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Background: Between September 2017 and June 2019, an outbreak of hepatitis A virus (HAV) occurred in
Louisville, Kentucky, resulting in 501 cases and 6 deaths, predominantly among persons who experience
homelessness or who use drugs (PEH/PWUD). The critical vaccination threshold (Vc) required to achieve
herd immunity in this population is unknown. We investigated Vc and vaccination impact using epidemic
modeling.
Methods: To determine which population subgroups had high infection risks, we employed a technique
based on comparing the proportion of cases arising before and after the epidemic peak, across subgroups.
We also developed a dynamic deterministic model of HAV transmission among PEH/PWUD to estimate
the basic reproduction number (R0), herd immunity threshold, Vc and the effect of timing of the vaccina-
tion intervention on epidemic and economic outcomes.
Results: Of the 501 confirmed or probable cases, 385 (76.8%) were among PEH/PWUD. Among PEH/PWUD
and within the general population, homelessness was a significant risk factor for infection in the initial
stages of the outbreak (odds ratios for homeless versus not homeless: 2.62; 95% confidence interval
(CI): 1.62–4.25 for PEH/PWUD and 2.39; 95% CI: 1.51–3.78 for all detected cases). Our estimate for R0

ranges between 2.85 and 3.54, corresponding to an estimate of 69% (95% CI: 65–72) for herd immunity
threshold and 76% (95% CI: 72%-80%) for Vc , assuming a vaccine with 90% efficacy. The observed vaccina-
tion program was estimated to have averted 30 hospitalizations (95% CI: 19–43), associated with over US
$490 000 (95% CI: $310 000–700 000) in hospitalization cost. Greater impact was observed with earlier
and faster vaccination implementation.
Conclusions: Vaccination coverage of at least 77% is likely required to prevent outbreaks of HAV among
PEH/PWUD in Louisville, assuming a 90% vaccine efficacy. Proactive hepatitis A vaccination programs
among PEH/PWUD will maximize health and economic benefits of these programs and reduce the like-
lihood of another outbreak.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

An estimated 1.5 million cases of hepatitis A virus (HAV) infec-
tion occur worldwide annually [1]. Hepatitis A is a liver disease,
typically characterized by fatigue, nausea, jaundice, stomach pain
and appetite loss [2]. HAV is transmitted via the fecal-oral route,
through close personal contact with an infected person or by
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ingesting contaminated food or water [2,3]. Consequently, individ-
uals living in poor sanitation conditions as well as men who have
sex with men (MSM) are at increased infection risk [4,5]. Hepatitis
A vaccines are highly effective, offering up to 95% protection [1,6].

The United States (US) introduced hepatitis A vaccination into
its routine vaccination program in 1996 for children � 24 months
of age in high-burden communities and for adults with increased
risk for HAV infection or severe disease from HAV. In 2006,
recommendations expanded to include vaccination of all children
between 12 and 24 months of age, regardless of risk category or
location. Therefore, although vaccination coverage among adoles-
cents (aged 13–17 years in 2019) is moderate (two-dose coverage:
77.1%) [7], it is substantially lower among adults (aged � 19 years
in 2018) (two-dose coverage: 11.9%) [8]. Additionally, despite
being recommended for adults at increased risk such as people
who use drugs (PWUD), and (since 2018) people experiencing
homelessness or unstable housing (PEH), vaccination coverage
among these groups, measured by antibodies to HAV (anti-HAV)
seroprevalence, remains low with estimates from 33% to 52%
[9,10,11].

Since 2016, widespread hepatitis A outbreaks have been
reported across various states in the US [5]. Many of these out-
breaks have affected MSM populations and persons who experi-
ence homelessness or who use drugs (PEH/PWUD) [5,12,13]. As
of October 1, 2021, 42 371 cases, 25 734 hospitalizations and
390 deaths had been recorded across 36 states due to the out-
breaks [5]. In response, state health departments initiated public
education and vaccination programs, with the latter mostly tar-
geted at groups at high risk [13]. However, few data are available
on the vaccination coverage required to achieve herd immunity
among populations at high risk in the US.

To provide evidence-based recommendations for public health
outbreak response, we analyze the 2017–2019 HAV outbreak in
Louisville, Kentucky. We assess the risks of different population
subgroups to HAV infection during the initial outbreak. Further,
using a dynamic model of HAV transmission among PEH/PWUD
in Louisville, we estimate the basic reproduction number, the crit-
ical vaccination threshold and impact of vaccination strategies
within this population.
2. Methods

2.1. Data

2.1.1. Surveillance
During the outbreak, surveillance was conducted by the Louis-

ville Metro Department of Public Health and Wellness (LMPHW).
Cases were categorized based on the 2012 US Council of State
and Territorial Epidemiologists (CSTE) clinical description for hep-
atitis A [14]. Three case categories were considered: confirmed,
probable and suspected. Cases that satisfied the CSTE clinical
description and had laboratory confirmation of immunoglobulin
M (IgM) anti-HAV were classified as confirmed while cases that
satisfied the CSTE clinical description and had an epidemiologic
linkage to a person who had laboratory-confirmed hepatitis A were
classified as probable. All other cases were classified as suspected.

For each reported case, data were collected on a range of time,
demographic and epidemiologic variables. Our study employed a
subset of these variables namely, reporting date (year and week),
age, sex, housing status (sheltered, unsheltered or unstable hous-
ing), illicit drug-use status (yes or no), hospitalization status and
mortality. Illicit drug use was defined as stipulated by the US Sub-
stance Abuse and Mental Health Services Administration [15]. Per-
sons who reported homelessness, unstable housing or illicit drug
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use (intravenous or non-intravenous) were classified as PEH/
PWUD.

Although data exist on all reported cases (n = 659), our analysis
considers only confirmed or probable cases (n = 501) as evidence
for HAV infection among suspected cases is weak. Hereafter, con-
firmed and probable cases are referred to as detected or observed
cases. We use incident or true underlying cases to refer to all cases
possessing characteristics of a confirmed or probable case, irre-
spective of reporting status.

This study used deidentified surveillance data and was deter-
mined by the Centers for Disease Control and Prevention to consti-
tute research that does not require review by an Institutional
Review Board.

2.1.2. Vaccination
In response to the high proportion of cases observed among

PEH/PWUD, the LMPHW implemented vaccination programs
mainly targeted at PEH/PWUD as well as health and social workers
who tend to have regular contact with PEH/PWUD. Vaccines were
administered through street outreach and at drug rehabilitation
centers, tuberculosis clinics, homeless shelters and correction cen-
ters. For each individual vaccinated, data were collected on the
date of vaccine administration, age, sex, race, MSM status, housing
status and illicit drug use status.

2.1.3. Analysis of risks among sub-populations
To determine HAV infection risk associated with PEH/PWUD

and non-PEH/PWUD, we utilized a statistical technique proposed
by Worby et al. [16], based on relative risks. The method involves
comparing the pre- and post-peak incidence for population sub-
groups of interest to ascertain which group(s) stood a higher risk
of infection during the initial outbreak stages.

We defined the epidemic peak as the period within which the
maximum number of cases was observed (weeks 32–34 after the
index case (April 9-April 29, 2018), similar for PEH/PWUD and
non-PEH/PWUD, Fig. 2A). We estimated the relative risk (RR),
defined for each population subgroup as the ratio of the proportion
of detected cases in that subgroup during the pre-peak period ver-
sus the corresponding ratio during the post-peak period. Case-
detection rate within each subgroup was assumed to be constant
over the duration of the outbreak [16], enabling the estimation of
the odds ratio (OR) for the incidence of cases in subgroup i versus
subgroup j for the pre-peak relative to the post-peak:

ORi;j ¼ RRi

RRj
: ð1Þ

An OR value differing significantly from 1 is indicative of a dif-
ference between pre-peak and post-peak incidence rates between
the subgroups. Specifically, ORi;j > 1 suggests infection risk for sub-
group i during the initial epidemic is higher than for subgroup j.
We note that the principles of RR and OR used here are the same
as the traditional concepts [17].

Among confirmed or probable cases, we investigated risk by
PEH/PWUD status, age group and sex. Focusing exclusively on
PEH/PWUD cases, we conducted further risk analysis after classify-
ing cases by housing status, illicit drug use, age and sex.

2.2. Epidemic modelling

2.2.1. Model description
To study HAV outbreak dynamics among PEH/PWUD specifi-

cally, we developed a deterministic, compartmental mathematical
model for HAV transmission among this population. The popula-
tion, assumed to be closed and of a fixed size N for the duration
of the outbreak, was disaggregated into five mutually exclusive



Fig. 1. Schematic diagram illustrating the transitions between states for the hepatitis A virus transmission model among persons experiencing homelessness or who use
drugs in Louisville, Kentucky. Transition rates between compartments are detailed in the main text. Solid arrows indicate movements for infected individuals while dashed
arrows indicate movements for immune individuals.
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compartments based on their infection status: susceptible (S),
latent (L), infectious (I), temporary remission (R) or immune (Z).

The model dynamics are as follows. Susceptible individuals con-
tact infected individuals at an effective rate b, and move to a state
of latency for 1=a days on average, after which they become infec-
tious. At a rate of hðtÞ, susceptible individuals are vaccinated. These
individuals enter the immune state at rate xshðtÞSðtÞ=N, the effec-
tive number of vaccinations at a given time t. This is the product of
the total number of vaccinations hðtÞ at t, the fraction of susceptible
individuals SðtÞ=N at t, the first-dose vaccine efficacy s, and the
fraction x of vaccine doses given to individuals at risk. A propor-
tion, 1� g, of infectious individuals recover temporarily at an aver-
age rate of c; entering the R state. Individuals in the R state
experience a relapse after a period of 1=r days on average, becom-
ing infectious. Relapse of symptoms may occur in about 10–15% of
cases [18,19] lasting 4–8 weeks, and usually tending to be milder
than the initial phase [20]. A schematic showing movements
between compartments is presented in Fig. 1.

By limiting the model to PEH/PWUD, we assumed that all
infector-infectee pairs were contained within the risk population.
We also assumed homogenous mixing. The model does not
account for hepatitis A-related deaths due to the low hepatitis A
mortality rate observed among the risk group (0.8 deaths per 100
cases). Also, the model does not include background mortality
due to the relatively short epidemic duration (<2 years) compared
to the average lifespan of PEH/PWUD [17]. Lastly, births were not
accounted for as no cases were reported among very young chil-
dren (age range of detected cases was 10–83 years).

2.2.2. Model identifiability
Prior to parameter estimation, we checked for structural identi-

fiability of all model parameters; that is, whether the parameters
could be uniquely estimated given the model structure. Identifia-
bility is a necessary condition for accurate parameter estimation
in dynamic models [21]. For fixed N, all parameters except the
effective contact rate b, the case detection rate j; the vaccine effi-
cacy s, and the fraction of vaccines given to individuals at risk x
were identifiable. We reparameterized the model equations (see
Supplementary material), so that all parameters were locally struc-
turally identifiable. Due to the reparameterization, the resulting set
of model equations (Supplementary equations (S3) and (S4)) repre-
sents the dynamics for observed (detected) cases, rather than true
(incident) cases. Subscript 1 denotes variables in the reparameter-
ized model. The identifiability analyses were performed in Mathe-
matica and Maple using differential algebra-based methods
[22,23].

Although x� s, the effective vaccination coverage, was struc-
turally identifiable, it was not practically identifiable: that is, the
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observed data did not hold adequate information to estimate it.
This situation can arise, for example, if the impact of vaccination
was only in the exponential decay portion of the epidemic and
was thus harder to detect. Based on vaccination reports, we
assumed x ¼ 1, that is, all people who received vaccines were at
risk of hepatitis A infection, and fixed s, the first-dose efficacy, at
a reasonable value as described below.

2.2.3. Model parameterization
Parameters of the reparameterised model are described in

Table 1. We fixed all natural history parameters (1=a; 1=c, 1=r
and 1=g) at values informed by the literature [19,20]. As no
Louisville-specific estimates were available for the proportion of
PEH/PWUD immune to hepatitis A at the start of the epidemic
(e), its value was fixed at the midpoint of the range of estimates
of anti-HAV seroprevalence within the San Francisco homeless
population [10] and within populations of PWUD in Wisconsin
[11] and San Diego [9].

Bounds for the population size of PEH/PWUD, N, were estimated
by aggregating information from a range of sources [24,25,26,27];
see Supplementary material.

Due to higher rates of comorbidities among PEH/PWUD [28,29],
we hypothesized that vaccine protection levels would be lower
within this group, since comorbidities tend to decrease an individ-
ual’s immune response [30]. We therefore fixed the first dose vac-
cine efficacy parameter, s, at 90%, approximately 5% less than that
expected in the general population [19].

A single value for the effective contact rate b1 yielded a poor fit
to the model (Supplementary Figure S3); thus, we implemented a
time-varying b1, which provided a better fit. This was of the form of
a sigmoidal function:

b1ðtÞ ¼ bs þ
bl � bs

1þ e�cðt�t�Þ ð3Þ

where bs is the value of b1 at the start of the outbreak, bl is the value
of b1later in the outbreak, t� is the transition midpoint time
between bs and bl, and c is a rate parameter that controls the speed
of the transition (c > 0).

2.2.4. Parameter estimation
Using maximum likelihood estimation (MLE) and assuming the

case counts were Poisson-distributed, we estimated I1ð0Þ; the ini-
tial observed number of infected individuals, and the four param-
eters associated with b1; namely bs, bl, c, and t�. To account for
overdispersion, we initially assumed a negative binomial distribu-
tion (parameterized with a mean and dispersion parameter k) for
the observed case counts; however, the estimate of the dispersion
parameter was large (1=k � 0:01) suggesting the data did not sig-



Fig. 2. A) Distribution of all detected cases plotted by risk group; colored bars represent cases among persons experiencing homelessness or who use drugs (PEH/PWUD).
Week labels correspond to the first day of the week. B) Weekly distribution of vaccines administered to PEH/PWUD in Louisville during the outbreak. Week labels correspond
to the first day of the week.

E.A. Dankwa, C.A. Donnelly, A.F. Brouwer et al. Vaccine 39 (2021) 7182–7190
nificantly differ from a Poisson distribution [31]. Simultaneous 95%
profile-likelihood-based confidence intervals (CIs) (with bounds at
the 2.5th and 97.5th percentiles) were obtained for all estimated
parameters [32]. In the MLE procedure, N was fixed at its mean
value, but in estimating the CI for the observed infection trajectory
I1ðtÞ, uncertainty in N was incorporated. Uncertainty estimates for
I1ðtÞ were calculated using a Latin hypercube approximation [33]
of the parameter space confidence region.

2.2.5. The reproduction number and critical vaccination threshold
To quantify the epidemic potential, we calculated the basic

reproduction number, R0, defined as the expected number of sec-
ondary infections caused by a single infected individual in a wholly
susceptible population. Using the next generation matrix method
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[34], we derived an expression for R0 (see Supplementary
material):

R0 ¼ bs

gc
ð3Þ

The herd immunity threshold (w), defined as the population
proportion that should be immune to ensure decreasing or stable
incidence, is given by w ¼ 1� 1=R0 [35]. The critical vaccination
threshold (Vc) required to achieve herd immunity is given by [36]

Vc ¼ w=s: ð5Þ
We report maximum likelihood estimates and 95% CIs for R0, w

and Vc.



Table 1
Descriptions, values and references for model parameters. For estimated parameters, values are estimates, with 95% confidence intervals in parentheses.

Description Symbol Value Reference

Effective contact rate at the start of the outbreak bs 0.61 (0.54–0.67) Estimated
Effective contact rate later in the outbreak bl 0.12 (0.05–0.18) Estimated
Transition midpoint time from bs to bl (in weeks) t� 36 (33–39) Estimated
Speed of transition from bs tobl c 0.75 (0.24-1) Estimated
Number of infectious individuals in week 0 I1ð0Þ 0.92 (0.63–2.01) Estimated
Duration of latent period (in weeks) 1/a 1.57 [19]
Duration of infectious period (in weeks) 1/c 4.64 [19]
Duration of remission period (in weeks) 1/r 4.30 [20]
Probability of experiencing a relapse 1 � g 0.11 [20]
Proportion of initially immune individuals e 0.43 [9,10,11]
First dose vaccine efficacy (%) s 90 See Section 3
Fraction of vaccine doses given to at-risk individuals x 1 Assumed
PEH/PWUD population size N 69,862 [24,26,25,27]
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2.2.6. Impact of vaccination program and timing
We assessed the impact of the observed vaccination program

conducted among PEH/PWUD by comparing simulations with vac-
cination during the outbreak to a scenario with no vaccination. In
particular, we assessed impact on the number of detected cases
prevented, hospitalizations prevented, and the amount (in US$)
saved in hospitalization costs. To estimate the number of hospital-
izations based on the number of detected cases, we assumed the
observed hospitalization rate among detected PEH/PWUD cases
in Louisville. We also assumed hospitalization cost per hepatitis
A case was US$16 232, based on a national estimate from the
2017 Healthcare Cost and Utilization Project National Inpatient
Sample [37].

To assess the potential benefits had vaccination efforts been
accelerated, we analyzed two vaccination scenarios with earlier
program initiation week (3 and 11 weeks earlier than the observed
vaccination start date, corresponding to weeks 10 and 18 of the
outbreak), with total vaccination counts constant across each sce-
nario. Lastly, we implemented a faster roll-out scenario by modify-
ing the earliest initiation scenario (week 10) such that the weekly
vaccination rate was double the observed up to the observed total
number of vaccinations. The potential impact of these programs
was compared to a scenario with no vaccination.

2.2.7. Sensitivity analysis
We performed a variance-based global sensitivity analysis

[38,39] to assess the sensitivity of the model’s output (quantified
by the total number of detected cases) to changes in model param-
eters. The analysis considered all natural history parameters, e, N
and all estimated parameters and involved varying parameters
by �20% of their respective values as given in Table 1. Details
are in the Supplementary Material.

2.2.8. Reproducibility
All analyses were performed in R version 4.0.5 [49]. Code for

reproducing the results in this paper is freely available on Github
https://github.com/emmanuelle-dankwa/HAV-outbreak-Louisville.

3. Results

Between September 2017 and June 2019, there were 501
detected HAV cases in Louisville, among whom 385 (76.8%) were
PEH/PWUD. The weekly detected cases by risk group are shown
in Fig. 2A. Counts of detected cases, hospitalizations and deaths
by year of detection, sex, age group and risk factor are presented
in Table 2. The observed hospitalization rate among PEH/PWUD
in Louisville (66.2%) was slightly higher than the national rate of
59%, calculated from nationally reported outbreak data up to June
28, 2019 [5].
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3.1. Analysis of risks among subpopulations

Among all cases, there was a significant difference between pre-
peak versus post-peak incidence rates for PEH versus non-PEH (OR:
2.39; 95% CI: 1.51–3.78; Supplementary Table S1). No significant
difference was found between pre-peak versus post-peak inci-
dence rates for PEH/PWUD versus non-PEH/PWUD (OR: 1.01;
95% CI: 0.64–1.59), or by illicit drug use, sex and age groups (Sup-
plementary Tables S1 and S2).

Among PEH/PWUD cases, the estimated RR was significant for
individuals who experience homelessness (RR: 1.92; 95% CI: 1.37–
2.69). The OR for the homeless group versus the housed group for
the pre-peak versus post-peak period was 2.62
(95% CI: 1.62–4.25). No significant differences were observed by
sex, age group and illicit drug use among PEH/PWUD (Table 3).
3.2. Transmission model results

The model fit well to observed data (Fig. 3A), with Table 1 pre-
senting parameter estimates. The R0 estimate was 3.20 (95% CI:
2.85–3.54), corresponding to estimates of 69% (95% CI: 65–72)
for herd immunity threshold and 76% (95% CI: 72–80) for critical
vaccination threshold, assuming a vaccine with 90% efficacy. The
results also suggest that the transmission began to decrease
rapidly and substantially from mid-April 2018 (Supplementary
Figure S2), driving the end of the outbreak.

The weekly vaccinations provided to PEH/PWUD are shown in
Fig. 2B. The vaccination program commenced 21 weeks after the
index case and reached 9 999 PEH/PWUD over a 22-week period.
We estimated this vaccination program averted 30 hospitalizations
(95% CI: 19–43) and US$490 000 (95% CI: US$310 000–US$700
000) in hospitalization costs. The impacts across all measures
increase with earlier and faster vaccination interventions, with
99 more detected cases and 66 more hospitalizations averted if
vaccinations had been initiated in week 10 of the outbreak, at dou-
ble the observed coverage, compared to week 21 (Table 4). The dif-
ferences in the epidemic trajectories under the different
vaccination scenarios become prominent only after week 20 and
are most evident at the peak (Fig. 3B).

The sensitivity analysis showed the initial effective contact
rate (bsÞ, the fraction of immune individuals (e) and the duration
of infectiousness (1=cÞas the most influential parameters in
driving the variation in the total number of detected cases y1
(Supplementary Figure S4). A scatterplot of y1 against these three
parameters (Supplementary Figure S5) revealed the following
trends: larger mean values of y1correspond to small values for
e and large values for bs and 1=c, while smaller mean values of
y1correspond to large values for e and small values for bs

and 1=c.

https://github.com/emmanuelle-dankwa/HAV-outbreak-Louisville


Table 2
Summary of detected cases by year, sex, age group, housing status and illicit drug use.

Variable Number of cases (%) Number of hospitalizations (%) Number of deaths (%)

Year
2017 42 (8.4) 32 (9.7) 0 (0)
2018 458 (91.4) 299 (90.3) 6 (100)
2019 1 (0.2) 0 (0) 0 (0)
Sex
Male 332 (66.3) 223 (67.4) 4 (66.7)
Female 169 (33.7) 108 (32.6) 2 (33.3)
Age (in years)
10–19 5 (1.0) 0 (0) 0 (0)
20–29 95 (19.0) 59 (17.8) 0 (0)
30–39 185 (36.9) 119 (36.0) 0 (0)
40–49 120 (24.0) 85 (25.7) 2 (33.3)
50–59 65 (13.0) 44 (13.3) 3 (50.0)
60–69 23 (4.5) 18 (5.4) 0 (0)
70+ 8 (1.6) 6 (1.8) 1 (16.7)
Housing status
Homeless 128 (25.5) 80 (24.2) 1 (16.7)
Not homeless 358 (71.5) 244 (73.7) 5 (83.3)
Unknown 15 (3.0) 7 (2.1) 0 (0)
Illicit drug use, intravenous
Yes 276 (55.1) 192 (58.0) 3 (50.0)
No 134 (26.7) 89 (26.9) 2 (33.3)
Unknown 91 (18.2) 50 (15.1) 1 (16.7)
Illicit drug use, non-intravenous
Yes 189 (37.7) 129 (39.0) 2 (33.3)
No 146 (29.2) 107 (32.3) 2 (33.3)
Unknown 166 (33.1) 95 (28.7) 2 (33.3)
PEH/PWUDa

Yes 385 (76.8) 255 (77.0) 3 (50.0)
No 116 (23.2) 76 (23.0) 3 (50.0)
Total 501 (100) 331 (100) 6 (100)

a PEH/PWUD: Persons experiencing homelessness or who use drugs.

Table 3
Relative risk (RR) and odds ratio (OR) estimates for detected cases among persons experiencing homelessness or who use drugs (n = 385) by risk status (homelessness and illicit
drug use), sex and age group (in years). For each variable level, total case counts as well as case counts by period (pre-peak, peak and post-peak) are presented. RR and OR used
here are as defined in Worby et al. [16].

Variable Number of cases RRa (95% CI) ORb (95% CI)

Pre-peak Peak Post-peak Total

Homelessness
Yes
No

70
92

22
41

36
124

128
257

1.92 (1.37–2.69)
0.73 (0.63–0.86)

2.62 (1.62–4.25)

Illicit drug use
Yes
No

155
7

56
7

155
5

366
19

0.99 (0.95–1.03)
1.38 (0.45–4.27)

0.71 (0.22–2.30)

Sex
Male
Female

102
60

43
20

112
48

257
128

0.90 (0.77–1.05)
1.23 (0.91–1.68)

0.73 (0.46–1.16)

Age group (years)
10–19 2 0 0 2 –
20–29
30-39
40-49

40
72
33

9
25
16

32
63
42

81
160
91

1.23 (0.82–1.86)
1.13 (0.87–1.46)
0.78 (0.52–1.16)

Refer to Table S3c

50–59 14 10 16 40 0.86 (0.44–1.71)
60–69 1 2 6 9 –
70+ 0 1 1 2 –
Period totals 162 63 160 385

a Estimates are not computed for groups with fewer than ten cases in total.
b First rows for all variables (except age group) used as reference for OR.
c See Supplementary Material.
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4. Discussion

This study analyzed a recent HAV outbreak in Louisville, Ken-
tucky, with a focus on outbreak dynamics among PEH/PWUD,
who constituted the majority (76.8%) of all detected cases.
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Within the general population and among PEH/PWUD, we
found homelessness to be an influential risk factor for HAV infec-
tion during the initial outbreak (Table 3, Supplementary
Table S1), underscoring the increased risk of hepatitis A transmis-
sion among PEH. Our results point to the importance of proactive



Fig. 3. A) Model fit (blue line) to weekly case counts of detected cases of hepatitis A
among persons experiencing homelessness or who use drugs in Louisville (black
dots). Shaded area is the 95% confidence region for the model estimates. B) Model
estimates for the weekly number of detected cases under the various vaccination
scenarios: no vaccination (blue line), vaccination initiation in week 21 as observed
(reddish brown line), week 18 (green line), and week 10 with the observed coverage
(brown line) and double the observed coverage (magenta line). 95% confidence
regions for all scenarios are shaded in corresponding colors. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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targeting of PEH in vaccination campaigns, and to the importance
of housing and sanitation programs for those living in unstable
housing situations in mitigating HAV infection risk. While drug
use has been suggested as a risk factor for hepatitis A transmission
[2], it was not significant in our analysis, either in the overall pop-
ulation or among PEH/PWUD (Table 3, Supplementary Table S1);
however, there was a high rate of non-response for drug use
(33.1%, Table 2), which may result in an underestimate of the true
difference in infection risk between PWUD versus non-PWUD in
the initial outbreak. Further work is needed to understand whether
drug use on its own is an indicator of high risk of hepatitis A
infection.

Our results suggest no significant difference in infection risk by
sex and age group among PEH/PWUD (Table 3) and in the general
population (Supplementary Table S1).
Table 4
Comparison of vaccination scenarios by week of initiation and administration rate, using ke

Vaccination scena

Measure Week 21

Number of detected cases prevented 46 (29–65)
Number of hospitalizations prevented 30 (19–43)
Amount (in millions of US$) saved in hospitalization cost 0.49 (0.31–0.70)
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We found a high herd immunity threshold (�69%; 95% CI: 65–
72) likely required to prevent HAV outbreaks among PEH/PWUD in
Louisville, comparable to corresponding estimates from an MSM
population in Australia (�65%) [40]. Assuming a vaccine with
90% efficacy, our model yielded a critical vaccine threshold of
76% (95% CI: 72–80). Our 95% CI for R0 (2.85–3.54) is higher than
an estimated range for R0 of HAV derived for the general US popu-
lation in the pre-vaccine era (R0: 1.11–1.55 [41]). We expect this to
be the case, as the risk profile of PEH/PWUD is generally higher
than that of the general population. In particular, PEH are likely
to have more effective contacts providing opportunities for trans-
mission due to reduced access to and use of sanitation and hygiene
facilities. This elevated risk of transmission within this population
results in a higher R0:

We found the implemented vaccination program prevented
many cases, but even more could have been prevented if initiated
earlier and implemented at a faster rate (Table 4, Fig. 3B), corrob-
orating published evidence on vaccination as a key intervention
strategy to mitigate the spread of HAV both in the US and else-
where [3,41–45]. It is possible that the vaccinations in Louisville
also mitigated the spread of HAV neighbouring counties, as there
are indications of a ring effect in spread, with Louisville as the cen-
ter ([46], Figure 8).

It can be challenging to initiate vaccination programs early on
in an outbreak, given the considerable amount of time required
to obtain the relevant information (e.g., pathogen specimens, risk
factors) needed to arrange logistics and funding. To navigate these
time constraints, practitioners may benefit from using information
from earlier outbreaks. In the current context, this could have been,
for instance, risk factor information from surveillance data on ear-
lier HAV outbreaks in other states.

Although data collected at vaccination clinics suggest that all
the vaccinations included here were given to PEH/PWUD, making
our assumptionx = 1 reasonable, it is not clear that all PEH/PWUD
were necessarily at risk. If x were substantially below 1, then our
estimates of the impact of the alternate vaccination scenarios may
be overestimates. More work is needed to understand how risk
indicators such as homelessness and drug use translate to actual
risk.

We found that beginning mid-April 2018, the effective contact
rate b1 rapidly and substantially decreased to an average of about
20% of its initial value at the start of the outbreak (Table 1, Supple-
mentary Figure S2). Dynamically, this change was distinct from the
susceptible burnout that generally drives the end up of epidemics
and distinct from the impact of vaccination. This time-varying
effective contact rate might be driven by seasonality, which would
be consistent with the findings of Brouwer et al. [45] where a
model with seasonal transmission yielded a better fit to the data
than a model with no seasonal pattern. In general, the evidence
for the role of seasonality in HAV transmission is mixed (c.f.
[19,47]), although it may be stronger for certain groups, such as
PEH. Aside from seasonality, changes in behaviour, possibly influ-
enced by education and media reporting, may have resulted in
the observed change in the effective transmission rate.

The infinite upper bound in the 95% confidence interval for c,
the transition midpoint time between the initial and latter values
y impact measures. Values recorded are model estimates and 95% CIs (in parentheses).

rios by week of initiation

Week 18 Week 10 Week 10, rate doubled

65 (43–90) 121 (86–160) 145 (104–188)
43 (28–59) 80 (57–106) 96 (69–124)
0.69 (0.46–0.96) 1.30 (0.92–1.72) 1.55 (1.12–2.02)
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of b1 (Table 1), suggests the data could be modelled with the effec-
tive contact rate as a piecewise function; that is, allowing a abrupt
change in rates (e.g., [40]) over a one-week period, although this
may well be less realistic.

The sensitivity analysis showed that the initial effective contact,
the fraction of initially immune individuals and the duration of the
infectious period, in that order, contributed the most to the varia-
tion in the number of detected cases (Supplementary Figure S4). As
expected, we found that smaller effective contact rates, shorter
durations of infectiousness and larger fractions of initially immune
individuals yielded fewer detected cases, given our model assump-
tions (Supplementary Figure S5). Two recommendations for con-
trol are in order: 1) improving early case detection through
increased surveillance to decrease the period of exposure of an
infectious individual hence decreasing transmission risk, and 2)
increasing the rate of vaccination of individuals at risk to ensure
a larger fraction of immune individuals and consequently, a smal-
ler chance of take-off in the event of a future outbreak.

Given the substantial overlap between the populations of PEH
and PWUD in Louisville (about 73.5% of individuals who experi-
ence homelessness in Louisville also use drugs) [24] and the lack
of data on mixing between these groups, it was not possible to
model transmission within the PEH and PWUD populations sepa-
rately. The dynamics of HAV transmission within and between
these groups is a worthwhile subject for future investigations,
potentially providing useful insights for outbreak control within
each subpopulation.

Like all modelling studies, ours contains limitations, mainly due
to parameter uncertainty. First, there was appreciable uncertainty
associated with N; the population size estimate of PEH/PWUD at
risk for HAV. It was particularly challenging to estimate the total
population size at risk – in particular, those who are at risk among
persons who use drugs. Our variance-based sensitivity analysis
indicated that our findings were not overly sensitive to uncertainty
in population size, but we acknowledge that these estimates are
prone to bias. Our analysis assumed all PWUD in Louisville were
at risk, but this number may have overestimated the number truly
at risk if not all who use drugs are at high risk for HAV infection. On
the other hand, drug use is highly stigmatized and is often under-
reported and therefore this estimate could possibly have underes-
timated the number at risk. As such it is difficult to assess implica-
tions for our analysis, and better at-risk population size estimates
would help inform the public health response and related model-
ing. Second, no local data were available on baseline immunity
against HAV among PEH/PWUD, so studies among similar popula-
tions in other locations were used. Additional data collection
would improve understanding of existing immunity among local
PEH/PWUD populations. Third, we neglect MSM status or risk in
our analysis due to substantial missing data in relation to this risk
factor. If a proportion of male PEH/PWUDwere at an additional risk
through sex with men, this risk was missing from our analysis.
Studies examining populations with overlapping multiple risks
(such as MSM who are homeless and/or who use drugs) are war-
ranted. Fourth, it is probable the assumption of a constant rate of
case-detection throughout the outbreak, does not hold completely,
likely due to under-reporting among PEH/PWUD. Cases among PEH
in particular may go unreported due to multiple factors including
inability to afford healthcare costs and fear of hostility by service
providers [48]. Reporting rates are likely to have been lower during
the pre-peak period, compared to the post-peak period, due to the
educational campaign introduced later in the outbreak. Thus, the
OR for PEH/PWUD versus non-PEH/PWUDmay be an underestima-
tion of the true corresponding values.

In conclusion, we find that hepatitis A vaccination programs
will need to achieve vaccination coverage of at least 77% among
PEH/PWUD in Louisville, based on a vaccine efficacy of 90%, in
7189
order to prevent HAV outbreaks among this population. Proactive
hepatitis A vaccination for PEH/PWUD can maximize health and
economic benefits.
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