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Abstract
The study of thermal convection in porous media is of both fundamental and practical

interest. Typically, numerical studies have relied on the volume-averaged Darcy—Oberbeck—
Boussinesq (DOB) equations, where convection dynamics are assumed to be controlled solely by
the Rayleigh number (Ra). Nusselt numbers (Nu) from these models predict Nu-Ra scaling
exponents of 0.9-0.95. However, experiments and direct numerical simulations (DNS) have
suggested scaling exponents as low as 0.319. Recent findings for solutal convection between DNS
and DOB models have demonstrated that the “pore scale parameters” not captured by the DOB
equations greatly influence convection. Thermal convection also has the additional complication
of different thermal transport properties (e.g., solid-to-fluid thermal conductivity ratio ky/kr and
heat capacity ratio o) in different phases. Thus, in this work we compare results for thermal
convection from the DNS and DOB equations. On the effects of pore size, DNS results show that
Nu increases as pore size decreases. Mega-plumes are also found to be more frequent and smaller
for reduced pore sizes. On the effects of conjugate heat transfer, two groups of cases (Group 1 with
varying ky/krat o = 1 and Group 2 with varying o at ky/kr= 1) are examined to compare the Nu-Ra
relations at different porosity (¢) and ks/kr and o values. Furthermore, we report that the boundary
layer thickness is determined by the pore size in DNS results, while by both the Rayleigh number

and the effective heat capacity ratio, ¢ =@+ (1 - ¢) 0, in the DOB model.
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I. Introduction
Thermally driven convection is ubiquitous in nature and industrial processes. Rayleigh—

Bénard convection (RBC) is a classical paradigm to study such phenomenon, in which buoyancy-
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driven flow is induced in a pure fluid layer due to heating from below and cooling from above.
RBC has been studied extensively in past decades (Ahlers, Grossmann, & Lohse 2009; Chilla &
Schumacher 2012; Lohse & Xia 2010; Siggia 1994) due to the omnipresence of buoyancy-driven
convection in nature and technology. Two dimensionless parameters are standardly used to
characterize RBC: (i) pure-fluid Rayleigh number (Ray) which describes the ratio of buoyant to
viscous forces and (ii) Prandtl number (Pr) which is the ratio of momentum and thermal diffusivity.
A third parameter, /', defines the aspect ratio of the convection cell. The main response of the
system is the fluidic Nusselt number (Nuy), which describes the efficiency of heat transfer and is
defined as the ratio of the total heat transfer rate (conduction and convection) to the conductive
heat transfer rate at a wall surface. For very high Rayleigh numbers, there exists an asymptotic
regime, where the relationship between Rarand Nuyrcan typically be described through a constant
power law. Considerable literature has been devoted to studying this regime, including several
numerical (Iyer et al. 2020; Li et al. 2021; Toppaladoddi, Succi, & Wettlaufer 2017; Zhu et al.
2017, 2018) and experimental (He et al. 2012b, 2012a; Niemela et al. 2000; Roche et al. 2001;
Tummers & Steunebrink 2019; Zhang et al. 2018) studies.

The analogous problem of thermally (also solutally) driven convection in porous media has
begun to receive increasing attention due to its prevalence in assorted domains. Some well-known
examples include heat transfer in volcanic rock systems (Ratouis & Zarrouk 2016), subseafloor
thermohaline convection (Wilson & Ruppel 2007), sequestration of carbon dioxide (Cinar, Riaz,
& Tchelepi 2009; De Paoli, Zonta, & Soldati 2016; Hassanzadeh, Pooladi-Darvish, & Keith 2012),
and hydrothermal convection needed for extraction of geothermal energy (Gasparini & Mantovani
1984). Several experimental, analytical, and numerical studies (Hewitt 2020; Hewitt, Neufeld, &
Lister 2012, 2013, 2014; Jonsson & Catton 1985; Keene & Goldstein 2015; Kladias & Prasad
1991; Liang et al. 2018; Liu et al. 2020; Otero et al. 2004; Wen, Corson, & Chini 2015) have been
devoted to characterizing the corresponding convective behavior and its governing parameters.
Like that of RBC, a Rayleigh-Darcy number, commonly referred to as just the Rayleigh number
(Ra), 1s typically used instead as the governing parameter and studied in relation to a porous
medium Nusselt (Nu) number. Conventionally, five regimes have been used to describe this type
of convection as a function of Ra (Nield & Bejan 2017):

L the conduction-only regime [0 < Ra < 4n?];

I1. the steady state regime [4n> < Ra <350];



1. the quasi-periodic regime [350 < Ra < 1300];
IV.  the high Rayleigh regime [1300 < Ra < 10 000], a turbulent regime that lacks large
coherent structures; and
V. the ultimate Rayleigh regime [Ra > 10 000], similar to the high Rayleigh regime but
differing in that the inner flow field becomes self-organized with an interior mega-
plume region separated by thin micro-plumic regions close to the bounding wall.
Experiments by Keene and Goldstein (Keene & Goldstein 2015) and Kladias and Prasad
(Kladias & Prasad 1991) have further shown that a constant power law regime is present in porous
convection at very high Ra, suggesting that the presence of the solid phase appears to be nullified.
Various authors have suggested power law relationships between Nu and Ra in the form
Nu oc Ra” for this regime, where b is a constant scaling exponent. Based on experiments with
compressed argon and polypropylene spheres, Keene and Goldstein proposed b = 0.319 for Ra >
7470. Lister (Lister 1990) studied convection with water and carbon fibers, suggesting a scaling
exponent of 0.33 for high Ra. Davidson et al. (Davidson, Kulacki, & Savela 2009) performed
experiments on a water-saturated carbon foam. They also included the Prandtl number and the

ratio of effective-to-fluid thermal conductivity, kw/ks, in their Nu-Ra relation as

Nu =(0.008+0.003)(, /k,

)0'25i0'04 Rq?>0+002 pr038+00% Tt is also pointed out that the magnitude

of Nu from the above-mentioned experiments have been quite scattered, varying up to an order of
magnitude at some Rayleigh numbers.

Up to this point, theoretical and numerical studies for porous media convection have
largely relied on macroscopic models; in particular, the Darcy—Oberbeck—Boussinesq (DOB)
equations (Nield & Bejan 2017) have been widely adopted for both thermal and solutal convection.
In contrast to experimental studies, Nu-Ra relations obtained from these macroscopic models
predict much higher scaling exponents in the range of 0.9-0.95. Otero et al. (Otero et al. 2004)
used the DOB equations to develop a fit of Nu oc Ra**. Hewitt et al. (Hewitt et al. 2012)
performed simulations based on the DOB equations up to Ra = 50 000. They recommended b =
0.95 as a scaling exponent. Using the same formulation, Krdnzien and Jin (Krinzien & Jin 2018)
found that a simple linear fit may be more appropriate as Nu =0.076Ra + 0.935. While sparse,
some authors have studied thermal and solutal convection in the presence of a porous medium with
pore-resolved direct numerical simulations (DNS). Liu et al. (Liu et al. 2020) recently performed

a two-dimensional (2D) DNS of thermal convection in a square domain with circular objects. They
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showed that the relationship between Nu and the porosity ¢ was non-monotonic due to the interplay
of two competing forces: an increase in heat transfer due to the flow coherence vs. an increase in
flow impedance with the addition of the solid array. They also demonstrated asymptotic behavior

of Nu at high Ra numbers, suggesting a relation based on the unconfined fluid Rayleigh and
Nusselt number: Nu, o Ra;)-jo . Their results presented on the Nu-Ra scale matched well with the b

= 0.319 scaling coefficient by Keene and Goldstein (Keene & Goldstein 2015), however, the
magnitude of Nu did not show as large of a variance as demonstrated by experiments. A possible
reason for this is that Liu et al. only considered a special case with solid-to-fluid thermal
conductivity ratio ks/ky= 1, while in the experiments in (Keene & Goldstein 2015; Kladias & Prasad
1991) it ranged from ~0.33 up to ~321.

A few authors have also directly compared pore-resolved DNS to results obtained from the
DOB equations. Karani and Huber (Karani & Huber 2017) performed such a comparison for heat
transfer at low Rayleigh numbers (Ra < 200), finding that the DOB equations were not able to
capture the onset of convection when ky/kr# 1. Gasow et al. (Gasow et al. 2020) recently performed
a numerical comparison between the DOB equations and pore-resolved DNS for mass transfer.
They found that the boundary layer thickness was determined by the pore size instead of the
Rayleigh number, and that DNS results predicted a non-linear scaling between the Sherwood and
Rayleigh number (analogous to Nu-Ra for heat transfer). They concluded that “pore-scale
parameters” not captured in the DOB equations played a large role in the convection dynamics,
thus suggesting the need for an extension or improvement of the standard DOB equations. While
focused on mass transfer, Gasow et al. noted that similar investigation is needed for heat transfer
due to the addition of conjugate heat transfer between fluid and solid phases, which was absent in
their study. To the best of our knowledge, a comparison of DOB simulations and DNS for thermal
convection in porous media with differing thermal transport properties in each phase for high Ra
(above 200) has not been performed. With the large variation in results obtained with the DOB
equations and those from pore-resolved simulations and experiments, two questions arise:

(1) Under what range of conditions are the assumptions used in deriving the DOB equations
valid for thermal convection? and

(2) To what extent do conjugate heat transfer and pore size affect the dynamics of thermal

convection at higher Ra?



Thus, the objective of this study is aiming at answering these questions by performing pore-
resolved DNS on a simplified 2D domain and comparing to results from corresponding DOB
simulations. We exclusively use the lattice Boltzmann method (LBM) for all simulations,
considering Rayleigh numbers up to 50 000.

It is noted that while an actual physical system is in fact three-dimensional (3D), due to the
requirement of high resolution and the need to study a wide range of parameters, we employ a
simplified 2D configuration. A detailed investigation by van der Poel et al. (Poel, Stevens, & Lohse
2013) for RBC found that 2D and 3D simulations predicted similar Nusselt numbers for high Pr.
Hewitt et al. (Hewitt ef al. 2014) also performed 3D simulations using the DOB equations, finding
that Nu was ~40% larger at high Ra in 3D when compared to 2D results. Nonetheless, the scaling
coefficient that best fit 3D data was reported as 0.94, compared to 0.95 from 2D simulations
performed by the same group. While some discrepancy is expected between 2D and 3D results,
we expect the dynamics observed in 2D simulations to be comparable and conclusions made
regarding the comparison of DNS and DOB simulations to be valid for 3D cases.

The remainder of this paper is organized as follows. The mathematical formulation for both
pore-resolved and macroscopic models are described in detail in Section II, and the corresponding
numerical methods in Section III. The validation of the numerical models is shown in Section I'V.
We then present the simulation results in Section V, focusing on the effects of pore size, conjugate
heat transfer, and porosity on the plume dynamics, flow structure, Nu-Ra relations, and boundary
layer thickness. We summarize our findings and discuss future work in Section VI. And Appendix
A and Appendix B provide additional information on numerical validation and instantaneous
temperature fields, respectively, while the Supplementary materials provide the links to the videos
showing the evolution of the temperature fields from the specified initial conditions to statistically

steady states for both representative DOB and DNS results.

II. Mathematical formulation
A. Pore scale DNS

We consider a 2D fluid saturated porous medium with square solid blocks as shown in
Figure 1. The enclosure has an aspect ratio, I, of 2 where I" = Length(L)/Height(H). The
dimensions of the blocks are d xd and the representative elementary volume (REV) has size m xm.

The porosity of the domain, ¢, is uniquely determined by the ratio d/m as
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For this work, we consider three REV sizes as H/m = 10, 25, and 50. It is pointed out that varying
H/m (at a fixed ¢) is representative of varying the pore size within the medium (Gasow et al. 2020).
The Boussinesq fluid is heated from below and cooled from above with temperatures 7o and 7 at
the bottom and top walls, respectively. Periodic boundary conditions are employed on the vertical
sides for both the flow and thermal field, and no-slip boundary conditions are imposed on all solid

surfaces. Conjugate heat transfer is considered at the fluid-solid interface of the square blocks as
T, =1 )
n'(kVT)f_ =n(kVT), (3)

where T is the temperature, k the thermal conductivity, the fand s subscripts denote the fluid and

solid phases, respectively, and n is the unit normal vector to the fluid-solid interface.
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Figure 1: Schematic of porous domain used in direct numerical simulations.

For the fluid phase, the governing equations for DNS are the Navier-Stokes equations

(using the Boussinesq approximation) and the energy equation:
V-u=0 “4)

Gt(u)+(u-V)u:—lVP+VfV2(u)+gﬂ(T—Tref) (5)
Yo,



(pe,),0.(1,)+ V| (pe,) 01, | = (k1) ©)

where u is the velocity vector, p the density, P the pressure, v the kinematic viscosity, g the
gravitational vector, £ the thermal expansion coefficient, Trr a reference temperature taken as Tref

= (To+ T1)/2, and ¢, the specific heat. For the solid phase, the energy equation reduces to

(pc,).0.(T)=V(kVT)) (7)

Using the reference length H, reference velocity urer= gBATK/v, reference time trer= H/utret,

and characteristic temperature difference AT = Ty - T1 Eqns. (4-7) can be written in dimensionless

form as
V-i=0 (8)
0, (&) + (8- 9)ii = ~FP+ — (@) 4 — 2 T ©)
' RafDa RafDa!2 :
o\ o~ 1 o~
a;(T/.)+v‘(qu)=RafDavz( 7) (10)
ag(fg)=RajDa?2(f;) (11)

where ~ denotes a dimensionless value, V= HV, T=T/AT, and the following dimensionless

variables are defined:

v, 3
Pr=-—L, Ra, zw’ Dazﬁz,azi
% ' Vi@ H Py
(pc ) (12)
o= P ,]/_ as ’and s =]/O-

(pcp )f o, k,

where Pr is the Prandtl number, Rasthe Rayleigh number for unconfined fluid flow, Da the Darcy
number, K the permeability, ¢ the heat capacity ratio, and y the thermal diffusivity ratio. It should
be noted that while only y is present in the governing equations (8-11), the conductivity ratio ky/kr
shows up in the conjugate conditions (Egs. (2-3)). We define the Nusselt number as the ratio of
total heat transfer rate (convective and conductive), O, to purely conductive heat transfer rate,

Ocona, at statistically steady state on the wall as
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Ra;=0

where the subscript w represents either the top or bottom wall and the — symbol denotes the time-

averaged value.

B. Continuum scale DOB equations
For the continuum scale, we begin with volume-averaging of Egs. (4) and (5) following
the “Brinkman-Forchheimer” equation in (Nield & Bejan 2017) for an incompressible fluid with

the buoyancy force represented by the Boussinesq approximation:

V-(¢<u>)=0 (14)
0,(#(w))+ V(¢ (ug)) + §{u)- v {u) =
V() e, )+ u0(1) -, ) - 2 ) -2

The last two terms in Eq. (15) denote the Darcy and Forchheimer drag components and

(15)

V. (¢<ﬁﬁ>) denotes the momentum dispersion. The drag terms appear from the volume-averaging

process (de Lemos 2012) and represent the total drag force per unit volume due to the existence of
the porous medium. The <> symbol represents volume-averaged quantities and the ~ symbol
denotes the fluctuating fields with respect to the averaged value of the local field for the fluid phase
(Gasow et al. 2020; Karani et al. 2017). It is noted here that the above is equivalent to the
formulation in (Gasow et al. 2020). Under the assumption of local thermal equilibrium, the

volume-averaged energy balance equation becomes

(pe,), 0.(T)+(pe,), V(o)1) +(pe,), V-(o(uT) |k, 7(T)  @16)
where ki is an effective thermal conductivity, (pcp)n is the overall specific heat capacity with

(pcp)m=¢(pcp)f+(l—¢)(pcp) , and (pcp)fV-(¢<ﬁT>f) is the thermal dispersion term

s

(Gasow et al. 2020; Karani et al. 2017). The ()f operator (with superscript f) denotes volume-



averaging over only the fluid phase. Assuming that thermal dispersion and momentum dispersion

are negligible and introducing the additional dimensionless variables

RaHATEK a5 ) g (7
Ve, o, (p Cp ) P
Eqgs. (14-16) can be rewritten as
V-a=0 (18)
A\ A DA lo o Pr oo, . ¢Pr 4 ¢Pr . dc, .
0, -V =——VgP+—V* 1z, — i
(@) +i-V(i/9) P ¢ +§Ra (u)+§RaDa K ;RaDau \/EMU (19
e (AT )1 sy
0. (T)+V-(7}_EV (T) (20)

where Ra = Ra Da / ¢ is the Rayleigh number for the porous medium, o =k, / ( pc, )m the

effective thermal diffusivity, { the ratio between o, and oy, ¢ the ratio between the overall heat
capacity and that of the fluid, and z; is the ith component of the unit vector in the gravity direction.
The symbol * represents dimensionless volume-averaged quantities and U = ¢(u> is the superficial

velocity (also called Darcy velocity). With the assumption that Da << 1, the DOB equations are

obtained:
V=0 21)
VP =—ii+zT (22)
~ ~ (af 1 ann
0.5 +¥ | = |=—¥°F 23)
¢ Ra

Where 13,, = RaDa( p) / ¢ Pr is a normalized pressure. Equations (21-23) are the same as the

traditional DOB equations used for macroscopic-level studies (Gasow et al. 2020; Hewitt 2020;
Hewitt et al. 2012, 2013, 2014; Karani & Huber 2017; Krinzien & Jin 2018; Nield & Bejan 2017;
Otero et al. 2004; Wen et al. 2015).

An important distinction on the definition of Ra and Eq. (23) is made here in comparison

with previous studies for thermal convection. Some authors (Karani ef al. 2017; Karani & Huber



2017; Le Reun & Hewitt 2021; Qiang et al. 2021) have posed the effective thermal diffusivity, o

, instead as &, / (pc, )f and introduced a modified dimensionless time 7/4 . In doing so, Eq. (23)

1s instead re-written as

(i)t e - L 24)
8(t/¢) H PBATgK (pcp)f Ra

Following this modified formulation, one notices that the effects of the heat capacity ratio ¢ does

not explicitly enter the statistically steady problem and the effect of different thermal transport

properties enter through only the thermal conductivity ratio, ky/ks, in the Rayleigh number. To

demonstrate the effects of both the heat capacity ratio and the thermal conductivity ratio in DOB

simulations, we follow the formulation and definitions presented in Eqs. (17, 21-23). As such, the

effects of conjugate heat transfer are considered through the effective thermal conductivity 4 in

Ra and the heat capacity ratio oin ¢ .

It is also pointed out that in deriving Eqs. (21-23), additional assumptions were employed
including that the thermal non-equilibrium between the two phases is small, and the terms on the
order of O(1/Da) dominate in the momentum equation. Further implications of these will be
discussed in the succeeding sections. To compare pore- to continuum-scale formulations, we
define the following Nusselt number for DOB simulations following (Gasow et al., 2020) with 4w

the wall surface area:

of
jw % dA

A

w

Nu =

(25)

It should be noted that the Nu definitions in Egs. (13) and (25) are equivalent and analogous to the
Sherwood number definitions in previous DNS and DOB studies for mass transfer (Gasow et al.,

2020).

III.  Numerical method
In recent years, the lattice Boltzmann method has gained significant attention in simulating
complex fluid flow and transport problems, largely due to its kinetic nature, simple

implementation, ease of parallelization, and intrinsic relations between microscopic distribution
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functions (DFs) and macroscopic properties (Aidun & Clausen 2010; Benzi, Succi, & Vergassola
1992; Chen & Doolen 1998; He & Luo 1997; Li, Mei, & Klausner 2013; Li et al. 2014; Yoshida
& Nagaoka 2010; Yu et al. 2003). With these inherent advantages and its mesoscopic basis, it is
no surprise that the LBM has been widely used in the study of pore-scale dynamics. As such, we
use the LBM in this work to solve both the DNS and DOB equations, implemented with in-house

developed Fortran 90 code.

A. LBM for pore scale DNS
In solving the pore scale equations, a 2D nine-velocity (D2Q9) multiple relaxation time

(MRT) LBM model (Lallemand & Luo 2000; Yu et al. 2003) is used to solve the flow field, and
a 2D five-velocity (D2Q5) MRT-LBM model (Li, Mei, & Klausner 2017; Yoshida & Nagaoka
2010) is used to solve the temperature field. The LBM models are coupled through the Boussinesq
force which is treated as a source term in the D2Q9 model.

a. D2Q9 for fluid flow
For the incompressible flow at the pore scale, the LBM evolution scheme is taken as

(Lallemand & Luo 2000; Yu ef al. 2003)

f(x+edt,0+6t) = fl.(x,t)—[M_IS-(m—meq)(x,t)l +E5t (26)

where fi(x, t) (i = 0 — 8) are the density distribution functions with a set of discrete velocity vectors
e; at position x and time ¢, m are the velocity moments, m® are the corresponding equilibrium
moments, and Fj is a force term that can be expressed as Fi= -3wpei- F/c? (F = (Fy, F)) is the force
vector, w; are lattice weights given by wo=4/9, w;4=1/9, and ws.s= 1/36, and ¢ = ox/ot is the unit
of velocity with dx and ot being the lattice spacing and discrete time step, respectively) (Luo 1993).
The force vector is related to the Boussinesq approximation as F = (0, gf(T-Trer)). M is a 9x9
transformation matrix and S = MSM' = diag(so, 51, ..., 53) is a diagonal relaxation matrix (S is the

collision matrix and so, s1, ..., sg are relaxation coefficients). The transformation matrix M linearly

maps the distribution functions feV= Rg(velocity space) to their velocity moments

feM= R@(moment space) by

m=M-f, f=M"-m, 27)

where the nine velocity moments are given by
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+
m = (m,,m,,m,, my, m,, ms,m,m;,m )

T (28)
= (p,e,gajx’qx’jy’Qy’pxx’px)/)

In the above, mo is the fluid density, e is related to energy, ¢ is related to the energy squared, j. and
Jjy are components of the momentum, ¢, and ¢, are related to the energy flux, and p.. and p,, are
the symmetric and traceless components of the strain-rate tensor (Lallemand & Luo 2000; Yu et
al. 2003). For efficient computation and storage, the LBM evolution equation (25) is solved in two
steps:

collision step:

£ (x,0)=f (x,1)— [M*IS . (m —m* )(X,l)l + F.St (29)
and streaming step:
f(x+edtt+0t)=1 (x,1) (30)

where * denotes post-collision values. The macroscopic fluid density and velocity are thus related

to the DFs by

p:Zﬂ(x,t) (31)
u:%geifi(x,t)+%F(x,t). (32)

The other details of the matrices M, S, and equilibrium moments m©? can be found in (Lallemand
& Luo 2000; Yu et al. 2003). The bounding walls and solid block boundaries are specified halfway
between the LBM nodes, thus a standard bounce-back scheme is used to implement the no-slip

condition.

b. D2QS5 for heat transfer
To apply the LBM to solve for the temperature field at the pore scale, Eqs. (10) and (11)

can be rearranged to a standard convection-diffusion equation (CDE) in the form

%+V-(u6’)=V~(DV6’)+G, (33)

where 6 is the macroscopic scalar variable of interest, such as temperature, D is the diffusion
coefficient, and G represents any combination of source terms. The LBM evolution equation for

the D2Q5 model is (Li et al. 2017; Yoshida & Nagaoka 2010)
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h(x+edt,t+6t)= h (x,1)— [M’IS . (m —m* )(x,t)} +w,5tG(x,1), (34)

where Ai(x, f) (i = 0 — 4) are microscopic distribution functions, the lattice weights are given by
®o=1/3 and w;.4=1/6, and the matrix M maps the DFs to the moment space through m = M-h and
m©? = M-h®?, We choose the matrices as in (Yoshida & Nagaoka 2010) and the equilibrium
moments can be explicitly obtained as in (Li ef al. 2013, 2017). In using the LBM for Egs. (10)
and (11), the source term is set to G = 0. Using the set of distribution functions 4(x, f), the

. . 4 . . . .
temperature is obtained from 0(x,1)=> h(x.1)- The evolution equation is also computationally
i=0

executed through a collision-streaming procedure:

collision step:
B (x,6)=h(x,6)=[M'S-(m—m™)(x.7) | +©5G(x1). (35)
Streaming step:
h(x+edt,t+6t)=h (x,t). (36)

Implementation of the conjugate conditions and outer domain boundary conditions follow (Korba,
Wang, & Li 2020; Li et al. 2013, 2014) for which the second-order accuracy is preserved for

straight boundaries and interfaces.

B. LBM for macroscale DOB equations

a. Streamfunction formulation for fluid flow
Following (Gasow et al. 2020; Hewitt et al. 2012; Krinzien & Jin 2018), a streamfunction

method (SFM) is used to solve the fluid flow in the DOB equations. The streamfunction, v, is
related to the velocity field by

_[oy oy 37
(u,,u,) (ay, ax) (37)

Taking the curl of the momentum equation (22) with the above relation gives

A

oT
Vi = -2 (38)
ox

A diffusion coefficient, Ds, is introduced to solve Eq. (38) with the LBM as

DSFV2W =Gy (39)
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oT

where G =-Dj; ? can be considered as a source term. It is pointed out that Eqn. (39) is in the
X

form of a standard diffusion equation.

b. D2Q5 for fluid flow and heat transfer
Equations (23) and (39) fit the general form of the CDE in Eq. (33), where the scalar of

interest, @, is either the temperature or the streamfunction. Introducing a set of DFs gi(x,t) to

represent these macroscopic scale quantities, one can obtain the scalar of interest from

4

0(x,1)=> g (x.1) (40)

i=0

where the collision and streaming processes are respectively given by

g (x1)=g,(x1)— [M*IS . (m —m® )(X,l‘)l +w61G(X,1) (41)

and
g (x+edtnt+6t)=g (x.1). (42)
The matrices M, S, and m? and the lattice weights are the same as in Section III-A-b. In solving

the DOB equations, the energy equation is first advanced in time to update the thermal field. Then,

Eqn. (39) is solved to update the streamfunction, y, where the source term in the LBM model is

oT
G =-Dg, P Finally, the velocity is updated from the gradients of the streamfunction following
X
Eq. (37).

IV.  Validation
In this section, the DNS-LBM and DOB-LBM models are implemented to reproduce

results of natural convection from other numerical methods. Both mass and heat transfer are
studied for pore and continuum scale simulations to demonstrate the applicability and accuracy of
the present LBM models. All simulations in this work consider the initial flow field as stationary
(u = 0) and the initial temperature field with a magnitude of (7o + 71)/2 + A, where 4 is an initial

perturbation of a random normal distribution between -0.01 and 0.01.

A. DNS and DOB models for mass transfer
Gasow et al. (Gasow et al. 2020) performed a similar study as discussed here for mass

transfer, thus, we find it valuable to present a comparison to our results obtained from the LBM.
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First, the DNS model is reduced to simulate mass transfer, i.e., the conjugate conditions on the
fluid-solid interfaces are replaced with non-penetrative boundaries and the fluid energy equation
is instead considered with concentration, C, as the transport variable of interest. The Sherwood

number (analogous to the Nusselt number) is obtained as

“=dA
oy

| ac

ac
o

(43)
a—j}dA
Ra;=0
Figure 2 shows the temporal evolution of the horizontally averaged Sherwood numbers
(Sh) obtained from DNS for H/m =20 and ¢ = 0.56 (m/d = 1.5) at the Schmidt number Sc = 1. The
time-averaged Sherwood numbers are Sh = 36.85, 59.01, and 92.97 for the respective cases at Ra
= 5000, 10 000, and 20 000. Good agreement is demonstrated between our LBM results and those
from (Gasow et al. 2020) . It is pointed out that in this work the time-averaging of the Sherwood

number and Nusselt number was performed over a duration of 500 00067 once a statistically steady

state was reached (as shown in Figure 2).
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Figure 2: Sherwood number (8%) versus dimensionless time oz at Ra =20 000, Sc =1, H/m =
20, and m/d = 1.5 (¢ = 0.56).
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In addition, the instantaneous concentration field from the DNS at Ra =20 000 is provided
in Fig. A-1 in Appendix A. Similarly, the macroscale DOB model implemented with the LBM is
also applied for mass transfer; and a snapshot of the instantaneous concentration field for the case
of Ra =20 000 is given in Fig. A-2 of Appendix A. Both concentration fields in Figs. A-1 and A-
2 demonstrate excellent agreement in plume shape, micro-plumic behavior near the wall, and

frequency of vertical plume columns with those shown in (Gasow et al. 2020).

B. DNS and DOB modes for heat transfer
Further validation of the DNS-LBM model for heat transfer is performed by comparison

with natural convection results obtained by Liu et al. (Liu et al. 2020) for a domain (/"= 1) filled
with circular blocks. The referenced study differs from ours in that the side walls are insulated and
non-penetrative, and circular obstacles are used instead of squares. In (Liu et al. 2020), the effects
of porosity in both porous and non-porous media were presented through the use of an immersed
boundary method (IBM) in the Euler-Lagrange framework. It is pointed out that Liu et al.

considered the Nusselt number based on the fluid thermal conductivity (Miansari ef al. 2015):

j a; dA
w y

Nu, = 44
U, P (44)

w

Three main points are considered for validation: (1) the Nusselt number for traditional RBC (¢ =
1) follows an effective power law near Nuf o Ra f0'3 (Iyer et al. 2020; Niemela et al. 2000; Zhang

et al. 2017) in the range considered within this work, (2) in the lower Ras range (10°~10%), an

increase in Nuyis expected as ¢ increases, and (3) in this lower Rarrange, a steep effective power

6

law Nu o oc Ra fo' > was found for thermal convection in porous media. It is pointed out that Liu et

al. assumed thermal properties to be the same in both phases, thus the results presented here only
consider o = 1 and ky/kr = 1 for consistency.

The results are compared in Figure 3. The effective power law scales and presented trends
from our LBM simulations match well with the reported results for non-porous media (¢ = 1).
Furthermore, their predicted effects of porosity on Nuyare observed with LBM simulations as ¢ is
varied. The difference observed at ¢ = 0.75 is attributed to the different solid-block shapes (square
vs. circular geometry), boundary conditions imposed on the side walls (periodic vs. no-

slip/insulated), and the variation in pore size. Overall, the results agree well, and a distinct
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transition from low-Ra Darcy-type convection to high-Ra convection is present and consistent with

Liu et al. 2020.
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Figure 3: Variations of Nuswith Rayfor different ¢ with Pr=1, 6 =1, and k/kr= 1.

The solutions to the DOB equations for thermal convection have been studied with quite a
few numerical methods: (1) Hewitt et al. (Hewitt ez al. 2012) used a stream function method (SFM)
where Eq. (39) was solved with a spectral method and Eq. (23) with an alternating direction
implicit method, (2) Krénzien and Jin (Krdnzien & Jin 2018) solved the SFM-equations with a
second-order implicit backward method used for the time discretization and a second-order
central-difference scheme used for spatial discretization, (3) Krinzien and Jin used a pressure
correction method (PCM) where an intermediate velocity field was determined from the
momentum equation and then a corrected pressure term was added to satisfy the continuity
equation, and (4) Wen et al. (Wen ef al. 2015) used a Fourier-Chebyshev pseudospectral method
to solve the SFM-based equations. It is noted that the parameters in these studies all used ks/kr = 1
and o = 1. Thus, our SFM-based LBM model is also implemented with these inputs. Corresponding
results are summarized in Figure 4 for each of the above-mentioned methods and our DOB-LBM
model. Excellent agreement is observed for the wide range of Ra studied, thus we consider the

present DOB-LBM model for thermal convection validated.

17



T T TTrrTrT T T TTrTrTT T T |||||||
Hewitt et al. (2012), SFM
102 — @ Kanzien and Jin (2018), PCM o
% Kanzien and Jin (2018), SFM ]
" A Wen et al. (2015), SFM i
- ®m DOB-LBM model .
S
=
10'E E
1 00 1 1 S ‘_l_u_lJ_‘ 1 11 111 ||I 1 1 1 1111 II
10’ 10° 10° 10*

Ra
Figure 4: Variations of Nu with Ra for the case of 6 =1 and kJ/ks=1 from DOB simulations.

V. Results and discussion

Table 1 shows the grid resolution used for both DOB and DNS simulations, where Ny is
the number of cells within each REV. A mesh independence study was performed for H/m = 25
and Ra = 5000, where the grid resolution per REV was varied between N,., = 900, 1600, 2500,
3025, and 3600. We found that that the variation of Nu was less than 5% for succeeding mesh sizes
after Ny, = 2500, thus we consider N., = 2500 as our minimum mesh resolution. Furthermore,
following (Liu et al. 2020; Shishkina et al. 2010), for RBC the Kolmogorov length scale # can be
estimated by n=HPr"*/[Ras(Nus— 1)]""* and the Batchelor scale #5 by n5=nPr'2. At Ra = 50 000,
for the highest value Nuy obtained within this work, the grid spacing remains below ~0.44%n and
~0.44#35. Therefore, we consider the mesh resolution sufficient. To reduce the complexity of the

study we set the Prandtl number to be Pr =1 throughout this work.

Table 1: Details of grid resolutions used in simulations.

H/m Ra NxxNy Nrev

10 0-5x10* 900x1800 8100
DNS 25  0-5x10* 1500x3000 3600

50  0-5x10* 2500x5000 2500
DOB - 0-5x10* 9001800 -

A. Permeability and effective thermal conductivity
To compare DNS to DOB results, the permeability, K, was determined by simulating

isothermal forced convection in the porous medium. Using this approach, K is determined by the
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ratio of an applied pressure gradient to the mean velocity (averaged over both the fluid and solid
phase). It is pointed out that the conventional Darcy number, Dac= K/d?, is defined as the ratio of
the permeability to a characteristic length of the solid phase. Thus, Dac is only dependent upon
porosity while Da = Dacd?/H? includes a dependence on both porosity and pore size. The obtained
values of Dac from the permeability study with the LBM are presented in Table 2; a comparison

to results in (Gasow et al. 2020) is also shown demonstrating excellent matching.

Table 2: Main parameters for DOB and DNS models.

. Dac Dac (Gasow et al. keml ky (ks/ky kel ke (sl Ky
mid - g(porosity) (o ent) 2020) ~0.1) ~10)
125 036 0.00113 0.0011 0.308 3232
15 05556  0.00795 0.0079 0.452 2378
2 075 0.04779 ] 0.647 1.538

Furthermore, the stagnant effective thermal conductivity of the porous medium, &, is also obtained

with the LBM model, where &, = (k, / AW)I(Z—Z:dA is determined with pure conduction (Ra = 0).
w oy

It is pointed out that while only 4yis explicitly present in the calculation of 4, since the solid blocks
are not touching the upper and lower walls in the considered simulation domain (Fig. 1), the
temperature gradient evaluated on the walls depends on both ks and 4. It is also worth mentioning

that &, depends on ks, krand the structure of the porous medium and cannot always be assumed as
the simple volumetric (&, = ¢k, + (1 — ¢)ks) or harmonic mean (Karani & Huber 2017; Wang &

Pan 2008). Values of kw/krused in this work are shown in Table 2. In addition, the variations of
the normalized effective thermal conductivity (k./ky) at different porosities are also presented in
Figure 5. It should be noted that (1) for ks/kr <1, kw/kr increases as the porosity ¢ increases, while
(2) for ks/ky > 1, kw/ks decreases as ¢ increases. One should also notice the similarity in the
definition of &, and that in the denominator of Nu for DNS simulations in Eq. (13). Further

implications of these effects are discussed in the following sections.
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Figure 5: Variation of the normalized effective thermal conductivity (k./ky) with porosity ¢.

B. Effects of pore size
In this section, the influence of varied solid arrays on the convection dynamics are

examined. For this section, we consider only the case with the same thermal transport properties

in the two phases (i.e., ks/kr=1and 0 =1, thus y=1 and 4 = 1). The effects of different transport

properties on thermal convection will be presented in Section V-C. It is stressed that in the present
study the conduction within the solid blocks is considered; this is distinct from several previous

porescale studies of solutal convection where the solid phase is impermeable.

a. Mega and proto-plumes
Instantaneous volume-averaged temperature fields at Ra = 10 000 obtained from DOB

simulations and DNS at ¢ = 0.56 are shown in Figure 6 and Figure 7, respectively. The volume-

averaged temperature fields from DNS are obtained through weighted averaging over the REV as

7, - (; pe,F+3 pcpr /( pe,). -

Interestingly, as the pore size is reduced (through increasing H/m), the characteristic width
of the interior mega-plumes decreases while the spatial frequency of mega-plumes increases. This
behavior is of course absent in RBC and is uncaptured through the DOB equations. It is pointed
out that a similar observation was noted by Gasow et al. (Gasow ef al. 2020) in the study of mass
transfer. Furthermore, the results suggest that as the pore size continues to decrease (H/m — ),

the DOB simulations will approach those of DNS. In the framework of the DOB equations, a major
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assumption is that the terms on the order of O(1/Da) dominate. For H/m = 10 with ¢ = 0.56, the
Darcy number is Da = 3.53x107, while for H/m = 50, Da = 1.41x10°. Thus, the terms including
1/Da (terms considered in DOB equations) are expected to have a contribution of 25 times more
for H/m = 50 than H/m = 10 for the porosity studied here; we believe for this reason a sufficiently

small Darcy number is required for DOB and DNS results to have comparable plume development.
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Figure 6: Instantaneous temperature field at Ra = 10 000 from DOB simulations.
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Figure 7: Instantaneous temperature fields at Ra =10 000 from DNS with ¢ = 0.56 for (a)
H/m =10, (b) H/m =25, and (c) H/m = 50.

To better explain the role of pore size in plume development, the local temperature fields
within the first few REVs near the bottom boundary ()/H = 0) are plotted in Figure 8. With large
pore sizes (Figure 8a), the flow impedance is reduced and instabilities developed near the
boundary layer can interact more easily, giving rise to large structured plume columns. However,
at smaller pore sizes (Figure 8c), this interaction is largely limited by the solid phase, thus the
instabilities at the boundary layers tend to develop into smaller and more frequent plume columns.
Again, the DOB results (Figure 8d) demonstrate behavior similar to DNS at H/m = 50, thus
suggesting that DNS and DOB simulations could exhibit the same frequency of mega-plumes as
H/m — . A similar observation was reported by (Gasow et al. 2020) when studying mega-plume
frequency for solutal convection, thus, it is expected that thermal convection with a highly

insulating solid phase would follow this behavior.
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Figure 8: Instantaneous temperature fields near the lower boundary at Ra =10 000 with ¢
=0.56 from (a) DNS, H/m = 10, (b) DNS, H/m =25, (¢) DNS, H/m =50, and (d) DOB
simulations.

b. Flow structures
To compare the flow structures, we define a local Reynolds number following (Gasow et

al. 2020) based on the local velocity magnitude:
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Re, :|u|\/E

Vy

(45)

It was noted in (Nield & Bejan 2017) that the Darcy’s term dominates the drag for Rex << 1, while
the Forchheimer’s (quadratic) drag term has greater effects for Rex > 1. The Reynolds number
distributions are presented in Figure 9 for the three REV sizes at Ra = 10 000. The flow structures
between three REV sizes are quite distinguishable, where large pores cause a low number of large
structured flow paths, while small pore sizes cause numerous chaotic and disordered flow paths.
Slightly higher Reynolds numbers are observed for lower H/m. A possible reason for this is the
reduction in flow resistance (higher Darcy number at larger pore sizes), however, further study
would be required to make a generalized statement of proportionality. Nonetheless, the maximum
Reynolds number observed here is ~ 6x1072, thus we believe that the elimination of the

Forchheimer’s term is a valid assumption for the ranges of Ra studied.
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Figure 9: Snapshots of the instantaneous Reynolds number Rex at Ra=10 000 from DNS
with ¢ = 0.56 for (a) H/m =10, (b) H/m = 25, and (c) H/m = 50.

¢. Nu-Ra scaling

Before the discussion on the overall Nu-Ra scaling, the local Nu distributions on the walls
at different pores sizes and Ra values are examined. Figure 10 shows the local Nu at the bottom
boundary for the three pore sizes studied. It is pointed out that the local Nusselt numbers evaluated
at the top and bottom walls should exhibit a similar magnitude and frequency of peaks; this was
verified in our LBM results across a wide range of parameters, thus the local Nu values are only
shown at the bottom wall. It is clear from Figure 10 that at a fixed Ra the changes in frequency
and magnitude of the local Nusselt number with the pore size follow the trend in plume
development shown in Figure 8. In addition, the local Nu values at the bottom wall from both
DNS and DOB models are shown in Figure 11 for varying Ra. While both models show increased
number of peaks and overall magnitude in Nu when Ra increases, the DOB results at Ra = 10 000
and 20 000 have considerably more peaks in comparison to DNS. Recalling Figure 6 and Figure
7, DOB simulations exhibit boundary layers filled with quite frequent micro-plumes (also called
proto-plumes), however, these micro-plumes appear to be suppressed by the solid phase in DNS,
especially at large pore sizes. Thus, a possible explanation for the high frequency Nu peaks found
in DOB results in Figure 11 is the inclusion of these micro-plumes, which induce small local

changes in the temperature field near and within the boundary layers.
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Figure 10: Variation of local Nusselt number with REV size (H/m) at bottom wall for Ra =
10 000 and ¢ = 0.56.
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Figure 11: Variation of local Nusselt number with Ra at the bottom wall with ¢ =1, ks/ki=
1, and ¢ = 0.56 from (a) DNS at H/m = 25 and (b) DOB simulations.

The scaling of the overall Nusselt number for both DOB and DNS results at different pore
sizes is given in Figure 12. We find that the DOB results overestimate the rate of heat transfer for
the range of Ra considered here. In contrast to previously computed results for mass transfer
(Gasow et al. 2020) with no discernible trend in the Sherwood number with pore size, the DNS

results shown here suggest that the heat transfer rate increases as pore size decreases. For H/m =
. 0.319
10, the DNS results appear to trend towards an effective power law near Nu oc Ra (Keene &
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Goldstein 2015) at higher Rayleigh numbers, while for H/m = 50 the scaling remains near

0.9 ~0.319
NuocRa™ Nonetheless, we would expect Nu o Ra scaling to be reached at higher values
of Ra regardless of pore size once the length scales of flow become smaller than the pore scale

(Hewitt 2020; Liu et al. 2020).
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Figure 12: Comparison of Nu-Ra relations between DOB and DNS results with different
pore sizes and a fixed porosity ¢ = 0.56.

d. Temperature and velocity statistics
First, Figure 13 shows the vertical profiles of the temporally and horizontally averaged

temperature (both scalars and their root mean squares, r.m.s.) and r.m.s. of x- and y-direction
velocity components from DOB simulations. It has been suggested (Huppert & Neufeld 2014;
Kréinzien & Jin 2018) that the boundary layer thickness is determined by 1/Ra. Thus, we normalize
the dimensionless coordinate in Figure 13 as yRa/H, upon which the temperature and velocity
profiles at different Ra become almost identical. This is consistent with the study of pore size

effects in mass transfer by Gasow et al. (Gasow et al. 2020).
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Figure 13: DOB results: (a) vertical profiles of temporally and horizontally averaged
temperature, and root mean squares of (b) temperature flunctuation, (c) u, fluctuation, and
(d) u, fluctuation.

In contrast, normalizing the DNS results at H/m = 25 by yRa/H shows quite different
profiles, as shown in Figure 14. Gasow et al. suggested that for solutal convection the statistics of
the concentration and velocity fields are not only influenced by Ra, but also by the pore size (m/H).
We find it instrumental to test the consistency of this observation for thermal convection.
Therefore, temporally and horizontally averaged temperature and r.m.s of the temperature and
velocity fields at different Rayleigh numbers from DNS are shown in Figure 15. We find that the
lines collapse when the dimensionless coordinate y/H is scaled by the pore size, suggesting that
the pore scale effects play a major role in shaping the boundary layer and flow structure in both
thermal and solutal convection. Recent studies have begun to investigate these pore-scale factors
for solutal convection through modified/extended DOB equations. Wen et al. (Wen, Chang, &
Hesse 2018) investigated the effects of mechanical dispersion through the use of a Fickian
dispersion tensor, introducing two additional dimensionless parameters: the dispersive Rayleigh

number Raqs = H/e; and the dispersivity ratio » = &/e; where & and & are the transverse and
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longitudinal dispervities, respectively. Their work showed that increasing the mechanical
dispersion would increase the plume spacing, thus showing that the grain/pore size plays a role in
shaping the plumes and flow pattern. A recent work by Gasow et al. (Gasow ef al. 2021) included
the effects of momentum dispersion through a “two-length-scale diffusion” model. By considering
the pore-scale momentum transport through an effective diffusion term, they were able to obtain
more accurate Sherwood numbers than with the traditional DOB equations. Nonetheless, there is
still a need to extend and build upon those works for thermal convection where additional

phenomena are involved.
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Figure 14: Vertical profiles of temporally and horizontally averaged temperature from
DNS at H/m = 25.
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Figure 15: DNS results at H/m = 25: (a) vertical profiles of temporally and horizontally
averaged temperature, and root mean squares of (b) temperature flunctuation, (c) ux
fluctuation, and (d) u, fluctuation.

C. Effects of conjugate heat transfer
Now we consider the effects of conjugate heat transfer on thermal convection when the

fluid and solid phases have different transport properties (e.g., kv/ky# 1 and/or o # 1). We begin by
emphasizing that k/kr and o are independent parameters with kykr representing the thermal
conductivity ratio and o the heat capacity ratio, while the thermal diffusivity ratio is related to
those two through y = (ky/ks)/o. To explore the respective effects of both, two groups of cases are
examined: (1) Group 1 with varying ky/krat o =1, and (2) Group 2 with varying o at ky/kr= 1.

a. Nu-Ra relations
Figure 16 shows the Nu-Ra relations for various ky/ks (Group 1) and ¢ values from both

DNS and DOB results. Instantaneous snapshots of the temperature fields at Ra = 20 000 and ¢ =
0.56 can be found in Appendix B. Since the effect of thermal conductivity enters the DOB
equations through only Ra and 4 =1 when o =1 (see Eq. (17)), a single line is shown for DOB

simulations. The DNS results show that both ky/kr and porosity ¢ have a significant effect on Nu.
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A few key observations are noted: (1) at fixed ¢ and Ra, the magnitude of Nu appears to decrease
as ky/krincreases, (2) for ky/kr< 1, Nu decreases as ¢ increases; however, for ky/kr> 1, Nu increases
with ¢, and (3) DOB simulations appear to overpredict the heat transfer rate regardless of ky/krand
¢, with larger discrepancy observed for higher ky/kr and Ra. The effects in points (1) and (2) can
be attributed to the physical differences at the pore scale for a fixed Ra. For example, at Ra = 20
000 and ¢ = 0.56 the unconfined Rayleigh number at ky/k;= 0.1 is Ray=1.60 x10°, while for ky/ks
= 10 the number is Ras= 8.41 x10°. Thus, at fixed Ra, ¢ and H/m, Ras will be greater for larger
ks/ky. Furthermore, a larger ky/kris also representative of a more conductive solid phase and varying
porosities indicate differences in permeability (higher ¢ yield smaller Ray values with fixed Ra,
ks/ky, and H/m). The major conjecture of the DOB equations is that regardless of ks/kr and ¢, the
ratio of the overall to conductive heat transfer rate (i.e., the Nusselt number) is constant across a
REV at a fixed Ra. Our DNS results show that this is not true, suggesting that effects of ky/kr and
¢ should be considered independently of Ra.
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Figure 16: Comparison of Nu-Ra relations at different porosities for Group 1 cases (6 =1):
(a) ks/kg= 0.1, (b) ki/kr= 1, and (c) ks/kr=10. The reference DOB result is independent of
both ¢ and ky/ky, and H/m = 25 for all DNS results.

As previously mentioned, comparisons of Nu-Ra scaling in literature are widespread.
Namely, theoretical studies based on the DOB equations have predicted ultimate regime scaling
exponents in ranges of 0.9-0.95, while pore-scale and experimental studies have found values
closer to 0.29-0.33. Also, the Nu values obtained based on experiments varied largely, raising
questions on what parameters (¢, H/m, ki/ky, etc.) are the main contributors. Previous discussion
has shown that both the pore size and ky/kr affect the Nu-Ra scaling. Thus, we find it valuable to
compare selected DNS at varying ky/kr and o to reported experiments (Keene & Goldstein 2015;
Kladias & Prasad 1991) as shown in Figure 17. The characteristic pore size, H/Lpore (Lpore 1 the
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pore-scale solid block diameter or width), in experiments ranged from 3.048 to 12.7; while ky/kr
varied from ~0.33 to ~321. Overall, the DNS results in the limits of k/kr and o appear to span the
range of experimental data reasonably well. The DNS results also capture the nonlinear Nu-Ra

scaling observed in experiments (Keene & Goldstein 2015).
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Figure 17: Comparison of Nu-Ra relations between reported experiments and present DNS
at H/m =10 and ¢ = 0.56 (m/d = 1.5).

Next, we focus on the effects of the heat capacity ratio ¢. Figure 18 presents the Nu-Ra
relations for ¢ = 0.1, 1, and 10 with kykr= 1 fixed (Group 2) from both DOB and DNS results. In
contrast to the effect of ky/ky, the effects of o enter the DOB equations through both Ra and 4 (Eq.

17). In the DOB equations, at a fixed Ra, 4 is manifested through the convective term

V- (ﬁf“/ ¢ ) in Eq. (23). Thus, one would expect the convective strength to follow 1/4 . This is

observed in Figure 18a-c, where Nu decreases as ¢ increases for 0 <1 (since 4 =0.1+0.9¢ ato
= 0.1), while Nu increases as ¢ increases for o > 1 (since ¢ =10—9¢ at o= 10).

Interestingly, the same trend in the variations of Nu with ¢ and ¢ is observed in the DNS
results in Figure 18d-f, suggesting that the effects of varying ¢ alter the convection strength in a

similar manner in both DOB and DNS results. In the DNS equations, the effects of varying o at a
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fixed Ra are manifested through scaling of Ray (also by 1/4 ). Thus, ¢ plays a similar role in

determining the Nusselt number for both DOB and DNS results. In addition, the instantaneous
snapshots of the temperature fields for varying ¢ values from both DOB and DNS results are
provided in Appendix B. Both DOB and DNS temperature fields appear to exhibit distinct mega-
plume frequency and size, with ¢ = 0.1 showing more frequent and smaller plumes, and the

opposite for o = 10. This suggests that the peak wavenumber follows ra/g for the range of

parameters studied here. It should be noted that previous studies have shown that the peak
wavenumber is dependent upon the initial fields, aspect ratio of the convection cell, and pore size
(Gasow et al. 2020; Hewitt et al. 2012) and are not unique for Ra > 39716 (Wen et al. 2015), thus,
more detailed investigations are needed to fully characterize the peak wavenumber. This is out of

the scope of the present work.
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Figure 18: Comparison of Nu-Ra relations at different porosities for Group 2 cases (ki/kr=
1): (a) 6=0.1, (b) 6 =1, and (c¢) 6 = 10 are from DOB results, and (d) 6 =0.1, (¢) =1, and
(f) 6 =10 are from DNS results at H/m = 25.

b. Thermal boundary layer analysis
In this section, we investigate the characteristics of the thermal boundary layers from both

DOB and DNS results. As discussed in Section V-B-d, several works based on the DOB equations
have suggested that the boundary layer thickness is determined by 1/Ra (Gasow et al. 2020;
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Huppert & Neufeld 2014; Krinzien & Jin 2018), however, these have been limited to cases where
o = 1. The temporally and horizontally averaged temperature profiles from DOB simulations are
first plotted in Figure 19 when the dimensionless coordinate y/H is scaled by 1/Ra following that
in Figure 13a. It is obvious that in addition to Ra, both ¢ and ¢ have significant effects on the
boundary layer thickness. As the convective term in the DOB equations is scaled by the effective

volumetric heat capacity ratio 4 , we hypothesize that the boundary layer thickness for thermal

convection between the two phases with different transport properties be determined by both Ra

and 4 in the DOB model, and the results are shown in Figure 20, where it can be observed that

all the temperature profiles effectively collapse to a narrow band, confirming our hypothesis that

the thermal boundary layer thickness is determined by 4 /Ra .
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Figure 19: Temporally and horizontally averaged temperature profiles from DOB
simulations when y/H is scaled by 1/Ra.
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Figure 20: Temporally and horizontally averaged temperature profiles from DOB
simulations when y/H is scaled by 4 /Rra.

Also as discussed in Section V-B-d, the thermal boundary layer thickness from DNS results
at ky/kr = o = 1 is determined by the pore scale (m/H), consistent with the scaling presented in
(Gasow et al. 2020) for mass transfer. It is of interest to examine this for ky/kr# 1 and/or o # 1.
Figure 21 shows results for varying ky/kr with ¢ = 1 (Group 1) when y/H is rescaled by the pore
scale (m/H). Surprisingly, the profiles appear to overlap reasonably well regardless of ks/krand Ra,
suggesting that the pore size is also the controlling factor for thermal convection with varying
conductivities in the two phases.

We also find it instructive to show in detail the local boundary layers within the first REV.
Figure 22 shows the temperature profiles for Ra =10 000 and H/m = 25 near the lower wall. While
the complete boundary layer is determined by the pore size, the local behavior near the boundary
is heavily influenced by variations in thermal properties. Near the wall, the boundary layer is
encompassed in only the fluid phase, thus we would expect a larger temperature gradient at higher
Ray(higher ky/ky), as noticed in Figure 22. Furthermore, the central region of the first REV contains
the solid phase. As expected, the temperature gradient in this region is smaller for ky/kr= 10, and
vice versa for ky/ky=0.1. This local behavior is altogether uncaptured by the DOB equations, which

negate the effects of local temperature and velocity fluctuations captured through thermal
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. . =\ .
dispersion, (pcp)fv-(¢<uT > ) The results shown here suggest that future work aimed at

improving macroscopic models for thermal convection should consider these local effects.
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Figure 21: Temporally and horizontally averaged temperature profiles from DNS for
Group 1 cases with varying kykrvalues when y/H is scaled by m/H.
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Figure 22: Local temperature profiles from DNS for 6 =1, Ra =10 000 and H/m = 25.

Furthermore, Figure 23 shows the results for the varying o cases with kykr=1 (Group 2)
when y/H is rescaled by the pore size m/H. Similar to Group 1 cases, all profiles at 0 = 0.1 and 1

collapse well. However, for low Ra (~5000) and ¢ = 10, the boundary layers are thicker and are
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not limited to only the first few REVs, this is again due to the much lower unconfined Rayleigh

Ra(km/kf)
Da[¢+(l—¢)0

o values indicate smaller Ray, for which the convection will be less significant and conduction can

number Ray for those cases. Recalling that Rayis related to Ra as Ra, = ] , larger

become dominant (e.g., when ¢ — o, Rar— 0 and pure conduction is attained). The profiles at Ra
= 5000 and ¢ = 10 demonstrate the onset of this behavior. Overall, the present boundary layer
analysis between the DOB and DNS results clearly demonstrates the distinct local behaviors that
would contribute to the different thermal convection characteristics in porous media when

formulated through the DNS and the volume-averaged DOB equations with additional

assumptions.
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Figure 23: Temporally and horizontally averaged temperature profiles from DNS for
Group 2 cases with varying o values when y/H is scaled by m/H.

VI.  Conclusions
We performed high resolution DNS of thermal convection in a simplified 2D porous

structure and compared results to volume-averaged formulations based on the DOB equations.
Both DNS and DOB simulations were realized with the LBM, with a novel method of solving the
SFM equations with the LBM being proposed and validated. Comparisons of DNS and DOB
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results demonstrated that both the pore size and conjugate heat transfer play large roles in shaping
the structure of the thermal and flow fields and in determining the Nusselt number.

Upon comparing different pore sizes from DNS, it was found that larger pores (higher
Darcy number) created less frequent but structured plumes, and the opposite for smaller pores.
Between DNS and DOB results, the temperature fields matched quite well for small pores with
H/m = 50. A possible explanation for this is that the terms considered in the DOB equation (on the
order of 1/Da) dominate in the interior regime, while the boundary layer is governed instead by
the pore size within the first few REVs. The flow structure was compared for all REV sizes at Ra
=10 000. Results showed that the local Reynolds number increased with pore size, however, it is
stressed that a detailed analysis of the effects of porosity and the Rayleigh number would be
required to make a generalized statement and is considered out of the scope of this paper. We
believe the elimination of the Forchheimer term in the DOB equations is valid for the range of Ra
studied, as evidenced by the low magnitudes of Rex (near 7x102 at Ra = 10 000).

On the effects of conjugate heat transfer, we studied two groups of cases: Group 1 with
varying ky/krat o =1, and Group 2 with varying o at ks/kr= 1. When comparing the Nusselt numbers
for different ky/krand ¢ at fixed Ra (Group 1), we observed that the DNS results predict a decrease
in Nu with increasing ¢ when ky/kyr < 1, and the opposite for ky/ks> 1. This behavior was altogether
uncaptured by the DOB equations that only account for the conductivity ratio through Ra. For
varying o (Group 2), a similar trend was observed in both DOB and DNS results, i.e., Nu decreases
as ¢ increases for o < 1, and the opposite for ¢ > 1. This is attributed to the scaling of the convective
term in the DOB equations and scaling of Rayin the DNS equations. Furthermore, a comparison
of Nu = f(Ra) scaling with selected experiments of thermal convection was shown. DNS results
demonstrated large variations in Nu for different ky/kr and o and appeared to approach power law
scaling near Nu oc Ra™°?" at high Ra. In comparison, the DOB model maintains scaling of
Nu o« Ra®’ . The variations in pore size and thermal conductivity ratio observed in DNS help to
explain the large scatter of Nu = f{Ra) data in the literature for thermal convection.

A detailed analysis of the temporally and horizontally averaged temperature profiles was
also performed for both DOB and DNS results. Following previous works based on the DOB

equations that suggest 1/Ra scaling, a unified extended scaling was proposed as 4 /Ra to account

for the effects of different transport properties. When the dimensionless coordinate y/H is rescaled

by #/Ra, the temperature profiles in the boundary layer were shown to collapse for a wide range
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of inputs (Ra = 1000 to 20 000 at different ¢ and o values). Furthermore, the boundary layer
thickness from DNS results is determined by the pore size (m/H) for general cases, which is
consistent with recent works on mass convection (Gasow et al. 2020, 2021). For the special cases
at low Ra and high ¢ in Group 2, the boundary layers were thicker due to the decrease in convection
strength (Ray is considerably smaller for these cases).

Overall, our results presented herein show that conjugate heat transfer and pore-scale
parameters play essential roles in the dynamics of thermal convection. While the DOB equations
are useful for situations where it is impractical to obtain/simulate the porous domain, care should
be taken to verify that Lyore/H is sufficiently small for the volume-averaging to be applied and that
the thermal properties are reasonably close. Furthermore, our results along with previously
reported observations of mass transfer allow for possible improvement of the DOB models, where
underlying physics including pore-scale parameters and boundary layer behavior can be included

through the addition of momentum dispersion, thermal dispersion, and viscous diffusion terms.
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Supplementary materials
Videos of temperature evolution for DOB simulations performed at ky/kr= land o = 1 can be
found at:

Movie 1: Temperature evolution for DOB simulation at Ra = 5000
Movie 2: Temperature evolution for DOB simulation at Ra = 10 000
Movie 3: Temperature evolution for DOB simulation at Ra = 20 000

Videos of temperature evolution for DNS performed at ky/kr=1, 0 =1, H/m =25, and ¢ = 0.56
can be found at:
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Movie 4: Temperature evolution for DNS at Ra = 5000
Movie 5: Temperature evolution for DNS at Ra = 10 000
Movie 6: Temperature evolution for DNS at Ra =20 000

Appendix A. Model validation to solutal convection

In this Appendix, we provide additional comparisons and details used for model validation.
Following the discussion in section IV-A, instantaneous contours of the concentration field at Ra
=20 000, H/m = 20, and m/d = 1.5 from the DNS and DOB models are given in Figure A-1 and
Figure A-2, respectively. The shape of the mega-plumes and micro-plumic development near the
boundary layers are quantitively compared to Figure 4b and Figure 4c in (Gasow et al. 2020),
demonstrating good agreement.
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Figure A-1: DNS based instantaneous concentration field for Ra = 20 000, H/m = 20, and
m/d = 1.5 (comparable to Figure 4b in (Gasow et al. 2020)).
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Figure A-2: DOB based instantaneous concentration field for Ra =20 000 (comparable to
Figure 4c in (Gasow et al. 2020)).
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Appendix B. Additional temperature contours for Ra =20 000 from DNS and DOB models
Following the discussion in Section V-C-a, instantaneous temperature contours from the DOB
model at Ra =20 000 and ¢ = 0.56 with varying ¢ are provided in Figure B-1. A clear distinction
in the size and frequency of the mega-plumes is present. Figure B-2 gives the instantaneous
temperature contours from DNS at Ra =20 000, ky/kr=0=1, ¢ =0.56 and H/m =25, while Figure
B-3 and Figure B-4 give the corresponding results at varying ky/kr cases with ¢ = 1 (Group 1) and
varying ¢ with ks/kr=1 (Group 2), respectively.
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Figure B-1: Instantaneous temperature fields at Ra=20 000 and (a) 6 =0.1, (b) 6 =1, and

(¢) 6 =10 from DOB simulations.
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Figure B-2: Instantaneous temperature fields at Ra =20 000, kvkr = 6 =1, ¢ = 0.56, and

H/m =25 from DNS.
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Figure B-3: Instantaneous temperature fields at Ra =20 000, 6 =1, ¢ = 0.56, H/m = 25, and

(a) kv/ky= 0.1 and (b) kykr= 10 from DNS.
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Figure B-4: Instantaneous temperature fields at Ra =20 000, kvks=1, ¢ = 0.56, H/m = 25,
and (a) 6 = 0.1 and (b) 6 = 10 from DNS.
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