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Abstract 

Environmental pathogen surveillance is a sensitive tool that can detect early-stage outbreaks, and it is 

being used track poliovirus and other pathogens. However, interpretation of longitudinal 

environmental surveillance signals is difficult because the relationship between infection incidence 

and viral load in wastewater depends on time-varying shedding intensity. We developed a 

mathematical model of time-varying poliovirus shedding intensity consistent with expert opinion 

across a range of immunization states. Incorporating this shedding model into an infectious disease 

transmission model, we analyzed quantitative, PCR data from seven sites during the 2013 Israeli 

poliovirus outbreak. Compared to a constant shedding model, our time-varying shedding model 

estimated a slower peak (4 weeks later), with more of the population reached by a vaccination 

campaign before infection and a lower cumulative incidence. We also estimated the population shed 

virus for an average of 29 days (95% CI 28–31), longer than expert opinion had suggested for a 

population that was purported to have received three or more inactivated polio vaccine (IPV) doses. 

One explanation is that IPV may not substantially affect shedding duration. Using realistic models of 

time-varying shedding coupled with longitudinal environmental surveillance may improve our 

understanding of outbreak dynamics of poliovirus, SARS-CoV-2, or other pathogens.
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Introduction 

Environmental pathogen surveillance—the systematic testing of environmental samples for the presence 

or concentration of pathogens—is increasingly recognized as a sensitive means of disease surveillance, 

thus allowing for better disease control. New molecular tools are being developed to detect a wide variety 

of pathogens (e.g., enteric pathogens, respiratory pathogens (including SARS-CoV-2)) in a range of 

environmental contexts (e.g., wastewater, aerosols, wildlife feces) [1–11]. The global pandemic of COVID-

19 has further accelerated interest in environmental surveillance research, as well as the need for—and 

the challenges and ethical questions associated with—developing robust environmental surveillance 

methods to inform real-time public health decision-making [12–17]. 

One important use of environmental surveillance is as an early warning indicator of community 

transmission. The potential for environmental surveillance to detect transmission earlier than case 

surveillance depends on the timing of shedding relative to symptom onset as well as the relative clinical 

and environmental testing capacity and reporting infrastructure [18]. The use of environmental 

surveillance as an early warning sign is exemplified in the context of polio, where, for example, it was used 

to identify extensive poliovirus transmission in southern Israel in 2013 in the absence of any cases of acute 

flaccid paralysis (AFP) [19]. AFP is the standard epidemiological surveillance mechanism for identifying 

active transmission, but AFP only occurs in 1:100 to 1:2000 infections and can be further blunted if part 

of the population has received inactivate polio vaccine (IPV), which prevents AFP but not infection. 

Reliance on AFP alone can result in delayed detection of an outbreak, allowing poliovirus to circulate and 

infect a large number of people before a case of AFP is detected. Poliovirus transmission without 

associated cases of AFP is called silent circulation [9]. 

Beyond providing early warning through pathogen detection, environmental surveillance has the 

potential to inform population disease incidence trends, providing valuable information on outbreak 

severity and dynamics [20]. Basic analytic tools for interpreting presence/absence and quantitative 

environmental surveillance are now being developed to provide public health relevant metrics [20–23]. 

However, more work is needed to understand how an environmental signal translates to the number of 

people or fraction of the population shedding. Previous work, including our own, has assumed constant 

shedding over the infectious period [20, 21], but pathogen shedding intensity can vary by several orders 

of magnitude over the course of infection [24, 25]. Explicitly accounting for both time-varying shedding 
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intensity and the population distribution of shedding duration is essential to using environmental 

surveillance to accurately inform the epidemiology of outbreaks of these pathogens. 

Here, we developed models of time-varying shedding intensity informed by an expert opinion synthesis 

of existing data [24] and integrated them into our previously developed transmission modeling framework 

that transformed environmental surveillance data into estimates of polio incidence patterns. We used this 

updated framework to analyze the quantitative environmental surveillance data from seven sites in the 

Negev region of southern Israel during the 2013 silent polio outbreak to re-examine the epidemiology of 

the regional epidemic. We explored two questions that can only be answered with a time-varying 

framework, namely 1) How do estimates of outbreak characteristics such as cumulative incidence and 

peak time change when incorporating time-varying shedding; and 2) What duration of shedding is most 

consistent with the environmental surveillance patterns, and what does that suggest about the immunity 

of the at-risk population? We also discuss the implications of our results for understanding the spatial 

pattern of disease spread and health disparities related to ethnicity. These issues may impact the 

surveillance and management of future poliovirus outbreaks. 

Data 

Environmental surveillance 

We used environmental surveillance samples collected between March and December 2013 from the 

Ar’ara, Be’er Sheva, Rahat, and Shoket wastewater treatment plants and from trunk lines in Arad (Kseife 

branch), Ayalon (Lod branch), and Tel Sheva. Sampling rates varied over the time period but were 

approximately weekly starting in May. An automatic, in-line sampler collected and pooled samples over a 

24-hour period [9]. The first WPV1-positive samples were collected on March 11th, 2013 in Be’er Sheva 

and Rahat. Wild poliovirus type 1 (WPV1), oral poliovirus type 1 (OPV1), and oral poliovirus type 3 (OPV3) 

were separately quantified. We treated multiple data points from the same location and time as distinct. 

The datasets supporting this article have been uploaded as part of the supplementary material. 

Connecting PCR cycle threshold to pathogen concentration 

The laboratory analysis of the wastewater samples reported results in terms of quantitative reverse 

transcriptase polymerase chain reaction (qRT-PCR) cycle threshold. Briefly, qRT-PCR targets a specific viral 

RNA area of interest and transcribes the RNA into DNA. That DNA sequence is then amplified in each PCR 
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cycle; the number of amplification cycles needed for the number of copies of the targeted DNA sequence 

to reach a threshold number 𝜏𝜏 (set by the test operator above the background noise) provides a means 

to quantify concentration. The number of doubling cycles, denoted y, needed for a sample to achieve the 

threshold is called the cycle threshold (Ct). A higher Ct value indicates a lower concentration of virus in 

the original sample. The Ct value 𝑦𝑦 is mathematically related to the concentration of poliovirus 𝑊𝑊  in 

wastewater samples through the standard PCR amplification equation 𝜏𝜏 = 𝑊𝑊 ∙ (1 + ϵ)𝑦𝑦, where 𝜏𝜏 is the 

threshold copy number (essentially, a reference concentration with the same units as 𝑊𝑊 ) and is the 

reaction efficiency (typically 90–110% [26]). In the absence of experimental information, we assume ϵ =

1, so that 𝑦𝑦 = log2(τ/𝑊𝑊). The laboratory method used to obtain Ct values for the 2013 outbreak has 

been described elsewhere [27–30]. The limit of detection in this assay was on the order of 40 cycles, but 

the experiments were run to 60 cycles to distinguish between negative samples and samples near the 

limit of detection [27]. 

Vaccination campaigns 

Israel conducted two supplementary bivalent oral polio vaccine (bOPV, which contains OPV1 and OPV3 

Sabin strains) campaigns during the epidemic. The first began on August 5, 2013, lasted one month, and 

achieved 90% coverage in children under ten; the second began on October 7, 2013, lasted about 10 days, 

and achieved 53% coverage [31]. We used vaccine time-series data to estimate a constant average per 

capita vaccination rate ϕ =0.074/day during both campaigns, with no bOPV vaccination between the 

campaigns. We assumed that the vaccination take rate was 80% [32]. 

Mathematical Modeling 

The overall goal of this analysis was to understand the epidemiology of the poliovirus outbreak in 2013 in 

southern Israel. Because our data are wastewater surveillance concentrations, accounting for time-

varying shedding is essential to be able to connect the wastewater signals to population-level epidemic 

curves. We needed to account not only for duration of shedding but also its relative magnitude over the 

shedding period. To do this, we used a two-part approach. First, we developed a model of time-varying 

shedding and calibrated it to an expert synthesis of data. Second, we used the calibrated shedding model 

within an infectious disease transmission model. Below, we outline the approach for each of these 

models. 
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Shedding model 

While some previous models have explored time-varying infectiousness (e.g., [33, 34]), few models have 

attempted to describe time-varying shedding. One notable exception is Famulare et al. [25], who fit log-

normal survival models to poliovirus shedding duration by strain and immunization history. Because 

survival models cannot be directly incorporated into compartmental, ordinary differential equation 

infectious disease transmission models, we took a different approach here. We developed a time-varying 

shedding model that uses a distributed-delay framework (i.e., gamma-distributed residence times) [35–

37], similar to some approaches for time-varying infectiousness [33]. Distributed delays are often used in 

infectious disease transmission models to better reproduce observed distributions of the latent or 

infectious period. Specifically, our shedding model describes infected individuals as being in states 

exhibiting no shedding, low levels of shedding, or high levels of shedding. Each of these states is described 

by a series of compartments, each with a rate parameter summarizing the rate of leaving the 

compartment and an average shedding concentration. Broadly, our shedding model captures a latent 

period, in which an individual does not shed, followed by short-term low-, high-, and low-shedding states, 

each modeled with one or more compartments, followed by a longer-term low-shedding state modeled 

with a single compartment to capture heterogeneity in long-term shedding (figure 1). Our shedding model 

was designed, on the one hand, to be parsimonious with respect to the number of compartments and 

parameters and, on the other hand, to be flexible enough to capture patterns for a variety of prior 

immunization histories. These models are meant to capture broad population averages rather than 

individual trajectories. 

We calibrated our models by hand to a data set of previously published expert opinion of shedding 

duration and shedding concentration trajectories across a variety of prior immunization histories. The 

expert elicitation solicited the opinion of nine experts on a wide range of topics related to the implications 

of poliovirus immunity states [24]. Most relevant to this study, each expert indicated the fraction of the 

population shedding fecally (and the concentration shed if shedding) for the first seven days after 

exposure and every 7 days after for a few different polio immunity states ranging from fully susceptible 

to immunization with both IPV and OPV. As calibration tests for our model, we selected trajectories 

defined by the mean expert opinion for three immunity states, namely fully susceptible (no 

immunization), those having 3 or more doses of IPV, and those having both IPV and OPV. We used expert 

opinion data here, which represent a synthesis and extrapolation of existing experimental data, because 
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the underlying experimental data do not fully cover the range of relevant scenarios. While we used the 

expert opinion data to calibrate the general shape and timing of the longitudinal dynamics, we do not 

directly use the experts’ estimates of the magnitudes of viral shedding in our analysis of the wastewater 

data. As we discuss in greater detail below, the shedding magnitudes are not individually identifiable 

because the virus is diluted in an unknown volume of wastewater, but the ratio of the high-shedding to 

low-shedding concentration is identifiable, and we estimate it from the surveillance data. 

Infectious disease transmission model 

We modeled an at-risk population of unknown size composed of children under 10 years old (as well as 

unvaccinated immigrants and any adults whose immunity may have waned). IPV is part of the pediatric 

vaccination program in Israel, with 90–95% of children in the area receiving at least 3 doses [38], but OPV 

was not used in Israel for pediatric vaccination between 2005 and the 2013 outbreak in order to minimize 

the risk of cVDPVs [19]. We modified our previously developed SLIR-type model [20] to incorporate our 

variable shedding model and account for WPV1 infection, vaccination with bOPV in response to the 

outbreak, and subsequent transmission of OPV1 and OPV3 (figure 2 and table 1). This model tracks the 

fraction of the population that is susceptible 𝑆𝑆, latent 𝐿𝐿, infectious 𝐼𝐼, recovered 𝑅𝑅 for poliovirus type 1 

and 3 independently, distinguishing between infections of wild and vaccine types. That is, individuals may 

be latent, infectious, or recovered with either WPV1 (subscript 𝑤𝑤1) or OPV1 (subscript 𝑜𝑜1) strains but not 

both, and we track OPV3 (subscript 𝑜𝑜3) disease status independently of WPV1 and OPV1 disease status. 

We also track the pathogen concentration in wastewater 𝑊𝑊 for each of WPV1, OPV1, and OPV3. As in 

[20], we estimate the transmission rate for WPV1 (𝛽𝛽) but fix the ratio 𝜌𝜌 of transmission rates for OPV1 to 

WPV1 and OPV3 to WPV1 to 0.37 and 0.20 respectively [33]. Model equations are provided in the 

supplementary material. 

We modeled the latent and infectious states using a shedding model; the specific number and 

parameterization of the subcompartments was determined by the model calibration, which we describe 

below in the Results. We designated the latent stage transition rate in the 𝑖𝑖th latent compartment as σ𝑖𝑖 

and the infectious stage transition rate in the 𝑖𝑖th infectious compartment as 𝑦𝑦𝑖𝑖 . We used the same 

shedding model for wild and OPV type virus, except that we allowed the shedding concentrations to differ. 

The specific magnitudes of shedding in the low- and high-shedding states cannot be estimated because 

the volume of wastewater in which the virus is diluted is unknown. Instead, we estimated the ratio 𝜆𝜆 of 
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shedding concentration in the low-shedding compartments to that in the high-shedding compartments; 

we estimated this ratio for the OPV types (λ𝑜𝑜) separately from the wild type (λ𝑤𝑤). Based on the calibration 

results, discussed below, we assumed that only the high-shedding infectious individuals transmit 

infection. While not strictly true from an individual perspective, that assumption is consistent with the 

time-varying shedding model when viewed from a population-average perspective. 

Because each site will vary in wastewater volume, flow rate, etc., we cannot directly compare the PCR 

data for each strain across the seven sites. From the data alone, we cannot distinguish, for example, 

whether the virus is decaying quickly in a large volume or slowly in a small volume. To account for these 

kinds of trade-offs, we defined a site-specific scaling parameter 𝜅𝜅 for each site 𝑗𝑗 and each virus type 𝑘𝑘. 

This parameter summarizes several mechanistic parameters that cannot be individually determined from 

the data. Specifically, κ𝑘𝑘,𝑗𝑗 = ξ𝑘𝑘,𝑗𝑗τ/𝛼𝛼𝑘𝑘,𝑗𝑗 , where 𝛼𝛼𝑘𝑘,𝑗𝑗  is the high-level shedding rate (accounting for site-

specific wastewater volume), ξ𝑘𝑘,𝑗𝑗  the removal/decay rate of poliovirus, and τ  is the PCR threshold 

parameter, which could in general be known from the lab is treated as unknown here. Note that between-

lab differences in sample handling would also need to be accounted for here when using data from 

multiple labs. These scaling parameter combinations κ𝑘𝑘,𝑗𝑗  can be estimated from the data even though 

their constituent parameters cannot [20]. 

As a default, we made the biologically plausible assumption that the ratio of shedding rates of WPV1 to 

OPV1 to OPV3 do not vary across surveillance sites but that each surveillance site may have different 

dilution factors (accounted for in each α and thus κ). Preliminary analysis indicated that this assumption 

was valid for the majority of the sites but was violated at three of them (Ayalon, Be’er Sheva, and Shoket). 

Because each of these three communities have both Bedouin and Jewish populations, while the other 

sites are primarily Bedouin, we hypothesized that the ratio of WPV to OPV in wastewater could be altered 

if OPV were given to a population of children who were not at-risk of WPV infection because we would 

then see more OPV in the wastewater relative to what we would expect given the amount of WPV 

observed. This situation could potentially arise if there was low contact between children of different 

ethnicities. We modeled these three sites accordingly (details in the supplementary material), estimating 

the relative size of this not-at-risk population 𝜂𝜂 for each of the three sites separately. 
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Integration of shedding model into the infectious disease model framework 

We expected that the immunity of the target population in Israel prior to the supplemental bOPV 

immunization campaign to be somewhere between no immunization and 3+ doses of IPV. Accordingly, 

we implemented the shedding model in the infectious disease transmission by fixing the number and 

duration of the latent and infectious compartments to that of the no immunization history model (which 

were the same as those of the 3+ doses of IPV model, see Results), with the exception of the duration of 

the long-term, low-shedding compartment, which we estimated. The estimated duration of this long-term 

compartment allowed us to make inferences about prior immunization in the population. 

To account for time-varying infectiousness through the relative infectiousness of the high and low 

shedding concentrations, we modeled the expert opinion data on the relationship between shedding 

concentration and infectiousness using log-normal distributions (figure S1). Based on our model 

calibration results and the expert opinion, we estimated that the high-shedding concentration is 5–10 

times as infectious as the low-shedding concentration. This estimate serves as the justification for our 

simplifying assumption that only individuals in the high-shedding state transmit infections in our 

infectious disease model. Note, however, that modeling of other pathogens and contexts will likely 

require alternative assumptions regarding the relative infectiousness of low- and high-shedding states. 

As a comparison for the variable shedding model, we also adapted our previous constant shedding model 

[20] to fit the multisite data. This model uses a single compartment for each of the latent and infectious 

classes and assumes that the infectious period is the same as the shedding period. More details are given 

in the supplementary material, including a comparison of the population-average force of infection over 

the infectious period (figure S2). 

 

Simulation and parameter estimation 

We fit the model to the WPV1, OPV1, and OPV3 PCR CT data as in [20]. At time 𝑡𝑡 =  0 (March 11, 2013), 

we assumed no bOPV vaccination (i.e. 𝜙𝜙 =  0) and no recovered people in the modeled population. We 

modeled the vaccination rate as a fixed, non-zero constant 𝜙𝜙  during the two vaccination campaigns, 

which began August 5 and October 7, 2013 and were modeled as lasting 31 and 10 days, respectively; the 

vaccination rate was zero at all other times. We estimated the initial condition (details given in 
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supplementary material).   All simulations and analyses were done in R (v.3.4.1; R Foundation for Statistical 

Computing; Vienna, Austria). We used deSolve for ODE model simulation and the David–Fletcher–Powell 

algorithm in the Bhat package for maximum likelihood estimation [39, 40]. 

As described above, because the shedding concentrations 𝛼𝛼𝑘𝑘,𝑗𝑗, removal rates ξ𝑘𝑘,𝑗𝑗, and qRT-PCR threshold 

concentration τ cannot be individually determined from the data alone, we estimate site-specific scaling 

parameters κ𝑘𝑘,𝑗𝑗 = ξ𝑘𝑘,𝑗𝑗τ/𝛼𝛼𝑘𝑘,𝑗𝑗 instead. Similarly, the concentration of poliovirus 𝑊𝑊𝑘𝑘  in wastewater can 

only be determined up to a constant [20], so we instead estimate a scaled concentration 𝑊𝑊�𝑘𝑘,𝑗𝑗 =

 ξ𝑘𝑘,𝑗𝑗𝑊𝑊𝑘𝑘,𝑗𝑗/𝛼𝛼𝑘𝑘,𝑗𝑗, which is approximately equal to 𝐼𝐼𝑘𝑘  for fast ξ𝑘𝑘,𝑗𝑗  (see [20] for additional technical details). 

Accordingly, we transform our measurement equations from 𝑦𝑦𝑘𝑘,𝑗𝑗 = log2�τ/𝑊𝑊𝑘𝑘,𝑗𝑗� to 𝑦𝑦𝑘𝑘,𝑗𝑗 = log2�τ/𝐼𝐼𝑘𝑘,𝑗𝑗� 

for each of WPV1, OPV1, and OPV3. All seven sites were simultaneously simulated. We used a sum of 

absolute differences (𝐿𝐿1) approach on the Ct scale, heuristically resulting in the median trajectory instead 

of the mean trajectory. This eliminates the sensitivity of the results to the choice of 60 as the “absence of 

poliovirus” value. This approach is equivalent to maximum likelihood estimation under the assumption 

that errors are Laplace distributed. We minimize the negative log-likelihood, 𝑁𝑁𝑁𝑁𝑁𝑁(𝜽𝜽) = �√2/𝜍𝜍�∑ |𝑦𝑦𝑖𝑖 −𝑖𝑖

𝑦𝑦�𝑖𝑖(𝜽𝜽)|, where {𝑦𝑦𝑖𝑖} the Ct data, 𝜍𝜍 is the variance of the error distribution of the data, {𝑦𝑦𝚤𝚤�} are the modeled 

Ct values, and 𝜽𝜽 is the vector of model parameters (listed in table 2). We set 𝜍𝜍=0.98 based on data analysis 

of the multiple qPCR tests of wastewater samples collected on certain days. 

Likelihood-based 95% confidence intervals for parameter estimates were determined by parameter 

profile likelihoods [41]. These profile likelihoods are transects through the 95% confidence region of 

parameter space. We simulated trajectories for each parameter vector in each profile and estimated the 

95% confidence intervals for the maximum likelihood trajectory to be the maximum and minimum at each 

time point in this set of simulated trajectories. 

Results 

Time-varying shedding model calibration 

The mean expert opinion provided by [24] and our calibrated shedding models fits are shown in figure 3. 

Details of the parameterizations for the trajectories of each immunization history are provided in the 

supplementary material. The mean WPV1 shedding duration for each immunization state was 28 days for 
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the fully susceptible, 18 days for those with 3+ doses of IPV, and only 10 days for those with both OPV and 

IPV. 

Estimated parameters 

Estimates of the infectious disease and shedding model parameters are given in table 2. We estimated 

that the average shedding duration was 29.4 days (95% CI 27.7–31.3). The site-specific scaling parameters 

κ𝑘𝑘,𝑗𝑗, which account for differences in typical wastewater volume and flow between sites, varied by almost 

two orders of magnitude. These large differences are not surprising, given likely differences in sewer 

parameters, greywater volumes, etc., and reflect systematic differences in the qRT-PCR Ct values 

themselves; e.g., the qRT-PCR Ct values in Arad were overall lower than those in Ayalon, indicating a 

consistently greater concentration of virus in the samples across the outbreak. We estimated that WPV1 

was shed at concentrations approximately 10.0 (95% CI: 7.8–15.6) times those of OPV1 and 3.7 (95%CI 

2.7–5.1) times those of OPV3. The estimated WPV1:OPV1 ratio is within an order of magnitude of the 

ratio estimated from empirical concentrations of WPV1 (2×106 PFU/g) and OPV1 (3×104 PFU/g) in 

children’s stool [42]. These modeled ratios were consistent for four of the sites, namely Ar’ara, Arad, 

Rahat, and Tel Sheva. Data from the other three sites violated this assumption (Ayalon Lod, Be’er Sheva, 

Shoket), and we estimated site-specific relative sizes of vaccinated but not-at-risk populations to account 

for the relatively greater comparative concentration of OPV in their wastewater, as discussed in the 

Methods. 

Epidemic dynamics 

From the best-fit parameters, we estimate that the epidemic peaked mid-July (maximum-likelihood 

estimate: July 14; 95% CI: July 4 – August 4) (figure 4a) and that R0 was 1.48 (95% CI: 1.39– 1.55). We 

estimate that the epidemic infected 50.7% (95% CI: 37.8–57.9%) of the at-risk population and that the 

vaccination campaign averted 10.9% (95% CI: 5.5–24.5%) of infections. Relative to the constant shedding 

model, the variable shedding model predicts a later (approximately 4 weeks later) and larger epidemic 

peak (figure 4b). The constant shedding model peaks earlier and predicts a larger cumulative incidence 

(74.2% compared to 50.7%) and smaller fraction of the population vaccinated prior to possible infection 

(24.0% compared to 45.9%) than the variable shedding model. It may be initially counterintuitive that the 

variable shedding model has a larger epidemic peak and area under the curve but a smaller cumulative 

incidence. This result is driven by differences in the infectious and shedding periods for the two models. 
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The constant shedding model represents a shedding period of 13 days; individuals are fully infectious for 

that period. In the variable shedding model, on the other hand, individuals shed for 29 days but are 

effectively infectious and shedding high amounts of virus for only 3 days (and shedding low amounts of 

virus for the rest of the period). A comparison of the force of infection and shedding magnitude as a 

function of time since infection between the variable and constant shedding models is given in the 

supplementary material (figure S2). Thus, the constant shedding model, with the longer infectious period 

and larger R0 (1.94), has faster epidemic growth and cumulative incidence, but it has a lower peak because 

it has a shorter shedding duration. Overall, the variable shedding model is better able to capture the 

dynamics of the longitudinal environmental surveillance data. Specifically, the variable shedding model 

achieved an Akaike Information Criterion (AIC) of -76.4, indicating that it offers a substantial improvement 

to the model fit with only two additional parameters (a comparative plot of the fits to the PCR CT data is 

provided in figure S3). 

We plot the model trajectory with the qRT-PCR Ct data for each site and each strain in figure 5a, b, and c. 

In these plots, we scaled each site’s qRT-PCR data by log2 of their respective site-specific scaling parameter 

𝜅𝜅, so that they can be compared to a common model trajectory (see supplementary material). These plots 

indicate that the data are consistent with the assumption that the outbreak proceeded essentially in 

parallel throughout southern Israel. Ayalon Lod, Be’er Sheva, and Shoket are censored in the figure 5b 

and c because those sites are modeled with an additional population receiving OPV; because the OPV 

dynamics in the wastewater of these sites are different from the other four, they are not directly 

comparable to a common model. Model trajectories fit to the unscaled qRT-PCR Ct data from each site 

are shown in figure S4. Although the sites vary in terms of overall data coverage and, to some degree, the 

variance in the data, the model is a reasonable fit in each case. 

Discussion 

Environmental pathogen surveillance has the potential to transform how we understand and analyze 

disease outbreaks. To reach this potential, laboratory techniques, sampling coverage, and analytical 

methodology all need to be further developed. Here, we demonstrated that leveraging enhanced SIR-type 

transmission models to include time-varying shedding dynamics improves our interpretation of the 

environmental surveillance data. This enhancement lets us reinterpret the dynamics of the epidemic and 

estimate shedding duration, challenging prior assumptions about IPV. Additionally, our analysis, 
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consistent with previous work [28], suggests the local outbreak dynamics in the cities across the region 

were largely in parallel (i.e., all occurred at the same time) rather than sequential and spatial (as would 

have been the case if infection were seeded in one city and spread outward). 

Our augmented models allow us to revisit previous estimates of the 2013 Israeli poliovirus outbreak timing 

and cumulative incidence. In particular, the model with time-varying shedding estimated the outbreak 

peaked about 4 weeks later (mid-July) compared to the model with constant shedding (mid-June). 

Accordingly, we estimate that approximately 50% of the at-risk population was infected prior to 

vaccination and 50% vaccinated before possible infection, rather than the 75%–25% split estimated by 

the constant shedding model. For comparison, the results of our previous analysis using a constant 

shedding model on the data from Rahat alone falls somewhere between these two models, with about 

60% incidence and a late June peak. These results also underscore the fact that adding variation to non-

linear systems can have unexpected or counterintuitive effects. 

Based on OPV and IPV history in Israel, we expected the estimated shedding duration to be consistent 

with what experts have estimated for people with three or more doses of IPV, i.e., shedding for about 18–

20 days [24, 25, 33]. In 2005, Israel discontinued use of OPV, which contains a live-attenuated virus that 

provides gut immunity [19]. Accordingly, the at-risk population for this outbreak is likely largely children 

under the age of 10 (who would not have received OPV) and older people whose immunity has waned. 

These children should have received up to five doses of IPV at ages 2, 4, 6, and 12 months and 7 years 

[38]. (IPV provides humoral immunity, preventing paralysis but not transmission). In this analysis, we 

estimated a shedding duration of 29.4 days (95% CI: 27.7–31.3), more consistent with estimates for fully 

susceptible people, which range from 28 to more than 40 days [24, 25, 33], than for those with several 

doses of IPV. Our finding that the data are consistent with shedding durations longer than expected given 

the presumed immunity status could be explained by low vaccination coverage or vaccine take rates in 

the Bedouin communities, many of which are unrecognized. However, Israel Ministry of Health 

vaccination records indicate at least 90% IPV coverage in these communities, which is consistent with the 

absence of AFP despite high estimated cumulative incidence. Nevertheless, even with high coverage of 

IPV, the detected viral signals could be driven by a smaller fraction of the population that was 

unvaccinated, leading us to estimate a shedding duration consistent with fully susceptible individuals. An 

alternative explanation for our results is that IPV may not confer as much reduction in the shedding 

period, suggesting that the expert opinion may be overestimating the impact of IPV on shedding duration. 
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Most studies that have shown an impact of IPV on shedding duration were from the 1960s and may have 

been biased by unaccounted-for boosting from residual circulation [25]. More recent studies show no 

impact on IPV on shedding [43, 44] and other studies have found no correlates of mucosal immunity in 

populations that have had only IPV [45]. Moreover, although ensemble opinion tends to be more accurate 

than individual opinion, we recognize the substantial variation in expert opinion. We also acknowledge 

that many of the studies underlying the expert opinion come from challenge studies in artificial 

environments that may not exactly reflect real-world conditions. Our results could be caused by model 

misspecification, as the duration estimates were not strongly robust to the choice of shedding model. 

Misspecification could also occur if there was unaccounted-for time-varying transmission. Finally, it may 

also be the case that our results (based on PCR analysis) are in fact consistent with expert opinion (based 

on cultures), with the excess shedding period in our model capturing the shedding of non-culturable but 

PCR-detectable virus. Ultimately, more work is needed to better understand poliovirus shedding dynamics 

for different immunity states. A possible next step would be to use shedding models calibrated directly to 

available or newly measured shedding data. Our approach to time-varying infectiousness was also 

simplistic (assuming low-shedders were not infectious); other models have explored gradients in 

infectiousness over subsequent compartments [33], leading to different assumptions about the force of 

infection over the shedding period (figure S2). Having both wastewater and infection data in future studies 

could help resolve the relationship between time-varying shedding and infectiousness.  

Although we expected to see spatiotemporal dynamics in these data, the outbreak appears to have 

occurred approximately simultaneously across the southern Israel, i.e., the dynamic patterns in 

environmental surveillance are remarkably similar across the sites (figure 5a). The synchronized 

progression of outbreaks, which suggests rapid seeding of outbreaks across the region, runs counter to 

one hypothesis that poliovirus transmission outside of focal subpopulations is rare. It may be the case 

instead that exportation from epicenters is common but rarely sparks outbreaks due to sufficient 

population immunity from OPV vaccination in more commonly exposed settings. There is some evidence 

for this explanation in the larger regional picture for this outbreak. The same WPV1 strain responsible for 

the Israeli outbreak was previously detected in wastewater in Egypt [46] and was subsequently detected 

by environmental surveillance in the West Bank and Gaza [47] and by AFP surveillance in Syria [48]. 

Transmission was sustained in Syria, where OPV vaccination was disrupted by civil war [48], and Israel, 

where OPV use had been suspended in favor of IPV. But, transmission was not sustained in Egypt, the 
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West Bank, and Gaza, where OPV was still part of vaccination programs. This picture is somewhat 

complicated by the outbreak in Somalia [49], which had sustained transmission despite exclusive use of 

OPV, though the outbreak could also be explained by the low historical vaccine coverage there [50]. In 

this analysis, however, we recognize that the lack of evidence for spatial spread may instead be a lack of 

the right data. Specifically, we have comparably little data toward the beginning of the outbreak, prior to 

the expansion of environmental surveillance [9]. Our inferences are, therefore, much stronger regarding 

the decay of the outbreak rather than its beginning. The existing longitudinal, frequently sampled, and 

quantitative data from several sites across the region is extremely valuable, but there is no data from 

unplanned Bedouin communities, which have poor sanitation infrastructure and may have been early 

transmission hot spots. As we continue to pursue polio eradication in Pakistan and Afghanistan, it is 

paramount that we have comprehensive, granular environmental surveillance coverage, even in locations 

where poliovirus is not expected. 

Our estimates of the relative shedding rates of WPV1, OPV1, and OPV3 were consistent across the 

majority of sites, as one would expect if infection biology were consistent across sites. However, three 

sites deviated from this pattern; Ayalon, Be’er Sheva, and Shoket each had higher concentrations of bOPV 

in their wastewater than would have been expected given the concentrations of WPV1. Because these 

three sites were the only ones sampled with substantial Jewish populations, one explanation of these 

results is that the Jewish children received bOPV but had little contact with the Bedouin under-10 

population in the region. While this hypothesis is not a definitive explanation, an epidemiological 

separation between the communities is supported by observations from the stool survey conducted 

during the epidemic, which found WPV1 shedding in 5.4% of Bedouin children and 0.6% of Jewish children 

[42]. It is also supported by the initial, exploratory phase of environmental surveillance in May 2013 (used 

to decide which sites to continue to monitor weekly), which found differences in detections between 

neighborhood-level trunk lines within communities. For example, the Arad–Arad trunk line (Jewish 

neighborhood) was negative while the Arad–Kseife trunk line (Bedouin neighborhood) was positive. 

Similarly, while the Be’er Sheva (a mixed ethnicity city) treatment plant was positive, the Be’er Sheva 

North trunk line (Jewish neighborhood) was negative. While social separation is one explanation for 

differential transmission potential, other differences in population or contact structure (such as 

population density, family size, and frequency and type of typical physical contact) may also be relevant. 

This outbreak highlights the potential for racial and ethnic assortativity and the larger geopolitical context 
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to complicate outbreak intervention and global polio eradication more generally. It also underscores the 

benefit of using a mathematical model to analyze surveillance data, as we were able to identify these 

nuanced differences in the dynamics across the sites that might have otherwise gone unnoticed when 

looking at the PCR data alone. 

Eradication efforts for polio have benefited greatly from the expansion of environmental surveillance in 

the countries with endemic polio infections [22, 51–54]. Beyond polio, control efforts for a wide range of 

pathogens could benefit from systematic environmental surveillance, which promises to be a cost-

effective supplement to active case surveillance, even or especially in low-resource settings [55]. The 

COVID-19 pandemic has greatly accelerated interest in detecting SARS-CoV-2 and other pathogens in 

wastewater, which has led to an expansion of collection infrastructure and refinement of laboratory 

methods [12–14, 56]. Detection and quantification tools are being developed, particularly for enteric and 

respiratory pathogens, for a range of environmental contexts (e.g., wastewater, aerosols, wildlife feces) 

[1–14]. An additional benefit of this recent move toward using environmental data to understand the 

epidemiology of infectious diseases is that it highlights areas of the science of infection and pathogen 

shedding dynamics that we do not fully understand (e.g., does SARS-CoV-2 fecal shedding differ between 

variants?). More broadly, our work reflects increasing interest in leveraging population-level aggregates 

of quantitative pathogen data [57], such as in recent work modeling qRT-PCR Ct values of viral loads from 

a cross-sectional sample of the population [58]. 

We would ideally be able to estimate the number of infected individuals based on the pathogen 

concentration in a single grab sample of wastewater. It will be challenging to do so with any certainty from 

an isolated sample, but it could be accomplished in the context of systematic environmental surveillance 

by coupling our model-based approach presented here with both reliable estimates of shedding 

concentration over time and a way to estimate sewage dilution volume. Both estimates may vary 

geographically. A promising indirect approach to account for sewage dilution volume is to use a molecular 

marker correlated with wastewater strength as a normalizing factor for the pathogen concentration [56]. 

Another promising approach to estimate the number of infected individuals is to model the series of 

processes between excretion and detection with statistics distributions [59]. While our work is an 

important step in the direction of maximizing the potential of environmental surveillance, ultimately 

collaboration between wastewater engineers, pathogen specialists, and modelers will be needed to make 

environmental surveillance truly useful. In practice, environmental surveillance for poliovirus, SARS-CoV-
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2, and other pathogens will be the most useful and easiest to interpret when done systematically, at 

multiple sites, and in coordination with other parallel disease surveillance approaches [18, 60–62]. 

Quantitative environmental surveillance has the potential to transform our analysis of outbreaks. Here, 

we demonstrated that including time-varying viral shedding in a model considerably changed the 

interpretation of a poliovirus outbreak. It is likely to do so in other cases where models are fit to 

wastewater data as well. To realize the full potential of environmental pathogen surveillance, we need to 

simultaneously advance detection technology, basic science for shedding dynamics, analytic tools and 

models, and the real-world implementation of environmental surveillance. 
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Tables 

Table 1: Parameters for the polio outbreak model. Subscript 𝑖𝑖 represents the subcompartment number 

for the distributed delays for the latent and infectious stages, and subscript 𝑗𝑗 represents one of the seven 

wastewater sampling sites. 

Parameter Definition 

𝛽𝛽 WPV1 transmission rate, 1/d 

𝜌𝜌𝑜𝑜1 Ratio of OPV1 to WPV1 transmission rates 

𝜌𝜌𝑜𝑜3 Ratio of OPV3 to WPV1 transmission rates 

ϕ Vaccination rate, 1/d 

σ𝑖𝑖 Latent stage transition rates, 1/d 

γ𝑖𝑖 Infection stage transition rates, 1/d 

𝛼𝛼𝑤𝑤1,𝑗𝑗 Site-specific high shedding rate per wastewater volume for WPV1, copies/volume/d 

𝛼𝛼𝑜𝑜1,𝑗𝑗 Site-specific high shedding rate per wastewater volume for OPV1, copies/volume/d 

𝛼𝛼𝑜𝑜3,𝑗𝑗 Site-specific high shedding rate per wastewater volume for OPV3, copies/volume/d 

λ𝑤𝑤 Ratio of low to high WPV1 shedding 

𝜆𝜆𝑜𝑜 Ratio of low to high OPV1 & OPV3 shedding 

η𝑗𝑗 Site-specific relative size of vaccinated but not-at-risk population 

ξ𝑗𝑗 Rate of removal/decay of poliovirus, 1/d 

τ Copy number (i.e., concentration) threshold, copies/sample volume 
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Table 2: Estimated parameters for the polio outbreak model with time-varying shedding intensity  

Parameter Estimate 95% CI 

WPV1 transmission rate (1/d), 𝛽𝛽 0.49 0.46–0.52 

Average duration shedding (d), ∑𝛾𝛾𝑖𝑖−1 29.4 27.7–31.3 

Site-specific scaling parameters for WPV1, 𝜅𝜅𝑤𝑤1,𝑗𝑗   

Ar’ara 2.9×106 1.6–4.9 ×106 

Arad (Kseife branch) 4.7×105 2.6–7.3 ×105 

Ayalon (Lod branch) 8.1×107 5.3–12.5 ×107 

Be’er Sheva 6.0×107 3.6–8.7 ×107 

Rahat 2.2×106 1.5–3.0 ×106 

Shoket 5.3×107 3.0–13.5 ×107 

Tel Sheva 2.1×106 1.2–3.7 ×106 

Ratio of WPV1:OPV1 shedding, 𝜅𝜅𝑤𝑤1,𝑗𝑗/𝜅𝜅𝑜𝑜1,𝑗𝑗 10.0 7.8–15.6 

Ratio of WPV1:OPV3 shedding, 𝜅𝜅𝑤𝑤1,𝑗𝑗/𝜅𝜅𝑜𝑜3,𝑗𝑗 3.7 2.7–5.1 

Ratio of low to high WPV1 shedding, λ𝑤𝑤 7.0×10-3 4.3–12.7 ×10-3 

Ratio of low to high OPV1 & OPV3 shedding, 𝜆𝜆𝑜𝑜 7.0×10-2 4.6–8.9 ×10-2 

Site-specific relative size of vaccinated but not-at-risk 
population, η𝑗𝑗 

  

Ayalon 8.8 4.4–19.8 

Be’er Sheva 13.0 7.1–27.5 

Shoket 11.8 5.5–18.8 
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figure captions 

Figure 1: We calibrate our shedding model by specifying the number, type, order, and mean duration of 

the compartments, as well as the daily shedding concentrations. A shedding model specifies the latent 

and infectious subcompartment parameters σ𝑖𝑖 and γ𝑖𝑖 and the ratio of low to high shedding rates 𝜆𝜆 in our 

infectious disease model (table 1 and figure 2). 

 

Figure 2: An SLIR-type model, incorporating vaccination and environmental surveillance. The model 

represents infection by three strains of poliovirus: WPV1 (subscript w1), OPV1 (subscript o1), and OPV3 

(subscript o3). We assume an individual, once infected with either WPV1 or OPV1, is not affected by the 

other. OPV3 is modeled independently of the other two strains. The latent and infectious compartments 

have multiple subcompartments, as calibrated in the shedding model. Parameter definitions are given in 

table 1. 

 

Figure 3: Mean expert opinion (points) and modeled simulation (lines) for the a) fraction of the infected 

population shedding WPV1 and b) mean fecal shedding concentration among those shedding, both as a 

function of time since exposure. Simulations are presented for three prior immunization states: fully 

susceptible (red), 3+ doses of IPV (blue), at least one dose each of IPV and OPV (yellow). Simulations are 

determined by specifying compartment duration and shedding concentration in the shedding model in 

figure 1. 

 

Figure 4: a) Modeled fractions of the population that were infected with WPV1, OPV1, and OPV3. The 

ribbons give the CIs for the maximum-likelihood trajectory using likelihood-based estimates of the 95% 

confidence parameter region. The gray bars give the approximate periods of the bOPV vaccination 

campaigns. b) Epidemic trajectory of WPV1 comparing the best-fit model that incorporates a variable 

shedding model (solid) to the corresponding best-fit model that assumes constant shedding (dashed). 
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Figure 5: qRT-PCR Ct data (points) and model fits (black line) for WPV1 (left column), OPV1 (center 

column), and OPV3 (right column) strains in wastewater for each of the surveillance sites. The qRT-PCR 

data and modeled y are scaled by log2 of their respective site-specific scaling parameter 𝜅𝜅. The ribbons 

give the CIs for the maximum-likelihood trajectory using likelihood-based estimates of the 95% confidence 

parameter region. The gray bars give the approximate periods of the bOPV campaigns. 



No 
shedding

No 
shedding

No 
shedding

Low 
shedding

Low 
shedding

High 
shedding

Low 
shedding

Long-
term low 
shedding

Latent Infectious



Susceptible Latent Infectious Recovered

𝐼𝑤1

𝑅𝑜1

𝑅𝑤1

𝑅𝑜3

𝑊𝑤1

𝑊𝑜1

𝐼𝑜1

𝐼𝑜3

𝐿𝑤1

𝐿𝑜1

𝐿𝑜3

𝑆1

Measurement
ξ

𝛾

𝛾

𝛾

𝛼𝑤1

𝛼𝑜1

𝜎

𝜎

𝜎

𝛽

ρ𝑜3𝛽𝐼𝑜3
+𝜑

𝑊𝑜3𝛼𝑜3
Measurement

ξ

ξ
Measurement

𝑆3

ρ𝑜1𝛽𝐼𝑜1
+𝜑

multicompartment shedding model



Fully susceptible
3+ doses IPV

IPV and OPV

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Days after exposure

Fr
ac

tio
n 

sh
ed

di
ng

a Fully susceptible
3+ doses IPV

IPV and OPV

0

2

4

6

0 20 40 60
Days after exposureSh

ed
di

ng
 c

on
c.

, l
og

(C
ID

50
)

b



0.00

0.20

0.40

0.60

04−2013 06−2013 08−2013 10−2013 12−2013
Date

Fr
ac

tio
n 

in
fe

ct
ed

WPV1
OPV1
OPV3

a

0.00

0.05

0.10

0.15

0.20

04−2013 06−2013 08−2013 10−2013 12−2013
Date

Fr
ac

tio
n 

in
fe

ct
ed

Variable shedding
Constant shedding

b



WPV1
5

10

15

20

25
04−2013 06−2013 08−2013 10−2013 12−2013

Date

Sc
al

ed
 q

R
T−

PC
R

 C
t

Ar'ara
Arad Kseife
Ayalon Lod
Be'er Sheva
Rahat
Shoket
Tel Sheva
 

a

OPV1
5

10

15

20

25
04−2013 06−2013 08−2013 10−2013 12−2013

Date

Sc
al

ed
 q

R
T−

PC
R

 C
t

Ar'ara
Arad Kseife
Ayalon Lod
Be'er Sheva
Rahat
Shoket
Tel Sheva
 

b

OPV3
5

10

15

20

25
04−2013 06−2013 08−2013 10−2013 12−2013

Date

Sc
al

ed
 q

R
T−

PC
R

 C
t

Ar'ara
Arad Kseife
Ayalon Lod
Be'er Sheva
Rahat
Shoket
Tel Sheva
 

c


	Abstract
	Introduction
	Data
	Environmental surveillance
	Connecting PCR cycle threshold to pathogen concentration
	Vaccination campaigns

	Mathematical Modeling
	Shedding model
	Infectious disease transmission model
	Integration of shedding model into the infectious disease model framework
	Simulation and parameter estimation

	Results
	Time-varying shedding model calibration
	Estimated parameters
	Epidemic dynamics

	Discussion
	Author Contributions
	Acknowledgments
	Funding Statement
	References
	Tables
	figure captions

