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Sufficient condition for root reconstruction by parsimony on
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Abstract

We consider the problem of inferring an ancestral state from observations at the
leaves of a tree, assuming the state evolves along the tree according to a two-state
symmetric Markov process. We establish a general branching rate condition under
which maximum parsimony, a common reconstruction method requiring only the
knowledge of the tree topology (but not of the substitution rates or other parameters),
succeeds better than random guessing uniformly in the depth of the tree. We thereby
generalize previous results of [13, 37]. Our results apply to both deterministic and
i.i.d. edge weights.
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1 Introduction

Ancestral reconstruction In biology, the inferred evolutionary history of organisms
is depicted by a phylogenetic tree, that is, a rooted tree whose branchings indicate past
speciation events with the leaves representing living species. The evolution of features,
such as the nucleotide at a given position in the genome of a species, the presence or
absence of a protein or the number of horns in a lizard, is commonly assumed to follow
Markovian dynamics along the tree [35]. That is, on each edge, the state of the feature
changes according to a Markov process; at bifurcations, two independent copies of the
feature evolve along the outgoing edges starting from the state at the branching point.

Here we consider the problem of inferring an ancestral state from observations of a
feature at the leaves of a known phylogenetic tree. We refer to this problem, which has
important applications in biology [26, 8, 31], as the ancestral reconstruction problem.
Many rigorous results have been obtained in previous work; see, e.g., [20, 4, 19, 36,
24,9, 25, 27,5, 13, 37, 33, 28, 29, 3, 21, 10, 23, 11, 15, 1] for a partial list. Typically,
one seeks an estimator of the root state which is strictly superior to random guessing—
uniformly in the depth of the tree—under a uniform prior on the root [25]. Whether such
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an estimator exists has been shown to depend on a trade-off between the mixing rate
of the Markov process and the growth rate of the tree. In some cases, for instance in
two-state symmetric Markov chains on binary trees [20, 19] as well as on more general
trees [9], sharp thresholds have been established. We focus here on the special case of
two-state symmetric chains on binary trees.

The threshold of maximum parsimony Maximum parsimony is an ancestral recon-
struction method with a long history in evolutionary biology. See e.g. [35]. Its underlying
principle is simple and intuitive: it calls for assigning a state to each internal vertex in
such a way as to minimize the total number of changes along the edges; the resulting
state at the root (possibly not unique) is the desired reconstructed state. An advantage
of maximum parsimony, which accounts partly for its occasional use in practice, is that it
only requires knowledge of the tree—not of the substitution probabilities along the edges,
which can be difficult to estimate accurately from data and can affect the accuracy of
reconstruction [7]. In fact maximum parsimony is equivalent to maximum likelihood
when only the tree topology is known [36]. Another root state estimator which only
requires knowledge of the tree is recursive majority, studied in [24, 26].

The theoretical properties of maximum parsimony for ancestral state reconstruction
have been widely studied [34, 36, 12, 37, 13, 6, 14, 16, 17, 18]. From its very definition,
one might expect maximum parsimony to perform well when the probabilities of substi-
tution along the edges are “sufficiently small.” This statement was confirmed rigorously
for the two-state symmetric model on complete binary trees with constant mutation
probability in [37] (as first conjectured in [34]). Below a critical probability, maximum
parsimony does indeed beat random guessing. A related result was obtained in [13]
under a common random tree model known as the Yule tree. Here we substantially gen-
eralize both of these results. We give a general sufficient condition on the branching rate
under which maximum parsimony succeeds. Our condition is related to the branching
number of the tree, which roughly speaking generalizes the concept of vertex degree
and plays an important role in many processes on trees. See e.g. [22]. Other generalized
notions of degree have been used in related contexts [32].

Definitions In order to state our results formally, we begin with some definitions. Let
T = (V,€) be an infinite complete binary tree rooted at p with vertex set V and edge set
£. That is, all vertices of 7 have exactly two children; in particular, 7 has no leaf. Every
edge e € £ is assigned a weight 6, € [0,1]. If e = (z,y) where z is the parent of y, we also
write ¢, = 0.. We use the notation x < y to indicate that z is an ancestor of y and we
write z < y for x <y and x # y. We also let s(z) be the sibling of = # p.

Under the Cavender-Farris-Neyman (CFN) model over 7 and 6 = (9y>yev: also known
as Neyman 2-state model,we associate to each vertex x € V a state o,, € {0,1} as follows.
The state at the root, 0, is picked uniformly at random in {0, 1}. Recursively, if y has
parent z, state o, is equal to o, with probability 0,, otherwise it is picked uniformly at

random in {0,1}. We let p, = Py glo, # 0,] = "% e the probability of a substitution

on edge e = (x,y). Here we use Py to indicaQte probabilities taken under the CFN
model over 7 and 6. The CFN model is equivalent to the Fortuin-Kastelyn random cluster
representation of the ferromagnetic Ising model on 7 with a free boundary. See e.g. [9]
and references therein.

Informally, a root state estimator is a map returning a (possibly randomized) guess

for the state of the root, based on the knowledge of the states on an observed cutset.

Definition 1.1 (Cutset). A cutset is a minimal, finite set of vertices m C V such that all
infinite self-avoiding paths starting at p must visit 7. We let € (T) be the collection of all
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cutsets of T. We denote by T™ = (V™,E™) the finite tree obtained from T after removing
all descendants of the vertices in .

As mentioned above, our focus in this work is on a root state estimator known in
phylogenetics as maximum parsimony. Fix a cutset 7 and assume that the states on
7w are observed. The parsimony principle dictates that one assigns to each vertex =
(ancestor to the observed cutset 7) a state 6, such that the overall number of changes
along the edges of 7™, namely, Z(m,y)egﬂ 1{6, # 6y}, is minimized, where we let by
default 6, = o, for all z € 7. In case both 0 and 1 can be obtained in this way as root
state, a uniformly random value in {0, 1} is returned. We let RA7- ; be the reconstruction
accuracy of parsimony, i.e. the probability that it correctly reconstructs the root state.

Main result: deterministic weights In our main result, we give conditions under
which the reconstruction accuracy of maximum parsimony is uniformly bounded away
from 1/2.

Theorem 1.2 (Reconstruction accuracy of parsimony: deterministic weights). Let 7 =
(V,€) be an infinite complete binary tree with edge weights 0 = (0,).cy satisfying
0. :=inf,cy 6, > 0 and

3
. —1 2
sup{ k>0: inf g H kK 0,>0 >2. (1.1)
TET pFz<x

Then inf cq(T) RA’TTﬁ > % i.e., the reconstruction accuracy of parsimony on T is away
from 1/2.

Condition (1.1) involves the branching number, a generalized notion of branching
rate which plays a key role in the analysis of many stochastic processes on trees and
tree-like graphs. See e.g. [22]. The following example provides some intuition in a
special case. See Lemma 4.1 for another illustration.

Example 1.3 (Fixed edge weights). As a simple illustration, observe that, when all
weights are equal to 6, € (0, 1], the supremum in (1.1) is attained for x = 20,. Indeed,
the sum in (1.1) when k = 260, simplifies to

S I s te =3 II 5=1>0

TET pFz<zx zeT pF#z<x

for any cutset w, where the equality can be proved by induction on the graph distance
from the root to the furthest vertex in 7. On the other hand, letting m,, be the cutset of
all vertices at graph distance n from p, for any € > 0 it holds that

ST (@+9)60)7'0. =@2+2)™ 2" —0,

TETy pFz<lw

as n — +oo. Hence, in this case, condition (1.1) reduces to 26, > 3/2, that is, 6. > 3/4.
In terms of substitution probability, this is p, = % < 1/8.

The argument in the example above leads to the following corollary.
Corollary 1.4 (All substitution probabilities below the threshold). Let the substitution

probabilities (p.).cy satisfy p, € [0,p.] for all z € V, for some p, < 1/8. Then the
reconstruction accuracy of maximum parsimony on T is bounded away from 1/2.

In general, Theorem 1.2 cannot be improved in the following sense. It was shown
in [37, Theorem 4.1] that when p, = p. > 1/8, thatis, 0, =1 —2p, = 0. < 3/4 forall z
then inf,, RAg-’jg = % where 7, is defined in Example 1.3. On the other hand, it is not
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known whether the reconstruction accuracy necessarily converges to 1/2 if (1.1) is not
satisfied. We leave this as an open problem.

Zhang et al. [37] also established the special case of Theorem 1.2 when p, = p, < 1/8
for all z and m = m,. Their proof proceeds through a careful analysis of the limit of a
recurrence for RA’TT”:@ first derived in [34]. Our more general result follows from a softer
argument which relies on the instability of a fixed point of this recurrence corresponding
to asymptotic reconstruction accuracy 1/2. A more detailed proof sketch is given in
Section 2 following some preliminaries. We note that our proof method may be of more
general interest, e.g., to extend the results beyond the two-state case where the higher
dimensionality of the system may complicate significantly the derivation of an explicit
limit even when edge weights are constant.

Main result: i.i.d. weights We also obtain a related result in the case of edge weights
that are i.i.d. No lower bound on the weights is needed in this case, unlike Theorem 1.2.

Theorem 1.5 (Reconstruction accuracy of parsimony: i.i.d. weights). Let T = (V,€)
be an infinite complete binary tree with edge weights 6 = (0,).cy drawn i.i.d. from a
distribution © over (0, 1]. Let u be the mean of © and assume that . > 3/4. Then, for any
§ > 0, there is € > 0 such that inf,ce(7) RAT 4 > 3(1 + ¢), with probability at least 1 — é.

The previous theorem covers in particular the case of the pure birth process, or Yule
tree, which is a popular random model of phylogenetic trees. See e.g. [35]. In that

case, 0, = e 27>, where T, is an exponential with rate . To derive the corresponding
threshold, we note that
o0 )\
=E[f.] = e Mdt = .
n=Elf /0 ©oe A+2

Then p > % <= ) > 6, which is consistent with the results of [13, Theorem 2.3].

2 Preliminaries

Computing parsimony Our proofs are based on a recurrence for the reconstruction
accuracy. Maximum parsimony can be computed efficiently by dynamic programming,
which is referred to as the Fitch method.

Definition 2.1 (Parsimony recursion). The Fitch method recursively constructs a set §§
of possible states for each vertex z € V™, starting from =, as follows. If z € w, ST = {0 }.
If z ¢ 7 and has children x and y,

. Lz;fﬁgg, if ST NSy #0
Sz USy, ow

z

The method returns the maximum parsimony estimator &, which is equal to the unique
state in §Z; jf\§g| =1, and otherwise returns a uniformly random value in {0,1}.

What is described above is the bottom-up phase of the Fitch method. (A top-down
phase, which we will not require here, then assigns a state to each vertex in V™ consistent
with a maximum parsimony solution; e.g. [35].) Let w be an arbitrary cutset on 7 with
states o, u € 7, and let §§, z € V7, be the corresponding reconstructed sets under the
Fitch method. We define

al =Prp [3? = {Uz}} . Br=Pry|ST={1- 02}} -

Under our randomization rule, the reconstruction accuracy of maximum parsimony
RAT 4 is given by

(ap —By). (2.1)

N |

AT{' 1 ATF ™ 1 T ™ 1
Pro (37 ={0p}] +5Pro [S; = 0.1} =aZ +5(1—af —8]) = 5 +
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Proof sketch Fix 6 satisfying the assumptions of Theorem 1.2 and fix a cutset 7. To
analyze (a7, 87), it is natural to take advantage of the recursive nature of 7.Let z and
y be the children of z. The event ST = {0.} occurs when either (i) ST = {0.} and
§g = {0.}, or (ii) ST = {0.} and §3’J = {0,1} or vice versa. By the Markov property of
the CFN model, the random variables §;r and §;‘ , which are functions only of the states
of m below z and y respectively, are conditionally independent given o,. Hence, letting
qu = 1 — p, for u = z,y and taking into account the possibility of a mutation along the
edges (z,z) and (z,y), it follows as first derived in [34, Lemma 7.20] that

ol = (quag +p.B7)(ayeq + pyBy)
gz + paBy) (1 — 04; - B;) +(1—a; - ﬁ;)(an; +py5;)> (2.2)

where the first and second lines on the r.h.s. correspond respectively to cases (i) and (ii)
above. Similarly,

BT = (peog +quf7)(Pyey +qyB;)
+(peay +q:87) (1 — gy — B)) + (1 —ap — B7)(pyay +qy8;)-  (2.3)

In the case that p, = p for all u, a fixed point analysis was performed in [34, Theorem
7.22]. It was found that, if p > 1/8, there is a single fixed point (1/3,1/3) which
corresponds informally to “having no information about the root.” While if p < 1/8, there
is an additional fixed point (a;°, 5;°) with ag® > 87°. Convergence to (1/3,1/3) in the
first case and (ago, 6;0) in the second case was established rigorously in [37]. One step
in [37] involved the derivation of a new recurrence in terms of the quantities aJ~ — 57~
and 1 — (a®" + 87~), which facilitates the analysis of the limit in the fixed edge weight
case.

Going back to binary trees with general weights, as our starting point we further
modify the recurrence of [37]. For all z € V, we define
dl =aof — 57 and ul =3(al +57)—2. (2.4)

z z z

We show in Proposition 2.2 below that (d7, u?) satisfies the following recurrence

T 4—uy T 4 - llg T
a = ( 6y>%%+( . >%%, (2.5)
3 1
u?l = 5910ydgd; — iugug, (2.6)

for z € V™ — 7 with children z, y, as well as the inequalities 0 < d7 <land —1/2 <u?f <1
for all z € V™ and the boundary conditions d7 = u] = 1 for all z € n. Our choice of
parametrization is motivated in part by the fact that the “no information” fixed point is
now at (0,0) and that |d7[, [u?| < 1. At a high level we show that, under the branching
rate condition (1.1), the fixed point (0,0) is “unstable” and that d7 in particular stays
bounded away form 0. That in terms implies a lower bound on the reconstruction

accuracy as, by (2.1), we have L
RAT = 5 + §dg.

The link between stability and the weighted branching rate in (1.1) can be seen
from (2.5). Consider first the simpler special case where all weights are equal to 0, and
m = mp: by symmetry, d] takes the same value for all = at the same graph distance from p;
and moreover assuming that we are close to the fixed point (0, 0), thatis, (u?,dZ) ~ (0,0),

(2.5) implies

4—uj 4 —ul 4 4
d?] = Y)6,.dzr £10,d7 ~2-0,d] = -6.d7.
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Hence, in that case, the solution is expected to grow when %9* > 1, corresponding to the
condition derived in Example 1.3. More generally, we use (2.5) to relate the d-value at
the root to the d-values on a cutset (see Lemma 3.1). To deal with the nonlinear nature
of (2.5) and (2.6), we control the u-values thanks to the quadratic form of (2.6) which
implies a quick decay towards 0 (see Lemma 3.3).

Recurrence Before proceeding to the proof of our main results, we first establish
a basic recurrence which follows from the work of [37]. We give a short proof for
completeness.

Proposition 2.2 (Recurrence and basic properties). The following hold:

- [Boundary conditions] Forall z € w, d7 =1 and u} = 1.

- [Recurrence] For all z € V™ — 7, if x,y are the children of z, the system (2.5)
and (2.6) holds.

- [Bounds] For all z € V™, we have 0 < d] <1 and-1/2<u] <1

Proof. We start with the boundary conditions. By Definition 2.1(a) and the definitions

~

of o] and g7, we have for all z € « that of = P74[S] = {0.}] =1 and 5] = Py 4[S] =
{1-0.}]=0.Soul =3(a +p7)-2=1andd] =a - 87 = 1.

The second statement is merely a change of variables. We briefly expand on the first
equation (the other one being similar). Let z € V™ — 7 with children z,y. We define

¥, =al + pI and A, = af — 8. By the definitions of p,, and ¢,, note that

™ s 1+9’r T 1 707- T 1 1
Az Oy +pﬂfﬁx = ( 2 ) oy + < 2 ) BJL = 521 + §Ger9ca

and, similarly, pyaf + ¢;58] = %Zm — %GxAm. Hence, by (2.2) and (2.3),

1 1 1
O‘g = Z(Zm + HIAI)(E?/ + eyAy) + i(zm + emAz)(l - Ey) + 5(1 - EZ)(Ey + eyAy)v

| 1 1
B = Z(Zaz - eacAw)(zy - eyAy) + 5(21 - ewa)(l - Zy) + 5(1 - Zw)(zy - 9yAy)'
Subtracting the above two equations, we get

A, = %{%szy + %@Ayzm F0.0,(1—%,) +0,A,(1—%,)

1 1

which after plugging in (2.4) gives (2.5).

Because o and g7 are probabilities and further o] + 87 < 1, we have that d] < 1 and
u] <1, for all z. Moreover, that together with the boundary conditions and (2.5) implies
that d7 > 0 for all z by induction. In turn, that together with the boundary conditions
and (2.6) implies that u7 > —1/2 for all . O

3 Deterministic weights

Before proceeding with the proof of Theorem 1.2, we first prove some lemmas.

ECP 26 (2021), paper 55. https://www.imstat.org/ecp
Page 6/13


https://doi.org/10.1214/21-ECP423
https://imstat.org/journals-and-publications/electronic-communications-in-probability/

Sufficient condition for root reconstruction by parsimony

3.1 Controlling d- and u-values

In the first lemma, we express the d-value at the root as a function of the d- and
u-values above an arbitrary cutset. Recall that s(z) is the sibling of z.

Lemma 3.1 (Controlling the root with a cutset). For any cutset ' in 7™, it holds that

4 —u”
a=>Yar [] {g”}o (3.1)

zen’  pFz<z

Proof. The result follows by recursively applying (2.5) from the root down to /. We
implicitly use the fact that, by definition, a cutset is minimal. O

Our second lemma shows that d-values cannot grow too fast down the tree. This
fact will be useful to proving the next key lemma. We will need the lower bound
0, = inf.cy 6, > 0, on the #-values. For v, w € V™, we let (v, w) be the graph distance
between v and w in 7™. Recall that 6, <1 < 2.

Lemma 3.2 (Growth of d-values). Fix any v € V™. For all ¢’ > 0 and all descendants w of
vin V7,
¥(v,w)
dj <&’ implies dj <& (9> .
*

Proof. Let z € V™, not on 7, have children x and y. (Note that, in the case where z is
the parent of a vertex on the cutset 7, z itself cannot be on the cutset by minimality
and therefore both its children are in V™.) By Proposition 2.2, we have u7, ug <1and
d7,dy > 0, which implies that both terms on the rh.s. of (2.5) are non-negative. Hence,
using 6, > 0., (2.5) gives d7 > ée*dg. In particular, d7 < ¢’ implies that d7 < £'(2/6.).
Recursing gives the claim. O

Our final lemma controls u-values at the root of a subtree where d-values are uni-
formly small.

Lemma 3.3 (Controlling u when d is small). Fix any 0 < ¢ < 1/9 and v € V™. Then there
exists ¢’ > 0 depending only on 0, and ¢ such that: dT < ¢'(2/6..) implies |u]| < 4¢.

Proof. Let H be the smallest non-negative integer such that

1 —142H
- < ¢. 3.2
(1) < 02
Define ¢’ > 0 to be the largest positive real such that
H+1 H+172
2 3 2

The rest of the proof proceeds in two steps: we derive a simplified recurrence for
u-values and solve it.

1. Simplified recurrence: Assume that d] < ¢’(2/6.). Let w be a descendant of v
with graph distance (v, w) < H. Then, by Lemma 3.2, d7 < &’ (2/6,)7 < 1, where we
used (3.3). This show, in particular, that all descendants of v in V within graph distance
H are in fact strictly above 7, because d-values are 1 on the cutset 7. Moreover, by the
recurrence (2.6) and the inequality (3.3), for any descendant wg of v with children wy, ws
in V™ that are within graph distance H of v, we have

3 1 1
|u$o| < 59“’19 dy, dy, + 5 |u;rvl| ’u1ﬂ;12| <o+ 5 ’u;r01| |u7ur)2’ ’ (3.4)

w2 Fwqp Twg
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where we used that #-values are < 1 and (3.3). Define
Uy =sup{|ul| : we V", v <wandvy(v,w) = h},

and U, = |u7|. By the remark above, the set in the previous display is non-empty for all
h=0,...,H — 1. Taking a supremum on both sides of (3.4) gives the recurrence

1
Uh§¢+§U,2L+17 0<h<H-1. (3.5)

2. Solution: We show by induction on h (backwards from H — 1) that

_14oH-h
Uy, <3¢+ <2> . (3.6)

For the base of the induction h = H — 1, we have indeed that

_14oH—(H-1)

1
1 < — < -
Upy 1_¢+2_3¢+<2) )

where we used (3.5) and the fact that u-values are < 1 in absolute value. Assume the
induction claim (3.6) holds forall A’ +1 < h < H — 1. We show it then holds for h = h'.
Indeed, by (3.5) again,

2

_142H- (R +1)
1., 1 1
Uh’ S (b—i-*U /+1§¢+7 3¢+ a
2 2 2
_ H—(H-1) 2{,1+2H—(h/+1)}+1
9¢ 1\ 't 1
< 1+ —= — —
< of1eX +3<2) NE
H—n'
5 99 1\ '
< -+ — — .
< o[3+3]+ ()

Because by assumption ¢ < 1/9, the square bracket above is < 3. That concludes the
induction. o
By our choice of H in (3.2), that implies [u7| = Uy < 3¢ + (1/2)"""> < 4¢. O

3.2 Proof of main theorem

Proof of Theorem 1.2. Fix 7 € ¥(T) and assume that 6, > 0 and that (1.1) holds. Then
there is 0 < ¢ < 1/9 and 0 < ¢ < 1 such that

> 11 {5(1—@}9@@ (3.7)

zen’ p#z<x

for all cutsets 7' € ¥(T). For this value of ¢, let ¢/ be as in Lemma 3.3 and define
¢ = €'( < ¢’. The proof proceeds by contradiction. Assume that d} < ¢. Let 7’ be the
cutset of those nodes closest to the root where the d-values first cross above ¢/, i.e.,
formally 7’ = {x € V™ : dT > ¢’ and dT < &', Vz < x}. Such a cutset (which is necessarily
minimal) exists because d” = 1 for all v € 7 and ¢’ > . By Lemma 3.2, for all z on or
above 7', i.e. such that z < x for some z € 7/, we have dT < s’% and d7 ) < 5’%, since
the immediate parent of z (and s(z)) has d-value < &’ by definition of #’. By Lemma 3.3,
we then have

juf| < 4¢ and

ug(z)‘ < 4. (3.8)
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By Lemma 3.1, (3.7) and (3.8), summing over 7’

Sa [[ {F39bes T 01 {u-afe -

e’ p#z<zx zen’ p#Fz<wz

which is a contradiction. O

4 1.i.d. weights

In this section, we prove our main result in the i.i.d. weight case. Because there is
no lower bound on the weights, Theorem 1.2 cannot be applied directly to this case. In
particular, the absence of a lower bound makes controlling the u-values more challenging.
Here we identify a subtree of 7 where u-values are well-behaved. The existence of such
a subtree is established with a coupling to a percolation process, where open edges
roughly indicate that weights are uniformly bounded in a properly defined neighborhood.

Proof of Theorem 1.5. First, we need the following percolation result. To each edge
e = (x,y) of T, where z is the parent of y, we assign an independent random weight éy
drawn from a distribution © over (0, 1]. We also pick an independent indicator variable
jy, which is 1 with probability ¢ € [0, 1] and 0 otherwise. Let 7 = (V, €) be the subtree of
T whose vertices x satisfy HP#SI J. = 1 and whose edges are those with endvertices
satisfying that condition. We let N ; be the event of non-extinction, i.e., the event that
T is infinite. By standard branching process arguments [2], the extinction probability ¢
satisfies ¢ = ¢2@% +2(1 — §)Gp + (1 — §)?, i.e

1-¢\?

PNewt] = —— | - (4.1)
q

Lemma 4.1 (Branching condition: random edge weights on open cluster). Fix ¢ € [0,1/2)

and assume that © has mean fi € (0,1). Then, conditioned on N, almost surely

k(T,0) :==sup{ k>0: inf Z H k10, >0 = 2Gji. (4.2)
nee(T) rET pF#z<x

Proof. This result can be proved along the lines of Proposition 3.2, Proposition 5.1 and
Corollary 5.2 in [30]. We sketch a proof.

For any ¢ > 0 and any rooted, locally finite tree (77,0’) with positive edge weights, it
follows from the definition of x(77,6’) that the property {7 is finite or x(7",60") < c} is
inherited, in the sense that every finite weighted tree (7”,6’) has this property and that
the descendant subtrees of the root of (7, 6’) have the property whenever (7", ¢’) itself
has it. From an argument similar to Proposition 3.2 in [30] (and using the independence
of the weights), ,'$(7~'7 5) is almost surely constant conditioned on Ny.

Let 7, € €(T) be the set of vertices of 7 at graph distance n from the root. Let-

ting Fo=o0 ({jz,éz (2 E T, m < n}) it can be checked that the sequence M,
DI | S30(2@1)*1@ is a non-negative martingale. It therefore converges to a finite
limit almost surely as n — +oco. That implies that x(7, ) < 2Gji almost surely (whether
or not extinction occurs).

By the previous two paragraphs it suffices to show that, conditioned on M, (7' é)
2qfi with positive probability. Suppose we perform the followmg percolation process
on (T, 0) with parameter p € [0,1]: each edge e = (z,y) € £ is open independently with
probability pGy, let (9 be the event that there is then an infinite open path originating

from the root on 7. By a union bound, the inequality P { (T, 9)} <D ven Hp#gpez
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holds for any 7 € €(7). On the other hand, E {]P {@Vp (T, 9)” > 0 whenever gap > 1/2.

Indeed, combining the process generating (’7~‘, é) with the subsequent percolation process
on (7,0) is equivalent to a percolation process on the original binary tree 7 with
parameter gjp. The results follows. O

As discussed briefly above, we use a coupling argument. In order to describe the
coupling, we first need to define some constants (not depending on 6). Recall that p is
the mean of the edge weight distribution © and that § is the desired failure probability.
Let ¢ € (0,1) be close enough to 1 that

1—q\* ¢
<q> <3, 4.3)
q 3
and 2gu > 3/2. Let then 0 < ¢ < 1/9 be such that

2qu > (4.4)

3
2(1-¢)

Let H be the smallest non-negative integer such that (1/2)_1+2H < ¢. Because Py.g[f <
0.] — 0 as 0. — 0, we can take 6, € (0,1) small enough that 7 = P[f < 6,], satisfies

2H+1

1-72">¢ and 1-(1-72""<:2. (4.5)

[SU IS

We are now ready to define the coupled process (7~’ , 5). We use the following notation:
Ber(¢) is a Bernoulli random variable with success probability ¢ and Z|.A is the random
variable Z conditioned on the event A. For each z, we generate 0, = (1 —1,)0, 0+ 1.0, 1,
where I, ~ Ber(P[0, > 0.]), 6,0 ~ 0./{0, < 0.}, and 0,1 ~ 0,/{6, > 0.} are independent.
For z € V, let Dy, (z) be the descendants of z lying exactly h levels below it, i.e., Dp(z) =
{weV:z<wandy(z,w) = h}. Define J, = [luepyyi () Lw, and 0. = 6. . Note that by
construction the random variables jz ~ Ber((1 — 7')2H+1) and 9~Z, z € )V, are independent.
Let 7 be defined as in Lemma 4.1, let § = (1 — 7-)2H+1 and let i be the mean of ©
conditioned on being larger than 6,. By (4.1), (4.3), and (4.5), P[Next] < g.

We apply Lemma 4.1 to (7’ , 5) to obtain a branching rate condition similar to (3.7).

Lemma 4.2 (Towards controlling d at the root). There is a deterministic (i.e., not depend-
ing on 0) 0 < ¢ < 1 such that, on the event of non-extinction, with probability at least

1-4/3
2 -
inf_ Y ] {(1—¢)}9Z>g. (4.6)
wee(T) e p#z<wx 3
Proof. On the event of non-extinction, we have almost surely that
supqr>0: inf Y ] £7'6.>0 :2@ﬁ>2qu>L,
~eC(T) fom phnsa 2(1 —9¢)

where we used the fact that it > p as well as (4.4) and (4.5). In particular, we can
choose a deterministic (i.e., not depending on ) 0 < ¢ < 1 such that, on the event of
non-extinction, with probability at least 1 — §/3 the inequality in (4.6) holds. O

The purpose of the coupling is to show that the argument used in Lemma 3.3 to
control the u-values can be applied to the vertices in 7. This is stated in the next lemma.
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For the choice of ¢, H and 6, above, let ¢ be chosen as in the proof of Lemma 3.3, i.e.,
the largest positive real such that

2
3,72 H+1 (2 H+1

= < < 0.99.
2 [e <9*> o, and € 7 0.99

Lemma 4.3 (Controllinguon 7). Forallz€ VNV

2 2
d7 < &' ~implies|u?| < 4¢ and dl, <</ implies ‘ug(z) < 4. 4.7)

0. 0.

Proof. First, observe that for any z € VN V it must be that 6,, > 6., Yw € Unh<m+1Dp(2).
Indeed, note that the unique v such that v < z and v(v,z) = h satisfies v € T and
Dut1-n(2) € Puya(v).

As a result, repeating the proof of Lemma 3.3, it follows that forall z € VNV

2 2
dI <&’ = [ul| <4¢ and df, < = ‘u’;(z) < 4,

0.

where we used the fact that the parent of z is in 7 and therefore has all its descendants
within H + 1 level with #-values above 6,. The latter in turn implies that s(z) itself has
all its descendants within H level with #-values above 6,. That concludes the proof of
the lemma. O

The rest of the proof of Theorem 1.5 is similar to that of Theorem 1.2, except that we
restrict the argument to 7. Define ¢ = /¢ < ¢’. Let A be the event that 6,, > 6, for all w
such that v(p,w) < H. By (4.5), P[H] > 1 — §/3. Condition on H, Ny and (4.6), which
jointly occur with probability at least 1 — 4. Assume by contradiction that df < e and let
' ={z V™ :dT >¢ anddl < ¢/, Vz < z}. By Lemma 3.2, for all z € VNV such that

z < z for some z € 7/, we have d7 < ¢/# and a7, < ¢’ since the immediate parent of

z (and s(z)) has d-value < ¢’ by definition of 7’ and #-values on 7T are above 6,. By (4.7),
we then have

< 4¢, (4.8)

for all z € VNV such that z < x for some z € 7. Similarly to Theorem 1.2, by
Lemma 3.1, (4.6) and (4.8),

4—u" 4w -
g = > a7 ][ {2”}02 >odar ] {;S“’}ezzf%—e,

zen’  pFe<w venny  ptase

where we used again that f-values on 7 are above 6, as well as the fact that all terms
in the sum are non-negative by the general bounds on the d- and u-values. This is a
contradiction. O
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