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Abstract: Excessive low back joint loading during material handling tasks is considered a critical risk
factor of musculoskeletal disorders (MSD). Therefore, it is necessary to understand the low-back joint
loading during manual material handling to prevent low-back injuries. Recently, computer vision-based
pose reconstruction methods have shown the potential in human kinematics and kinetics analysis. This
study performed L5/S1 joint moment estimation by combining VideoPose3D, an open-source pose
reconstruction library, and a biomechanical model. Twelve participants lifting a 10 kg plastic crate from
the floor to a knuckle-height shelf were captured by a camera and a laboratory-based motion tracking
system. The L5/S1 joint moments obtained from the camera video were compared with those obtained from
the motion tracking system. The comparison results indicate that estimated total peak L5/S1 moments
during lifting tasks were positively correlated to the reference L5/S1 joint moment, and the percentage error

is 7.7%.

INTRODUCTION

Manual materials handling (MMH) is considered as one
of the risk factors of low-back pain (Da Costa & Vieira, 2010;
Hoogendoorn et al., 2000; Kuiper et al., 1999; Schaffer, H., &
United States, 1982). From the ergonomics perspective, it is
critical to ensure the low-back joint loadings during working
are within the failure tolerance to avoid low-back injuries
(McGill, 1997). To date, numerous studies have investigated
the L5/S1 joint moment to identify the risks associated with a
variety of lifting tasks. These studies have focused on the peak
value of the L5/S1 joint moment (Jiang et al., 2005), as well as
the cumulative L5/S1 joint moment (Callaghan et al., 2001)

In order to calculate low-back joint moment, workers’
body motion needs to be captured first so that human kinetics
methods can be further applied. One method to capture
workers’ body motion is to use an optical marker-based motion
tracking system. Such a system is able to obtain three-
dimensional coordinates of markers that are attached to
workers’ body in a laboratory environment. The dynamic
moments at L5/S1 joint are then calculated using worker’s body
motion together with body segment inertial properties (Pfister
et al., 2014). However, this method is less practical for field
studies due to the bulky size, high cost and expertise that are
associated with a laboratory-based motion tracking system.

To overcome this limitation, a few studies sought to
develop video-based coding systems that use human raters to
observe workers’ posture from the videos recorded in field
studies. The raters estimate body pose in selected key frames
extracted from the recorded videos by fitting the poses to a
predefined digital manikin (Xu et al., 2012). The workers’ body
motion is then reconstructed by interpolating the rater-
identified poses in the keyframes. While this method does not
rely on a laboratory-based motion tracking system for capturing
workers’ body motion, it is highly labor-intensive as the raters
would need to observe a large number of video frames. In

addition, the accuracy of the reconstructed body motion heavily
relies on the experience of the raters as well as the view angle
of the videos.

With the recent development of the advanced deep
neural network, various computer vision algorithms have been
presented to estimate 3D human poses through videos (Mehrizi
et al., 2019). For example, previous studies attempted to
reconstruct 3D pose from multiple two-dimensional (2D)
calibrated images derived from Openpose (Simon et al., 2017;
Cao et al.,2021). D’ Antonio etc. (D’Antonio et al., 2020)used
two synchronized videos during walking to compute lower limb
joint kinematics by applying a triangulation algorithm on the
2D joint center coordinates assessed in Openpose. While these
methods can yield 3D poses from synchronized videos captured
from multiple view angles, the reconstruction accuracy
inevitably depends on the number of the cameras. In addition,
camera calibration among multiple cameras is time-consuming
and requires expertise in computer vision, which could be a
technical burden for ergonomics practitioners.

Very recently, Pavllo et al. (Pavllo et al,
2019)developed a single-camera-based 3D pose reconstruction
algorithm named VideoPose3D. This algorithm can estimate
3D poses using a fully convolutional model generated by
dilated temporal convolutions over 2D joint points. A semi-
supervised approach was introduced in their work and could
process unlabeled video without any 2D ground truth
annotations. Because this algorithm only relies on the video
captured from a single camera, it has a good potential for
ergonomists to investigate workers’ body posture and the
associated joint loadings in the field.

In this study, we developed a computer vision-based
method for analyzing low-back joint moments during lifting
tasks. Particularly, Detectron2 (Pavllo et al., 2019)is adopted
for 2D key-point detection, and VideoPose3D (Pavllo et al.,
2019) is applied to process the unlabeled video data and
reconstruct workers’ 3D pose. A top-down inverse dynamic
biomechanical model was then adopted to calculate the
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Figure 1. Workflow of the single camera-based computer vision method for estimating L5/S1 joint moment.

moments at L5/S1 joint. To test the validity of this proposed
method, we conducted an experiment where participants
perform a variety of lifting tasks and their motions were
concurrently captured by a camera and a laboratory-based
motion tracking system. The L5/S1 joint moments derived from
the proposed method were then compared with those derived
from a laboratory-based motion tracking system.

METHODS
Experiment design

Twelve male participants (age 47.50 + 11.30 years;
height 1.74 + 0.07 m; weight 84.50 + 12.70 kg) lifted a plastic
crate of 10 kilograms from floor to a knuckle-height shelf. Each
lifting task was performed twice. The lifting trials were
captured at 30 frame per second by a camcorder (GR-850U,
JVC) with a resolution of 720 x 480 pixels. The camera was
placed on the rear-right side (135 degrees from the sagittal
plane). Participants’ body motions were also recorded by a
motion tracking system (Motion Analysis, Santa Rosa, CA)
through 45 reflective markers attached to the bony landmarks
of the participants at 100 Hz.

Computer vision-based method

The workflow of the proposed video-based L5/S1 joint
moment estimation method includes three steps: 2D key-point
detection and 3D reconstruction and moment calculation, which
is summarized in Figure 1. The input is the videos of each
participant, and the output is the L5/S1 joint moment.

2D key-point detection and 3D reconstruction. The
recorded videos are first processed in Detectron?2 to estimate 2D
key points in each frame. Since the script assumes exactly one
person is depicted, it will select the person corresponding to the
bounding box with the highest confidence. In the case of

multiple people visible at once in the video, the background is
blurred in advance. The 2D key points from each video are
converted to a dataset in the form of “NumPy archives” for
inputting into VideoPose3D. VideoPose3D is a fully
convolutional architecture that uses 2D key-point sequences as
input and processes them through temporal convolutions (see
Figure 2). In the input layer, the estimated 2D (x,y)
coordinates of the J joints in each frame are applied in a
temporal convolution with C output channels and W kernel
size. B ResNet-style blocks surrounded by a skip-connection
(He et al., 2016) first perform a 1D convolution with kernel size
W and dilation factor D = W5, followed by convolution with
kernel size = 1. In this study, J = 17 joints, C = 1024 output
channels, W = 3, B = 4 blocks. Each convolution process is
followed by batch normalization (loffe & Szegedy, 2015),
rectified linear units (Nair & Hinton, 2010), and a dropout layer
(Srivastava et al., 2014) except the last layer. The receptive field
of each block increases exponentially by a factor of W, while
the quantity of parameters increases linearly. Thus, the
receptive field for any output frame will include information
extracted from all input frames (see Figure 2). Finally, the last
layer predicts the 3D poses for video frames using 2D key-point
data generated in Detectron2. Since we do not include any
ground truth pose data or the camera extrinsic parameters for
the recorded videos, this method does not train a traditional
supervised loss where the ground truth 3D poses data is set as a
target. The semi-supervised training method introduced in
Pavllo et al. (Pavllo et al., 2019)is applied in this study. A
projection layer is added after 3D pose estimation, and the 3D
predicted poses are regressed and projected back to 2D
coordinates. The projected results are then compared with the
input to check for consistency. A penalty is applied if the 2D
coordinates from the projection process are far from the 2D data
input. As the global position of key joints can be arbitrary for



Figure 2. The temporal convolutional model used in the proposed method. The inputs are the 2D key-point sequences (bottom), the
middle is the intermediate convolution process, and the outputs are the 3D poses (top). The implementation for a single-frame

prediction is highlighted.

human kinetics analysis, the coordinates of the reconstructed
key joints are translated in a way that the coordinates of mid-
hip joint are considered as the origin.

Moment calculation. To estimate L5/S1 moment during a lifting
task, we developed a biomechanical model in MATLAB
programs (R2020b, The MathWorks, Boston, MA) following a
top-down inverse dynamic algorithm. This model selects 9 of
17 key-point joints output from VideoPose3D and 13 of 45
markers in motion tracking system, respectively, to estimate
positions of 10 key joint centers, including left/right hip,
left/right shoulder, left/right elbow, left/right wrist, C7, and
L5/S1 joint. Based on the approaches presented by De
Leva(Leva, 1996), body segments including upper arms,
forearms, hands, trunk above L5/S1 joint are defined in this
model.

Body segment inertial properties, including mass (m)
and moment of inertia (/), are estimated from previous
anthropometry studies (Zatsiorsky, 2002) as well as
participants’ weight and stature. The center of mass location
(CoM;) of each body segment i is determined as a proportional
location of the segment length, which can be determined from
the distal and proximal joint center location.

L5/S1 joint moments (M;ss,) is then calculated by an
inverse dynamics model presented in (Leva, 1996). The
equation applied in this model is described as:
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where F, is the external force applied on the hands; m; g, a; and
I;a; are gravity, acceleration and angular momentum of body
segment i that are above L5/S1 joint; 7., 1; and 1356, are the
position vectors of the external force, center of segment mass
and L5/S1 joint, k is the number of segments included in this
model (upper arms, forearms, hands, and trunk). Note the
external force applied on the hands is estimated based on the
hand acceleration and the mass of the crater.

Low-back joint moment validation

The performance of our proposed single-camera
computer vision-based method is validated against the motion
tracking system-based method. The 3D motion coordinates
from both methods were first filtered by a fourth-order
Butterworth low-pass filter at 8 Hz. A comprehensive top-down
biomechanical model (Leva, 1996) was then applied to estimate
the L5/S1 joint moment. The peak moment estimated from both
the computer vision-based method and the motion tracking
system are extracted. Linear regression is then performed
between them. The root mean squared error (RMSE), the
absolute percent error, and correlation coefficient (r) are also
calculated to describe the performance of the computer vision-
based system. A histogram of the estimation error across all
trails is constructed for peak total L5/S1 moment.

RESULTS

An example of a lifting trial is presented in Figure 3,
showing the total moment variation at L5/S1 joint over a lifting
task calculated based on the proposed computer vision-based
method against the motion tracking system-based method. The
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Figure 3. An example of the estimated total L5/S1 moment
(computer vision-based method) vs. reference total L5/S1
moment (motion tracking system-based method).

estimated L5/S1 joint moment and the reference are in good
correspondence. The computer vision-based method yields a
good estimate on the peak total L5/S1 moment (Figure 4). The
correlation coefficient r is 0.832. Although the root mean
square error (RMSE) is 13.64 N-m, the absolute percentage
error is only 7.7% since the magnitude of the total L5/S1
moment is relatively large.

To indicate overestimation and underestimation, the
estimation error is also computed from the reference moment.
The histogram of the estimation error across all trails for peak
total L5/S1 moments reveals that the error distribution is
symmetric and approximately zero centered (Figure 5).

DISCUSSION

In this study, we presented a single-camera computer
vision-based method to estimate 3D L5/S1 joint moment. The
input of this method is the videos capture by a single camcorder.
This method was then validated against the reference L5/S1
moment derived from a laboratory-based motion tracking
system. The correlation coefficient and the linear regression
outcomes indicate that the estimated total peak moments are
positively correlated to the reference L5/S1 joint moment
measured by a motion tracking system.

There are a few limitations that need to be addressed for
this proposed method. First, due to the resolution of the videos,
small body motion may not be precisely captured. Thus, the
sensitivity of this method is lower than a motion tracking
system. Second, the performance of the joint detection can be
affected when the view of a body segment is blocked by other
objects. Once a view block occurs, disturbances in the body
trajectories will lead to errors in kinematic calculation,
especially for body segment acceleration estimation This error
then reduce the accuracy of the estimated joint moment. Third,
because VideoPose3D can only output the 3D location of
certain joints, we have to extrapolate the location of few key
joints for the inverse dynamic calculation. For example, the
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Figure 4. The comparison between the reference total L5/S1
peak moment and the estimated total L5/S1 peak moment.
r is the correlation coefficient. RMSE is the root-mean-
square error. Reg refers to the linear regression between the
reference and estimated moments. The solid line is the
linear regression line that generated from the data points and
the dashed diagonal line is the identity line.
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Figure 5. Histograms of the estimation error of the peak
total L5/S1 moments.

position of C7 is not identified through the video. Thus, we
estimated the positions of C7 based on the positions of shoulder
joints and hip joints in our model (Chaffin & Anderson, 1991).
The error introduced in position extrapolation could also



contribute to the L5/S1 moment estimation error. Finally, we
assumed an equal weight distribution on both hands in our top-
down inverse dynamics model. This assumption may be
violated if the weight in a crate is not well balanced.

CONCLUSION

The results of this study show a good potential of using
a single RGB camera to perform low-back joint loading
estimation for manual material handling tasks. While the
accuracy of the L5/S1 moment estimation can be further
improved, this single-camera real-time method could facilitate
ergonomics practitioners to quickly catch the jobs in the field
with high risks of low-back injuries.
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