Inorganic Chemistry

pubs.acs.org/IC Article

Gem-Diaurated Gold(III) Complexes: Synthesis, Structure, Aurophilic Interaction, and Catalytic Activity

Jonas F. Wunsch,* Lukas Eberle, Joseph P. Mullen, Frank Rominger, Matthias Rudolph, and A. Stephen K. Hashmi*

Cite This: Inorg. Chem. 2022, 61, 3508-3515

ACCESS I

Metrics & More

Article Recommendations

SI Supporting Information

ABSTRACT: We present a protocol to synthesize air stable gemdiaurated gold(III) compounds from 1,3-diketones in a single cycloauration step with tetrachloroauric acid. So far related species were only accessible from phosphonium bis(ylide) ligands which hold the two gold atoms in close proximity. Lacking such a constraint, our compounds show the longest Au—Au distances of all gem-diaurated carbons, ranging from 3.26 to 3.32 Å. Modeling based on results of CCSD(T) calculations shows no stabilization by aurophilic interactions for our gold(III) systems, compared to 9.1 kcal/mol for gold(I) gem-diauration. This demonstrates no aurophilic interactions are needed for the isolation of air stable

gold(III) gem-diaurated complexes

HAuCl₄
MeOH

N-Au Au-N
Cl Cl Cl Cl Cl
N-H+

- simple formation
- no aurophilic interaction
- but bench stable
- active gold(III) catalysts

gem-diaurated gold(III) complexes. We show the new gem-diaurated gold(III) compounds are active in the gold-catalyzed phenol synthesis and highly active in the cycloisomerization of an N-propargylcarboxamide; here, we obtained the so far highest known TON of over 2500 per gold atom with respect to the oxazole formation.

INTRODUCTION

A multitude of *gem*-diaurated gold(I) complexes was reported from as early as 1970 on.¹ This can be attributed to the effect of stabilizing aurophilic interactions between gold(I) centers.² The impact of these species was further boosted in 2009 by the discovery that they are also involved in catalytic processes.³ They went into focus⁴ either as catalyst sinks^{5,6} or, in cases like dual gold catalysis, as active catalysts.⁷ Thus, general procedures for their synthesis have been developed.^{5,8}

In contrast, the only known gem-diaurated gold(III) complexes are based on phosphonium bis(ylide) ligands $[R_2P(CH_2)_2]^{-9}$ (Scheme 1). In this system, the diauration is achieved by oxidative addition of a methylene unit to two gold(I) or gold(II) centers that are held in proximity by two phosphonium bis(ylide) ligands. This strongly limits the structural variation; only derivatives based on the exchange of the halide ligands could be synthesized. Only one gem-diaurated gold(III) complex has ever been investigated for its catalytic properties. Only

To develop a more direct and simple access to *gem*-diaurated gold(III) complexes, which is neither based on a phosphonium bis(ylide) ligand nor a change in the oxidation state of gold, we turned our attention to the 1,3-bis(2-pyridyl)-1,3-propanedione scaffold 1. This already served as a ligand to various 3d metals, ^{13,14} some lanthanides ¹⁵ as well as late 4d and 5d metals ^{13,16} in a variety of binding modes enabled by its various donor sites. 1,3-Diketones have been *gem*-dimetalated with rhodium(II), ¹⁷ palladium(II), ¹⁸ mercury(II), ¹⁹ and gold(I).

Scheme 1. Synthesis of gem-Diaurated Gold(III) Complexes Using Phosphonium Bis(ylide) Ligands^{9,10} (Top) and the Approach Taken in This Work (Bottom)

Despite the comparison to gold(I) systems' expected weaker aurophilic interaction, ²¹ a 2-fold cycloauration of 1 with

Received: November 6, 2021 Published: February 18, 2022

tetrachloroauric acid as the gold(III) source to form *gem*-diaurated gold(III) complexes proceeded readily.

Seven derivatives were completely characterized, and accompanying quantum chemical calculations were conducted to elucidate a potential additional stabilizing contribution to an aurophilic interaction. Furthermore, we tested the catalytic activity of a representative of 2 in the phenol synthesis²² and the cycloisomerization of an *N*-propargylcarboxamide.²³

RESULTS AND DISCUSSION

The desired species 2a simply precipitated from a methanolic solution of 1a if treated with tetrachloroauric acid and base. After optimization of the reaction conditions to maximize yield and purity (see the SI for details), a yield of 66% was obtained for 2a when 2,6-di-tert-butylpyridine (DtBP) was used as base and when 1a was predissolved in DCM to give a more concentrated solution prior to the addition of methanol.

Next, we tested the optimized procedure for the *gem*-diauration of other diketones, which were obtained from readily available chemicals by short reaction sequences (see the SI for details). The optimized *gem*-diauration procedure yielded complexes 2a-2g for all synthesized substrates (Scheme 2). 2b-2d and 2f-2g were obtained in moderate

Scheme 2. Synthesized gem-Diaurated Gold(III) Complexes

yields. A reason for the reduced yield of **2e** might be the low degree of enolization of the ligand. In chloroform, we found it to be 35% as compared to 65%–100% for the other investigated ligands (see NMR data in the SI). This renders **1e** less prone to electrophilic attack by gold, making the reaction less efficient. All *gem*-diaurated complexes are airstable solids that can be stored at room temperature for several days (for more than six months at 8 °C). In DMSO, a slow decomposition is observed; this is especially fast for **2b** and **2c**, which both form noticeable gold mirrors after approximately 3 days.

It is noteworthy that we also tried to aurate benzoylmethane as representatives for a nonchelating ligand (Scheme 3). Depending on the employed reaction conditions, dibenzoylmethane was either chlorinated, or no reaction occurred.

This underlines the crucial role of a chelating ligand. Furthermore, the chlorination of dibenzoylmethane shows that an important decomposition pathway without chelating groups is the reductive elimination of the ligand under formation of a chlorine—carbon bond. A related process for the reaction of sodium acetylacetonate and tetrabutylammonium tetrachloroaurate(III), which yields tetrabutylammonium

Scheme 3. Reaction of Dibenzoylmethane with Tetrachloroaurate(III)

dichloroaurate(I), has already been reported.²⁴ The decreased stability of **2b** and **2c** may be attributed to the decreased donor strength of pyrimidines compared to pyridines. However, we could not detect any dichlorinated or monochlorinated ligands in ESI-MS samples of decomposed **2b** or **2c**.

For all seven derivatives, the solid state molecular structures were obtained via single crystal X-ray diffraction (Figure 1).

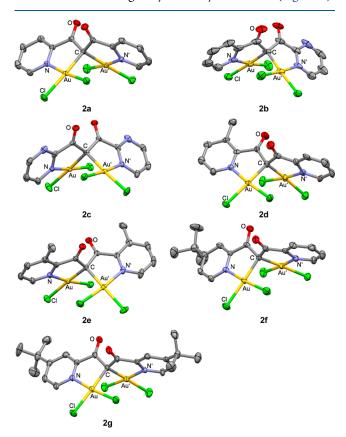


Figure 1. Solid state molecular structure of 2a–2g obtained by single crystal X-ray diffraction. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms and solvent molecules have been omitted for clarity.

They can be regarded as gold(III) analogues of Schmidbaur's gem-diaurated acetylacetone 3,3-bis[(triphenylphosphine)-gold]pentane-2,4-dione 3.²⁰ Since monoaurated 1,3-diketone derivatives are also known with gold(I) as well as gold(III),²⁵ 2a-2g complete the set with the exception of a mixed gold(I) gold(III) diaurated diketone. The LAu⁺ fragment is often seen as isolobal to a proton,²⁶ and their interchangeability can be interpreted as being caused by this relationship. The compounds synthesized herein confirm that the isolobality relationship can be extended to the LX₂Au⁺ fragment.

In 2a-2g, the bond lengths within the 1,3-diketone subunit (Table 1, see the SI for a more comprehensive compilation of characterization data) as well as the Au-C and the Au-N bond lengths are quite similar, and differences are typically below 0.04 Å. The larger deviations can be attributed to steric

Table 1. Selected Structural Parameters for 2a-2g and the Related Literature-Known Complexes 3, 20 4, 10 5, 18 and 6 19

compound	C-M [Å]	C-M' [Å]	M-M' [Å]	M-C-M' [deg]
2a	2.0727(1)	2.0648(1)	3.3196(1)	106.70(15)
2b	2.082(4)	2.082(4)	3.2975(7)	104.7(3)
2c	2.084(4)	2.084(4)	3.3089(3)	105.1(3)
2d	2.043(8)	2.046(8)	3.2653(5)	106.0(4)
2e	2.054(3)	2.043(3)	3.2641(3)	105.62(13)
2f	2.053(5)	2.067(5)	3.3045(3)	106.7(2)
2g	2.074(4)	2.066(5)	3.3001(3)	105.7(2)
3	2.12	2.12	2.86	84.5
4	2.01	2.01	3.05	99
5	2.045(3)	2.051(3)	3.1056(3)	98.62(13)
6	2.11(4)	2.14(3)	3.31(1)	103(1)

reasons such as the repulsion between the ketones and methyl groups in 2d and 2e as well as packing effects in the crystal. A feature warranting further investigation is the large Au-Au distance ranging from 3.2641 to 3.3196 Å. Indeed according to the Cambridge Crystallographic Database, the Au-Au distance at gem-diaurated carbon atoms ranges from 2.675 to 3.143 Å. 27,28 Therefore, the Au-Au length of all complexes synthesized herein is longer than that at any previously known gem-diaurated carbon. We attribute this to the reduced aurophilic interaction between Au(III) atoms compared to Au(I) atoms.²¹ The only known gem-diaurated gold(III) compounds are derivatives of 4. The phosphonium bis(ylide) ligand facilitates their synthesis, but it also geometrically holds the gold atoms together in the final product, which explains the shorter Au-Au distance of 3.05 Å in 4 as compared to 2a-2g. Nevertheless, the Au-Au distance in 4 is in the upper range of gem-diaurated carbons. This becomes especially apparent when 2a-2g are compared to their gold(I) equivalent 3 which has a very short Au-Au distance of 2.86 Å. Regarding other metals, it is more meaningful to compare angles since different metals have different radii. The gem-dimetalated palladium complex 5 is based on the same ligand as 2, and the palladium atoms have the same d^8 electron configuration as 2. The M-C-M angle of 5 is 98.62°, which is only slightly smaller than that of 2 and similar to the M-C-M angle of 99° in 4. One could assume that a weak metallophilic interaction is the result of a d⁸ electronic configuration or a quadratic planar coordination with chelate²⁹ ligands. However, when considering the mercury complex 6 which has a linear coordination environment and d¹⁰ configuration like 3 but still a large Hg-C-Hg angle of 102.8°, this seems not to be the case.

To further investigate the difference of aurophilic interaction strengths between gold(I) and gold(III) in *gem*-diaurated compounds, we performed quantum chemical calculations with ORCA³⁰ based on the deformation energy of the Au–C–Au angle. It is known that aurophilic interactions are mostly based on dispersion, which is not accurately described by cheap local

density functional theory but only expensive nonlocal wave function methods.³¹ However, due to the size of the molecule, we could not completely rely on such highly accurate wave function methods. Nevertheless, we found that we could reproduce the Au-C-Au angle of 2a and 3 reasonably well with the ω B97X-D3³² density functional that employs a cheap empirical dispersion correction³³ (for the choice of density functional, validation, and details of the employed QM methods, see the SI). We used geometries obtained on the ω B97X-D3 level of theory to perform a minimal number of highly accurate wave function based single point calculations. For this, we employed coupled cluster calculations with singles, doubles, and perturbative triples CCSD(T), which is generally accepted as the gold standard,³⁴ within the DLPNO (Domainbased Local Pair Natural Orbital)³⁵ approximation. Furthermore, we extrapolated to the complete basis set to control for possible effects of an incomplete basis set.36

Figure 2 shows the calculated relative energies dependent on the Au–C–Au deformation angle. Next to 2a we included 7 as

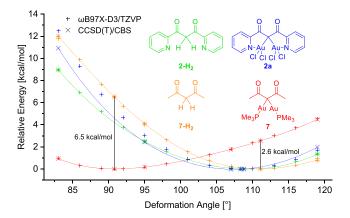


Figure 2. Potential energy curves for 2-H₂, 2a, 7-H₂, and 7 calculated by DFT and CCSD(T). For all angles, geometries were optimized at the ω B97X-D3/TZVP level of theory. Single point calculations were undertaken at the CCSD(T)/CBS level of theory using these geometries. The colored lines are fourth order polynomial fits to the CCSD(T) energies. The vertical lines visualize the energy differences used to calculate the aurophilic interaction strength.

a reduced version of a gem-diaurated gold(I) complex 3 for the purpose of comparison. Similarly, we included the corresponding hydrogen-substituted molecules 2-H₂ and 7-H₂. The energies obtained with the ω B97X-D3 functional agree mostly very well with the energies obtained by the CCSD(T) method. Only for 2a the deviation grows to modest 2 kcal/mol at very small angles. It can be immediately seen that the potential curves for 7 and 7-H2 differ significantly, while they are similar for 2a and 2-H₂, indicating a strong aurophilic interaction in 7 but not in 2a. Furthermore, the potential curve of 7 is rather soft and unsymmetrical, as it features an almost constant slope at angles from 95° to 117° compared to the more harmonic potentials of 2-H₂, 2a, and 7-H₂. This shape can also be attributed to the aurophilic interaction, similar to $I(AuI)_2$ which also shows a soft potential curve but with two minima. Calculating the absolute aurophilic interaction energy is not possible without separating it from the strain energy incurred by the deformation of the Au–C–Au angle. This separation is

Table 2. Conducted Test Reactions to Test the Catalytic Ability of 2g, 2f, and 2c

somewhat arbitrary since the two quantities will always change simultaneously due to the bridged geometry. Still, we think that the hydrogen-substituted molecules 7-H_2 and 2-H_2 are a natural choice for a reference system, as they are the most simple reference system and hydrogen is seen as isolobal²⁶ to gold. For 7, this yields additional 6.5 kcal/mol strain energy and increases the aurophilic interaction from 2.6 kcal/mol to a

total of 9.1 kcal/mol. Similar aurophilic interaction strengths have been obtained for non-*gem*-diaurated molecules.³⁸ For 2a, we obtained negligible 0.01 kcal/mol, which is below the accuracy of our calculation method. This confirms that there is no significant aurophilic interaction in our *gem*-diaurated gold(III) complexes.

^aTurnover number per gold atom with respect to the formation of 9 or 12. ^bReaction conducted in CD₃CN with 1,4-dinitrobenzene as standard. ^cThe phenol synthesis (left) and cycloisomerization of propargylcarboxamide (right). The phenol synthesis was conducted in a 0.03 M solution. Reactions were conducted in CDCl₃. Yields were determined against hexamethylbenzene as a ¹H NMR standard.

Despite the fact that gold catalysis in its early stage was mostly based on gold(III) complexes, 39 gold(III) catalysis now is extremely underdeveloped compared to its gold(I) counterparts. This can be attributed to the easier synthesis and control of the coordination sphere of gold(I) complexes, and only recently a revival of gold(III) species for catalysis has taken place. 40 This enabled access to new reactivity through gold(I)/gold(III) redox cycles 41 or the better control over steric influence by the ligands due to its increased proximity to the substrate. 42

We wanted to test if a *gem*-diaurated gold(III) complex could be used in catalysis. For this, we chose the phenol synthesis²² as the first test reaction and the cycloisomerization of an *N*-propargylcarboxamide²³ as the second test reaction (Table 2). We started our investigation by employing 2g as a catalyst since it has the highest general solubility of 2a–2g and is therefore the easiest to handle as a stock solution. 2g turned out to be an effective catalyst without any additive for both test reactions (entries 1a–3a and 1b–5b). For the first test reaction, only at catalyst loadings of 0.25 mol % the yield dropped below 40% (entry 3a), and for the second test reaction, catalyst loadings of 0.05 mol % still resulted in a yield of 88% (entry 5b). However, the required reaction time is very high for the latter. Therefore, we first investigated the effect of possible activators before further lowering the catalyst loading.

The most common activators in gold catalysis are silver salts like AgNTf₂. However, we found no significant influence for our catalyst system in the phenol synthesis (entry 6a), and Npropargylcarboxamides are known to react with silver salts.⁴³ Hence, we focused on an alternative strategy to activate gold catalysts by protonation of basic ligands which, for example, has been applied for IPrAuMe⁴⁴ and IPrAuOH.⁴⁵ We tested this mode of activation with trifluoroacetic acid (TFA) and bis(trifluoromethanesulfonyl)imide (HNTf₂) as 2g likely can be activated by protonation of a pyridine or the central carbon. Due to the comment of a reviewer, we investigated this assumption by mixing 2g only with an excess of TFA. No other signals than those belonging to 2g and TFA were present in a ¹H NMR making this assumption unlikely. Still as discussed below, we found positive effects of the acid additives. An alternative explanation could be a speedup of the protodeauration step. Especially for the reaction of 10 to 11, protodeauration has been found to be rate limiting.⁴⁶

For our first test reaction, TFA or HNTf₂ slightly increases the yield to 52% (entry 4a) or 48% (entry 5a) if employed in an equimolar amount to the catalyst. Interestingly, if a large excess of 10 equiv of TFA was added, the reaction was complete within hours instead of days, and the yield increases further to 56% (entries 7a and 8a). However, this comes at the cost of decomposition of the starting material which was completely consumed. When only small equimolar amounts of acid were added to the catalyst, no significant decomposition took place.

The effect of acid additives was much more pronounced for the second test reaction (entries 6b–8b). Together with an increased concentration, the reaction was complete within 8 days even at a very low catalyst loading of 0.015 mol %. When TFA (amount equivalent to the catalyst) was employed, the yield was still 77%, resulting in a turnover number (TON) of 2500 per gold atom (entry 8b). This is much higher than the highest TON that has been achieved for this reaction which is 340 at a catalyst loading of 0.34 mol %.⁴⁷

The catalytic tautomerization of **11** to **12** is a unique property of gold(III) catalysts. For the formation of the tautomer **11**, KitphosAuNT f_2 type catalysts reach TONs up to 980 at a catalyst loading as low as 0.1 mol %. SPhosAuCO $_2$ CF $_3$ reaches a TON of 1563 at a catalyst loading of 0.05 mol % in the formation of **11**. S1

If one does not accept major educt decomposition (entries 13a, 14a, 11b), **2g** performed best together with amounts of TFA equimolar to the catalyst. Therefore, we tested more of our *gem*-diaurated gold(III) complexes using the catalyst and equimolar amounts of TFA as activator.

2a, 2b, 2d, and 2e are insoluble in any common deuterated solvent that is typically employed for gold catalysis, but 2f and 2c are slightly soluble in CDCl₃ and CD₃CN, respectively. Therefore, we also tested these catalysts in the respective solvents. 2f and 2c are similar competent catalysts to 2g in both test reactions at high catalyst loadings (entries 16a, 18a, 12b, and 15b). At lower catalyst loadings, 2f gives for both test reactions slightly higher yields and TONs than 2g but needs much more time for complete conversion (entries 17a and 14b). 2c also performs similarly to 2f with respect to the first test reaction (entry 19a) but is an incompetent catalyst at low catalyst loading for the second test reaction (entry 17b). Reasons for this might be the neutralization of TFA by the pyrimidine rings or acetonitrile and low stability of 2c in solution.

CONCLUSION

In conclusion, we offer a new and simple protocol to synthesize *gem*-diaurated gold(III) compounds in a single cycloauration step. This approach complements the phosphonium bis(ylide) ligand which holds the two gold atoms in close proximity. The Au—Au distance in **2a** to **2g** is the longest of all *gem*-diaurated compounds up to date indicating no stabilization by aurophilic interactions. We confirmed this by modeling with high level CCSD(T) calculations. Our example demonstrates that no aurophilic interactions are needed for the isolation of air stable *gem*-diaurated gold(III) complexes. Furthermore, we demonstrated the representatives **2c**, **2f**, and **2g** to be active gold catalysts reaching the highest TON up to date in our second example.

The easy formation and catalytic capability of *gem*-diaurated gold(III) complexes suggest that these compounds might play a similar important role in gold(III) catalysis as their gold(I) counterparts. Therefore, we hope that our simple protocol for gold(III) *gem*-diauration will be adopted for the synthesis of more gold(III) *gem*-diaurated complexes and further boost investigation of *gem*-diaurated gold(III) compounds in catalysis.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c03479.

Detailed experimental procedures, compound characterization, and details and validation of employed computational methods (PDF)

Accession Codes

CCDC 2072732-2072738 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data request@ccdc.cam.ac.uk, or by contacting The

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Jonas F. Wunsch — Organisch-Chemisches Institut, Heidelberg University, 69120 Heidelberg, Germany; Email: Jonas.wunsch@oci.uni-heidelberg.de

A. Stephen K. Hashmi — Organisch-Chemisches Institut, Heidelberg University, 69120 Heidelberg, Germany; Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia; orcid.org/0000-0002-6720-8602; Email: hashmi@hashmi.de

Authors

Lukas Eberle – Organisch-Chemisches Institut, Heidelberg University, 69120 Heidelberg, Germany

Joseph P. Mullen – Organisch-Chemisches Institut, Heidelberg University, 69120 Heidelberg, Germany

Frank Rominger – Organisch-Chemisches Institut, Heidelberg University, 69120 Heidelberg, Germany

Matthias Rudolph — Organisch-Chemisches Institut, Heidelberg University, 69120 Heidelberg, Germany

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.1c03479

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

J.F.W. thanks the Hector Fellow Academy for support. The authors acknowledge the support by the state of Baden-Württemberg through bwHPC.

REFERENCES

- (1) (a) Nesmeyanov, A. N.; Perevalova, E. G.; Grandberg, K. I.; Lemenovskii, D. A.; Baukova, T. V.; Afanassova, O. B. A new type of organogold compound. *J. Organomet. Chem.* **1974**, *65*, 131–144. (b) Nesmeyanov, A. N.; Perevalova, E. G.; Afanasova, O. B.; Tolstaya, M. V.; Grandberg, K. I. Replacement of mercury by gold in organomercury Compounds. *Bull. Acad. Sci. USSR, Div. Chem. Sci.* **1978**, *27*, 969–973. (c) Porter, K. A.; Schier, A.; Schmidbaur, H. Auration of Thiophene and Furan: Structures of the 2-Mono- and 2,2-Diaurated Products. *Organometallics* **2003**, *22*, 4922–4927. (d) Osawa, M.; Hoshino, M.; Hashizume, D. Photoluminescent properties and molecular structures of [NaphAu(PPh3)] and [μ-Naph {Au(PPh3)}2] ClO4 (Naph = 2-naphthyl). *Dalton Trans.* **2008**, 2248–2252.
- (2) Schmidbaur, H.; Schier, A. Aurophilic interactions as a subject of current research: an up-date. *Chem. Soc. Rev.* **2012**, *41*, 370–412.
- (3) Weber, D.; Tarselli, M. A.; Gagné, M. R. Mechanistic Surprises in the Gold(I)-Catalyzed Intramolecular Hydroarylation of Allenes. *Angew. Chem., Int. Ed.* **2009**, *48*, 5733–5736.
- (4) (a) Gõmez-Suárez, A.; Nolan, S. P. Dinuclear Gold Catalysis: Are Two Gold Centers Better than One? *Angew. Chem., Int. Ed.* **2012**, *51*, 8156–8159. (b) Weber, D.; Gagné, M. R. Aurophilicity in Gold(I) Catalysis: For Better or Worse? *Top. Curr. Chem.* **2014**, *357*, 167–212.
- (5) Seidel, G.; Lehmann, C. W.; Fürstner, A. Elementary Steps in Gold Catalysis: The Significance of *gem*-Diauration. *Angew. Chem., Int. Ed.* **2010**, *49*, 8466–8470.
- (6) (a) Weber, D.; Jones, T. D.; Adduci, L. L.; Gagné, M. R. Strong Electronic and Counterion Effects on Geminal Digold Formation and Reactivity as Revealed by Gold(I)—Aryl Model Complexes. *Angew*.

- Chem., Int. Ed. 2012, 51, 2452–2456. (b) Zhdanko, A.; Maier, M. E. Quantitative Evaluation of the Stability of gem-Diaurated Species in Reactions with Nucleophiles. Organometallics 2013, 32, 2000–2006.
- (7) (a) Hashmi, A. S. K. Dual gold catalysis an update. *Acc. Chem. Res.* 2014, 47, 864—876. Dual Gold Catalysis (b) Zhao, X.; Rudolph, M.; Hashmi, A. S. K. Dual gold catalysis an update. *Chem. Commun.* 2019, 55, 12127—12135.
- (8) (a) Heckler, J. E.; Zeller, M.; Hunter, A. D.; Gray, T. G. Geminally Diaurated Gold(I) Aryls from Boronic Acids. *Angew. Chem., Int. Ed.* **2012**, *51*, 5924–5928. (b) Gõmez-Suárez, A.; Dupuy, S.; Slawin, A. M. Z.; Nolan, S. P. Straightforward Synthetic Access to gem-Diaurated and Digold σ , π -Acetylide Species. *Angew. Chem., Int. Ed.* **2013**, *52*, 938–942.
- (9) Schmidbaur, H.; Schier, A. Organometallic Complexes of Gold. Sci. Synth. 2004, 3, 718–723.
- (10) (a) Jandik, P.; Schubert, U.; Schmidbaur, H. Methylene Bridging of two Gold Atoms through Double Oxidative Addition of Methylene Dihalides to a Cyclic Ylide Complex. *Angew. Chem., Int. Ed.* **1982**, *21*, 73–73. (b) Knachel, H. C.; Dudis, D. S.; Fackler, J. P. Activation of Two Carbon-Hydrogen Bonds of Nitromethane by a Dinuclear Gold(II) Ylide Complex. The Formation of a CHNO2-Brldged A-Frame Complex. *Organometallics* **1984**, *3*, 1312–1313. (c) Murray, H. H.; Fackler, J. P.; Mazany, A. M. Bridging (methylene)gold(III) ylide dimers: the reactivity of and a possible intermediate involved in its generation. *Organometallics* **1984**, *3*, 1310–1311.
- (11) (a) Murray, H. H.; Mazany, A. M.; Fackler, J. P. [Au(CH2)-2PPh2]2(CN)2 and (.mu.-CH2)[Au(CH2)2PPh2]2(CN)2. The first ylide dimer possessing gold(III) centers bonded only to carbon. Organometallics 1985, 4, 154-157. (b) Schmidbaur, H.; Hartmann, C.; Riede, J.; Huber, B.; Müller, G. Alkylation of methylene- and ylidebridged binuclear gold(III) complexes. Organometallics 1986, 5, 1652-1656. (c) Bardají, M.; Gimeno, M. C.; Jiménez, J.; Laguna, A.; Laguna, M.; Jones, P. G. Neutral or Cationic (μ-Methylene)Bisylide digoldIII complexes. J. Organomet. Chem. 1992, 441, 339-348. (d) Neitling, D. C.; Staples, R. J.; Fackler, J. P. Substitution and reduction reactions of halogenated dinuclear gold ylide complexes with anionic sulfur reagents. The molecular structures of {AuII[µ-(CH2)2PPh2}2((DTP)2 (1), {AuII[μ -(CH2)2PMe2]}2(MTP)2(3), anti-{ $[AuIIIBr(MTP)[\mu-(CH2)2PPh2]$ }·C6H6 (4), { $AuII[\mu-$ (CH2)2PPh2] $\{2(MTP)Br\ (5)\ and\ \{Au2III(\mu-CH2)-[\mu-(CH2)-\mu-(C$ 2PPh2]2(DTP) (7), MTP = [CH2P(S)Ph2]-, DTP = [S2PPh2]-. Inorg. Chim. Acta 1997, 263, 35-48.
- (12) Reiner, B. R.; Bezpalko, M. W.; Foxman, B. M.; Wade, C. R. Lewis Acid Catalysis with Cationic Dinuclear Gold(II,II) and Gold(III,III) Phosphorus Ylide Complexes. *Organometallics* **2016**, 35, 2830–2835.
- (13) Teixidor, F.; Garcia, R.; Pons, J.; Casabó, J. Metal derivatives of 1,3-bis(2-pyridyl)-1,3-propanedione and N,N'-dimethyl-1,3-bis(2-pyridyl)-1,3-propanedione. *Polyhedron* **1988**, *7*, 43–47.
- (14) (a) Lee, S. L.; Hu, F. L.; Shang, X. J.; Shi, Y. X.; Tan, A. L.; Mizera, J.; Clegg, J. K.; Zhang, W. H.; Young, D. J.; Lang, J. P. Efficient ring-opening polymerization (ROP) of ε-caprolactone catalysed by isomeric pyridyl β-diketonate iron(III) complexes. New J. Chem. 2017, 41, 14457–14465. (b) Tong, J. P.; Shao, F.; Tao, J.; Huang, R.; Zheng, L. S. Microwave-Assisted Synthesis of a Ferrimagnetic Dodecanuclear Iron(III) Complex with a Fe4(OH)4 Cubane Core. Inorg. Chem. 2011, 50, 2067–2069. (c) Tan, J. T.; Zhao, W. J.; Chen, S. P.; Li, X.; Lu, Y. L.; Feng, X.; Yang, X. W. Synthesis, structure, and luminescent properties of two novel polynuclear complexes of 1,3-di(pyridin-2-yl)propane-1,3-dione. Chem. Pap. 2012, 66, 47–53.
- (15) (a) Andrews, P. C.; Deacon, G. B.; Frank, R.; Fraser, B. H.; Junk, P. C.; MacLellan, J. G.; Massi, M.; Moubaraki, B.; Murray, K. S.; Silberstein, M. Formation of HoIII Trinuclear Clusters and GdIII Monodimensional Polymers Induced by ortho and para Regioisomers of Pyridyl-Functionalised β -Diketones: Synthesis, Structure, and Magnetic Properties. *Eur. J. Inorg. Chem.* **2009**, 2009, 744–751. (b) Brück, S.; Hilder, M.; Junk, P. C.; Kynast, U. H. Synthesis,

- structure and optical characteristics of pyridyl substituted diketonates of lanthanoids. *Inorg. Chem. Commun.* **2000**, *3*, 666–670.
- (16) Nongbri, S. L.; Das, B.; Rao, K. M. Isolation and spectral studies of water-soluble η5-cyclichydrocarbon rhodium and iridium complexes with pyridyl diketone analogues bonded through κ2-N∩O, κ4-N∩O, and κ3-N-C-N modes. *J. Coord. Chem.* **2012**, 65, 875–890. (17) (a) Herrmann, W. A.; Kriechbaum, G. W.; Bauer, C.; Koumbouris, B.; Pfisterer, H.; Guggolz, E.; Ziegler, M. L. Übergangsmetall—methylen-komplexe: XLVIII. Addition und ringschluss bei reaktionen von α-ketodiazoalkanen mit metall—metall-doppelbindungen der metallcarbonyl-reihe: Aufbau metallacyclischer strukturen. *J. Organomet. Chem.* **1984**, 262, 89–122. (b) Herrmann, W. A.; Bauer, C.; Plank, J.; Kalcher, W.; Speth, D.; Ziegler, M. L. Addition of Carbenes to Reactive Metal-Metal Bonds—A Simple Synthetic Method for μ-Methylene Complexes. *Angew. Chem., Int. Ed.* **1981**, 20, 193–196.
- (18) Maggini, S.; White, P. S. [μ -1,3-Dioxo-1,3-bis(pyridin-2-yl)propane-2,2-diido- κ 2N,C2: κ 2C2,N']bis[(1,3-diphenylpropane-1,3-dionato- κ 2O,O')palladium(II)](Pd—Pd). *Acta Cryst. E* **2011**, *67*, m749—m750.
- (19) (a) McCandlish, L. E.; Macklin, J. W. Mercury β -Diketonato complexes: II. The crystal and molecular structure of 3,3-bis-(chloromercury)-2,4-pentanedione. *J. Organomet. Chem.* 1975, 99, 31–40. (b) Bonhomme, C.; Toledano, P.; Livage, J. A new dimercurated derivative of acetylacetone, [Hg2(C5H6O2)-Cl2].CH3CN. *Acta Cryst. C* 1994, 50, 1590–1592. (c) Toledano, P.; Bonhomme, C.; Henry, M.; Livage, J. Structure d'un dérivé dimercuré de l'acétoacétate d'éthyle, [Hg2(C6H8O3)Cl2]2.CH3CN. *Acta Crystr. C* 1994, 50, 365–367.
- (20) Djordjevic, B.; Porter, K. A.; Nogai, S.; Schier, A.; Schmidbaur, H. Dinuclear Gold(I) "A-Frame" Complexes from Geminal Diauration of 2,4-Diketones, Methylenedisulfones, and Cyanomethyl Sulfones. *Organometallics* **2003**, *22*, 5336–5344.
- (21) (a) Mendizabal, F.; Pyykkö, P. Aurophilic attraction in binuclear complexes with Au(I) and Au(III). A theoretical study. *Phys. Chem. Chem. Phys.* **2004**, *6*, 900–905. (b) Lu, W.; Chan, K. T.; Wu, S.; Chena, Y.; Che, C. Quest for an intermolecular Au(III)/Au(III) interaction between cyclometalated gold(III) cations. *Chem. Sci.* **2012**, *3*, 752–755.
- (22) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. Highly Selective Gold-Catalyzed Arene Synthesis. *J. Am. Chem. Soc.* **2000**, *122*, 11553–11554.
- (23) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Gold Catalysis: Mild Conditions for the Synthesis of Oxazoles from N-Propargylcarboxamides and Mechanistic Aspects. *Org. Lett.* **2004**, *6*, 4391–4394.
- (24) Buckley, R. W.; Healy, P. C.; Loughlin, W. A. Reduction of [NBu4][AuCl4] to [NBu4][AuCl2] with Sodium Acetylacetonate. *Aust. J. Chem.* **1997**, *50*, 775–778.
- (25) (a) Vicente, J.; Bermúdez, M. D.; Escribano, J.; Carrillo, M. P.; Jones, P. G. Synthesis of intermediates in the C−H activation of acetone with 2-phenylazophenylgold(III) complexes and in the C−C coupling of aryl groups from diarylgold(III) complexes. Crystal and molecular structures of [Au{C6H3(N = NC6H4Me-4')-2-Me-5}-(acac-C)Cl](acac= acetylacetonate), cis-[Au(C6H4N = NPh-2)Cl2-(PPh3)], and [Au(C6H4CH2NMe22-)(C6F5)Cl]. J. Chem. Soc. Dalt. Trans. 1990, 3083−3089. (b) Fernandez-Cestau, J.; Bertrand, B.; Pintus, A.; Bochmann, M. Synthesis, Structures, and Properties of Luminescent (C∧N∧C)gold(III) Alkyl Complexes: Correlation between Photoemission Energies and C−H Acidity. Organometallics 2017, 36, 3304−3312.
- (26) Raubenheimer, H. G.; Schmidbaur, H. Gold chemistry guided by the isolobality concept. *Organometallics* **2012**, *31*, 2507–2522.
- (27) The search was limited to four coordinate carbon to exclude gold clusters with internal carbon atoms like C(AuL)₆.
- (28) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge structural database. *Acta Cryst. B Struct. Sci. Cryst. Eng. Mater.* **2016**, 72, 171–179.

- (29) As mentioned above, we could not synthesize a *gem*-diaurated gold(III) complex without the support of a chelate ligand. Still, we calculated the geometry of $(MeCO)_2C(AuCl_2Pyr)_2S_2$ and found the Au-C-Au angle also to be large at 110° , supporting the assumption that the long Au-Au distance is not enforced by the ligand. The calculation can be found in the Supporting Information.
- (30) Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327.
- (31) Pyykkö, P. Theoretical Chemistry of Gold. Angew. Chem., Int. Ed. 2004, 43, 4412–4456.
- (32) Lin, Y. S.; Li, G.; Mao, S. P.; Chai, J. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. *J. Chem. Theory Comput.* **2013**, *9*, 263–272.
- (33) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, 132, 154104.
- (34) Řezáč, J.; Hobza, P. Describing Noncovalent Interactions beyond the Common Approximations: How Accurate Is the "Gold Standard," CCSD(T) at the Complete Basis Set Limit? *J. Chem. Theory Comput.* **2013**, *9*, 2151–2155.
- (35) (a) Liakos, D. G.; Sparta, M.; Kesharwani, M. K.; Martin, J. M. L.; Neese, F. Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory. *J. Chem. Theory Comput.* **2015**, *11*, 1525–1539. (b) Riplinger, C.; Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. *J. Chem. Phys.* **2013**, *138*, 034106.
- (36) Neese, F.; Valeev, E. F. Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods? *J. Chem. Theory Comput.* **2011**, *7*, 33–43.
- (37) Li, W. L.; Liu, H. T.; Jian, T.; Lopez, G. V.; Piazza, Z. A.; Huang, D. L.; Chen, T. T.; Su, J.; Yang, P.; Chen, X.; Wang, L. S.; Li, J. Bond-bending isomerism of Au2I3—: competition between covalent bonding and aurophilicity. *Chem. Sci.* **2016**, *7*, 475–481.
- (38) (a) Harwell, D. E.; Mortimer, M. D.; Knobler, C. B.; Anet, F. A. L.; Hawthorne, M. F. Auracarboranes with and without Au—Au Interactions: An Unusually Strong Aurophilic Interaction. *J. Am. Chem. Soc.* **1996**, *118*, 2679—2685. (b) Portugués, A.; González, L.; Bautista, D.; Gil-Rubio, J. Gold Complexes with Difunctional Perfluoroalkyl Chains: Quantifying the Energy of Aurophilic Interactions in Flexible Open-Chain Complexes. *Angew. Chem., Int. Ed.* **2020**, *59*, 15220—15225.
- (39) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. A New Gold-Catalyzed C–C Bond Formation. *Angew. Chem., Int. Ed.* **2000**, 39, 2285–2288.
- (40) (a) Rodriguez, J.; Bourissou, D. Well-Defined Chiral Gold(III) Complexes: New Opportunities in Asymmetric Catalysis. *Angew. Chem., Int. Ed.* **2018**, *57*, 386–388. (b) Rocchigiani, L.; Bochmann, M. Recent Advances in Gold(III) Chemistry: Structure, Bonding, Reactivity, and Role in Homogeneous Catalysis. *Chem. Rev.* **2021**, *121*, 8364–8451. (c) Zeineddine, A.; Estévez, L.; Mallet-Ladeira, S.; Miqueu, K.; Amgoune, A.; Bourissou, D. ational development of catalytic Au(I)/Au(III) arylation involving mild oxidative addition of aryl halides. *Nat. Commun.* **2017**, *8*, 565.
- (41) (a) Huang, B.; Hu, M.; Toste, F. D. Homogeneous Gold Redox Chemistry: Organometallics, Catalysis, and Beyond. *Trends. Chem.* **2020**, *2*, 707–720. (b) Nijamudheen, A.; Datta, A. Gold-Catalyzed Cross-Coupling Reactions: An Overview of Design Strategies, Mechanistic Studies, and Applications. *Chem.—Eur. J.* **2020**, *26*, 1442–1487. (c) Rigoulet, M.; Thillaye du Boullay, O.; Amgoune, A.; Bourissou, D. Gold(I)/Gold(III) Catalysis that Merges Oxidative Addition and π -Alkene Activation. *Angew. Chem., Int. Ed.* **2020**, *59*, 16625–16630. (d) Huang, L.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Photosensitizer-Free Visible-Light-Mediated Gold-Catalyzed1,2-Difunctionalization of Alkynes. *Angew. Chem., Int. Ed.* **2016**, *55*, 4808–4813.
- (42) (a) Reiersølmoen, A. C.; Østrem, E.; Fiksdahl, A. Gold(III)-Catalysed cis-to-trans Cyclopropyl Isomerization. *Eur. J. Org. Chem.*

2018, 2018, 3317–3325. (b) Reid, J. P.; Hu, M.; Ito, S.; Huang, B.; Hong, C. M.; Xiang, H.; Sigman, M. S.; Toste, F. D. Strategies for remote enantiocontrol in chiral gold(III) complexes applied to catalytic enantioselective γ ,δ-Diels–Alder reactions. *Chem. Sci.* **2020**, 11, 6450–6456. (c) Jiang, J. J.; Cui, J. F.; Yang, B.; Ning, Y.; Lai, N. C. H.; Wong, M. K. Chiral Cyclometalated Oxazoline Gold(III) Complex-Catalyzed Asymmetric Carboalkoxylation of Alkynes. *Org. Lett.* **2019**, 21, 6289–6294.

- (43) (a) Wong, V. H. L.; White, A. J. P.; Hor, T. S.; Hii, K. K. Silver-Catalyzed Cyclization of Propargylic Amides to Oxazolines. *Adv. Synth. Catal.* **2015**, 357, 3943–3948. (b) Wong, V. H. L.; Vummaleti, S. V. C.; Cavallo, L.; White, A. J. P.; Nolan, S. P.; Hii, K. K. M. Synthesis, Structure and Catalytic Activity of NHC–AgI Carboxylate Complexes. *Chem.—Eur. J.* **2016**, 22, 13320–13327. (c) Harmata, M.; Huang, C. Silver-Catalyzed Preparation of Oxazolines from N-Propargylamides. *Synlett* **2008**, 2008, 1399–1401.
- (44) (a) Wu, X.; Li, M. L.; Wang, P. S. Hybrid Gold/Chiral Brønsted Acid Relay Catalysis Allows an Enantioselective Synthesis of (—)-5-epi-Eupomatilone-6. *J. Org. Chem.* **2014**, 79, 419—425. (b) Wang, P. S.; Li, K. N.; Le Zhou, X.; Wu, X.; Han, Z. Y.; Guo, R.; Gong, L. Z. Enantioselective Relay Catalytic Cascade Intramolecular Hydrosiloxylation and Mukaiyama Aldol Reaction. *Chem.—Eur. J.* **2013**, 19, 6234—6238.
- (45) (a) Brill, M.; Nahra, F.; Gómez-Herrera, A.; Zinser, C.; Cordes, D. B.; Slawin, A. M. Z.; Nolan, S. P. Gold- N-Heterocyclic Carbene Complexes of Mineral Acids. *ChemCatChem.* **2017**, *9*, 117–120. (b) Gaillard, S.; Slawin, A. M. Z.; Nolan, S. P. A N-heterocyclic carbenegold hydroxide complex: a golden synthon. *Chem. Commun.* **2010**, *46*, 2742–2744.
- (46) Wang, W.; Hammond, G. B.; Xu, B. Ligand Effects and Ligand Design in Homogeneous Gold(I) Catalysis. J. Am. Chem. Soc. 2012, 134, 5697–5705.
- (47) Václavík, J.; Servalli, M.; Lothschütz, C.; Szlachetko, J.; Ranocchiari, M.; van Bokhoven, J. A. AuI Catalysis on a Coordination Polymer: A Solid Porous Ligand with Free Phosphine Sites. *ChemCatChem.* **2013**, *5*, 692–696.
- (48) (a) Weyrauch, J. P.; Hashmi, A. S. K.; Schuster, A.; Hengst, T.; Schetter, S.; Littmann, A.; Rudolph, M.; Hamzic, M.; Visus, J.; Rominger, F.; Frey, W.; Bats, J. W. Cyclization of Propargylic Amides: Mild Access to Oxazole Derivatives. *Chem.—Eur. J.* **2010**, *16*, 956–963. (b) Liu, Y.; Liu, P.; Ling, B.; Chen, G.; Chen, T.; Li, Y.; Bi, S.; Zhang, D. Mechanistic Investigation of Au(III)-Catalyzed Cycloisomerizations of N-Propargylcarboxamides. *Eur. J. Org. Chem.* **2019**, 2019, 6822–6829.
- (49) (a) Doherty, S.; Smyth, C. H.; Knight, J. G.; Hashmi, A. S. K. Synthesis of an electron-rich KITPHOS monophosphine, preparation of derived metal complexes and applications in catalysis. *Nat. Protoc.* **2012**, *7*, 1870–1883. (b) Hashmi, A. S. K.; Loos, A.; Littmann, A.; Braun, I.; Knight, J.; Doherty, S.; Rominger, F. Gold(I) Complexes of KITPHOS Monophosphines: Efficient Cycloisomerisation Catalysts. *Adv. Synth. Catal.* **2009**, *351*, 576–582.
- (50) Hashmi, A. S. K.; Loos, A.; Doherty, S.; Knight, J. G.; Robson, K. J.; Rominger, F. Gold-Catalyzed Cyclizations: A Comparative Study of ortho,ortho'-Substituted KITPHOS Monophosphines with their Biaryl Monophosphine Counterpart SPHOS. *Adv. Synth. Catal.* **2011**, 353, 749–759.
- (51) Schießl, J.; Schulmeister, J.; Doppiu, A.; Wörner, E.; Rudolph, M.; Karch, R.; Hashmi, A. S. K. An Industrial Perspective on Counter Anions in Gold Catalysis: On Alternative Counter Anions. *Adv. Synth. Catal.* **2018**, *360*, 3949–3959.

☐ Recommended by ACS

The Elusive Au(I)···H-O Hydrogen Bond: Experimental Verification

Gyeongjin Park and François P. Gabbaï

AUGUST 09, 2021

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ 🗹

Resonance-Assisted but Antielectrostatic Intramolecular Au···H-O Hydrogen Bonding in Gold(I) Complexes: A Computational Verification

Xuhui Lin and Yirong Mo

DECEMBER 18, 2020

INORGANIC CHEMISTRY

READ 🗹

Gold Complexes with ADAP Ligands: Effect of Bulkiness in Catalytic Carbene Transfer Reactions (ADAP = Alkoxydiaminophosphine)

Juan Diego Pizarro, Pedro J. Pérez, et al.

JUNE 19, 2020

ORGANOMETALLICS

READ **C**

A Reinterpretation of the Imidazolate Au(I) Cyclic Trinuclear Compounds Reactivity with Iodine and Methyl Iodide with the Perspective of the Inverted L...

Rossana Galassi, Gabriele Manca, et al.

FEBRUARY 15, 2022

INORGANIC CHEMISTRY

READ **Z**

Get More Suggestions >