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Abstract: Excessive low back joint loading during material handling tasks is considered a critical risk 
factor of musculoskeletal disorders (MSD). Therefore, it is necessary to understand the low-back joint 
loading during manual material handling to prevent low-back injuries. Recently, computer vision-based 
pose reconstruction methods have shown the potential in human kinematics and kinetics analysis. This 
study performed L5/S1 joint moment estimation by combining VideoPose3D, an open-source pose 
reconstruction library, and a biomechanical model. Twelve participants lifting a 10 kg plastic crate from 
the floor to a knuckle-height shelf were captured by a camera and a laboratory-based motion tracking 
system. The L5/S1 joint moments obtained from the camera video were compared with those obtained from 
the motion tracking system. The comparison results indicate that estimated total peak L5/S1 moments 
during lifting tasks were positively correlated to the reference L5/S1 joint moment, and the percentage error 
is 7.7%. 
 

 
INTRODUCTION 

 
Manual materials handling (MMH) is considered as one 

of the risk factors of low-back pain (Da Costa & Vieira, 2010; 
Hoogendoorn et al., 2000; Kuiper et al., 1999; Schaffer, H., & 
United States, 1982). From the ergonomics perspective, it is 
critical to ensure the low-back joint loadings during working 
are within the failure tolerance to avoid low-back injuries 
(McGill, 1997). To date, numerous studies have investigated 
the L5/S1 joint moment to identify the risks associated with a 
variety of lifting tasks. These studies have focused on the peak 
value of the L5/S1 joint moment (Jiang et al., 2005), as well as 
the cumulative L5/S1 joint moment (Callaghan et al., 2001) 

In order to calculate low-back joint moment, workers’ 
body motion needs to be captured first so that human kinetics 
methods can be further applied. One method to capture 
workers’ body motion is to use an optical marker-based motion 
tracking system. Such a system is able to obtain three-
dimensional coordinates of markers that are attached to 
workers’ body in a laboratory environment. The dynamic 
moments at L5/S1 joint are then calculated using worker’s body 
motion together with body segment inertial properties (Pfister 
et al., 2014). However, this method is less practical for field 
studies due to the bulky size, high cost and expertise that are 
associated with a laboratory-based motion tracking system. 

To overcome this limitation, a few studies sought to 
develop video-based coding systems that use human raters to 
observe workers’ posture from the videos recorded in field 
studies. The raters estimate body pose in selected key frames 
extracted from the recorded videos by fitting the poses to a 
predefined digital manikin (Xu et al., 2012). The workers’ body 
motion is then reconstructed by interpolating the rater-
identified poses in the keyframes. While this method does not 
rely on a laboratory-based motion tracking system for capturing 
workers’ body motion, it is highly labor-intensive as the raters 
would need to observe a large number of video frames. In 

addition, the accuracy of the reconstructed body motion heavily 
relies on the experience of the raters as well as the view angle 
of the videos.  

With the recent development of the advanced deep 
neural network, various computer vision algorithms have been 
presented to estimate 3D human poses through videos (Mehrizi 
et al., 2019). For example, previous studies attempted to 
reconstruct 3D pose from multiple two-dimensional (2D) 
calibrated images derived from Openpose (Simon et al., 2017; 
Cao et al.,2021). D’Antonio etc. (D’Antonio et al., 2020)used 
two synchronized videos during walking to compute lower limb 
joint kinematics by applying a triangulation algorithm on the 
2D joint center coordinates assessed in Openpose. While these 
methods can yield 3D poses from synchronized videos captured 
from multiple view angles, the reconstruction accuracy 
inevitably depends on the number of the cameras. In addition, 
camera calibration among multiple cameras is time-consuming 
and requires expertise in computer vision, which could be a 
technical burden for ergonomics practitioners.  

Very recently, Pavllo et al. (Pavllo et al., 
2019)developed a single-camera-based 3D pose reconstruction 
algorithm named VideoPose3D. This algorithm can estimate 
3D poses using a fully convolutional model generated by 
dilated temporal convolutions over 2D joint points. A semi-
supervised approach was introduced in their work and could 
process unlabeled video without any 2D ground truth 
annotations. Because this algorithm only relies on the video 
captured from a single camera, it has a good potential for 
ergonomists to investigate workers’ body posture and the 
associated joint loadings in the field. 

In this study, we developed a computer vision-based 
method for analyzing low-back joint moments during lifting 
tasks. Particularly, Detectron2 (Pavllo et al., 2019)is adopted 
for 2D key-point detection, and VideoPose3D (Pavllo et al., 
2019) is applied to process the unlabeled video data and 
reconstruct workers’ 3D pose. A top-down inverse dynamic 
biomechanical model was then adopted to calculate the 



 

 

moments at L5/S1 joint.  To test the validity of this proposed 
method, we conducted an experiment where participants 
perform a variety of lifting tasks and their motions were 
concurrently captured by a camera and a laboratory-based 
motion tracking system. The L5/S1 joint moments derived from 
the proposed method were then compared with those derived 
from a laboratory-based motion tracking system. 
 

METHODS 
 
Experiment design 

 
Twelve male participants (age 47.50 ± 11.30 years; 

height 1.74 ± 0.07 m; weight 84.50 ± 12.70 kg) lifted a plastic 
crate of 10 kilograms from floor to a knuckle-height shelf. Each 
lifting task was performed twice. The lifting trials were 
captured at 30 frame per second by a camcorder (GR-850U, 
JVC) with a resolution of 720 × 480 pixels. The camera was 
placed on the rear-right side (135 degrees from the sagittal 
plane). Participants’ body motions were also recorded by a 
motion tracking system (Motion Analysis, Santa Rosa, CA) 
through 45 reflective markers attached to the bony landmarks 
of the participants at 100 Hz.  

 
Computer vision-based method 
 

The workflow of the proposed video-based L5/S1 joint 
moment estimation method includes three steps: 2D key-point 
detection and 3D reconstruction and moment calculation, which 
is summarized in Figure 1. The input is the videos of each 
participant, and the output is the L5/S1 joint moment. 

2D key-point detection and 3D reconstruction. The 
recorded videos are first processed in Detectron2 to estimate 2D 
key points in each frame. Since the script assumes exactly one 
person is depicted, it will select the person corresponding to the 
bounding box with the highest confidence. In the case of 

multiple people visible at once in the video, the background is 
blurred in advance. The 2D key points from each video are 
converted to a dataset in the form of “NumPy archives” for 
inputting into VideoPose3D. VideoPose3D is a fully 
convolutional architecture that uses 2D key-point sequences as 
input and processes them through temporal convolutions (see 
Figure 2). In the input layer, the estimated 2D (𝑥, 𝑦) 
coordinates of the 𝐽  joints in each frame are applied in a 
temporal convolution with 𝐶  output channels and 𝑊  kernel 
size. 𝐵 ResNet-style blocks surrounded by a skip-connection 
(He et al., 2016) first perform a 1D convolution with kernel size 
𝑊 and dilation factor 𝐷 =  𝑊𝐵, followed by convolution with 
kernel size = 1. In this study, J = 17 joints, C = 1024 output 
channels, W = 3, B = 4 blocks. Each convolution process is 
followed by batch normalization (Ioffe & Szegedy, 2015), 
rectified linear units (Nair & Hinton, 2010), and a dropout layer 
(Srivastava et al., 2014) except the last layer. The receptive field 
of each block increases exponentially by a factor of 𝑊, while 
the quantity of parameters increases linearly. Thus, the 
receptive field for any output frame will include information 
extracted from all input frames (see Figure 2). Finally, the last 
layer predicts the 3D poses for video frames using 2D key-point 
data generated in Detectron2. Since we do not include any 
ground truth pose data or the camera extrinsic parameters for 
the recorded videos, this method does not train a traditional 
supervised loss where the ground truth 3D poses data is set as a 
target. The semi-supervised training method introduced in 
Pavllo et al. (Pavllo et al., 2019)is applied in this study. A 
projection layer is added after 3D pose estimation, and the 3D 
predicted poses are regressed and projected back to 2D 
coordinates. The projected results are then compared with the 
input to check for consistency. A penalty is applied if the 2D 
coordinates from the projection process are far from the 2D data 
input. As the global position of key joints can be arbitrary for 

Figure 1. Workflow of the single camera-based computer vision method for estimating L5/S1 joint moment. 



 

 

human kinetics analysis, the coordinates of the reconstructed 
key joints are translated in a way that the coordinates of mid-
hip joint are considered as the origin. 
Moment calculation. To estimate L5/S1 moment during a lifting 
task, we developed a biomechanical model in MATLAB  
programs (R2020b, The MathWorks, Boston, MA) following a 
top-down inverse dynamic algorithm. This model selects 9 of 
17 key-point joints output from VideoPose3D and 13 of 45 
markers in motion tracking system, respectively, to estimate 
positions of 10 key joint centers, including left/right hip, 
left/right shoulder, left/right elbow, left/right wrist, C7, and 
L5/S1 joint. Based on the approaches presented by De 
Leva(Leva, 1996), body segments including upper arms, 
forearms, hands, trunk above L5/S1 joint are defined in this 
model.  

Body segment inertial properties, including mass (𝑚) 
and moment of inertia ( 𝐼 ), are estimated from previous 
anthropometry studies (Zatsiorsky, 2002) as well as 
participants’ weight and stature. The center of mass location 
(𝐶𝑜𝑀𝑖) of each body segment 𝑖 is determined as a proportional 
location of the segment length, which can be determined from 
the distal and proximal joint center location. 

L5/S1 joint moments (𝑀𝐿5𝑆1) is then calculated by an 
inverse dynamics model presented in (Leva, 1996). The 
equation applied in this model is described as: 

 

𝑀𝐿5𝑆1 =  −(𝑟𝑟 − 𝑟𝐿5𝑆1) × 𝐹𝑟 − ∑[(𝑟𝑖 − 𝑟𝐿5𝑆1) × 𝑚𝑖𝑔]

𝑘

𝑖=1

 

                        + ∑[(𝑟𝑖 − 𝑟𝐿5𝑆1) × 𝑚𝑖𝑎𝑖]

𝑘

𝑖=1

+ ∑(𝐼𝑖α𝑖)          (1)

𝑘

𝑖=1

 

where 𝐹𝑟 is the external force applied on the hands; 𝑚𝑖𝑔, 𝑎𝑖 and 
𝐼𝑖𝛼𝑖 are gravity, acceleration and angular momentum of body 
segment 𝑖  that are above L5/S1 joint; 𝑟𝑟 , 𝑟𝑖  and 𝑟𝐿5𝑆1  are the 
position vectors of the external force, center of segment mass 
and L5/S1 joint, 𝑘 is the number of segments included in this 
model (upper arms, forearms, hands, and trunk). Note the 
external force applied on the hands is estimated based on the 
hand acceleration and the mass of the crater.  
 
Low-back joint moment validation 
 

The performance of our proposed single-camera 
computer vision-based method is validated against the motion 
tracking system-based method. The 3D motion coordinates 
from both methods were first filtered by a fourth-order 
Butterworth low-pass filter at 8 Hz. A comprehensive top-down 
biomechanical model (Leva, 1996) was then applied to estimate 
the L5/S1 joint moment. The peak moment estimated from both 
the computer vision-based method and the motion tracking 
system are extracted. Linear regression is then performed 
between them. The root mean squared error (RMSE), the 
absolute percent error, and correlation coefficient (𝑟) are also 
calculated to describe the performance of the computer vision-
based system. A histogram of the estimation error across all 
trails is constructed for peak total L5/S1 moment.  
 

RESULTS 
 

An example of a lifting trial is presented in Figure 3, 
showing the total moment variation at L5/S1 joint over a lifting 
task calculated based on the proposed computer vision-based 
method against the motion tracking system-based method. The 

Figure 2. The temporal convolutional model used in the proposed method. The inputs are the 2D key-point sequences (bottom), the 
middle is the intermediate convolution process, and the outputs are the 3D poses (top). The implementation for a single-frame 
prediction is highlighted.  



 

 

estimated L5/S1 joint moment and the reference are in good 
correspondence. The computer vision-based method yields a 
good estimate on the peak total L5/S1 moment (Figure 4). The 
correlation coefficient 𝑟  is 0.832. Although the root mean 
square error (RMSE) is 13.64 N·m, the absolute percentage 
error is only 7.7% since the magnitude of the total L5/S1 
moment is relatively large.  

To indicate overestimation and underestimation, the 
estimation error is also computed from the reference moment. 
The histogram of the estimation error across all trails for peak 
total L5/S1 moments reveals that the error distribution is 
symmetric and approximately zero centered (Figure 5). 

 
DISCUSSION 

 
In this study, we presented a single-camera computer 

vision-based method to estimate 3D L5/S1 joint moment. The 
input of this method is the videos capture by a single camcorder. 
This method was then validated against the reference L5/S1 
moment derived from a laboratory-based motion tracking 
system. The correlation coefficient and the linear regression 
outcomes indicate that the estimated total peak moments are 
positively correlated to the reference L5/S1 joint moment 
measured by a motion tracking system.   

There are a few limitations that need to be addressed for 
this proposed method. First, due to the resolution of the videos, 
small body motion may not be precisely captured. Thus, the 
sensitivity of this method is lower than a motion tracking 
system. Second, the performance of the joint detection can be 
affected when the view of a body segment is blocked by other 
objects. Once a view block occurs, disturbances in the body 
trajectories will lead to errors in kinematic calculation, 
especially for body segment acceleration estimation This error 
then reduce the accuracy of the estimated joint moment. Third, 
because VideoPose3D can only output the 3D location of 
certain joints, we have to extrapolate the location of few key 
joints for the inverse dynamic calculation. For example, the 

position of C7 is not identified through the video. Thus, we 
estimated the positions of C7 based on the positions of shoulder 
joints and hip joints in our model (Chaffin & Anderson, 1991). 
The error introduced in position extrapolation could also 

Figure 5. Histograms of the estimation error of the peak 
total L5/S1 moments. 

Figure 3. An example of the estimated total L5/S1 moment 
(computer vision-based method) vs. reference total L5/S1 
moment (motion tracking system-based method). 

Figure 4. The comparison between the reference total L5/S1 
peak moment and the estimated total L5/S1 peak moment. 
r is the correlation coefficient. RMSE is the root-mean-
square error. Reg refers to the linear regression between the 
reference and estimated moments. The solid line is the 
linear regression line that generated from the data points and 
the dashed diagonal line is the identity line. 



 

 

contribute to the L5/S1 moment estimation error. Finally, we 
assumed an equal weight distribution on both hands in our top-
down inverse dynamics model. This assumption may be 
violated if the weight in a crate is not well balanced.  

 
CONCLUSION 

 
The results of this study show a good potential of using 

a single RGB camera to perform low-back joint loading 
estimation for manual material handling tasks. While the 
accuracy of the L5/S1 moment estimation can be further 
improved, this single-camera real-time method could facilitate 
ergonomics practitioners to quickly catch the jobs in the field 
with high risks of low-back injuries.  
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