]. The
three types of K̂(d)µνρσ “hat” operators are written as

ŝµρνσ = s(d)µρǫ1νσǫ2 ...ǫd−2 ∂ǫ1
. . .∂ǫd−2

,

q̂µρνσ = q(d)µρǫ1νǫ2σǫ3 ...ǫd−2 ∂ǫ1
. . .∂ǫd−2

k̂µνρσ = k(d)µǫ1νǫ2ρǫ3σǫ4 ...ǫd−2 ∂ǫ1
. . .∂ǫd−2

. (26)

The ŝ operators have an even CPT and mass dimension d ≥ 4; q̂ operators have an
odd CPT and mass dimension d ≥ 5; k̂ operators have an even CPT and mass dimension
d ≥ 6. The process also reproduces the GR terms.

The Lagrange density is then

L = 1
8κ ǫµρακǫνσβληκλhµν∂α∂βhρσ

+ 1
8κ hµν(ŝ

µρνσ + q̂µρνσ + k̂µρνσ)hρσ, (27)

where the first term is an equivalent way of writing the standard GR using the totally
antisymmetric Levi-Civita tensor density ǫµρακ (equivalent to (18)). It should be remarked
at this point that the Lagrange density in (27) is the most general one constructed purely
from the metric fluctuations hµν and taken to the quadratic order only. While it includes
only constant coefficients in (26), it maintains a linearized gauge symmetry. Terms in this
Lagrange density can arise in spontaneous-symmetry breaking models, when the additional
fluctuations (including possible Nambu-Goldstone and massive modes) around the vacuum
values have been “integrated out” or “de-coupled” [13,74–76].1 On the other hand, examples
exist where the quadratic order Lagrange density in (27) can arise from models with explicit
symmetry breaking. In either scenario, one is then left with an “effective” Lagrange density,
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quadratic in the metric fluctuations around a flat background, in which the fluctuations do
not appear. Proceeding, the resulting vacuum field equations from (27) are

0 = Gµν − [ 1
4 (ŝ

µρνσ + ŝµσνρ) + 1
2 k̂µνρσ + 1

8 (q̂
µρνσ + q̂νρµσ + q̂µσνρ + q̂νσµρ)] hρσ. (28)

In the absence of Lorentz violation, the field Equation (28) reduce to Gµν = 0. In the
Lorentz gauge, this reduces to �h̄µν = 0, where h̄µν = hµν − (1/2)ηµνhα

α and ∂µ h̄µν = 0.

For plane wave solutions h̄µν = Aµνe−ipαxα
, this yields p2 = pα pα = 0. This provides the

dispersion relation for GR,
ω = |~p|, (29)

the equation of motion in energy-momentum space, which describes the propagation
for GWs. Using the residual gauge freedom in this limit, the number of independent
components of the plane wave solutions can be reduced to 2 and will take the form of (3)
in the Transverse-Traceless gauge.

To find the dispersion relation for the modified Equation (28), one again assumes a
plane wave form above. There are then at least two approaches to solving the resulting
equations, where the components of hµν appear highly coupled with one another due to the
extra symmetry-breaking terms in (28). The Equation (28) retain the usual gauge freedom,
so one can proceed by choosing a gauge condition and then decomposing the resulting
equations into time and space components. For example, using a temporal-type gauge
h0µ = 0 and a helicity basis for the spatial components, one can show that, to the first
order in the coefficients for Lorentz violation, still only 2 degrees of freedom remain [26].
Alternatively, a gauge-independent method for deriving the dispersion relation that uses
differential forms exists [73].

Despite the fact that only two physical propagating degrees of freedom remain in
the leading order Lorentz violation case, the two modes generally travel at different
speeds in the vacuum, resulting in birefringence, and the frequencies of the modes are
highly dispersive. (Note that, in contrast, for the scalar field example in (15), there is no
birefringence effect because there is only one scalar mode whose propagation is modified.)
With a helicity basis choice of spatial coordinates, the two propagating modes can be
shown to lie in the +2 and −2 helicity projections of the spatial components of the metric
fluctuations hij. The modified dispersion relation can be written as

ω = |~p|
(

1 − ζ0 ± |~ζ|
)

, (30)

where

|~ζ| =
√

(ζ1)2 + (ζ2)2 + (ζ3)2 (31)

and

ζ0 = 1
4|~p|2

(

−ŝµν
µν +

1
2 k̂µν

µν

)

,

(ζ1)2 + (ζ2)2 = 1
8|~p|4

(

k̂µνρσ k̂µνρσ − k̂µρ
νρ k̂µσ

νσ + 1
8 k̂µν

µν k̂ρσ
ρσ

)

,

(ζ3)2 = 1
16|~p|4

(

− 1
2 q̂µρνσ q̂µρνσ − q̂µνρσ q̂µνρσ + (q̂µρν

ρ + q̂νρµ
ρ)q̂µσν

σ
)

. (32)

All of the derivative factors ∂µ from (26) are replaced with momenta ∂µ → ipµ. The
plus and minus signs indicate the different dispersion relations for each propagating mode,
in vacuum (birefringence). Note that the dispersion and birefringence effects depend on
the arrival direction of the plane wave p̂, revealing this to be a fundamentally anisotropic
effect that differs from kinematical isotropic descriptions of symmetry breaking [79].

2.2.3. Gravitational Wave Signals

Since the terms involving the coefficients in (30) are already at the leading order, they
can be evaluated with the zeroth-order solution (e.g., pµ = ω(1, p̂) = |~p|(1, p̂)). This
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reveals that any effects associated with arriving plane waves should depend on angular
functions of the unit vector p̂. Further, since LIGO-Virgo analysis uses angular sky map
coordinate systems, it is advantageous to use the machinery of spherical harmonics and
spherical tensors. We can decompose the above coefficients into a spherical harmonic form,

ζ0 = ∑
djm

ωd−4 Yjm(n̂) k
(d)
(I)jm

, (33)

ζ1 ∓ i ζ2 = ∑
djm

ωd−4
±4Yjm(n̂)

(

k
(d)
(E)jm

± ik
(d)
(B)jm

)

, (34)

ζ3 = ∑
djm

ωd−4 Yjm(n̂) k
(d)
(V)jm

. (35)

In these expressions, Yjm(n̂) are the usual spherical harmonics with n̂ = − p̂, while

±4Yjm(n̂) are spin-weighted spherical harmonics. The coefficients, formerly in Cartesian

tensor form in (30), are expressed in spherical form k
(d)
(I)jm

, k
(d)
(E)jm

, k
(d)
(B)jm

, and k
(d)
(V)jm

, where

j = 0, 1, . . ., d − 2 and −j ≤ m ≤ j. The meaning of the subscripts I, E, B, V and the relation
between the two forms of the coefficients are determined by whether the terms are CPT
odd or even and by which mass dimensions they encompass, detailed in Refs. [14,73,80].

In GR, there is no difference in the speed between gravitational wave polarizations;
both travel at the speed of light (i.e., v = ω/|~p| = 1). In the case of a Lorentz violation in
the form in (30), the speed of the waves is given by

v = 1 − ζ0 ± |~ζ|. (36)

Given enough propagation distance from source to detector, a difference in arrival
times may be detectable even for a small Lorentz violation, a feature that has been used for
photon tests of Lorentz invariance [81–87]. Using LVC data, we can test for these effects by
looking for a phase deviation from GR via polarization comparisons. If Lorentz violation
effects are not resolvable given the current precision, we can then provide constraints for
the LV coefficients.

Modifications in the analysis code use the expressions for the gravitatonal wave strain
polarizations. The plane wave solutions will have a phase shift δψ± due to terms in (36)
or (30). Consider first the strain

h ∼ e−i(ωt−kl) (37)

where l is the distance travelled, and k is the wave number. The difference in phase
grows in magnitude as the gravitational wave travels from the source to the detectors.
On cosmological scales, it is important to include effects on propagation time from the
expanding universe using luminosity distance. Noting k ∼ |~p| = ω/v, inputting (36),
and including distance and frequency alterations form cosmology, one finds the phase
shift expression

δψ± = ωobs

∫ z

0
dz′ (−ζ0±|~ζ|)

H(z′) , (38)

where H(z) is the Hubble parameter with redshift z, and the observed frequency is related
to that emitted via ωobs(1 + z) = ωemit.

For each mode, the modified phase shift can be written as

δψ± = −δ ± β, (39)
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where

δ = ωd−3τζ(d)0,

β = ωd−3τ|~ζ(d)|,

τ =
∫ z

0
dz

(1 + z)d−4

H(z)
(40)

and |~ζ| = ωd−4|~ζ(d)| and ζ0 = ωd−4ζ(d)0. The τ is the effective propagation time due to
cosmological redshift z.

It is useful to rewrite the coefficients in terms of effective angles ϑ and ϕ defined by

sin ϑ = |ζ1∓iζ2|
|~ζ| , cos ϑ = ζ3

|~ζ| , e∓iϕ = ζ1∓iζ2√
(ζ1)2+(ζ2)2

. (41)

Note that these angles are not the sky location angles θ and φ. Using the plus and
cross polarizations (3) in addition, the modified gravitational wave solutions in terms of
the Lorentz-invariant solutions can be written

h(+) = eiδ(cos β − i sin ϑ cos ϕ sin β) hLI
(+)

−eiδ sin β(cos ϑ + i sin ϑ sin ϕ) hLI
(×)

h(×) = eiδ(cos β + i sin ϑ cos ϕ sin β) hLI
(×)

+eiδ sin β(cos ϑ − i sin ϑ sin ϕ) hLI
(+). (42)

The hLI
(+,×) are the Lorentz-invariant gravitational wave for standard GR; one can

retrieve GR as a limiting case as β → 0 and δ → 0.
The measured signal at a given detector can be obtained from an equation of the

form (4). It is standard in the literature to adopt a Sun-centered Celestial-Equatorial co-
ordinate system (or SCF frame) for reporting measurements of the components of the
coefficients for Lorentz violation either in the form sTXY..., . . . or in spherical tensor form

k
(d)
(I)10

, . . . [6]. Under observer coordinate transformations, the coefficients transform as

tensors. In many cases, these transformations can be implemented as global Lorentz trans-
formations on the coefficients. In the present case, we want to ensure the coefficients in
the expression for the measured strain are all expressed in terms of the SCF coefficients,
thereby leaving any angular, sky location dependence in the relevant angular variables.
Thus, when analyzing data, the signal generically will have extra angular, isotropy-breaking
dependence on the sky angles. This will differ significantly from the GR case.

2.3. Unit Changes and Dimension

For applications below, it becomes essential to convert from natural units to SI units
when implementing modifications into the analysis code. We note here several useful unit
substitutions that can used for this and various key equations discussed previously.

Recall natural units are based on h̄ = c = 1. In these units, quantities can have
dimensions of energy, typically expressed in terms of electron volts, as GeV= 109 eV,
for example. For instance, mass dimension d coefficients for Lorentz violation have units
of M4−d. To convert various quantities to SI units, we assume that the starting action has
units of joules meters Jm.2 For instance, the full Einstein Hilbert action in SI units can be
written as

IEH = c4

16πG

∫

d4x
√

−gR, (43)

or, for the quadratic action limit of Equation (18), simply multiply by c4. Units of kg m s−2

come from the factor c4

G , m4 comes from d4x, and m−2 comes from the derivatives
contained within the Einstein tensor. Implicit here is the assumption that the metric
tensor gµν is dimensionless (the Minkowski metric retains its form ηµν = diag(−1, 1, 1, 1)).



Universe 2021, 7, 380 10 of 18

Likewise, the Lorentz-violating action (19) contains operators with SI units m−2; thus,
from (20), when introducing higher derivatives, the units of the coefficients compensate, so
the coefficients have units md−4.

When converting the field Equation (28) from position to momentum space, every
partial derivative contributes a factor with Planck’s constant, i.e., ∂α → i

h̄ pα. Schematically,
the position space equation has the form

∂∂ h + s(4) ∂∂ h + q(5) ∂∂∂ h + . . . = 0, (44)

where, e.g., for d = 4 a term involving the ŝ operators contains coefficients for s(4) coupled
to two derivatives that act on h. In momentum space,

( i
h̄ )

2 pp h + ( i
h̄ )

2s(4) pp h + ( i
h̄ )

3q(5) ppp h + . . . = 0, (45)

where the operators ŝ, q̂, and k̂ now contain ( i
h̄ )

(d−2) pα1
. . .pαd−2

in the place of partials.

The units for the coefficients are unchanged, i.e., md−4.
One must also keep track of the corrected time-component factors in the four momenta,

pα = (− h̄
c ω, ~p). For instance, the wave speed, via the dispersion relation, becomes

v± = h̄ ω/|~p| = c
(

1 + c2(−ζ0 ± |~ζ| )
)

(46)

where each ζ quantity in (32) inherits a factor of ( h̄
c )

2. To ensure the coefficients, k
(d)
(I)jm

,

k
(d)
(E)jm

, k
(d)
(B)jm

, and k
(d)
(V)jm

have SI units of md−4, we redefine Equations (33)–(35) by imple-

menting a factor of c(2−d), e.g.,

ζ0 = c(2−d) ∑
djm

ωd−4 Yjm(n̂) k
(d)
(I)jm

, (47)

with similar SI factors for ζ1, ζ2, and ζ3.

3. Analysis Method

The coefficients for Lorentz and CPT violation can be measured from the comparison of
the speed of gravitational and electromagnetic waves, an analysis that has been performed
with gravitational-wave event GW170817 and the associated counterpart gamma-ray
burst (GRB) GRB170817A to constrain coefficients of mass dimension 4 with improved
accuracy [47]. Using GW signals only, limits on the mass dimension 5 and 6 coefficients
have been obtained from the non-observation of a delay between the arrival time of the h+
and h× polarizations in the LIGO and Virgo interferometers [14,49,50].

The constraints on the birefringence parameters are obtained from the posterior sam-
ples inferred under the assumption of no symmetry breaking and are limited by the detector
resolution to determine the waveform peak frequency, focusing on information from sig-
nals at higher frequencies. We aim to complement prior work by directly analyzing the
LVC interferometers strain in order to bypass the reliance on posterior parameters inferred
under a GR model. Our analysis therefore fully takes into account the correlation between
the SME coefficients and the source parameters, including dispersion or birefringence
effects, during the inference process.

We have implemented the modification of the GW strain obtained in (42) to estimate
the coefficients for symmetry-breaking from the morphology of the signals. As the disper-
sive and birefringent effects are degenerate with the source properties (e.g., the luminosity
distance, due to the additional energy loss during the propagation), we performed a joint
estimation of the source parameters and the coefficients for Lorentz and CPT violation tak-
ing into account the modifications at all frequencies of the waveform. We implemented the
Bayesian analysis into a version of the LIGO Algorithm Library suite LALSuite modified
for our purposes as described below [52].
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3.1. Implementation of the Modified Waveform

The joint measurement of source and beyond-GR constraints have been performed for
a variety of new physics parameterizations, including modifications of the GW generation
and propagation [4]. Following a similar methodology, we implemented the modifications
of the GW signals derived from the SME framework in the GW simulation package of
LALSuite. Such deformations can be anisotropic, as can be inferred from the appearance of n̂
in Equation (42) via β and δ. Here we focus on the simplest coefficients that produce dispersion
and birefringence via Lorentz and CPT violating effects, i.e., those of mass dimension 5.
These coefficients are contained within β in (42) and obey the complex conjugate relation

k
(d)∗
jm = (−1)mk

(d)
j(−m)

, for j = 0, 1, 2, 3, −j ≤ m ≤ j. There are a priori independent coefficients

in this set of terms [26]. We display the first terms within β in SI units:

β(5) = ω2τ(5)

2
√

πc

∣

∣k
(5)
(V)00

−
√

3
2 sin θ

(

eiφ k
(5)
(V)11

+ e−iφ k
(5)∗
(V)11

)

+
√

3 cos θ k
(5)
(V)10

+ . . .
∣

∣. (48)

where the sky location of the source (θ, φ) appears. The coefficients are taken as expressed
in the SCF in this expression.

The general form of the signal observed in the interferometer is:

SA = F(+)h(+) + F(×)h(×), (49)

where h(+,×) are the expressions (42), and F(+,×) are the (standard) detector response
functions. The expressions for F(+,×) include the rotation angles relating different frames,
e.g., the merger frame and the detectors frame as defined in the LALSuite software.

The effective propagation time τ parameter of Equation (48) is defined in Equation (40)
as an integral function of the redshift. Since it needs to be evaluated for every value of
the SME coefficients being tested, for computing time feasibility, we instead probe the

effective coefficient (k
(5)
(V)jm

)e f f = τ k
(5)
(V)jm

. The value of the SME coefficient is recovered

after convergence of the inference process, further described in the following section.
Finally, we note that transformations of the coefficients under observer boosts are also

computable. This would be important should it become necessary to include the motion of
the Earth, the interferometers, or the motion of a source system’s center of mass, relative
to the SCF. Currently, it appears the strain measurements are not sensitive to this level of
nonrelativistic boosts (e.g., v/c = 10−4).

3.2. Bayesian Analysis

After implementing the modification of the strain, we included the SME coefficients
in LALInference, the parameter estimation package of LALSuite [88]. LALInference per-
forms Bayesian inference of the posterior probability of the GW source parameters with
the inclusion of the systematic uncertainties due to the detectors resolutions. The vector set
of GR prior parameters,~θGR, includes intrinsic parameters describing the binary system
(e.g., the black holes masses and spins) as well as extrinsic parameters placing it in the
astrophysical environment (e.g., the sky location, distance, and inclination). We add to

the preexisting parameters the SME coefficients (k
(5)
(V)jm

)e f f described in Section 3.1 for the

mass dimension 5 case, contained within~θSME.
In order to include the correlation between the GR parameters and the SME coef-

ficients, we perform a simultaneous inference of all the parameters, obtaining the joint
posterior probability:

P(~θGR,~θSME|d, I) = P(d|~θGR ,~θSME ,I) P(~θGR ,~θSME |I)
P(d|I) , (50)

where P(~θGR,~θSME|d, I) is the posterior probability, P(d|~θGR,~θSME, I) the likelihood,
P(~θGR,~θSME|I) the prior probability, and P(d|I) the evidence, and any pertinent back-
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ground information is included in I. We set a flat prior probability for (k
(5)
(V)jm

)e f f bounded

between |(k(5)
(V)jm

)e f f | ∈ [0; 10−10], with a maximal value well above the existing constraints

on the order of 10−15 [49]. The likelihood is computed in the frequency domain:

P(d|~θGR,~θSME, I) = exp ∑
i

[

− 2|h̃i(~θGR ,~θSME)−d̃i |2
TSn( fi)

− 1
2 log

(

πTSn( fi)
2

)]

, (51)

where h̃i is the frequency-domain template signal, d̃i represents the data observed by the
interferometers, T is the duration of the signal, and Sn is the power spectral density of the
detector noise.

Due to the large number of parameters describing the GW emitted by the coalescence
of binary systems, the posterior probability is inferred with Markov Chain (MC) methods.
The chains perform semi-random walks in the parameter space where the recorded steps
of the walks are proportional to the quantity in Equation (50). Different algorithms have
been shown to be able to perform parameter inference, of which Markov Chain Monte-
Carlo (MCMC) with parallel tempering and nested sampling are implemented in the LVC
algorithm library. The method returns joint posterior probabilities of the GR parameters
and the SME coefficients. From this, we extract the marginalized posterior probability on
a subset of parameters by integrating it over the distribution of the other variables. The
credible intervals are finally obtained by summing the volume of the posterior probability
corresponding to the desired fraction of confidence. We present the results of Bayesian
inference on simulated signals in Section 4 and will provide the results of the ongoing
analysis of LVC detections in a separate publication.

4. Sensitivity Study

As an illustration, we assume, for the following, one non-zero coefficient k
(5)
(V)00

corre-

sponding to isotropic polarization-dependent dispersion. Figure 1 plots the waveforms

for both GR and the modified wave form for different values of k
(d)
(V)00

. We assume a

non-spinning binary system that has a luminosity distance of 4 Gpc, and equal masses
of m1 = m2 = 50M⊙. Note that significant differences in the waveform shape occur for
coefficient values as small as 10−13 m, impacting both the amplitude and frequency of the
signal. This result can be compared with simulations using analytical template models
presented in Ref. [26]. In the latter publication in Figures 1 and 2, simulated waveforms
with non-zero coefficients for Lorentz and CPT violation appear to modify the waveform
mostly around peak amplitude times, whereas the simulations here in Figure 1 show
modification at earlier times.

Using the methodology outlined in Section 3.1, we performed a Bayesian inference of
the source parameters and the coefficients for Lorentz-violation with simulated dispersed
signals in order to study the potential to measure the coefficients with the LVC detections.
We simulated a GW emitted by a non-spinning binary system of black holes with symmetric
masses of 50M⊙ located at 5 Gpc where the dispersion is controlled by one coefficient set

to a value of k
(d)
(V)00

= 10−14. Figure 2 shows the posterior probability on the luminosity

distance and the coefficient, where both are recovered around the simulated values. The 1σ

credible interval shows a constraint on k
(d)
(V)00

where the zero value is excluded, showing

that the coefficient can be measured with a single event provided that it is relatively

large. The k
(d)
(V)00

posterior probability density marginalized over the source and systematic

uncertainties is shown in the violin plot.





Universe 2021, 7, 380 14 of 18

explored in [3], showing that those systematic uncertainties do not lead to a large bias nor a
re-estimation of the constraints at the current detector sensitivity. Other studies show that
transient noise may impact the measurement [90] by mimicking a GR deviation, an effect
that we palliate by using the LVC-released power spectral densities and frequency ranges
that exclude the presence of glitches in the strain data.

5. Conclusions and Future Work

We described the implementation of an effective field theory framework for testing
Lorentz and CPT symmetry into a version of the LIGO-Virgo Algorithm Library suite
LALSuite. The Lorentz- and CPT-violating modifications include the coefficients controlling
birefringence and dispersion effects on the gravitational wave polarizations. This work
does not rely on posterior results inferred by the LVC that assume no deviations from
standard GR; we implemented the modifications due to dispersion directly at the level of
the templates used for the Bayesian inference of the GW source and propagation parameters
in order to incorporate the full information provided by the signal morphology.

Initially, one starts with the action in the effective field theory framework that is
quadratic in the metric fluctuations hµν, (19), and after theoretical constraints including
gauge invariance, we arrive at the general result in (27). From the field Equation (28), a
dispersion relation is derived, both in terms of the coefficients from the Lagrange den-
sity (30) and in terms of spherical coefficients in a special observer frame (33)–(35). The
result shows birefringence and dispersion for the two propagating modes; moreover, these
effects will vary with the sky location of the source. Thus, considering the expression for
propagating and applying a modified phase shift, including cosmological considerations,
one can rewrite the expressions for the plus and cross polarizations (42), which are directly
implemented within the modified package. Through Bayesian inference, we can perform
a parameter estimation to constrain the coefficients for Lorentz violation Samples of visible
effects are shown in the sensitivity plots in Section 4.

The theoretical derivations and sensitivity studies presented in this article precede
the measurement of SME coefficients with the events detected by the LVC. This compu-
tationally intensive analysis is currently ongoing, and the results will be reported in a
future publication, where we aim to complete our analysis for coefficients for Lorentz and
CPT violation of mass dimension 5 and 6, with a global analysis. In a global analysis,
the availability of what is now a plethora of GW sources across the sky has the potential to
disentangle measurements for a large set of coefficients and thereby obtain an exhaustive
search for signals of new physics.
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Notes

1 A discussion of the SME framework, including the fluctuations more generally, can be found in Refs. [77,78].
2 Alternatively one can choose Js to match classical mechanics.
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