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Abstract 

 The study of thermal convection in porous media is of both fundamental and practical 

interest. Typically, numerical studies have relied on the volume-averaged Darcy–Oberbeck–

Boussinesq (DOB) equations, where convection dynamics are assumed to be controlled solely by 

the Rayleigh number (Ra). Nusselt numbers (Nu) from these models predict Nu-Ra scaling 

exponents of 0.9-0.95. However, experiments and direct numerical simulations (DNS) have 

suggested scaling exponents as low as 0.319. Recent findings for solutal convection between DNS 

and DOB models have demonstrated that the “pore scale parameters” not captured by the DOB 

equations greatly influence convection. Thermal convection also has the additional complication 

of different thermal transport properties (e.g., solid-to-fluid thermal conductivity ratio ks/kf and 

heat capacity ratio σ) in different phases. Thus, in this work we compare results for thermal 

convection from the DNS and DOB equations. On the effects of pore size, DNS results show that 

Nu increases as pore size decreases. Mega-plumes are also found to be more frequent and smaller 

for reduced pore sizes. On the effects of conjugate heat transfer, two groups of cases (Group 1 with 

varying ks/kf at σ = 1 and Group 2 with varying σ at ks/kf = 1) are examined to compare the Nu-Ra 

relations at different porosity (ϕ) and ks/kf and σ values. Furthermore, we report that the boundary 

layer thickness is determined by the pore size in DNS results, while by both the Rayleigh number 

and the effective heat capacity ratio, ( )1   = + − , in the DOB model.  

Key words: convection in porous media, plumes/thermals, buoyant boundary layers 

I. Introduction 

 Thermally driven convection is ubiquitous in nature and industrial processes. Rayleigh–

Bénard convection (RBC) is a classical paradigm to study such phenomenon, in which buoyancy-
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driven flow is induced in a pure fluid layer due to heating from below and cooling from above. 

RBC has been studied extensively in past decades (Ahlers, Grossmann, & Lohse 2009; Chillà & 

Schumacher 2012; Lohse & Xia 2010; Siggia 1994) due to the omnipresence of buoyancy-driven 

convection in nature and technology. Two dimensionless parameters are standardly used to 

characterize RBC: (i) pure-fluid Rayleigh number (Raf) which describes the ratio of buoyant to 

viscous forces and (ii) Prandtl number (Pr) which is the ratio of momentum and thermal diffusivity. 

A third parameter, Γ, defines the aspect ratio of the convection cell. The main response of the 

system is the fluidic Nusselt number (Nuf), which describes the efficiency of heat transfer and is 

defined as the ratio of the total heat transfer rate (conduction and convection) to the conductive 

heat transfer rate at a wall surface. For very high Rayleigh numbers, there exists an asymptotic 

regime, where the relationship between Raf and Nuf can typically be described through a constant 

power law. Considerable literature has been devoted to studying this regime, including several 

numerical (Iyer et al. 2020; Li et al. 2021; Toppaladoddi, Succi, & Wettlaufer 2017; Zhu et al. 

2017, 2018) and experimental (He et al. 2012b, 2012a; Niemela et al. 2000; Roche et al. 2001; 

Tummers & Steunebrink 2019; Zhang et al. 2018) studies. 

 The analogous problem of thermally (also solutally) driven convection in porous media has 

begun to receive increasing attention due to its prevalence in assorted domains. Some well-known 

examples include heat transfer in volcanic rock systems (Ratouis & Zarrouk 2016), subseafloor 

thermohaline convection (Wilson & Ruppel 2007), sequestration of carbon dioxide (Cinar, Riaz, 

& Tchelepi 2009; De Paoli, Zonta, & Soldati 2016; Hassanzadeh, Pooladi-Darvish, & Keith 2012), 

and hydrothermal convection needed for extraction of geothermal energy (Gasparini & Mantovani 

1984). Several experimental, analytical, and numerical studies (Hewitt 2020; Hewitt, Neufeld, & 

Lister 2012, 2013, 2014; Jonsson & Catton 1985; Keene & Goldstein 2015; Kladias & Prasad 

1991; Liang et al. 2018; Liu et al. 2020; Otero et al. 2004; Wen, Corson, & Chini 2015) have been 

devoted to characterizing the corresponding convective behavior and its governing parameters. 

Like that of RBC, a Rayleigh-Darcy number, commonly referred to as just the Rayleigh number 

(Ra), is typically used instead as the governing parameter and studied in relation to a porous 

medium Nusselt (Nu) number. Conventionally, five regimes have been used to describe this type 

of convection as a function of Ra (Nield & Bejan 2017): 

I. the conduction-only regime [0 ≤ Ra ≤ 4π2]; 

II. the steady state regime [4π2 ≤ Ra ≤350];  
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III. the quasi-periodic regime [350 ≤ Ra ≤ 1300]; 

IV. the high Rayleigh regime [1300 ≤ Ra ≤ 10 000], a turbulent regime that lacks large 

coherent structures; and 

V. the ultimate Rayleigh regime [Ra > 10 000], similar to the high Rayleigh regime but 

differing in that the inner flow field becomes self-organized with an interior mega-

plume region separated by thin micro-plumic regions close to the bounding wall. 

 Experiments by Keene and Goldstein (Keene & Goldstein 2015) and Kladias and Prasad 

(Kladias & Prasad 1991) have further shown that a constant power law regime is present in porous 

convection at very high Ra, suggesting that the presence of the solid phase appears to be nullified. 

Various authors have suggested power law relationships between Nu and Ra in the form 

bNu Ra for this regime, where b is a constant scaling exponent. Based on experiments with 

compressed argon and polypropylene spheres, Keene and Goldstein proposed b = 0.319 for Ra > 

7470. Lister (Lister 1990) studied convection with water and carbon fibers, suggesting a scaling 

exponent of 0.33 for high Ra. Davidson et al. (Davidson, Kulacki, & Savela 2009) performed 

experiments on a water-saturated carbon foam. They also included the Prandtl number and the 

ratio of effective-to-fluid thermal conductivity, km/kf, in their Nu-Ra relation as 

( )( )
0.25 0.04

0.50 0.02 0.38 0.040.008 0.003 Prm fNu k k Ra


 =  .  It is also pointed out that the magnitude 

of Nu from the above-mentioned experiments have been quite scattered, varying up to an order of 

magnitude at some Rayleigh numbers.  

 Up to this point, theoretical and numerical studies for porous media convection have 

largely relied on macroscopic models; in particular, the Darcy–Oberbeck–Boussinesq (DOB) 

equations (Nield & Bejan 2017) have been widely adopted for both thermal and solutal convection. 

In contrast to experimental studies, Nu-Ra relations obtained from these macroscopic models 

predict much higher scaling exponents in the range of 0.9-0.95. Otero et al. (Otero et al. 2004) 

used the DOB equations to develop a fit of 0.90Nu Ra . Hewitt et al. (Hewitt et al. 2012) 

performed simulations based on the DOB equations up to Ra = 50 000. They recommended b = 

0.95 as a scaling exponent. Using the same formulation, Kränzien and Jin (Kränzien & Jin 2018) 

found that a simple linear fit may be more appropriate as 0.076 0.935Nu Ra= + . While sparse, 

some authors have studied thermal and solutal convection in the presence of a porous medium with 

pore-resolved direct numerical simulations (DNS). Liu et al. (Liu et al. 2020) recently performed 

a two-dimensional (2D) DNS of thermal convection in a square domain with circular objects. They 



4 

 

showed that the relationship between Nu and the porosity ϕ was non-monotonic due to the interplay 

of two competing forces: an increase in heat transfer due to the flow coherence vs. an increase in 

flow impedance with the addition of the solid array. They also demonstrated asymptotic behavior 

of Nu at high Ra numbers, suggesting a relation based on the unconfined fluid Rayleigh and 

Nusselt number:
0.30

f fNu Ra . Their results presented on the Nu-Ra scale matched well with the b 

= 0.319 scaling coefficient by Keene and Goldstein (Keene & Goldstein 2015), however, the 

magnitude of Nu did not show as large of a variance as demonstrated by experiments. A possible 

reason for this is that Liu et al. only considered a special case with solid-to-fluid thermal 

conductivity ratio ks/kf = 1, while in the experiments in (Keene & Goldstein 2015; Kladias & Prasad 

1991) it ranged from ~0.33 up to ~321.  

 A few authors have also directly compared pore-resolved DNS to results obtained from the 

DOB equations. Karani and Huber (Karani & Huber 2017) performed such a comparison for heat 

transfer at low Rayleigh numbers (Ra < 200), finding that the DOB equations were not able to 

capture the onset of convection when ks/kf ≠ 1. Gasow et al. (Gasow et al. 2020) recently performed 

a numerical comparison between the DOB equations and pore-resolved DNS for mass transfer. 

They found that the boundary layer thickness was determined by the pore size instead of the 

Rayleigh number, and that DNS results predicted a non-linear scaling between the Sherwood and 

Rayleigh number (analogous to Nu-Ra for heat transfer). They concluded that “pore-scale 

parameters” not captured in the DOB equations played a large role in the convection dynamics, 

thus suggesting the need for an extension or improvement of the standard DOB equations. While 

focused on mass transfer, Gasow et al. noted that similar investigation is needed for heat transfer 

due to the addition of conjugate heat transfer between fluid and solid phases, which was absent in 

their study. To the best of our knowledge, a comparison of DOB simulations and DNS for thermal 

convection in porous media with differing thermal transport properties in each phase for high Ra 

(above 200) has not been performed. With the large variation in results obtained with the DOB 

equations and those from pore-resolved simulations and experiments, two questions arise:  

(1) Under what range of conditions are the assumptions used in deriving the DOB equations 

valid for thermal convection? and  

(2) To what extent do conjugate heat transfer and pore size affect the dynamics of thermal 

convection at higher Ra?  
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Thus, the objective of this study is aiming at answering these questions by performing pore-

resolved DNS on a simplified 2D domain and comparing to results from corresponding DOB 

simulations. We exclusively use the lattice Boltzmann method (LBM) for all simulations, 

considering Rayleigh numbers up to 50 000.  

 It is noted that while an actual physical system is in fact three-dimensional (3D), due to the 

requirement of high resolution and the need to study a wide range of parameters, we employ a 

simplified 2D configuration. A detailed investigation by van der Poel et al. (Poel, Stevens, & Lohse 

2013) for RBC found that 2D and 3D simulations predicted similar Nusselt numbers for high Pr. 

Hewitt et al. (Hewitt et al. 2014) also performed 3D simulations using the DOB equations, finding 

that Nu was ~40% larger at high Ra in 3D when compared to 2D results. Nonetheless, the scaling 

coefficient that best fit 3D data was reported as 0.94, compared to 0.95 from 2D simulations 

performed by the same group. While some discrepancy is expected between 2D and 3D results, 

we expect the dynamics observed in 2D simulations to be comparable and conclusions made 

regarding the comparison of DNS and DOB simulations to be valid for 3D cases. 

 The remainder of this paper is organized as follows. The mathematical formulation for both 

pore-resolved and macroscopic models are described in detail in Section II, and the corresponding 

numerical methods in Section III. The validation of the numerical models is shown in Section IV. 

We then present the simulation results in Section V, focusing on the effects of pore size, conjugate 

heat transfer, and porosity on the plume dynamics, flow structure, Nu-Ra relations, and boundary 

layer thickness. We summarize our findings and discuss future work in Section VI. And Appendix 

A and Appendix B provide additional information on numerical validation and instantaneous 

temperature fields, respectively, while the Supplementary materials provide the links to the videos 

showing the evolution of the temperature fields from the specified initial conditions to statistically 

steady states for both representative DOB and DNS results. 

II. Mathematical formulation 

A. Pore scale DNS 

 We consider a 2D fluid saturated porous medium with square solid blocks as shown in 

Figure 1. The enclosure has an aspect ratio, Γ, of 2 where Γ = Length(L)/Height(H). The 

dimensions of the blocks are d×d and the representative elementary volume (REV) has size m×m. 

The porosity of the domain, ϕ, is uniquely determined by the ratio d/m as 
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2

1
d

m


 
= −  

 
 (1) 

For this work, we consider three REV sizes as H/m = 10, 25, and 50. It is pointed out that varying 

H/m (at a fixed ϕ) is representative of varying the pore size within the medium (Gasow et al. 2020). 

The Boussinesq fluid is heated from below and cooled from above with temperatures T0 and T1 at 

the bottom and top walls, respectively. Periodic boundary conditions are employed on the vertical 

sides for both the flow and thermal field, and no-slip boundary conditions are imposed on all solid 

surfaces. Conjugate heat transfer is considered at the fluid-solid interface of the square blocks as 

 f sT T=  (2) 

 ( ) ( )· ·
f s

Tk k T = n n  (3) 

where T is the temperature, k the thermal conductivity, the f and s subscripts denote the fluid and 

solid phases, respectively, and n is the unit normal vector to the fluid-solid interface. 

 

Figure 1: Schematic of porous domain used in direct numerical simulations. 

 For the fluid phase, the governing equations for DNS are the Navier-Stokes equations 

(using the Boussinesq approximation) and the energy equation: 

 0 =u  (4) 

 ( ) ( ) ( ) ( )21
t f refP T T 


 +  = −  +  + −u u u u g  (5) 
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 ( ) ( ) ( ) ( )p pf ft f f f fT T kc c T   +  =   
 

u  (6) 

where u is the velocity vector, ρ the density, P the pressure, ν the kinematic viscosity, g the 

gravitational vector, β the thermal expansion coefficient, Tref a reference temperature taken as Tref 

= (T0 + T1)/2, and cp the specific heat. For the solid phase, the energy equation reduces to  

 ( ) ( ) ( )s sp t ss
T k Tc  =   (7) 

 Using the reference length H, reference velocity uref = gβΔTK/ν, reference time tref = H/uref, 

and characteristic temperature difference ΔT = T0 - T1 Eqns. (4-7) can be written in dimensionless 

form as 

 0 =u  (8) 

 ( ) ( ) ( )2

2

Pr Pr
it

f f

P z T
Ra Da Ra Da

 +  = − +  +u u u u  (9) 

 ( ) ( ) ( )21
f f ft

f

T T T
Ra Da

 +  = u  (10) 

 ( ) ( )2

s st

f

T T
Ra Da


 =   (11) 

where  ͂  denotes a dimensionless value, H =  , /T T T=  , and the following dimensionless 

variables are defined: 

 
( )
( )

3

2
Pr ,  ,  ,

       , , and

f

f

f f f p

p s s s

f fp f

H Tg K k
Ra Da

H c

c k

kc

 


   

 
  




= = = =

= = =

 (12) 

where Pr is the Prandtl number, Raf the Rayleigh number for unconfined fluid flow, Da the Darcy 

number, K the permeability, σ the heat capacity ratio, and γ the thermal diffusivity ratio. It should 

be noted that while only γ is present in the governing equations (8-11), the conductivity ratio ks/kf 

shows up in the conjugate conditions (Eqs. (2-3)). We define the Nusselt number as the ratio of 

total heat transfer rate (convective and conductive), Q̇total, to purely conductive heat transfer rate, 

Q̇cond, at statistically steady state on the wall as 
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0f

w
total

cond

w

Ra

T
dA

Q y
Nu

Q T

y

k

k dA

=




= =

 
 
 
 





 (13) 

where the subscript w represents either the top or bottom wall and the ͞    symbol denotes the time-

averaged value.  

B. Continuum scale DOB equations 

 For the continuum scale, we begin with volume-averaging of Eqs. (4) and (5) following 

the “Brinkman-Forchheimer” equation in (Nield & Bejan 2017) for an incompressible fluid with 

the buoyancy force represented by the Boussinesq approximation: 

 ( ) 0  =u  (14) 

( ) ( )

( ) ( )
2 3

2                          

t

f F
f ref

c
P T T

K K

  

   
    

 +  +  =

− +  + − − −

u uu u u

u g u u u
 (15) 

 The last two terms in Eq. (15) denote the Darcy and Forchheimer drag components and 

( )  uu denotes the momentum dispersion. The drag terms appear from the volume-averaging 

process (de Lemos 2012) and represent the total drag force per unit volume due to the existence of 

the porous medium. The <∙> symbol represents volume-averaged quantities and the  ̌  symbol 

denotes the fluctuating fields with respect to the averaged value of the local field for the fluid phase 

(Gasow et al. 2020; Karani et al. 2017). It is noted here that the above is equivalent to the 

formulation in (Gasow et al. 2020). Under the assumption of local thermal equilibrium, the 

volume-averaged energy balance equation becomes 

 ( ) ( ) ( ) ( ) ( ) ( ) 2

p p pf

f

t mm f
T T T kc Tc c    +   +   = u u  (16) 

where km is an effective thermal conductivity, (ρcp)m is the overall specific heat capacity with 

( ) ( ) ( )( )1p p pm f s
c c c    = + − , and ( ) ( )f

f

p Tc    u  is the thermal dispersion term 

(Gasow et al. 2020; Karani et al. 2017). The 
f

 operator (with superscript f) denotes volume-
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averaging over only the fluid phase. Assuming that thermal dispersion and momentum dispersion 

are negligible and introducing the additional dimensionless variables 

 
( )
( )

( ) ,  ,   1
pm m

f m f p f

cH TgK
Ra

c


    

   


= = = = + − , (17) 

Eqs. (14-16) can be rewritten as 

 ˆ ˆ 0 =u  (18) 

 ( ) ( ) ( )2

ˆ

1 Pr Pr Prˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆF
it

c
P Tz

Ra RaDa RaDa Da

  
 

   
 +  = −  +  + − −u u u u u u u  (19) 

 ( ) ( )2

ˆ

ˆˆ 1ˆ ˆ ˆ ˆ
t

T
T T

Ra

 
 +  =  

 

u
 (20) 

where fRa Ra Da =  is the Rayleigh number for the porous medium, ( )m m p m
k c =  the 

effective thermal diffusivity, ζ the ratio between αm and αf,  the ratio between the overall heat 

capacity and that of the fluid, and zi is the ith component of the unit vector in the gravity direction. 

The symbol ^ represents dimensionless volume-averaged quantities and ˆ =u u is the superficial 

velocity (also called Darcy velocity). With the assumption that Da << 1, the DOB equations are 

obtained: 

 ˆ ˆ 0 =u  (21) 

 ˆ ˆ ˆˆ
n iP z T = − +u  (22) 

 
2

ˆ

ˆˆ 1ˆ ˆ ˆ ˆ
t

T
T T

Ra

 
 +  =  

 

u
 (23) 

Where ˆ PrnP RaDa p =  is a normalized pressure. Equations (21-23) are the same as the 

traditional DOB equations used for macroscopic-level studies (Gasow et al. 2020; Hewitt 2020; 

Hewitt et al. 2012, 2013, 2014; Karani & Huber 2017; Kränzien & Jin 2018; Nield & Bejan 2017; 

Otero et al. 2004; Wen et al. 2015). 

 An important distinction on the definition of Ra and Eq. (23) is made here in comparison 

with previous studies for thermal convection. Some authors (Karani et al. 2017; Karani & Huber 
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2017; Le Reun & Hewitt 2021; Qiang et al. 2021) have posed the effective thermal diffusivity, 
m

, instead as ( )m p f
k c and introduced a modified dimensionless time t̂  . In doing so, Eq. (23) 

is instead re-written as 

 
( )

( )
( )

2 2
ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ
ˆ

f m

p f

T k
T T T

H TgK Ract

 

 


+  =  = 


u . (24) 

Following this modified formulation, one notices that the effects of the heat capacity ratio σ does 

not explicitly enter the statistically steady problem and the effect of different thermal transport 

properties enter through only the thermal conductivity ratio, ks/kf, in the Rayleigh number. To 

demonstrate the effects of both the heat capacity ratio and the thermal conductivity ratio in DOB 

simulations, we follow the formulation and definitions presented in Eqs. (17, 21-23). As such, the 

effects of conjugate heat transfer are considered through the effective thermal conductivity 
mk  in 

Ra and the heat capacity ratio σ in  .  

  It is also pointed out that in deriving Eqs. (21-23), additional assumptions were employed 

including that the thermal non-equilibrium between the two phases is small, and the terms on the 

order of O(1/Da) dominate in the momentum equation. Further implications of these will be 

discussed in the succeeding sections. To compare pore- to continuum-scale formulations, we 

define the following Nusselt number for DOB simulations following (Gasow et al., 2020) with Aw  

the wall surface area: 

 

ˆ

ˆw

w

T
dA

y
Nu

A




=


 (25) 

It should be noted that the Nu definitions in Eqs. (13) and (25) are equivalent and analogous to the 

Sherwood number definitions in previous DNS and DOB studies for mass transfer (Gasow et al., 

2020).  

III. Numerical method 

 In recent years, the lattice Boltzmann method has gained significant attention in simulating 

complex fluid flow and transport problems, largely due to its kinetic nature, simple 

implementation, ease of parallelization, and intrinsic relations between microscopic distribution 
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functions (DFs) and macroscopic properties (Aidun & Clausen 2010; Benzi, Succi, & Vergassola 

1992; Chen & Doolen 1998; He & Luo 1997; Li, Mei, & Klausner 2013; Li et al. 2014; Yoshida 

& Nagaoka 2010; Yu et al. 2003). With these inherent advantages and its mesoscopic basis, it is 

no surprise that the LBM has been widely used in the study of pore-scale dynamics. As such, we 

use the LBM in this work to solve both the DNS and DOB equations, implemented with in-house 

developed Fortran 90 code. 

A. LBM for pore scale DNS 

 In solving the pore scale equations, a 2D nine-velocity (D2Q9) multiple relaxation time 

(MRT) LBM model (Lallemand & Luo 2000; Yu et al. 2003) is used to solve the flow field, and 

a 2D five-velocity (D2Q5) MRT-LBM model (Li, Mei, & Klausner 2017; Yoshida & Nagaoka 

2010) is used to solve the temperature field. The LBM models are coupled through the Boussinesq 

force which is treated as a source term in the D2Q9 model. 

a. D2Q9 for fluid flow 

 For the incompressible flow at the pore scale, the LBM evolution scheme is taken as 

(Lallemand & Luo 2000; Yu et al. 2003)  

 ( ) ( ) ( )( )1 eq, , ,i i i i
i

f t t t f t t t  − + + = −  − +
 

x e x M S m m x F  (26) 

where fi(x, t) (i = 0 – 8) are the density distribution functions with a set of discrete velocity vectors 

ei at position x and time t, m are the velocity moments, meq are the corresponding equilibrium 

moments, and Fi is a force term that can be expressed as Fi = -3ωiρei∙ F/c2 (F = (Fx, Fy) is the force 

vector, ωi are lattice weights given by ω0 = 4/9, ω1-4 = 1/9, and ω5-8 = 1/36, and c = δx/δt is the unit 

of velocity with δx and δt being the lattice spacing and discrete time step, respectively) (Luo 1993). 

The force vector is related to the Boussinesq approximation as F = (0, gβ(T-Tref)).  M is a 9x9 

transformation matrix and S = MS̃M-1 = diag(s0, s1, …, s8) is a diagonal relaxation matrix (S̃ is the 

collision matrix and s0, s1, …, s8 are relaxation coefficients). The transformation matrix M linearly 

maps the distribution functions 
9f  =V= R9(velocity space) to their velocity moments 

9f  =M R9(moment space) by 

 
1,  −=  = m M f f M m , (27) 

where the nine velocity moments are given by 
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( )

( )

†

0 1 2 3 4 5 6 7 8

†

, , , , , , , ,

   , , , , , , , ,x x y y xx xy

m m m m m m m m m

e j q j q p p 

=

=

m
 (28) 

In the above, m0 is the fluid density, e is related to energy, ε is related to the energy squared, jx and 

jy are components of the momentum, qx and qy are related to the energy flux, and pxx and pxy are 

the symmetric and traceless components of the strain-rate tensor (Lallemand & Luo 2000; Yu et 

al. 2003). For efficient computation and storage, the LBM evolution equation (25) is solved in two 

steps: 

collision step: 

 ( ) ( ) ( )( )* 1 eq, , ,i i i
i

t t t t− = −  − +
 

f x f x M S m m x F  (29) 

and streaming step: 

 ( ) ( )*, ,i i it t t t + + =f x e f x  (30) 

where * denotes post-collision values. The macroscopic fluid density and velocity are thus related 

to the DFs by 

 ( )
8

0

,i

i

f t
=

= x  (31) 

 ( ) ( )
8

0

1
, ,

2
i i

i

t
f t t



 =

= +u e x F x . (32) 

The other details of the matrices M, S, and equilibrium moments m(eq) can be found in (Lallemand 

& Luo 2000; Yu et al. 2003). The bounding walls and solid block boundaries are specified halfway 

between the LBM nodes, thus a standard bounce-back scheme is used to implement the no-slip 

condition. 

b. D2Q5 for heat transfer 

  To apply the LBM to solve for the temperature field at the pore scale, Eqs. (10) and (11) 

can be rearranged to a standard convection-diffusion equation (CDE) in the form 

 ( ) ( )· · D G
t


 


+ =  +


u , (33) 

where θ is the macroscopic scalar variable of interest, such as temperature, D is the diffusion 

coefficient, and G represents any combination of source terms. The LBM evolution equation for 

the D2Q5 model is (Li et al. 2017; Yoshida & Nagaoka 2010) 



13 

 

 ( ) ( ) ( )( ) ( )* 1 eq, , , ,i i i i
i

h t t t h t t tG t  − + + = −  − +
 

x e x M S m m x x , (34) 

where hi(x, t) (i = 0 – 4) are microscopic distribution functions, the lattice weights are given by 

ω0=1/3 and ω1-4=1/6, and the matrix M maps the DFs to the moment space through m = M∙h and 

m(eq) = M∙h(eq). We choose the matrices as in (Yoshida & Nagaoka 2010) and the equilibrium 

moments can be explicitly obtained as in (Li et al. 2013, 2017). In using the LBM for Eqs. (10) 

and (11), the source term is set to G = 0. Using the set of distribution functions hi(x, t), the 

temperature is obtained from ( ) ( )
4

0

, ,i

i

t h t
=

=x x . The evolution equation is also computationally 

executed through a collision-streaming procedure: 

collision step: 

 ( ) ( ) ( )( ) ( )* 1 eq, , , ,i i i
i

h t h t t tG t− = −  − +
 

x x M S m m x x . (35) 

streaming step: 

 ( ) ( )*, ,i i ih t t t h t + + =x e x . (36) 

Implementation of the conjugate conditions and outer domain boundary conditions follow (Korba, 

Wang, & Li 2020; Li et al. 2013, 2014) for which the second-order accuracy is preserved for 

straight boundaries and interfaces. 

B. LBM for macroscale DOB equations 

a. Streamfunction formulation for fluid flow 

 Following (Gasow et al. 2020; Hewitt et al. 2012; Kränzien & Jin 2018), a streamfunction 

method (SFM) is used to solve the fluid flow in the DOB equations. The streamfunction, ψ, is 

related to the velocity field by 

 ( , ) ,x yu u
y x

   
= − 

  
. (37) 

Taking the curl of the momentum equation (22) with the above relation gives  

 
2

ˆ

ˆ

T

x



 = −


 (38) 

A diffusion coefficient, DSF, is introduced to solve Eq. (38) with the LBM as 

 
2

SF SFD G =  (39) 
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where 
ˆ

ˆ
SF SF

T
G D

x


= −


can be considered as a source term. It is pointed out that Eqn. (39) is in the 

form of a standard diffusion equation. 

b. D2Q5 for fluid flow and heat transfer 

 Equations (23) and (39) fit the general form of the CDE in Eq. (33), where the scalar of 

interest, θ, is either the temperature or the streamfunction. Introducing a set of DFs gi(x,t) to 

represent these macroscopic scale quantities, one can obtain the scalar of interest from 

( ) ( )
0

4

, , .
i

it g t
=

=x x                              (40) 

where the collision and streaming processes are respectively given by  

 ( ) ( ) ( )( ) ( )* 1 eq, , , ,i i i
i

g t t t tG t− = −  − +
 

x g x M S m m x x  (41) 

and 

 ( ) ( )*, ,i i ig t t t t + + =x e g x . (42) 

The matrices M, S, and m(eq) and the lattice weights are the same as in Section III-A-b. In solving 

the DOB equations, the energy equation is first advanced in time to update the thermal field. Then, 

Eqn. (39) is solved to update the streamfunction, ψ, where the source term in the LBM model is

ˆ

ˆ
SF

T
G D

x


= −


. Finally, the velocity is updated from the gradients of the streamfunction following 

Eq. (37). 

IV. Validation 

 In this section, the DNS-LBM and DOB-LBM models are implemented to reproduce 

results of natural convection from other numerical methods. Both mass and heat transfer are 

studied for pore and continuum scale simulations to demonstrate the applicability and accuracy of 

the present LBM models. All simulations in this work consider the initial flow field as stationary 

(u = 0) and the initial temperature field with a magnitude of (T0 + T1)/2 + λ, where λ is an initial 

perturbation of a random normal distribution between -0.01 and 0.01.  

A. DNS and DOB models for mass transfer 

 Gasow et al. (Gasow et al. 2020) performed a similar study as discussed here for mass 

transfer, thus, we find it valuable to present a comparison to our results obtained from the LBM. 
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First, the DNS model is reduced to simulate mass transfer, i.e., the conjugate conditions on the 

fluid-solid interfaces are replaced with non-penetrative boundaries and the fluid energy equation 

is instead considered with concentration, C, as the transport variable of interest. The Sherwood 

number (analogous to the Nusselt number) is obtained as 

 

0f

w

w

Ra

C
dA

y
Sh

C
dA

y
=




=

 
 
 
 





. (43) 

 Figure 2 shows the temporal evolution of the horizontally averaged Sherwood numbers 

(Sh) obtained from DNS for H/m = 20 and ϕ = 0.56 (m/d = 1.5) at the Schmidt number Sc = 1. The 

time-averaged Sherwood numbers are Sh = 36.85, 59.01, and 92.97 for the respective cases at Ra 

= 5000, 10 000, and 20 000. Good agreement is demonstrated between our LBM results and those 

from (Gasow et al. 2020) . It is pointed out that in this work the time-averaging of the Sherwood 

number and Nusselt number was performed over a duration of 500 000δt once a statistically steady 

state was reached (as shown in Figure 2).  

 

Figure 2: Sherwood number (Sh) versus dimensionless time δt at Ra = 20 000, Sc = 1, H/m = 

20, and m/d = 1.5 (ϕ = 0.56).  
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 In addition, the instantaneous concentration field from the DNS at Ra = 20 000 is provided 

in Fig. A-1 in Appendix A. Similarly, the macroscale DOB model implemented with the LBM is 

also applied for mass transfer; and a snapshot of the instantaneous concentration field for the case 

of Ra = 20 000 is given in Fig. A-2 of Appendix A. Both concentration fields in Figs. A-1 and A-

2 demonstrate excellent agreement in plume shape, micro-plumic behavior near the wall, and 

frequency of vertical plume columns with those shown in (Gasow et al. 2020).  

B. DNS and DOB modes for heat transfer 

 Further validation of the DNS-LBM model for heat transfer is performed by comparison 

with natural convection results obtained by Liu et al. (Liu et al. 2020) for a domain (Γ = 1) filled 

with circular blocks. The referenced study differs from ours in that the side walls are insulated and 

non-penetrative, and circular obstacles are used instead of squares. In (Liu et al. 2020), the effects 

of porosity in both porous and non-porous media were presented through the use of an immersed 

boundary method (IBM) in the Euler-Lagrange framework. It is pointed out that Liu et al. 

considered the Nusselt number based on the fluid thermal conductivity (Miansari et al. 2015): 

 
w

f

w

T
dA

y
Nu

A




=


 (44) 

Three main points are considered for validation: (1) the Nusselt number for traditional RBC (ϕ = 

1) follows an effective power law near 
0.3

f fNu Ra (Iyer et al. 2020; Niemela et al. 2000; Zhang 

et al. 2017) in the range considered within this work, (2) in the lower Raf range (106~108), an 

increase in Nuf is expected as ϕ increases, and (3) in this lower Raf range, a steep effective power 

law 
0.65

f fNu Ra was found for thermal convection in porous media. It is pointed out that Liu et 

al. assumed thermal properties to be the same in both phases, thus the results presented here only 

consider σ = 1 and ks/kf  = 1 for consistency.  

 The results are compared in Figure 3. The effective power law scales and presented trends 

from our LBM simulations match well with the reported results for non-porous media (ϕ = 1). 

Furthermore, their predicted effects of porosity on Nuf are observed with LBM simulations as ϕ is 

varied. The difference observed at ϕ = 0.75 is attributed to the different solid-block shapes (square 

vs. circular geometry), boundary conditions imposed on the side walls (periodic vs. no-

slip/insulated), and the variation in pore size. Overall, the results agree well, and a distinct 
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transition from low-Ra Darcy-type convection to high-Ra convection is present and consistent with 

Liu et al. 2020.  

 

Figure 3: Variations of Nuf with Raf for different ϕ with Pr = 1, σ = 1, and ks/kf = 1. 

 The solutions to the DOB equations for thermal convection have been studied with quite a 

few numerical methods: (1) Hewitt et al. (Hewitt et al. 2012) used a stream function method (SFM) 

where Eq. (39) was solved with a spectral method and Eq. (23) with an alternating direction 

implicit method, (2) Kränzien and Jin (Kränzien & Jin 2018) solved the SFM-equations with a 

second-order implicit backward method used for the time discretization and a second-order 

central-difference scheme used for spatial discretization, (3) Kränzien and Jin  used a pressure 

correction method (PCM) where an intermediate velocity field was determined from the 

momentum equation and then a corrected pressure term was added to satisfy the continuity 

equation, and (4) Wen et al. (Wen et al. 2015) used a Fourier-Chebyshev pseudospectral method 

to solve the SFM-based equations. It is noted that the parameters in these studies all used ks/kf = 1 

and σ = 1. Thus, our SFM-based LBM model is also implemented with these inputs. Corresponding 

results are summarized in Figure 4 for each of the above-mentioned methods and our DOB-LBM 

model. Excellent agreement is observed for the wide range of Ra studied, thus we consider the 

present DOB-LBM model for thermal convection validated. 
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Figure 4: Variations of Nu with Ra for the case of σ = 1 and ks/kf = 1 from DOB simulations. 

V. Results and discussion 

 Table 1 shows the grid resolution used for both DOB and DNS simulations, where Nrev is 

the number of cells within each REV. A mesh independence study was performed for H/m = 25 

and Ra = 5000, where the grid resolution per REV was varied between Nrev = 900, 1600, 2500, 

3025, and 3600. We found that that the variation of Nu was less than 5% for succeeding mesh sizes 

after Nrev = 2500, thus we consider Nrev = 2500 as our minimum mesh resolution. Furthermore, 

following (Liu et al. 2020; Shishkina et al. 2010), for RBC the Kolmogorov length scale η can be 

estimated by η=HPr1/2/[Raf (Nuf – 1)]1/4 and the Batchelor scale ηB by ηB=ηPr-1/2. At Ra = 50 000, 

for the highest value Nuf obtained within this work, the grid spacing remains below ~0.44η and 

~0.44ηB. Therefore, we consider the mesh resolution sufficient. To reduce the complexity of the 

study we set the Prandtl number to be Pr = 1 throughout this work. 

Table 1: Details of grid resolutions used in simulations. 

 H/m Ra Nx × Ny Nrev 

DNS 

10 0-5×104 900×1800 8100 

25 0-5×104 1500×3000 3600 

50 0-5×104 2500×5000 2500 

DOB - 0-5×104 900×1800 - 

 

A. Permeability and effective thermal conductivity 

 To compare DNS to DOB results, the permeability, K, was determined by simulating 

isothermal forced convection in the porous medium. Using this approach, K is determined by the 
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ratio of an applied pressure gradient to the mean velocity (averaged over both the fluid and solid 

phase). It is pointed out that the conventional Darcy number, DaC = K/d2, is defined as the ratio of 

the permeability to a characteristic length of the solid phase. Thus, DaC is only dependent upon 

porosity while Da = DaCd2/H2 includes a dependence on both porosity and pore size. The obtained 

values of DaC from the permeability study with the LBM are presented in Table 2; a comparison 

to results in (Gasow et al. 2020) is also shown demonstrating excellent matching. 

Table 2: Main parameters for DOB and DNS models. 

m/d ϕ(porosity) 
DaC 

(present) 

DaC (Gasow et al. 

2020) 

km/kf (ks/kf 

=0.1) 

km/kf (ks/kf 

=10) 

1.25 0.36 0.00113 0.0011 0.308 3.232 

1.5 0.5556 0.00795 0.0079 0.452 2.378 

2 0.75 0.04779 - 0.647 1.538 

 

Furthermore, the stagnant effective thermal conductivity of the porous medium, km, is also obtained 

with the LBM model, where  ( )m f w

w

T
k k A dA

y


=


 is determined with pure conduction (Ra = 0). 

It is pointed out that while only kf is explicitly present in the calculation of km since the solid blocks 

are not touching the upper and lower walls in the considered simulation domain (Fig. 1), the 

temperature gradient evaluated on the walls depends on both ks and kf. It is also worth mentioning 

that km depends on ks, kf and the structure of the porous medium and cannot always be assumed as 

the simple volumetric ( ( )1m f sk k k = + − ) or harmonic mean (Karani & Huber 2017; Wang & 

Pan 2008). Values of km/kf used in this work are shown in Table 2. In addition, the variations of 

the normalized effective thermal conductivity (km/kf) at different porosities are also presented in 

Figure 5. It should be noted that (1) for ks/kf  < 1, km/kf  increases as the porosity ϕ increases, while 

(2) for ks/kf  > 1, km/kf  decreases as ϕ increases. One should also notice the similarity in the 

definition of km and that in the denominator of Nu for DNS simulations in Eq. (13). Further 

implications of these effects are discussed in the following sections.  
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Figure 5: Variation of the normalized effective thermal conductivity (km/kf) with porosity ϕ. 

B. Effects of pore size 

 In this section, the influence of varied solid arrays on the convection dynamics are 

examined. For this section, we consider only the case with the same thermal transport properties 

in the two phases (i.e., ks/kf  = 1 and σ = 1, thus γ = 1 and  = 1). The effects of different transport 

properties on thermal convection will be presented in Section V-C. It is stressed that in the present 

study the conduction within the solid blocks is considered; this is distinct from several previous 

porescale studies of solutal convection where the solid phase is impermeable. 

a. Mega and proto-plumes 

 Instantaneous volume-averaged temperature fields at Ra = 10 000 obtained from DOB 

simulations and DNS at ϕ = 0.56 are shown in Figure 6 and Figure 7, respectively. The volume-

averaged temperature fields from DNS are obtained through weighted averaging over the REV as 

( )ˆ
rev p p p m

f s

T c T c T c  
 

= + 
 
  .  

 Interestingly, as the pore size is reduced (through increasing H/m), the characteristic width 

of the interior mega-plumes decreases while the spatial frequency of mega-plumes increases. This 

behavior is of course absent in RBC and is uncaptured through the DOB equations. It is pointed 

out that a similar observation was noted by Gasow et al. (Gasow et al. 2020) in the study of mass 

transfer. Furthermore, the results suggest that as the pore size continues to decrease (H/m → ∞), 

the DOB simulations will approach those of DNS. In the framework of the DOB equations, a major 
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assumption is that the terms on the order of O(1/Da) dominate. For H/m = 10 with ϕ = 0.56, the 

Darcy number is Da = 3.53×10-5, while for H/m = 50, Da = 1.41×10-6. Thus, the terms including 

1/Da (terms considered in DOB equations) are expected to have a contribution of 25 times more 

for H/m = 50 than H/m = 10 for the porosity studied here; we believe for this reason a sufficiently 

small Darcy number is required for DOB and DNS results to have comparable plume development.  

 

Figure 6: Instantaneous temperature field at Ra = 10 000 from DOB simulations. 
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Figure 7: Instantaneous temperature fields at Ra = 10 000 from DNS with ϕ = 0.56 for (a) 

H/m = 10, (b) H/m = 25, and (c) H/m = 50. 

 To better explain the role of pore size in plume development, the local temperature fields 

within the first few REVs near the bottom boundary (y/H = 0) are plotted in Figure 8. With large 

pore sizes (Figure 8a), the flow impedance is reduced and instabilities developed near the 

boundary layer can interact more easily, giving rise to large structured plume columns. However, 

at smaller pore sizes (Figure 8c), this interaction is largely limited by the solid phase, thus the 

instabilities at the boundary layers tend to develop into smaller and more frequent plume columns. 

Again, the DOB results (Figure 8d) demonstrate behavior similar to DNS at H/m = 50, thus 

suggesting that DNS and DOB simulations could exhibit the same frequency of mega-plumes as 

H/m → ∞. A similar observation was reported by (Gasow et al. 2020) when studying mega-plume 

frequency for solutal convection, thus, it is expected that thermal convection with a highly 

insulating solid phase would follow this behavior. 
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Figure 8: Instantaneous temperature fields near the lower boundary at Ra = 10 000 with ϕ 

= 0.56 from (a) DNS, H/m = 10, (b) DNS, H/m = 25, (c) DNS, H/m = 50, and (d) DOB 

simulations. 

b. Flow structures 

 To compare the flow structures, we define a local Reynolds number following (Gasow et 

al. 2020) based on the local velocity magnitude: 
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 ReK

f

K


=

u
 (45) 

It was noted in (Nield & Bejan 2017) that the Darcy’s term dominates the drag for ReK << 1, while 

the Forchheimer’s (quadratic) drag term has greater effects for ReK > 1. The Reynolds number 

distributions are presented in Figure 9 for the three REV sizes at Ra = 10 000. The flow structures 

between three REV sizes are quite distinguishable, where large pores cause a low number of large 

structured flow paths, while small pore sizes cause numerous chaotic and disordered flow paths. 

Slightly higher Reynolds numbers are observed for lower H/m. A possible reason for this is the 

reduction in flow resistance (higher Darcy number at larger pore sizes), however, further study 

would be required to make a generalized statement of proportionality. Nonetheless, the maximum 

Reynolds number observed here is ~ 6×10-2, thus we believe that the elimination of the 

Forchheimer’s term is a valid assumption for the ranges of Ra studied.  

 

 



25 

 

 

Figure 9: Snapshots of the instantaneous Reynolds number ReK at Ra=10 000 from DNS 

with ϕ = 0.56 for (a) H/m = 10, (b) H/m = 25, and (c) H/m = 50. 

c. Nu-Ra scaling 

 Before the discussion on the overall Nu-Ra scaling, the local Nu distributions on the walls 

at different pores sizes and Ra values are examined. Figure 10 shows the local Nu at the bottom 

boundary for the three pore sizes studied. It is pointed out that the local Nusselt numbers evaluated 

at the top and bottom walls should exhibit a similar magnitude and frequency of peaks; this was 

verified in our LBM results across a wide range of parameters, thus the local Nu values are only 

shown at the bottom wall. It is clear from Figure 10 that at a fixed Ra the changes in frequency 

and magnitude of the local Nusselt number with the pore size follow the trend in plume 

development shown in Figure 8. In addition, the local Nu values at the bottom wall from both 

DNS and DOB models are shown in Figure 11 for varying Ra. While both models show increased 

number of peaks and overall magnitude in Nu when Ra increases, the DOB results at Ra = 10 000 

and 20 000 have considerably more peaks in comparison to DNS. Recalling Figure 6 and Figure 

7, DOB simulations exhibit boundary layers filled with quite frequent micro-plumes (also called 

proto-plumes), however, these micro-plumes appear to be suppressed by the solid phase in DNS, 

especially at large pore sizes. Thus, a possible explanation for the high frequency Nu peaks found 

in DOB results in Figure 11 is the inclusion of these micro-plumes, which induce small local 

changes in the temperature field near and within the boundary layers. 
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Figure 10: Variation of local Nusselt number with REV size (H/m) at bottom wall for Ra = 

10 000 and ϕ = 0.56. 

 

 

Figure 11: Variation of local Nusselt number with Ra at the bottom wall with σ = 1, ks/kf = 

1, and ϕ = 0.56 from (a) DNS at H/m = 25 and (b) DOB simulations. 

 The scaling of the overall Nusselt number for both DOB and DNS results at different pore 

sizes is given in Figure 12. We find that the DOB results overestimate the rate of heat transfer for 

the range of Ra considered here. In contrast to previously computed results for mass transfer 

(Gasow et al. 2020) with no discernible trend in the Sherwood number with pore size, the DNS 

results shown here suggest that the heat transfer rate increases as pore size decreases. For H/m = 

10, the DNS results appear to trend towards an effective power law near 
0.319Nu Ra  (Keene & 
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Goldstein 2015) at higher Rayleigh numbers, while for H/m = 50 the scaling remains near 

0.9Nu Ra . Nonetheless, we would expect 
~0.319Nu Ra scaling to be reached at higher values 

of Ra regardless of pore size once the length scales of flow become smaller than the pore scale 

(Hewitt 2020; Liu et al. 2020).   

   

Figure 12: Comparison of Nu-Ra relations between DOB and DNS results with different 

pore sizes and a fixed porosity ϕ = 0.56. 

d. Temperature and velocity statistics 

 First, Figure 13 shows the vertical profiles of the temporally and horizontally averaged 

temperature (both scalars and their root mean squares, r.m.s.) and r.m.s. of x- and y-direction 

velocity components from DOB simulations. It has been suggested (Huppert & Neufeld 2014; 

Kränzien & Jin 2018) that the boundary layer thickness is determined by 1/Ra. Thus, we normalize 

the dimensionless coordinate in Figure 13 as yRa/H, upon which the temperature and velocity 

profiles at different Ra become almost identical. This is consistent with the study of pore size 

effects in mass transfer by Gasow et al. (Gasow et al. 2020). 
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Figure 13: DOB results: (a) vertical profiles of temporally and horizontally averaged 

temperature, and root mean squares of (b) temperature flunctuation, (c) ux fluctuation, and 

(d) uy fluctuation. 

 In contrast, normalizing the DNS results at H/m = 25 by yRa/H shows quite different 

profiles, as shown in Figure 14. Gasow et al. suggested that for solutal convection the statistics of 

the concentration and velocity fields are not only influenced by Ra, but also by the pore size (m/H). 

We find it instrumental to test the consistency of this observation for thermal convection. 

Therefore, temporally and horizontally averaged temperature and r.m.s of the temperature and 

velocity fields at different Rayleigh numbers from DNS are shown in Figure 15. We find that the 

lines collapse when the dimensionless coordinate y/H is scaled by the pore size, suggesting that 

the pore scale effects play a major role in shaping the boundary layer and flow structure in both 

thermal and solutal convection. Recent studies have begun to investigate these pore-scale factors 

for solutal convection through modified/extended DOB equations. Wen et al. (Wen, Chang, & 

Hesse 2018) investigated the effects of mechanical dispersion through the use of a Fickian 

dispersion tensor, introducing two additional dimensionless parameters: the dispersive Rayleigh 

number Rad = H/εt and the dispersivity ratio r = εl/εt where εt and εl are the transverse and 
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longitudinal dispervities, respectively. Their work showed that increasing the mechanical 

dispersion would increase the plume spacing, thus showing that the grain/pore size plays a role in 

shaping the plumes and flow pattern. A recent work by Gasow et al. (Gasow et al. 2021) included 

the effects of momentum dispersion through a “two-length-scale diffusion” model. By considering 

the pore-scale momentum transport through an effective diffusion term, they were able to obtain 

more accurate Sherwood numbers than with the traditional DOB equations. Nonetheless, there is 

still a need to extend and build upon those works for thermal convection where additional 

phenomena are involved. 

 

Figure 14: Vertical profiles of temporally and horizontally averaged temperature from 

DNS at H/m = 25. 
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Figure 15: DNS results at H/m = 25: (a) vertical profiles of temporally and horizontally 

averaged temperature, and root mean squares of (b) temperature flunctuation, (c) ux 

fluctuation, and (d) uy fluctuation. 

C. Effects of conjugate heat transfer 

 Now we consider the effects of conjugate heat transfer on thermal convection when the 

fluid and solid phases have different transport properties (e.g., ks/kf ≠ 1 and/or σ ≠ 1). We begin by 

emphasizing that ks/kf and σ are independent parameters with ks/kf representing the thermal 

conductivity ratio and σ the heat capacity ratio, while the thermal diffusivity ratio is related to 

those two through γ = (ks/kf)/σ. To explore the respective effects of both, two groups of cases are 

examined: (1) Group 1 with varying ks/kf at σ = 1, and (2) Group 2 with varying σ at ks/kf = 1. 

a. Nu-Ra relations 

 Figure 16 shows the Nu-Ra relations for various ks/kf (Group 1) and ϕ values from both 

DNS and DOB results. Instantaneous snapshots of the temperature fields at Ra = 20 000 and ϕ = 

0.56 can be found in Appendix B. Since the effect of thermal conductivity enters the DOB 

equations through only Ra and 1 =  when σ = 1 (see Eq. (17)), a single line is shown for DOB 

simulations. The DNS results show that both ks/kf and porosity ϕ have a significant effect on Nu. 
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A few key observations are noted: (1) at fixed ϕ and Ra, the magnitude of Nu appears to decrease 

as ks/kf increases, (2) for ks/kf < 1, Nu decreases as ϕ increases; however, for ks/kf > 1, Nu increases 

with ϕ, and (3) DOB simulations appear to overpredict the heat transfer rate regardless of ks/kf and 

ϕ, with larger discrepancy observed for higher ks/kf and Ra. The effects in points (1) and (2) can 

be attributed to the physical differences at the pore scale for a fixed Ra. For example, at Ra = 20 

000 and ϕ = 0.56 the unconfined Rayleigh number at ks/kf = 0.1 is Raf = 1.60 ×109, while for ks/kf 

= 10 the number is Raf = 8.41 ×109. Thus, at fixed Ra, ϕ and H/m, Raf will be greater for larger 

ks/kf. Furthermore, a larger ks/kf is also representative of a more conductive solid phase and varying 

porosities indicate differences in permeability (higher ϕ yield smaller Raf values with fixed Ra, 

ks/kf, and H/m). The major conjecture of the DOB equations is that regardless of ks/kf and ϕ, the 

ratio of the overall to conductive heat transfer rate (i.e., the Nusselt number) is constant across a 

REV at a fixed Ra. Our DNS results show that this is not true, suggesting that effects of ks/kf and 

ϕ should be considered independently of Ra.  

  

Figure 16: Comparison of Nu-Ra relations at different porosities for Group 1 cases (σ = 1): 

(a) ks/kf = 0.1, (b) ks/kf = 1, and (c) ks/kf = 10. The reference DOB result is independent of 

both ϕ and ks/kf, and H/m = 25 for all DNS results. 

 As previously mentioned, comparisons of Nu-Ra scaling in literature are widespread. 

Namely, theoretical studies based on the DOB equations have predicted ultimate regime scaling 

exponents in ranges of 0.9-0.95, while pore-scale and experimental studies have found values 

closer to 0.29-0.33. Also, the Nu values obtained based on experiments varied largely, raising 

questions on what parameters (ϕ, H/m, ks/kf, etc.) are the main contributors. Previous discussion 

has shown that both the pore size and ks/kf affect the Nu-Ra scaling. Thus, we find it valuable to 

compare selected DNS at varying ks/kf and σ to reported experiments (Keene & Goldstein 2015; 

Kladias & Prasad 1991) as shown in Figure 17. The characteristic pore size, H/Lpore (Lpore is the 
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pore-scale solid block diameter or width), in experiments ranged from 3.048 to 12.7; while ks/kf 

varied from ~0.33 to ~321. Overall, the DNS results in the limits of ks/kf  and σ appear to span the 

range of experimental data reasonably well. The DNS results also capture the nonlinear Nu-Ra 

scaling observed in experiments (Keene & Goldstein 2015). 

  

Figure 17: Comparison of Nu-Ra relations between reported experiments and present DNS 

at H/m = 10 and ϕ = 0.56 (m/d = 1.5). 

 Next, we focus on the effects of the heat capacity ratio σ. Figure 18 presents the Nu-Ra 

relations for σ = 0.1, 1, and 10 with ks/kf = 1 fixed (Group 2) from both DOB and DNS results. In 

contrast to the effect of ks/kf, the effects of σ enter the DOB equations through both Ra and  (Eq. 

17). In the DOB equations, at a fixed Ra,   is manifested through the convective term 

( )ˆ ˆˆT   u in Eq. (23). Thus, one would expect the convective strength to follow 1  . This is 

observed in Figure 18a-c, where  Nu decreases as ϕ increases for σ < 1 (since 0.1 0.9 = +  at σ 

= 0.1), while Nu increases as ϕ increases for σ > 1 (since 10 9 = −  at σ = 10). 

 Interestingly, the same trend in the variations of Nu with σ and ϕ is observed in the DNS 

results in Figure 18d-f, suggesting that the effects of varying σ alter the convection strength in a 

similar manner in both DOB and DNS results. In the DNS equations, the effects of varying σ at a 
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fixed Ra are manifested through scaling of Raf (also by 1  ). Thus, σ plays a similar role in 

determining the Nusselt number for both DOB and DNS results. In addition, the instantaneous 

snapshots of the temperature fields for varying σ values from both DOB and DNS results are 

provided in Appendix B. Both DOB and DNS temperature fields appear to exhibit distinct mega-

plume frequency and size, with σ = 0.1 showing more frequent and smaller plumes, and the 

opposite for σ = 10. This suggests that the peak wavenumber follows Ra   for the range of 

parameters studied here. It should be noted that previous studies have shown that the peak 

wavenumber is dependent upon the initial fields, aspect ratio of the convection cell, and pore size 

(Gasow et al. 2020; Hewitt et al. 2012) and are not unique for Ra > 39716 (Wen et al. 2015), thus, 

more detailed investigations are needed to fully characterize the peak wavenumber. This is out of 

the scope of the present work.  

 

Figure 18: Comparison of Nu-Ra relations at different porosities for Group 2 cases (ks/kf = 

1): (a) σ = 0.1, (b) σ = 1, and (c) σ = 10 are from DOB results, and (d) σ = 0.1,  (e) σ = 1, and 

(f) σ = 10 are from DNS results at H/m = 25. 

 

b. Thermal boundary layer analysis 

 In this section, we investigate the characteristics of the thermal boundary layers from both 

DOB and DNS results. As discussed in Section V-B-d, several works based on the DOB equations 

have suggested that the boundary layer thickness is determined by 1/Ra (Gasow et al. 2020; 
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Huppert & Neufeld 2014; Kränzien & Jin 2018), however, these have been limited to cases where 

σ = 1. The temporally and horizontally averaged temperature profiles from DOB simulations are 

first plotted in Figure 19 when the dimensionless coordinate y/H is scaled by 1/Ra following that 

in Figure 13a. It is obvious that in addition to Ra, both ϕ and σ have significant effects on the 

boundary layer thickness. As the convective term in the DOB equations is scaled by the effective 

volumetric heat capacity ratio  , we hypothesize that the boundary layer thickness for thermal 

convection between the two phases with different transport properties be determined by both Ra 

and   in the DOB model, and the results are shown in Figure 20, where it can be observed that 

all the temperature profiles effectively collapse to a narrow band, confirming our hypothesis that 

the thermal boundary layer thickness is determined by Ra . 

 

Figure 19: Temporally and horizontally averaged temperature profiles from DOB 

simulations when y/H is scaled by 1/Ra. 
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Figure 20: Temporally and horizontally averaged temperature profiles from DOB 

simulations when y/H is scaled by Ra . 

 Also as discussed in Section V-B-d, the thermal boundary layer thickness from DNS results 

at ks/kf  = σ = 1 is determined by the pore scale (m/H), consistent with the scaling presented in 

(Gasow et al. 2020) for mass transfer. It is of interest to examine this for ks/kf ≠ 1 and/or σ ≠ 1. 

Figure 21 shows results for varying ks/kf with σ = 1 (Group 1) when y/H is rescaled by the pore 

scale (m/H). Surprisingly, the profiles appear to overlap reasonably well regardless of ks/kf and Ra, 

suggesting that the pore size is also the controlling factor for thermal convection with varying 

conductivities in the two phases. 

We also find it instructive to show in detail the local boundary layers within the first REV. 

Figure 22 shows the temperature profiles for Ra = 10 000 and H/m = 25 near the lower wall. While 

the complete boundary layer is determined by the pore size, the local behavior near the boundary 

is heavily influenced by variations in thermal properties. Near the wall, the boundary layer is 

encompassed in only the fluid phase, thus we would expect a larger temperature gradient at higher 

Raf (higher ks/kf), as noticed in Figure 22. Furthermore, the central region of the first REV contains 

the solid phase. As expected, the temperature gradient in this region is smaller for ks/kf = 10, and 

vice versa for ks/kf = 0.1. This local behavior is altogether uncaptured by the DOB equations, which 

negate the effects of local temperature and velocity fluctuations captured through thermal 
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dispersion, ( ) ( )f

f

p Tc    u . The results shown here suggest that future work aimed at 

improving macroscopic models for thermal convection should consider these local effects.  

 

Figure 21: Temporally and horizontally averaged temperature profiles from DNS for 

Group 1 cases with varying ks/kf values when y/H is scaled by m/H. 

 

Figure 22: Local temperature profiles from DNS for σ = 1, Ra = 10 000 and H/m = 25. 

 Furthermore, Figure 23 shows the results for the varying σ cases with ks/kf = 1 (Group 2) 

when y/H is rescaled by the pore size m/H. Similar to Group 1 cases, all profiles at σ = 0.1 and 1 

collapse well. However, for low Ra (~5000) and σ = 10, the boundary layers are thicker and are 
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not limited to only the first few REVs, this is again due to the much lower unconfined Rayleigh 

number Raf for those cases. Recalling that Raf is related to Ra as 
( )
( )1

m f

f

Ra k k
Ra

Da   
=

+ −  
, larger 

σ values indicate smaller Raf, for which the convection will be less significant and conduction can 

become dominant (e.g., when σ → ∞, Raf → 0 and pure conduction is attained). The profiles at Ra 

= 5000 and σ = 10 demonstrate the onset of this behavior. Overall, the present boundary layer 

analysis between the DOB and DNS results clearly demonstrates the distinct local behaviors that 

would contribute to the different thermal convection characteristics in porous media when 

formulated through the DNS and the volume-averaged DOB equations with additional 

assumptions. 

 

Figure 23: Temporally and horizontally averaged temperature profiles from DNS for 

Group 2 cases with varying σ values when y/H is scaled by m/H. 

 

VI. Conclusions 

 We performed high resolution DNS of thermal convection in a simplified 2D porous 

structure and compared results to volume-averaged formulations based on the DOB equations. 

Both DNS and DOB simulations were realized with the LBM, with a novel method of solving the 

SFM equations with the LBM being proposed and validated. Comparisons of DNS and DOB 
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results demonstrated that both the pore size and conjugate heat transfer play large roles in shaping 

the structure of the thermal and flow fields and in determining the Nusselt number.  

 Upon comparing different pore sizes from DNS, it was found that larger pores (higher 

Darcy number) created less frequent but structured plumes, and the opposite for smaller pores. 

Between DNS and DOB results, the temperature fields matched quite well for small pores with 

H/m = 50. A possible explanation for this is that the terms considered in the DOB equation (on the 

order of 1/Da) dominate in the interior regime, while the boundary layer is governed instead by 

the pore size within the first few REVs. The flow structure was compared for all REV sizes at Ra 

= 10 000. Results showed that the local Reynolds number increased with pore size, however, it is 

stressed that a detailed analysis of the effects of porosity and the Rayleigh number would be 

required to make a generalized statement and is considered out of the scope of this paper. We 

believe the elimination of the Forchheimer term in the DOB equations is valid for the range of Ra 

studied, as evidenced by the low magnitudes of ReK (near 7×10-2 at Ra = 10 000).  

 On the effects of conjugate heat transfer, we studied two groups of cases: Group 1 with 

varying ks/kf at σ = 1, and Group 2 with varying σ at ks/kf = 1. When comparing the Nusselt numbers 

for different ks/kf and ϕ at fixed Ra (Group 1), we observed that the DNS results predict a decrease 

in Nu with increasing ϕ when ks/kf < 1, and the opposite for ks/kf > 1. This behavior was altogether 

uncaptured by the DOB equations that only account for the conductivity ratio through Ra. For 

varying σ (Group 2), a similar trend was observed in both DOB and DNS results, i.e., Nu decreases 

as ϕ increases for σ < 1, and the opposite for σ > 1. This is attributed to the scaling of the convective 

term in the DOB equations and scaling of Raf in the DNS equations. Furthermore, a comparison 

of Nu = f(Ra) scaling with selected experiments of thermal convection was shown. DNS results 

demonstrated large variations in Nu for different ks/kf and σ and appeared to approach power law 

scaling near ~0.319Nu Ra  at high Ra. In comparison, the DOB model maintains scaling of 

0.9Nu Ra . The variations in pore size and thermal conductivity ratio observed in DNS help to 

explain the large scatter of Nu = f(Ra) data in the literature for thermal convection. 

 A detailed analysis of the temporally and horizontally averaged temperature profiles was 

also performed for both DOB and DNS results.  Following previous works based on the DOB 

equations that suggest 1/Ra scaling, a unified extended scaling was proposed as Ra  to account 

for the effects of different transport properties. When the dimensionless coordinate y/H is rescaled 

by Ra , the temperature profiles in the boundary layer were shown to collapse for a wide range 
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of inputs (Ra = 1000 to 20 000 at different ϕ and σ values). Furthermore, the boundary layer 

thickness from DNS results is determined by the pore size (m/H) for general cases, which is 

consistent with recent works on mass convection (Gasow et al. 2020, 2021). For the special cases 

at low Ra and high σ in Group 2, the boundary layers were thicker due to the decrease in convection 

strength (Raf is considerably smaller for these cases). 

 Overall, our results presented herein show that conjugate heat transfer and pore-scale 

parameters play essential roles in the dynamics of thermal convection. While the DOB equations 

are useful for situations where it is impractical to obtain/simulate the porous domain, care should 

be taken to verify that Lpore/H is sufficiently small for the volume-averaging to be applied and that 

the thermal properties are reasonably close. Furthermore, our results along with previously 

reported observations of mass transfer allow for possible improvement of the DOB models, where 

underlying physics including pore-scale parameters and boundary layer behavior can be included 

through the addition of momentum dispersion, thermal dispersion, and viscous diffusion terms. 
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Supplementary materials 

Videos of temperature evolution for DOB simulations performed at ks/kf = 1and σ = 1 can be 

found at: 

Movie 1: Temperature evolution for DOB simulation at Ra = 5000 

Movie 2:  Temperature evolution for DOB simulation at Ra = 10 000 

Movie 3: Temperature evolution for DOB simulation at Ra = 20 000 

 

Videos of temperature evolution for DNS performed at ks/kf = 1, σ = 1, H/m = 25, and ϕ = 0.56 

can be found at: 
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Movie 4: Temperature evolution for DNS at Ra = 5000 

Movie 5:  Temperature evolution for DNS at Ra = 10 000 

Movie 6: Temperature evolution for DNS at Ra = 20 000 

Appendix A. Model validation to solutal convection 

In this Appendix, we provide additional comparisons and details used for model validation. 

Following the discussion in section IV-A, instantaneous contours of the concentration field at Ra 

= 20 000, H/m = 20, and m/d = 1.5 from the DNS and DOB models are given in Figure A-1 and 

Figure A-2, respectively. The shape of the mega-plumes and micro-plumic development near the 

boundary layers are quantitively compared to Figure 4b and Figure 4c in (Gasow et al. 2020), 

demonstrating good agreement.  

 

Figure A-1: DNS based instantaneous concentration field for Ra = 20 000, H/m = 20, and 

m/d = 1.5 (comparable to Figure 4b in (Gasow et al. 2020)).  

 

Figure A-2: DOB based instantaneous concentration field for Ra = 20 000 (comparable to 

Figure 4c in (Gasow et al. 2020)). 

 



41 

 

Appendix B. Additional temperature contours for Ra = 20 000 from DNS and DOB models 

Following the discussion in Section V-C-a, instantaneous temperature contours from the DOB 

model at Ra = 20 000 and ϕ = 0.56 with varying σ are provided in Figure B-1. A clear distinction 

in the size and frequency of the mega-plumes is present. Figure B-2 gives the instantaneous 

temperature contours from DNS at Ra = 20 000, ks/kf = σ = 1, ϕ = 0.56 and H/m = 25, while Figure 

B-3 and Figure B-4 give the corresponding results at varying ks/kf cases with σ = 1 (Group 1) and 

varying σ with ks/kf = 1 (Group 2), respectively.   
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Figure B-1: Instantaneous temperature fields at Ra=20 000 and (a) σ = 0.1, (b) σ = 1, and 

(c) σ = 10 from DOB simulations. 

 

 

 

Figure B-2: Instantaneous temperature fields at Ra = 20 000, ks/kf  = σ = 1, ϕ = 0.56, and 

H/m = 25 from DNS. 
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Figure B-3: Instantaneous temperature fields at Ra = 20 000, σ = 1, ϕ = 0.56, H/m = 25, and 

(a) ks/kf = 0.1 and (b) ks/kf = 10 from DNS. 
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Figure B-4: Instantaneous temperature fields at Ra = 20 000, ks/kf = 1, ϕ = 0.56, H/m = 25, 

and (a) σ = 0.1 and (b) σ = 10 from DNS. 
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