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Abstract
Scale is a central concept in the geographical sciences and is an intrinsic property of 
many spatial systems. It also serves as an essential thread in the fabric of many other 
physical and social sciences, which has contributed to the use of different terminol-
ogy for similar manifestations of what we refer to as ‘scale’, leading to a surprising 
amount of diversity around this fundamental concept and its various ‘multiscale’ 
extensions. To address this, we review common abstractions about spatial scale and 
how they are employed in quantitative research. We also explore areas where the 
conceptualizations of multiple spatial scales can be differentiated. This is achieved 
by first bridging terminology and concepts, and then conducting a scoping review of 
the topic. A typology for spatial scale is discussed that can be used to categorize its 
multifarious meanings and measures. This typology is then used to distinguish what 
we term ‘process scale,’ from other types of spatial scale and to highlight current 
trends in uncovering aspects of process scale. We end with suggestions on how to 
further build knowledge regarding spatial processes through the lens of spatial scale.
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1  Introduction

Scale is a central concept in the geographical sciences and is an intrinsic property 
of many spatial systems. For decades, the term scale has been used across a diverse 
set of literature to capture a wide array of phenomena. For instance, scale is used to 
demarcate or link physical processes that are expressed across landscapes to those 
that occur at lower levels (e.g., constituent soil patches) or at higher levels (e.g., 
broader climatic regions). Alternatively, scale is used to refer to the level at which 
data are collected (e.g. individuals, census tracts, counties) or the range over which 
spatial processes vary (e.g. local, regional, global). There is also a persistent focus 
on the identification and quantification of representative scales in an effort to alle-
viate issues generated by the misspecification of scale (i.e., MAUP, uncertainty). 
These diverse and often diverging usages of related terminologies have resulted in 
confusion as to what is meant by scale. Several attempts have been made to bring 
clarity to the concept of scale, though ambiguity still remains (Quattrochi and Good-
child 1997; Sheppard and McMaster 2004; Dabiri and Blaschke 2019). In particular, 
the concepts and vocabulary used when simultaneously referring to more than one 
scale are diverse and inconsistent. Therefore, this paper aims to shed light on this 
important issue by conducting a scoping review and drawing connections between 
different conceptualizations and deployments of multiple spatial scales.

By exploring the range of scale concepts employed within the geographical sci-
ences, specifically with regard to the terms and methods typically used to operation-
alize spatial scale, it is possible to uncover novel insights into the nature of scale as 
used in practice. As a result, rather than adopting any single existing template for 
organizing knowledge about spatial scale, of which there are many (e.g., Meente-
meyer 1989; Lam and Quattrochi 1992; Marceau 1999; Gibson et al. 2000; Atkinson 
and Tate 2000; Goodchild 2001; Dungan et al. 2002; Wu and Li 2006; Manson 2008; 
Ruddell and Wentz 2009; Wu and Li 2009; Dabiri and Blaschke 2019), we propose 
using a scoping review of publications from a collection of leading geographical sci-
ence journals to provide an alternative lens to understand the many concepts of scale 
employed in quantitative research. The construction of a scoping review has gained 
popularity, particularly in the medical and health fields, as a formal mechanism for 
mapping the evolution of knowledge and identifying broad trends in contemporary 
research (Arksey and O’Malley 2005; Khalil et al. 2016; Levac et al. 2010; Munn 
et al. 2018; Peters et al. 2015; Pham et al. 2014; Tricco et al. 2018). As such, this 
review attempts to identify what is meant by “multiscale” in scale-centric research 
by: (1) reviewing key terms and popular expressions of spatial scale; (2) proposing 
a typology for underscoring the role of scale in various spatial analytical techniques; 
(3) bringing attention to the lack of consensus surrounding multiscale notions and 
proposing characteristics to differentiate these notions; and (4) suggesting avenues 
for future work on measuring process scale and related uncertainties. The review 
also highlights recent contributions and provides another useful entry point into the 
vast literature on scale.

In particular, this review focuses on the role of scale multiplicity (i.e., more 
than one scale) in the pursuit of making inferences about spatial processes. In this 
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context, scale multiplicity has two interpretations. It can refer to what we label 
type I scale multiplicity or the fact that there are multiple definitions of spatial 
scale. Alternatively, it can refer to type II scale multiplicity or the idea that the 
spatial analytical tradition often leverages data at multiple realizations of scales 
of the same type to learn about spatial processes. Therefore, we explore the prop-
osition that the inferences that can be made about spatial processes depend on the 
type of scales employed (i.e., type I scale multiplicity), how they are abstracted, 
and how they are integrated to combine or differentiate information across mul-
tiple realizations of scale (type II scale multiplicity). This proposition is similar 
to that put forward by Dungan et al. (2002) focusing on type I scale multiplicity, 
though it is extended here to explicitly consider the role of type II scale multi-
plicity across a variety of contexts. In order to effectively develop this proposi-
tion, the first goal of this paper is to distinguish between "data" and "process" 
notions of spatial scale and discuss how traditionally the spatial scale of data has 
governed inferences about spatial processes. The second goal of this paper is to 
clarify the various terms for referring to more than one spatial scale (e.g., mul-
tiscale versus cross-scale), the types of tasks associated with the manipulation 
of multiple scales, and how some techniques permit inferences on the scale of 
spatial processes. A third goal is to bring to the fore the importance of scale in 
the geographical sciences and motivate the development and use of methods that 
leverage scale to learn about spatial processes. Achieving these goals will expand 
our understanding of spatial scale and inform researchers from different traditions 
of collective opportunities and challenges when conducting spatial analyses and 
developing new tools.

In pursuit of the above goals, we start with a guided background that provides an 
overview of previous reviews on spatial scale, examining foundational ideas, and 
bridging related but sometimes disparate nomenclature. Next, a workflow to gather 
and analyze an illustrative sample of the literature is outlined. The focus then shifts 
to typifying facets of scale in empirical research and discussing trends in how scale 
is both quantified and utilized as a quantitative lens. Finally, some future steps are 
proposed and some concluding remarks are offered.

2 � A synthesis of terminology and concepts

Researchers from both the natural and social sciences often analyze phenomena 
at one or more spatial scales. Indeed, there is by now a large volume of literature 
describing the concept(s) of spatial scale and detailing developments across vari-
ous disciplines. On the one hand, domain-specific scale terminologies have arisen 
in conjunction with substantive research in areas such as landscape ecology (Turner 
1989; Stuber and Gruber 2020), remote-sensing (Marceau and Hay 1999; Wu and 
Li 2009), and segregation (Fowler 2016; Johnston et  al. 2018). Together, this has 
perhaps led to the idea that scale is an ambiguous concept and is dependent upon 
application context (Turner 1989; Goodchild 2001; Dabiri and Blaschke 2019). On 
the other hand, there now exist several general treatments of the topic that attempt 
to bridge subjects and forge a common understanding (e.g., Harvey 1968; Lam and 
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Quattrochi 1992; Marceau 1999; Atkinson and Tate 2000; Dabiri and Blaschke 
2019). From these efforts, several definitions of spatial scale are frequently encoun-
tered across the geographical sciences.

Dabiri and Blaschke (2019) provide a high level synthesis of some previous 
conceptualizations of spatial scale that yield several common categorizations of 
the notion of scale: (1) cartographic scale; (2) geographic scale; (3) process (or 
operational scale); and (4) observation (or measurement) scale.1 Cartographic 
scale, which refers to the ratio or proportion of the size of map features to their 
true size, is perhaps the most traditional and self-consistent2 definition. Here, 
“small scale” refers to objects that are rendered on the map with less detail and 
“large scale” refers to objects that are rendered on the map with more detail. The 
growth of spatial data and technology in the past few decades has encouraged 
researchers to seek alternative and sometimes contradictory definitions to accom-
modate additional aspects of spatial phenomena. For instance, Goodchild (2001) 
argues a disconnect between the pre-digital era definition of large-scale and adap-
tations to fit the modern era where large-scale could also refer to the extent of a 
study area or the physical size of the features involved in a given process. Another 
example is provided from the field of ecology through a series of short exchanges 
highlighting the need for both consistency and versatility when referring to scale 
in ecology (Silbernagel 1997; Jenerette and Wu 2000; Csillag et al. 2000). As a 
result, Dungan et al. (2002) recommend avoiding the singular term ‘scale’ and to 
specifically describe the concepts relevant to a particular analysis. They also sug-
gest differentiating between scale concepts used for collecting data, conducting 
statistical analysis, and describing phenomena. These calls for more flexible con-
ceptualizations have led to the three contemporary notions of geographic scale, 
observation scale, and process scale that are often described in the literature, 
though a large variety of terminologies are used to describe these notions and 
the nuances amongst them. For example, Table  1 attempts to compare various 
terms used for similar conceptualizations of scale3 and it becomes apparent that 
with the exception of cartographic scale, there is not a strong consensus within or 
between notions. Though potentially imperfect, we elect to summarize the many 
notions identified in the literature under the auspices of geographic scale, obser-
vation scale, and process scale (bottom row of Table 1) to simplify further dis-
cussion. Generally, geographic scale refers to the extent of an area of interest; 
observation (or measurement) scale refers to the resolution of spatial units across 

1  They also discuss two additional conceptualizations, modeling scale and policy scale, though there is 
less consensus around them and they are less frequently encountered. Therefore, they are not pursued 
here.
2  An interesting note from Williams (1959) clarifies that the representative fraction (i.e., cartographic 
scale) is only a ratio between the map and the real world at the origin of the map projection and not 
necessarily across the entire map. Williams also speculates that many researchers and educators fail to 
highlight this nuance and while it is easy to imagine this speculation is still true, it is unclear what the 
ramifications are for contemporary pedagogy or research.
3  We have made our best effort to faithfully categorize previous notions and terminologies and any 
errors in this pursuit are entirely our own.
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an area of interest; and process scale (or operational scale) is the dimension over 
which particular processes operate and may refer to their theoretical descrip-
tion or empirical measurement. This latter concept of process scale is of primary 
interest here and is further differentiated and examined throughout this review.

A more general definition of scale is provided by Marceau (1999) who states that, 
“scale refers to the spatial dimensions at which entities, patterns, and processes can 
be observed and characterized”. Following this definition, an alternative conceptu-
alization of the latter three definitions of spatial scale mentioned above can be pro-
vided in terms of how each modulates spatial entities, patterns, and processes. Often 
in the geographical sciences, the focus is on collecting and analyzing georeferenced 
data in order to measure patterns and ultimately inform about spatial processes. In 
this context, geographic scale and observation scale are the dimensions that modu-
late spatial patterns. Geographic scale can be thought of as the macro-attribute gov-
erning spatial patterns, whereas observation scale can be thought of as the micro-
attribute governing such patterns (Goodchild 2001). The former controls the amount 
of area over which a pattern can vary, whereas the latter controls the number and 
nature of the spatial units over which a pattern can be expressed. In contrast, pro-
cess scale is the dimension that modulates the relationships that generate the data 
and patterns we ultimately observe. Since we typically cannot directly observe pro-
cesses, geographic scale or observation scale measurements are often used to char-
acterize the scale that processes occur.

Atkinson and Tate (2000) provide another framework based on a geostatisti-
cal perspective to conceptualize spatial scale. In their view, the dominant scale of 
spatial variation (i.e. inferred process scale) measured across spatial data is at least 
partially determined by the scales of measurement (i.e., observation scale) used to 
obtain the data. Atkinson and Tate also define “multiscale” as the multiple scales of 
measurement at which data may be observed. This raises an important issue because 
multiscale could equally refer to multiple geographic scales, multiple observation 
scales, or multiple process scales, with an emphasis on empirical data or theoreti-
cal processes, each of which may refer to different types of connections between 
and within spatial systems. For example, Gibson et  al. (2000) describe the scale-
related term of hierarchy and how multiple levels are connected across constitutive 
hierarchies, such as individuals to families or cities to regions, since phenomena 
at any one level are affected by levels above and below. In contrast, in contempo-
rary geographically-weighted models, multiscale does not refer to multiple levels of 
measurement. Instead, relationships between variables and an outcome can change 
quickly or slowly with distance while the level of measurement remains constant 
(Fotheringham et  al. 2017). This means that some relationships in a multivariate 
model may be ‘local’ relationships that change within a single city or neighborhood 
with many inflection points across the study area, whereas others may be ‘regional’ 
relationships that vary slowly with only one or two inflection points. Others still may 
be ‘global’ relationships which hold for all locations. Thus, “multiscale” in the for-
mer sense refers to the scale of a set of separate connected entities, whereas the 
latter sense refers to the scale of process variation. These examples are further dis-
tinguishable from multiscale technologies that allow data to be efficiently stored, 
accessed, and visualized. Further confusion may also arise from related expressions 
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for more than one scale, such as multiscale, cross-scale, multiple scales, multiscalar, 
and scale-invariant.

Given the diversity that exists in the literature regarding the conceptualization 
and operationalization of scale, in what follows we attempt a comprehensive yet 
bounded review of the use of scale by focusing on a selection of core geographic 
journals. The overall goals and organizational logic of this review are summarized 
in Fig. 1, which illustrates the use of the literature to extract examples on the many 
uses of scale and distill them into a typology. From left to right, we focus on identi-
fying how the different types of scale are employed (type I scale multiplicity), how 
multiple realizations of scale are integrated or differentiated (type II scale multiplic-
ity), and the core tasks informed by these aspects of scale.

3 � Selecting a ‘scale’ corpus from the geographic literature

To examine the use of ‘scale’ in the geographic literature, five journals were selected 
as a representative sample of the much larger corpus of geographic knowledge: (1) 
The Professional Geographer (TPG); (2) The Annals of the American Associa-
tion of Geographers (AAAG); (3) Applied Geography (APGEO); (4) Geographical 
Analysis (GEAN); and (5) The International Journal of Geographic Information Sci-
ence (IJGIS). Collectively, these journals represent a wide breadth of contributions 
from across the discipline and a diversity of application areas. Although literature 
from other disciplines contains important developments on the conceptualization 
and quantification of spatial scale, such outlets tend to be more narrow compared to 
the geographical journals selected here, and placing meaningful bounds across an 
array of discipline-specific outlets would likely prove to be a very difficult task that 
is outside the scope of this work.

The inclusion of each selected journal toward the goal of this review is now 
briefly justified. As the premier journal of the American Association of Geographers 

Fig. 1   Flowchart outlining goals of the study
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and with over 100 years of contributions, the AAAG is a core outlet for essential 
geography research in four categories: Geographic Methods; Human Geography; 
Nature and Society; and Physical Geography, Earth and Environmental Sciences. 
Hence, it features leading research that privileges traditional and contemporary geo-
graphic thinking across the entire spectrum of sub-disciplines and specializations. 
A similar breadth is covered by TPG; however, it favors shorter submissions that 
prioritize fresh approaches and therefore it serves as a platform for making poign-
ant statements and presenting straightforward applications and issues. With a slogan 
of “Putting the World’s Human and Physical Resource Problems in a Geographical 
Perspective”, and an eponymous title, the central aim of APGEO is to contribute 
towards solving practical problems through the application of geographic theories 
and methods. As such, it is particularly suited to offer a glimpse at how geographic 
methodologies are deployed in the wild and to observe connections between geogra-
phy and other fields. Meanwhile, GEAN provides another point of view as the first 
journal (since 1969) in its specialty area of the analytical traditions, such as spatial 
data analysis and spatial statistics, in a world now awash in forums focused on data 
science and applied computing. It is an excellent resource for tracing the lineage of 
quantitative thought and techniques exported from within the discipline. Finally, the 
IJGIS serves as an encompassing exchange for all facets of the rapidly growing and 
maturing field of Geographic Information Science (GIScience). Given its empha-
sis on all aspects of geographic tools and techniques for handling spatial data and 
quantifying spatial patterns and processes it is ideal for capturing the pulse of GISci-
ence as it develops and diffuses across domains. The scope of each journal is further 
described in Table 2 of the Appendix based on excerpts obtained directly from their 
official web pages. Though there is some overlap, these five journals represent suf-
ficiently different perspectives to justify their separate inclusion and, collectively, 
they provide a strong base upon which to build an initial understanding of the quan-
titative use and development of spatial scale that can be subsequently expanded to 
become more holistic and comprehensive.

Manuscripts published through 2021 were obtained from each of the five selected 
journals by querying each for the keywords “scale” or “multiscale” using the search 
utility on their respective web pages. Though this returned hundreds of results, the 
100 most relevant4 hits returned by each journal (500 total) were initially selected 
for further screening—beyond this threshold, there were no papers that explicitly or 
implicitly made any reference to scale in their title or abstract. Next 194 manuscripts 
were selected from the initial 500 by excluding those that: (i) only described the size 
of the study area (i.e., large-scale or small-scale, continental-scale, street-scale); (ii) 
were primarily about qualitative scale (i.e., scales of power); or (iii) focused exclu-
sively on non-spatial scales (i.e., economies of scale or temporal scales).5

4  Each of the journal databases allowed the results to be sorted by relevance, though they do not provide 
an explanation on how they quantify relevance.
5  Book reviews were also excluded as the focus here was on original research contributions. All 161 
selected manuscripts are included in the references, including those few that were not directly cited in the 
text.
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4 � A typology of how ‘scale’ is used in practice

The selected corpus was reviewed and categorized based on the types of spatial 
scale (cartographic, geographic, observation or process) considered as the pri-
mary focus (red box in Fig.  1). Almost half of the manuscripts (42%) focused 
on observation scale and measuring the effects of varying resolutions of spatial 
units on the results of spatial analyses. The next largest focus (32%) was on geo-
graphic scale, followed by process scale (18%) and finally by cartographic scale 
(8%). Given the minimal use of cartographic scale, which was sometimes used in 
conjunction with or as a synonym for other types of scale (e.g., Rendenieks et al. 
2017), it is not a central focus moving forward. Furthermore, an in-depth explora-
tion of process scale is reserved for the following section. The rest of this section 
is therefore centered on highlighting popular themes detected in the corpus and 
the role of observation and geographic scales.

Manuscripts in the corpus were reviewed by the research team and catego-
rized based upon the team’s expertise and experience into a set of primary themes 
and topics. Specifically, each manuscript was assigned at least one topic label, 
though up to three topic labels were permitted to accommodate interdisciplinary 
research and to accommodate the relatively subjective nature of the labeling pro-
cess. Labels were identified by the team on a rolling basis as the literature was 
reviewed, with topics occasionally being merged or split to maintain a minimally 
sufficient subset able to represent the themes within each manuscript and across 
the entire corpus. This ultimately resulted in 18 topics, which are presented in 
Appendix Table  3, along with the tally of the number of times each topic was 
observed in each journal and across all five journals, though the topic of primary 
interest moving forward is Data Structures and Analytics. 

A similar deductive approach was used to disaggregate the Data Structures and 
Analytics topic into sub-topics, which are tallied in Appendix Table 4. Contributions 
were categorized based on different types of methods and actions that depend on 
similar scale concepts, again allowing manuscripts to belong to more than one cat-
egory. Additionally, a distinction was made between “cross-scale” methods, where 
multiple spatial scales are manipulated independently or compared, and “multi-
scale’’ methods, where different spatial scales (of any kind) were measured or cap-
tured simultaneously. The focus was to group contributions to identify general pat-
terns rather than sort them into mutually exclusive and exhaustive categories. In the 
remainder of this section, all in-text citations come only from the assembled corpus, 
though some related references from outside the corpus are provided in footnotes for 
those interested in further details.

As one of the most frequent sub-topics within the theme of Data Structures and 
Analytics, Cartography and GIS encapsulates methods for computer cartography 
and geographic information systems. It has two prevailing themes. First, these con-
tributions were almost exclusively about integrating information obtained at dif-
ferent scales (e.g., Li and Zhou 2012; Yue et  al. 2015; Zhang et  al. 2015, 2021a, 
b). Second, the most frequent task associated with these efforts was to general-
ize geographic features (e.g., topography or road network) or maintain consistent 
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relationships between them for efficient and consistent viewing, storage, and access 
across scales (e.g., van Oosterom 1995; Jones 1996; Du et al. 2010a, b; Jiang et al. 
2013; van Oosterom and Meijers 2014; Jiang 2015; Clarke 2016; Liu et al. 2020). 
Other tasks included capturing space–time change (Plumejeaud et al. 2011) and fea-
ture identification (Deng and Wilson 2008). Though cartography and cartographic 
systems were at the center of this category, it is interesting that the cartographic 
definition of scale (i.e., representative fraction) was not. Rather, there were examples 
where geographic scale (e.g., Deng and Wilson 2008; Hoover et al. 2019) and obser-
vation scale (e.g., Du et al. 2010a, b; van Oosterom and Meijers 2014) were used, as 
well as examples where the cartographic definition was employed (e.g., Stoter et al. 
2011; Chen and Zhou 2013; Peng et al. 2021). In one case, the scale definition was 
not explicit despite the research focusing on multiscale data (Sinha and Silavisesrith 
2012). Surprisingly, there was only one instance of a data model for working across 
both spatial and temporal scales (Van de Weghe et al. 2014).

Two tasks differentiate the Remote Sensing and Image Processing sub-topic from 
the Cartography and GIS sub-topic. The first task focuses on the classification of 
image pixels or point clouds (e.g., Dekavalla and Argialas 2017; Zhao et al. 2018; 
Guo and Feng 2018). For example, different geographic scales (i.e., distance-based 
neighborhoods) can be used to create 2D images from 3D point clouds that are each 
fed into a convolutional neural network to extract a set of features that are assembled 
into a multiscale feature set for subsequent classification (Zhao et al. 2018). Alterna-
tively, a 3D point cloud can be resampled at different observation scales (i.e., num-
ber of cubes) that nest into a hierarchy of geographic scales (i.e., cube size) to form a 
multiscale point cloud pyramid that is able to reduce the effects of noise and varying 
point densities when classifying points (Guo and Feng 2018). Meanwhile, Dekavalla 
and Argialas (2017) enhance the automatic classification of land surface features by 
using an adaptive geographic scale (i.e., pixel-specific radius) that is efficient across 
input observation scales (i.e., resolution). In contrast, the second task focuses on the 
identification of objects from imagery and does not appear to explicitly define scale, 
instead using the notions of scale to refer to the size of objects (number of pixels) 
and multiscale to refer either the comparison of analyses for different size objects 
(i.e., cross-scale) or to the bottom-up formation of larger objects from smaller ones 
(Stefanidis et al. 2002; Drǎguţ et al. 2010; Chen et al. 2011; Argyridis and Argialas 
2019). Overall, these tasks described under the banner of Cartography and GIS and 
Remote Sensing and Image Processing typically focus on multiscale data fusion and 
integration.

Profiling is an umbrella term used here to refer to any method that computes a 
statistic or measure as a function of geographic scale or observation scale. Perhaps 
the most well known example is the variogram or semivariogram, which measures 
the spatial variation as a function of different geographic scales (i.e., ranges) (e.g., 
Phillips 1988; De Cola 1994; Liu and Jezek 1999; Goovaerts et al. 2005; Zhang and 
Zhang 2011; Lloyd 2012, Lloyd 2016). Other profiles may alternatively be based on 
spatial autocorrelation statistics (Zhang and Zhang 2011), entropy (Appleby 1996), 
diversity indices (Zhang et al. 2013a, b), isolation statistics (Östh et al. 2015), fractal 
dimension (Lam and Quattrochi 1992; De Cola 1994), percentages (Petrović et al. 
2018), or cumulative probability distributions (Wong 2001). These values are often 
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computed as a function of geographic scale metrics, most commonly ‘global’ dis-
tance lags between all observations (Phillips 1988; Lam and Quattrochi 1992; Liu 
and Jezek 1999; Goovaerts et al. 2005; Zhang and Zhang 2011) or ‘local’ aggregates 
for each observation across distance bands, within a moving window, or based on a 
population-based number of nearest neighbors for an individual-contextual approach 
(Wong 2001; Lloyd 2012; Östh et al. 2015; Petrović et al. 2018). However, values 
are also sometimes computed as a function of observation scale (i.e., resolution or 
spatial unit size) (De Cola 1994; Appleby 1996; Zhang and Zhang 2011; Zhang 
et al. 2013a, b). All of these profiling variants involve cross-scale analysis, though 
Petrović et  al. (2018) carry out an explicitly multiscale analysis by measuring the 
location-specific entropy across profiles for 101 geographic scales (i.e., extents). 
Furthermore, while most of the profiling examples here focused on comparing val-
ues across scales, a few contributions focused more explicitly on selecting an ‘opti-
mal’ scale (e.g., Zhang and Zhang 2011; Zhang et al. 2013a, b).6

The Clustering sub-topic pertains to a variety of analytical tasks that includes: 
(i) detecting whether spatial units are clustered; (ii) determining which spatial units 
are clustered; and (iii) deciding how spatial units should be clustered into larger 
aggregate spatial units or groups. Task (i) is most frequently achieved using tradi-
tional ‘global’ point pattern analysis techniques where clustering tests are typically 
based solely on location information (e.g., Smith 2004) and spatial autocorrelation 
statistics when clustering is based on location information and an observed attribute 
information (e.g., Chou 1991). Task (ii) usually employs focused or ‘local’ versions 
of point pattern analysis or spatial autocorrelation statistics,7 as well as scan statis-
tics, that evaluate each spatial unit at a fixed observation scale while conditioning on 
or exploring a series of geographic scales (i.e., extents) to identify clusters from ran-
domness (e.g., Wong 2001; Shiode and Shiode 2009; Rogerson and Kedron 2012; 
Rogerson 2015; Westerholt et al. 2015; Carr et al. 2019; Li et al. 2019; Liu et al. 
2019). In this case, cross-scale analyses are typically used for comparing results 
across observation scales or for selecting an ‘optimal’ geographic scale. However, 
more explicitly multiscale techniques in this context are those that incorporate infor-
mation found at several geographic scales into a metric (e.g., Shiode and Shiode 
2009; Westerholt et al. 2015; Liu et al. 2019; Griffith 2021; Yu and Fotheringham 
2021). Finally, task (iii) is often referred to as regionalization and entails creating 
larger (i.e., coarser) observation scales by combining or grouping units from smaller 
(i.e., finer) observation scales (e.g., Mu and Wang 2008; Meng et al. 2021). At the 
root of regionalization methods is a tradeoff between the level of detail (i.e., fewer 
regions means less detail) and noise (i.e., fewer regions averages out extreme val-
ues) in spatial patterns and processes that is often driven by minimizing variation 
within regions and maximizing variation between them.8 In this context, one exam-
ple used multiscale to refer to an algorithm for searching across geographic scales 

6  This is an exceptionally long-lived strategy for geographers (see Fotheringham and Wong (1991), p. 
1042) for addressing the ‘empirical effects’ of theoretical ambiguity about scale (Wolf et al. 2021, p. 3).
7  For more on these techniques, see (Getis and Ord 1992; Anselin 1995; Boots and Okabe 2007).
8  For more on regionalization, the reader is referred to Duque et al. (2007).
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(i.e., cross-scale) rather than the explicit integration of entities or relationships at 
different scales (Meng et al. 2021).

Decomposition Models include an array of techniques that incorporate univari-
ate statistics, multiple regression, multilevel models, and geographically weighted 
models. Since many of these techniques overlap, they are therefore discussed col-
lectively in terms of their shared qualities and defining characteristics. By Decompo-
sition, we refer to how a process is partitioned into contributions from different but 
interrelated components, either at different scales and/or between different variates 
in a multivariable process. Multilevel models are one type of Decomposition method 
that extracts the contribution of information from individual ‘levels’ towards a sta-
tistical pattern or measure, where levels are different observation scales (i.e., resolu-
tion or grain). Since the levels are typically hierarchically nested and linearly addi-
tive, multilevel models are intrinsically multiscale as they always incorporate more 
than one spatial scale into a single analysis of a variable of interest.9 Furthermore, 
the main goal of these methods is the expression and comparison of contributions 
at a handful of prespecified scales rather than the selection of a single optimal scale 
across a large range. It is often implied though that the level with the largest varia-
tion is the observation scale at which further study is required. Multilevel models 
are further differentiated by their focus on either a univariate statistic or a multiple 
regression context. The former focuses on decomposing a single variable or measure 
as a function of itself, such as spatial variability (Oliver and Webster 1986; Col-
lins and Woodcock 2000), moving window averages (Pigozzi 2004), the statistical 
likelihood (Kolaczyk and Huang 2001), diversity and dissimilarity indices (Wong 
2003; Manley et  al. 2019), or entropy (Phillips 2005; Batty 2010; Leibovici and 
Birkin 2015). In contrast, the latter focuses on decomposing a variable as a func-
tion of other variables (e.g., Duncan and Jones 2000). More recent work found in 
this review corpus extended these types of multilevel multiple regression models to 
examine contributions from different groups (i.e., categories) across scales (Manley 
et al. 2015), modeling spatially clustered survey data based on attributes of individu-
als, neighborhoods, wider regions, and heterogeneities across them (Ma et al. 2018), 
the development of hierarchical spatial autoregressive models to capture dependen-
cies at each level (Dong and Harris 2015), and a locally adaptive extension (Dong 
et al. 2020).

It is also possible for Decomposition Models to focus on the contribution of 
information from different geographic scales (i.e., extents) rather than different 
observation scales (i.e., resolution or grain). For example, Goovaerts et  al. (2005) 
use decomposed semivariograms (i.e., variation across distance lags) to identify 
and model local and regional components of cancer risk and find that risks have 
qualitatively different associations at different scales that could otherwise go unde-
tected. Another example by Johnston et al. (2004) conducts factor analysis and par-
tial regression coefficient reconstitution to compare potential neighborhood effects 
among individual voting patterns measured at several k-nearest neighbors aggre-
gates (i.e., population-based extents). These cross-scale analyses both depend upon 

9  The theory on variance partitioning in multilevel models is set out by Goldstein et al. (2002).



1 3

A scoping review on the multiplicity of scale in spatial analysis﻿	

the analyst to select the ‘interesting’ scales for further investigation. In contrast, geo-
graphically weighted regression (GWR) models are able to computationally search 
a continuous range of distances or an exhaustive set of k-nearest neighbors to select 
or seek for an optimal geographical scale at which to find local associations based 
on a model fit criterion such as cross validation or the Akaike Information Crite-
rion (AIC).10 This optimal geographical scale is then often interpreted as an indica-
tor of process scale. A recent multiscale extension to GWR allows the identification 
of a unique indicator of scale for each response-covariate relationship in the model 
(Fotheringham et  al. 2017). This means that within a single model some associa-
tions may be indicated as ‘global’ and having no smaller (geographic) scale effect, 
while others might be treated as regional or local. The importance of accounting 
for these type of multiscale effects for accurately capturing spatial process has been 
highlighted and also shown to be similar to multilevel models with a global level 
(i.e., no spatial variation) and a local level with an observation scale equivalent to 
the coordinates of sample locations or centroids (Murakami et al. 2019; Wolf et al. 
2018).

The Scaling and Fractals sub-topic focuses on linking the distribution of an 
attribute or the calculation of a metric across levels of detail based on the assump-
tion that there is some pattern or process that remains consistent across them, with 
levels implicitly or explicitly corresponding to different spatial scales. As such, there 
is some overlap between this sub-topic and that of Profiling. Scaling inquiries also 
often entail comparing observed distributions to theoretical distributions to investi-
gate the degree of scaling in an attribute (i.e., size, length, connectivity, number of 
events, configuration). In particular, fractals have influenced the concept of scaling 
and Goodchild and Mark (1987) discuss three notions that incorporate fractals into 
spatial analysis.11 The first notion concerns the response of a measure to explicitly 
defined spatial scales. Since fractal dimension is used to characterize the complex-
ity, irregularity, or roughness of a geographic feature, this intuition can be extended 
to examine how different values of fractal dimension or domains of consistent frac-
tal dimension across spatial scales may be associated with different spatial processes 
(i.e., Profiling). An example of fractal dimension as a function of geographic scale 
is provided by Lam and Quattrochi (1992) while an example of fractal dimension as 
a function of observation scale is provided by Appleby (1996). The second notion is 
that of self-similarity or the repetition of statistical patterns at different scales (e.g., 
Ovando-Montejo et al. 2021), which has been used to simulate terrain and geomor-
phological processes, as well as develop alternative null models to compare against 
them. The third notion pertains to the recursive subdivision of space that leverages 
self-similarity to produce space-filling patterns, inspiring the development of effi-
cient spatial data structures.

10  For an introduction to GWR, see Brunsdon et al. (1996); Fotheringham et al. (1998); Fotheringham 
et al. (2002); Oshan et al. (2019).
11  For more on scaling, fractals, and their interaction, readers are referred to Batty et al. (1989); Lam and 
Quattrochi (1992); Sun et al. (2006); Batty (2010); Jiang and Brandt, (2016).
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More recently, Jiang and colleagues (Jiang et al. 2013; Jiang 2013; 2015) demon-
strate that the Pareto-like distribution of many geospatial phenomena provides the 
basis for cognitive mapping and cartographic generalization across intrinsic hierar-
chical observation scales based on recursive 80–20 splits of an attribute and Jiang 
and Ren (2019) suggest a multiscale topological representation of space that cap-
tures the relationships within and between intrinsic hierarchical geographic scales. 
Underlying this later technique is the Ht-index, which expresses hierarchical levels 
of scales, in comparison to the fractal dimension, which expresses the degree of het-
erogeneity for a level (Jiang and Yin 2014). Another recent direction develops the 
concept of multifractals, which acknowledges that fractal properties of an attribute 
may vary across space, generating multiscale patterns (Tan et al. 2021).

Changing the support size (i.e., observation scale) of data or models is referred 
to as Rescaling, or more specifically, upscaling (i.e., aggregating) and downscal-
ing (i.e., disaggregating) depending on whether the units are becoming coarser or 
finer, respectively.12 The focus is often on rescaling data that are then analyzed or 
modeled at different observation scales where observations are translated into a new 
scale through averaging, smoothing, extrapolating, or interpolating (e.g., Bednarz 
and Ralston 1982; De Cola 1994; Atkinson and Tate 2000; Yoo and Trgovac 2011; 
Buck 2017; Zhang et al. 2019). An alternative approach proposes to calibrate a geo-
statistical model (i.e., variogram) for one observation scale and then directly upscale 
or downscale the modeled variation across geographic scales (i.e., distance lags) 
using regularization rather than rescaling the data and modeling it at the new scale 
(Atkinson and Tate 2000). Rescaling may be seen as a contrast to multilevel models 
that incorporate data across multiple scales rather than harmonizing data to a single 
scale (e.g., Wilson et al. 2011). In addition, the smoothing that results from some 
upscaling methods typically results in information loss and evidence suggests that 
analytical results may be more sensitive to rescaling than using data directly meas-
ured at a coarser observation scale (Atkinson and Tate 2000; Zhang et al. 2019).

The modifiable area unit problem (MAUP) refers to the sensitivity of data and 
analytics to the spatial units or support upon which they are measured.13 These 
effects are traditionally grouped into two categories with one focusing on the sen-
sitivity to changes in zonal boundaries (e.g., Burden and Steel 2016) and another 
focusing on the sensitivity to changes in scale, which could include either varying 
observation scales within a single geographic scale (e.g., Chou 1991; Mu and Wang 
2008; Burden and Steel 2016) or varying geographic scales for a fixed observation 
scale (e.g., Wong 2001). However, in practice, it appears that the scale aspect of the 
MAUP is more often investigated by the former task of varying observation scales 
within a single geographic scale (e.g., Kwan and Weber 2008; Houston 2014). The 
latter task of varying geographic scales for a fixed observation scale may perhaps be 

12  Adding to the confusion of terminology, in image processing (e.g. Kopf et al. 2013), ‘downscaling’ 
refers to reducing the resolution of the image. For example, when referring to reducing the resolution of 
an image, the image is ‘downscaled’, but this reduces detail, which corresponds to ‘upsampling’ in the 
literature we review here.
13  A few central references describing the MAUP are Openshaw and Taylor (1979); Arbia (1989); Foth-
eringham and Wong (1991); Jelinski and Wu (1996); Dark and Bram, (2007).
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less frequently investigated under the guise of the MAUP because qualitative shifts 
in patterns and processes at different geographic scales starts to become more related 
to hierarchy theory,14 which is less apparent in this corpus. Only a few manuscripts 
sought to specifically examine the MAUP effects of a particular method,15 which is 
closely related to the tasks highlighted in the Profiling and Clustering sub-topics, 
with many more contributions indirectly incorporating an analysis of the MAUP 
by making cross-scale comparisons. Fowler et al. (2020) demonstrate the potential 
uncertainty and contextual fallacy of using relatively aggregate geographies (e.g., 
census delineations) rather than individual or ego-centric16 neighborhood defi-
nitions. While there are no general solutions to mitigate the MAUP, strategies to 
account for the related sensitivities typically suggest more explicitly multiscale 
approaches that integrate a distribution of results across scales (e.g., Wong 2001; 
Burden and Steel 2016).

There were two flavors of contributions centered on simulation models using 
agents or cellular automata. The first focused explicitly on the sensitivity of results 
to spatial scales. These examples present cross-scale comparisons, focusing on sen-
sitivities associated with different observation scales (Jantz and Goetz 2005; Bon-
nell et  al. 2016) and on sensitivities associated with different geographic scales 
(Kang and Aldstadt 2019), or both (Wu et al. 2019a). The second approach focused 
on incorporating different types of agents for entities that exist at different scales and 
interact across scales, providing a multiscale analysis of complex systems (An et al. 
2005; Tang and Bennett 2010; Xu et al. 2020).

Rather than developing or applying methods, a few manuscripts focused instead 
on developing Conceptual models of interrelated notions of spatial scale. For exam-
ple, Pereira (2002) put forth a typology of scale relations17 based on the compari-
son of the grain (i.e., observation scales) and extent (i.e., geographic scales) of two 
different hypothetical scales. The typology provides seven possible relationships, 
though there is limited discussion on how they are used practically, which relations 
are most common, or the appropriateness of the relations for describing (empirical) 
data versus (theoretical) processes. Another example proposes The Scale Matcher, 
which provides an ontology for describing the relationships between issues of preci-
sion, accuracy, and geographic scale between the available data, the expected input 
to a model, and the phenomena being modeled (Lilburne et  al. 2004). Similarly, 
Zhang et al. (2014) develop a scale compatibility framework that considers different 
scale types, dimensions, and measurements. The goal of these conceptual models is 
to make the limits of spatial modeling more explicit to analysts and provide a mech-
anism to validate the scales used in an analysis, though a lack of their pervasive 

14  For more on hierarchy theory, readers are referred to O’Neill and Smith (2002); Jenerette and Wu 
(2010); Wu (2013); Allen and Starr (2017).
15  This statement does not include manuscripts examining the MAUP effects of a particular relationship 
(i.e., applied focus over methodological focus).
16  See Hipp and Boessen (2013) in addition to papers from the corpus.
17  Pereira (2002) actually looks at spatial, temporal, and spatial-temporal scale relations.
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adoption hints towards the trend to instead rely on intuition, often allowing limita-
tions to remain implicit.

Finally, it is worth noting some Other areas that either did not form coherent sub-
topics or that seem to be under-represented in the corpus. First, there is a surprising 
lack of manuscripts pertaining to spatial networks, including both planar networks, 
where the nodes and the edges are geometric entities (i.e., street system or power 
grid), and non-planar networks, where the nodes are georeferenced but the edges are 
not (i.e., migration or retail expenditure). Planar network methods were observed 
in the corpus in the context of multiscale hierarchical data structures for street net-
works and the detection of multiscale clusters along a network (Shiode and Shiode 
2009; Li and Zhou 2012). Since the observations are physical entities abstracted 
as nodes and edges, this removes the need for an exogenously defined observation 
scale, which means these examples leverage multiple geographic scales. In contrast, 
non-planar networks were not observed in the corpus despite the rich tradition in the 
geographical sciences of modeling spatial interaction and the use of scale concepts 
to define their spatial structure.18 Second, machine learning and neural networks 
were only central in two manuscripts (Zhao et al. 2018; Guo and Feng 2018), which 
is counter to the rise of geospatial artificial intelligence (i.e., geoAI) and the recent 
explosion in deep learning.19 This suggests more work is needed to develop spatially 
explicit AI methods that leverage spatial scale. Third, only a single example explor-
ing the long-standing task of location-allocation (Cromley et al. 2012) may imply 
that spatial scale is a relatively peripheral concern for spatial optimization compared 
to the other tasks described here perhaps because the focus is instead on an exog-
enously defined objective function and optimality criterion, rather on than a particu-
lar process.20

5 � Scale multiplicity and the inference of spatial processes

In this section, the trends from the scoping review are further distilled in order to 
formalize a typology of how scale is used for different tasks (blue box in Fig. 1). 
This predominantly entails categorizing tasks and specific methods in terms of 
the notions of scale that are employed, whether they are cross-scale or multiscale, 
and if the focus is on data, measurement, or inference. In addition, methods are 
distinguished as endogenous or exogenous depending on whether the scales were 
explicitly predefined (exogenous) or extracted from a system based on a criterion 
(endogenous).

18  See Oshan (2020) for an overview.
19  For example, see Janowicz et al. (2019).
20  Instead of the issue of scale, the focus of location-allocation and spatial optimization appear to center 
on the related issues of data aggregation and zone definition, of which there are several examples in 
GEAN (e.g., Goodchild 1979; Current and Schilling 1990; Fotheringham et al. 1995; Murray and Gottse-
gen 1997; Francis et al. 1999).
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Most quantitative geographic research relies upon the specification of at least one 
geographic scale (i.e., extent) and one observation scale (i.e., units or objects), either 
implicitly or explicitly, to facilitate data collection and analysis. However, at a single 
scale, the amount of information that can be obtained about process scale is limited. 
It is the shift from one scale to multiple scales that enables the scale of processes to 
be brought into focus. Furthermore, though it is straightforward to theorize about the 
scale of a process, such a scale often cannot be directly observed. This means that 
to learn about process scale, it is necessary to rely on inference, which requires data 
at multiple measurable scales (i.e., geographic scale or observation scale). Figure 2 
illustrates the mode of inquiry whereby data are observed and collected in order to 
measure associations that ultimately allow inferences to be made. This diagram was 
previously used by Fotheringham (2020) to discuss how data are used to inform on 
the properties of spatial processes (i.e., quality and magnitude), which are dependent 
on scale. Therefore, the diagram is modified here to incorporate the role of scale at 
each stage of the diagram and to describe how data at multiple scales allow infer-
ences to be made about the scale of processes (i.e., local versus global or higher-
level versus lower-level) in addition to the quality and magnitude of processes.

The box in the top left of Fig.  2 represents the sub-topics and tasks identified 
through the scoping review that are predominately about spatial data handling (i.e., 
storage, integration, viewing, accessing, and feature engineering), which were cen-
tral to the Cartography and GIS and Remote Sensing and Image processing cate-
gories. Here, scale plays the role of moderating how observations are semantically 
related to one another. Data observed at similar cartographic, geographic or obser-
vation scales are anticipated to be related (possibly to the point of being redundant) 
whereas data observed at different scales are more likely to be unrelated. Moreover, 
the focus in this context is typically on multiscale methods with the objective of 
facilitating the integration of spatial information for downstream consumption (i.e., 
classification, regression, simulation).

In contrast, the boxes on the right focus on using data measured at multi-
ple geographic or observation scales to inform about process scale(s). The top 
box can be further differentiated by tasks that compare associations at multiple 
scales using exogenous cross-scale techniques. This covers most profiling tech-
niques, clustering methods, explorations of the MAUP, or verifications of scaling 
properties, and includes cases where either multiple geographic scales or mul-
tiple observation scales are used. As a result, the common label of k-compari-
son methods is appropriate for any task looking to informally quantify process 
scale through the juxtaposition of results obtained at k pre-specified realizations 
of scale. The majority of examples (~ 1/3) from the corpus of literature used a 
k-comparison approach to analyze changes in metrics, such as correlation coeffi-
cients, indices, spatial autocorrelation statistics, simulations or regression param-
eters (e.g., Parker et al. 2001; Nelson et al. 2007; Southworth et al. 2006; Elliott 
and Kipfmueller 2011; Kim et al. 2012; Perveen and James 2011; Patterson and 
Doyle 2011; Wright et al. 2013; Zhang et al. 2013a, b; Jacobs-Crisioni et al. 2014; 
Bao and Tong 2017; Fernandez and Wu 2016; Liu et al. 2017; Carr et al. 2019; 
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Li et  al. 2019 and many more21). It is important to recognize that even though 
k-comparison methods may include inferences on processes (i.e., their quality 
and magnitude) they do not typically provide explicit inferences on the scale(s) of 
processes. That is, they do not inform us about how appropriate a particular scale 
is nor do they express uncertainty about the scales under consideration.

The final box at the bottom of Fig. 2 contains the tasks and methods that pro-
vide explicit information about process scale(s) through more formal inference. 
The first example in this group is GWR from the decomposition sub-topic, which 
searches across geographic scales to make cross-scale comparisons and endog-
enously selects a bandwidth that is an indicator (i.e., extent) of process scale. 
As already mentioned, GWR has been extended to MGWR which provides an 
indicator (i.e., extent) of process scale for each relationship in a model. MGWR 
achieves this by making a series of simultaneous cross-scale searches across geo-
graphic scales. Therefore, MGWR is a multiscale method in that it combines and 
extracts information regarding multiple process scales. There were many exam-
ples of GWR in the corpus (e.g., Gao and Li 2011; Miller and Hanham 2011; 
Propastin 2011; Su et al. 2012; Pearsall and Christman 2012; Rennermalm et al. 

Fig. 2   The relationship between the multiple scales of spatial data and spatial processes and the tasks and 
methods that are most closely related with them

21  For readability, additional examples of k-comparison approaches from the corpus are listed here: Phil-
lips (1986); Band (1989); Bian and Walsh (1993); Stoms (1994); Jantz and Goetz, (2005); Kwan and 
Weber, (2008); Mountrakis and Gunson, (2009); Verfaillie et al. (2009); Pontius et al. (2011); Yamada 
et al. (2012); Root (2012); Giraldo (2012); Ma et al. (2012); McClintock (2012); Zhang et al. (2013a, b); 
Kim (2013); Aguilera-Benavente et al. (2014); Houston (2014); Mateo Sánchez et al. (2014); Clark et al. 
(2015); Weiss et al. (2015); Barnes et al. (2016); Cabrera-Barona et al. (2016); He et al. (2017); Rende-
nieks et al. (2017); Li et al. (2018); Bagstad et al. (2018); Cebrecos et al. (2018); Vu et al. (2018); Hazell 
and Rinner (2019); Wu et al. (2019b); Salvati et al. (2020); Doeffinger and Hall (2021).
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2012; Brown 2017; Li et al. 2017; Jendryke and McClure 2019; Hazell and Rinner 
2019) and because of its novelty, there were fewer examples using MGWR (Foth-
eringham et al. 2017; Wolf et al. 2018; Murakami et al. 2019; Bilgel 2020; Shab-
rina et  al. 2021; Forati and Gose 2021; Fotheringham et  al. 2021), though the 
number was increasing in recent years, along with methodological enhancements 
and computational improvements (Wu et al. 2019c, 2021a, 2021b; Yu et al. 2020; 
Li and Fotheringham 2020; Zhang et al. 2021a, b; Hagenauer and Helbich 2021). 
A second example of a model form that falls into this box is that of multilevel 
models, which are also found in the decomposition sub-topic. Since traditional 
multilevel models always incorporate multiple exogenously defined observation 
scales, they allow inferences to be made about the levels where one or more pro-
cesses can be explained. There were several examples of traditional multilevel 
models in the corpus (e.g., Barnett 1973; Duncan and Jones 2000; Kolaczyk and 
Huang 2001; Dong and Harris 2015; Manley et al. 2015; Tian et al. 2015; John-
ston et al. 2016; Malanson et al. 2017; Ma et al. 2018; Greene and Kedron 2018; 
Sun and Yin 2018; Manley et al. 2019), but few instances of multilevel models 
extended to become analogous to GWR and MGWR (i.e., spatially varying coeffi-
cient models) by searching across geographic scales (i.e., ranges) to allow process 
scale(s) to be expressed endogenously. The final examples in this box include 
techniques for calculating summaries across exogenously defined scales. Recall 
that Petrović et al. (2018) computed the entropy for values measured for a series 
of geographic scales and that Burden and Steel (2016) computed distributions 
of regression coefficients resulting from the MAUP. Though these both present 
straightforward means of moving from cross-scale techniques to multiscale tech-
niques to learn about the characteristics of processes (i.e., complexity or uncer-
tainty) they were not featured prominently in the corpus nor do they explicitly 
measure the complexity or uncertainty of process scale, suggesting important 
directions for future work.

6 � Summary

This paper highlights how the concept of spatial scale is used in the geographical 
sciences by providing an overview of previous conceptualizations of scale and 
then undertaking a scoping review on the topic. From this, we describe and clas-
sify tasks and methods that use scale in the literature, leading to an expanded 
understanding of the role of different notions of scales (type I scale multiplicity) 
and the simultaneous use of multiple scales (type II scale multiplicity). Previous 
reviews on the topic of spatial scale do not differentiate between different types of 
scale multiplicity and typically focus on type I scale multiplicity rather than type 
II scale multiplicity. In contrast, this review included a substantial focus on type II 
scale multiplicity, illuminating the need to distinguish the characteristics of both 
types of scale multiplicity when discussing spatial analytical methods. The main 
outcome is a categorization of the primary modes of inquiry through the lens of 
multiple scales for handling spatial data, measuring associations, and inferring 
unmeasurable processes. Another outcome is the finding that methods capable 
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of making explicitly multiscale inferences about the scale of processes were less 
abundant in the literature than methods that informally examined process scale. 
The results of this study therefore suggest that more work is needed to formal-
ize multiscale inferential techniques and reasoning associated with process scale 
when developing and applying quantitative geographic workflows. For example, 
initial efforts have been made to explore the uncertainty of process scale meas-
urement (Stuber et al. 2017; Wolf et al. 2018; Li et al. 2020), to understand the 
MAUP in terms of the properties of spatial processes rather than the properties 
of spatial data (Fotheringham and Sachdeva 2022), and no method yet provides 
location-specific inferences on process scale (Oshan et  al. 2020; Fotheringham 
2020). The development of frameworks for incorporating multiscale representa-
tions into GeoAI and deep learning algorithms (e.g., Guo and Feng 2018; Zhao 
et al. 2018; Janowicz et al. 2019) is another burgeoning area of research that is 
important for the development of the field. These advances will allow us to better 
understand the spatial processes that generate the patterns we experience and to 
more accurately and efficiently characterize spatial relationships.

There are also a number of steps that can help accelerate the development of 
a more unified theory of spatial scale and the scientific inquiries that depend on 
such a theoretical framework. One step would be to adopt a standardized report-
ing guideline for geographic research, such as the STROBE initiative for report-
ing observational studies in epidemiology (Elm et al. 2007; Vandenbroucke et al. 
2014), which aims to promote the adequate dissemination of research through 
collaboratively compiled checklists. A similar mechanism could be developed by 
geographical scientists in conjunction with domain specialists to suggest a mini-
mal set of criteria for adequately differentiating the many types and uses of spa-
tial scale. This could help further alleviate existing ambiguities about scale and 
stem future ones, as well as make similar types of research more discoverable. 
It could also have positive ramifications for reproducibility and replicability in 
the geographical sciences, given the acknowledgement that findings may not be 
generalizable at different scales and spatial contexts (Kedron et al. 2021; Good-
child and Li 2021). Another step forward could entail a series of more systematic 
reviews that complement this scoping review in order to further explore individ-
ual categories identified here or how particular spatial multiscale analytical meth-
ods are used across disciplines. Finally, this review could be expanded to increase 
the number of manuscripts in the corpus by including additional journals, such as 
those targeting specific disciplines. These steps would likely stimulate more work 
that directs attention toward addressing the feasibility and effectiveness of tech-
niques for quantitatively measuring aspects of spatial scale and its role in under-
standing our world.

Appendix

See Tables 2, 3 and 4.
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Table 2   Additional descriptions of the five selected journals

Journal Summary of scope

AAAG​ “…major research articles for all fields of geography…must adhere to a high standard of scholarship 
and make an important contribution to geographic knowledge. It should also be grounded in the 
relevant literature of the specialization it represents and, where appropriate, establish relationships 
to themes within the broader discipline.”

TPG “…short articles in academic or applied geography, emphasizing empirical studies and methodolo-
gies…may range in content and approach from rigorously analytic to broadly philosophical or 
prescriptive…provides a forum for new ideas and alternative viewpoints.”

APGEO “…research which utilizes geographic approaches (human, physical, nature-society and GIScience) 
to resolve human problems that have a spatial dimension…any theme involving the application 
of geographical theory and methodology in the resolution of human problems. This may include 
papers on the techniques, problems and results of environmental and/or social research, as well 
as those concerned with the principles, policies and consequences of resource management and 
allocation.”

GEAN “…advances in geographical theory, model building, and quantitative methods to geographers and 
scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical 
articulations of geographical theory, and statements and discussions of the analytic paradigm…”

IJGIS “…ideas, approaches, methods and experiences in the rapidly growing field of geographical infor-
mation science…fundamental and computational issues of geographic information, as well as 
issues related to the design, implementation and use of geographical information for monitoring, 
prediction and decision making…innovations in GIScience and novel applications of GIScience 
in natural resources, social systems and the built environment, as well as relevant developments 
in computer science, cartography, surveying, geography and engineering in both developed and 
developing countries…directed at those with skills in designing and using GIS, database manage-
ment, computer graphics and analysis of spatial data, as well as those in planning and decision-
making using GIS”

Table 3   Tally of topics detected in each journal and across all journals

AAAG​ TPG APGEO GEAN IJGIS Total

Data Structures & Analytics 17 10 2 26 52 107
Land Use & Urbanization 4 4 23 2 11 45
Landscape & Terrain 6 3 12 3 16 39
Demography 6 6 3 7 2 24
Vegetation 6 3 2 0 6 17
Economic Development 0 1 9 2 3 15
Heath 2 2 6 0 2 15
Human–Environment 1 0 9 0 3 13
Water & Coasts 1 1 5 1 2 10
Animals 2 1 3 0 4 10
Climate & Atmosphere 2 0 5 0 3 10
Disaster & Risk Management 0 1 6 0 2 9
Geomorphology 1 0 1 3 1 6
Soil 1 1 2 1 0 5
Transportation 0 0 1 0 4 5
Ecosystems 1 1 2 0 1 6
Politics 2 0 0 2 0 4
Crime 0 0 1 1 0 2
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