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Weight lifting is a risk factor of work-related low-back musculoskeletal disorders (MSD). From the ergonomics
perspective, it is important to measure workers’ body motion during a lifting task and estimate low-back joint
moments to ensure the low-back biomechanical loadings are within the failure tolerance. With the recent
development of advanced deep neural networks, an increasing number of computer vision algorithms have been
presented to estimate 3D human poses through videos. In this study, we first performed a 3D pose estimation of
lifting tasks using a single RGB camera and VideoPose3D, an open-source library with a fully convolutional
model. Joint angle trajectories and L5/S1 joint moment were then calculated following a top-down inverse
dynamic biomechanical model. To evaluate the accuracy of the computer-vision-based angular trajectories and
L5/81 joint moments, we conducted an experiment in which participants performed a variety of lifting tasks. The
body motions of the participants were concurrently captured by an RGB camera and a laboratory-grade motion
tracking system. The body joint angles and L5/S1 joint moments obtained from the camera were compared with
those obtained from the motion tracking system. The results showed a strong correlation (r > 0.9, RMSE < 10°)
between the two methods for shoulder flexion, trunk flexion, trunk rotation, and elbow flexion. The computer-
vision-based method also yielded a good estimate for the total L5/S1 moment and the L5/S1 moment in the
sagittal plane (r > 0.9, RMSE < 20 N-m). This study showed computer vision could facilitate safety practitioners
to quickly identify the jobs with high MSD risks through field survey videos.

1. Introduction

Manual materials handling (MMH) is considered one of the work-
related risk factors of low-back musculoskeletal disorder (da Costa &
Vieira, 2010; U.S. Department of Labor, 2016; Yang et al., 2016). From
the ergonomics perspective, it is critical to measure joint kinematics and
evaluate L5/S1 joint moment during a lifting task, and ensure the low-
back joint loadings are within the failure tolerance to avoid low-back
injuries (Skals et al., 2021; Coenen et al., 2014)”. One valid method to
capture workers’ body motion is to use an optical marker-based motion
tracking system. Such a system is capable of obtaining three-
dimensional coordinates of markers that are attached to the workers’
bodies in a laboratory environment. The dynamic moments at L5/S1
joint are then calculated using workers’ body motion together with body
segment inertial properties (Kingma et al., 1996). To date, numerous
studies have used an optical motion tracking system to investigate the
L5/81 joint moment for identifying the risks associated with a variety of
lifting tasks (Desjardins et al., 1998, Kingma et al., 1998, Lariviere &
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Gagnon, 1998). However, applying an optical motion tracking system is
less practical for field studies due to its bulky size, high cost, and
required expertise.

To overcome these limitations, a few studies sought to develop
video-based coding systems that use human raters to observe workers’
postures from the videos recorded in field studies. Raters estimate body
pose in selected keyframes extracted from the recorded videos by fitting
the poses to a predefined digital manikin. The workers’ motion trajec-
tories are then reconstructed by interpolating the rater-identified poses
in the keyframes. In previous studies, L5/S1 joint moments were further
estimated by combining the reconstructed motion and a biomechanics
model (Coenen et al., 2011, Xu et al., 2012). While this method does not
rely on a laboratory-based motion tracking system for capturing
workers’ body motion, it remains labor-intensive as raters would need to
observe a large number of video frames. In addition, the accuracy of the
reconstructed body motion heavily relies on the experience of raters as
well as the view angle of the videos.

Researchers have also sought to apply depth sensors, such as
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Microsoft Kinect and Intel RealSense, to track and assess body motion. In
one study, a depth sensor was used to capture shoulder kinematics
during computer use for office ergonomics assessment (Xu et al., 2017).
In another study, lumbosacral (L5/S1) load during static load-handling
activities was estimated by a Kinect-driven model (Asadi and Arjmand,
2020). Depth sensors are low-cost, portable, and can provide a reason-
able accuracy on human pose reconstruction. On the other hand, their
coverage area is quite limited (Shum et al., 2013, Han et al., 2013), and
the accuracy can be substantially affected by the illumination conditions
of the environment (Azzari et al., 2013).

With the recent development of advanced deep neural networks, an
increasing number of computer vision algorithms have been presented
to estimate 3D human pose. For example, Openpose, an open-source
system to detect the human body from single images, implemented 3D
poses reconstructions using multiple 2D calibrated images (Cao et al.,
2021). By using Openpose, a recent study used two synchronized videos
during walking to compute lower limb joint kinematics by applying a
triangulation algorithm on the 2D joint center coordinates derived from
videos (D’ Antonio et al., 2020). While Openpose can yield 3D poses from
synchronized videos, camera calibration among multiple cameras is
time-consuming and requires expertise in computer vision, which could
be a technical burden for ergonomics practitioners. Another recent study
trained three artificial neural networks using the data obtained by a
motion tracking system to predict 3D postures, segmental orientations,
and lumbosacral moments during load-handling activities (Aghazadeh
et al., 2020). While the proposed method in this study achieved prom-
ising results, its efficiency for field use remains unclear since the hand
locations need to be manually input for pose estimation and moment
prediction.

In recent years, a single-camera-based 3D pose reconstruction algo-
rithm named VideoPose3D was developed (Pavllo et al., 2019). A semi-
supervised approach was introduced to process unlabeled video without
any 2D ground truth annotations. This approach is able to estimate 3D
poses by using a fully convolutional model generated by dilated tem-
poral convolutions over 2D joint points. Because this algorithm only
relies on the video captured from a single camera, it has a good potential
for ergonomists to investigate workers’ body postures and the associated
joint loadings in the field through the recorded video.

In this study, we developed a computer-vision-based method for
estimating joint kinematics and analyzing low-back joint moments
during lifting tasks. Particularly, Detectron2 (Wu et al., 2019) was
adopted for 2D key-point detection, and VideoPose3D (Pavllo et al.,
2019) was applied to process the unlabeled video data and reconstruct
workers’ 3D poses. A top-down inverse dynamic biomechanical model
was then applied to the estimated 3D pose for estimating the joint angles
and the moment at L5/S1 joint. To examine the validity of this proposed
method, we conducted an experiment where participants perform a
variety of lifting tasks, and their motion were concurrently captured by a
camera and a laboratory-based motion tracking system. The joint
angular trajectories and peak L5/S1 joint moment derived from the
proposed method were compared against those derived from the motion
tracking system.

2. Methods
2.1. Experiment design

After a discussion with a few safety practitioners, we conducted the
following experiment to mimic commonly observed lifting tasks in in-
dustry. Twelve male participants (age 47.50 + 11.30 years; height 1.74
+ 0.07 m; weight 84.50 + 12.70 kg) were asked to lift a 10 kg crate (39
x 31 x 22 cm) and place it on a shelf. The crate was filled with sponge in
which 10 1-kg metal bars were evenly distributed to ensure the crate
gravity center is at the geometric center. The participants were asked to
stand in front of the crate and finish the lifting tasks without moving the
feet. The initial distance between a participant and the crate as well as
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the lifting speed were chosen by the participants. According to the
NIOSH lifting equation (Waters et al., 1993), a number of factors, such as
lifting heights and asymmetric lifting angles, commonly exist in indus-
trial lifting applications (e.g. warehouses, packing houses). The experi-
ment consists of three vertical lifting ranges: floor to knuckle height,
floor to shoulder height, and knuckle to shoulder height. Additionally,
each lifting range was combined with three asymmetric angles (0°, 30°
to the right, and 60° to the right), which is the angle of the end position
relative to the starting position of the crate. Each lift condition was
repeated twice in a full-factorial randomized design. Considering the
balance among storage volume, reconstruction accuracy and processing
efficiency, all lifting trials were captured by a camcorder (GR-850U,
JVC) with a resolution of 720 x 480 pixels. The camera was placed on
the rear-right side (135 degrees from the sagittal plane). Participants’
body motion was also concurrently recorded by a motion tracking sys-
tem (Motion Analysis, Santa Rosa, CA) through 45 reflective markers
(Cappozzo et al., 1995) attached to the bony landmarks of the partici-
pants at 100 Hz.

2.2. Computer vision method

The workflow of the proposed video-based L5/S1 joint moment
estimation method includes three major steps: 2D key-point detection,
3D reconstruction, and joint angle and moment calculation (Fig. 1). The
input is the videos of each participant, and the output is the joint angle
and the L5/S1 joint moment.

2.2.1. 2D key-point detection and 3D reconstruction

The recorded videos are first processed in Detectron2 (Wu et al.,
2019) to estimate 2D key-points in each frame. In the input layer, the
estimated 2D (x,y) coordinates of the J joints in each frame are applied
in a temporal convolution with C output channels and W kernel size. B
ResNet-style blocks surrounded by a skip-connection (He et al., 2016)
first perform a 1D convolution with kernel size W and dilation factor D =
W2 | followed by a convolution with kernel size = 1. In this study, J =
17,C=1024, W = 3 and B = 4. The model parameters follow the choice
of the original VideoPose3D architecture based on three primary con-
siderations (Pavllo et al., 2019). First, the model must avoid overfitting
with the selected parameters. Second, the test error must saturate
quickly, eliminating the need to model long-term dependencies. Third,
17 key points including shoulder, elbow, and wrist are used to articu-
lately represent the human pose under different conditions. Each
convolution process is followed by batch normalization (loffe & Szeg-
edy, 2015), rectified linear units (Nair & Hinton, 2010), and a dropout
layer except the last layer (Srivastava et al., 2014). The receptive field of
each block increases exponentially by a factor of W, while the quantity
of parameters increases linearly. Thus, the receptive field for any output
frame will include information extracted from all input frames.

A semi-supervised training method introduced in VideoPose3D
(Pavllo et al., 2019) is then applied to the last layer for predicting the 3D
poses in video frames. Since we do not include any ground truth pose
data or the camera extrinsic parameters for the recorded videos, this
method does not train a traditional supervised loss where the ground
truth 3D poses data is set as the target. A projection layer is added after
3D pose estimation, and the 3D predicted poses are regressed and pro-
jected back to 2D coordinates. A penalty is applied if the 2D coordinates
from the projection process are far from the 2D data input. As the global
position of key joints can be arbitrary for human kinetics analysis, the
coordinates of the reconstructed key joints are transformed in a way that
the coordinates of the mid-hip joint are considered as the origin.

2.2.2. Angle and moment calculation

It should be noted that most of the output “joints” in VideoPose3D,
such as “Shoulder” and “Hip”, do not have a practical anatomical
meaning. Thus, we used 9 of 17 output “key joints” from VideoPose3D to
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Fig. 1. Workflow of the single camera-based computer vision method.

estimate the positions of 10 anatomical joint centers or bony landmarks
that were later used for biomechanical analysis (middle column in
Table 1). For those joints that are not identified in VideoPose3D, such as
C7 and L5/S1 joint, the anthropometric parameters were used to esti-
mate their positions (Chaffin & Anderson, 1991). For validation pur-
poses, these joint centers and bony landmarks were also estimated by the
marker set of the motion tracking system (right column in Table 1). The
locations of hip joint center, shoulder joint center, and L5/S1 are based
on Seidel et al. (1995), de Leva (1996), and Reynolds (1982), corre-
spondingly. The coordinates from both systems were first filtered by a

Table 1

The joint centers and bony landmarks derived by VideoPose3D and a motion

tracking system.

Joint centers of bony

VideoPose3D-based

Motion tracking system-

landmarks for counterparts based counterparts
biomechanical analysis
Left hip joint center Left hip Left hip joint center
Left shoulder joint center Left shoulder Left shoulder joint center
Left elbow joint center Left elbow (Left lateral humeral
epicondyle + left medial
humeral epicondyle)/2
Left wrist joint center Left wrist (Left radial styloid + left
ulnar styloid)/2
Right hip joint center Right hip Right hip joint center
Right shoulder joint Right shoulder Right shoulder joint center
center
Right elbow joint center Right elbow (Right lateral humeral
epicondyle + right medial
humeral epicondyle)/2
Right wrist joint center Right wrist (Right radial styloid + right
ulnar styloid)/2
Mid hip (Left hip + right hip)/2 ~ (Left hip + right hip)/2
Mid shoulder (Left shoulder + right (Left shoulder + right
shoulder)/2 shoulder)/2
Cc7 Mid shoulder + (mid Cc7
shoulder - mid hip) x
0.2248
L5/81 Mid hip + (mid L5/81

shoulder — mid hip) x
0.1934

fourth-order Butterworth low-pass filter at 8 Hz. Body segments
including upper arms, forearms, hands, head, trunk above L5/S1 joint,
were then defined according to a top-down inverse dynamic biome-
chanics model (Kingma 1996).

Body segment inertial properties, including mass (m) and moment of
inertia (I), were estimated based on a previous anthropometry study
(Zatsiorsky, 2002) as well as participants’ weight and stature. The center
of mass location (CoM;) of each body segment, i , was determined as a
proportional location of the segment length, which can be determined
from the distal and proximal joint center location. Angles of the right
elbow flexion, angles of the right shoulder flexion, abduction and rota-
tion, together with the angles of trunk flexion, lateral bending and
rotation (described in Table 2 and Fig. 2) across a lifting task were
calculated based on the instantaneous orientations of the anatomical
axes of the body segments following the ISB recommendation (Wu et al.,
2005, Wu et al., 2002). The L5/S1 joint moments (Mss1) were calcu-
lated by an inverse dynamics model (Eq. (1)) (de Leva, 1996).

Table 2
List of the angles to be estimated by VideoPose3D and motion tracking system.

Angle Angle Definition

Shoulder flexion The angle between the projection of upper arm and the
projection of trunk on global Z-X plane

The angle between the projection of upper arm and the
projection of trunk on global Y-Z plane

The angle between the projection of upper arm and the
projection of trunk on global X-Y plane

The angle between the projection of forearm and the extension
line of upper arm on global Z-X plane

The angle between the projection of trunk on global Z-X plane
and the global Y-Z plane

The angle between the projection of trunk on global Y-Z plane
and the global Z-X plane

The angle between the projection of trunk on global X-Y plane
and the global Y-Z plane

Shoulder
abduction
Shoulder rotation

Elbow flexion
Trunk flexion
Trunk lateral

bending
Trunk rotation
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where F; is the external force applied on the hands; m;g , a; and L;a; are
gravity, acceleration and angular momentum of body segment i that are
above the L5/S1 joint; r, , r; and ryss; are the position vectors of the
external force, center of segment mass and the L5/S1 joint, k is the

number of segments included in this model (upper arms, forearms,
hands, head and trunk). Note that VideoPose3D is not capable to provide
the 3D locations of an object beyond 17 human body key points. Thus,
we assume that the weight of the crate is equally distributed on both
hands during lifting tasks. The load applied on hands is then estimated
based on the hand acceleration and the mass of the crate. This
assumption was also applied to calculate L5/S1 moment by the motion
tracking system.
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Fig. 3. The angle of major joints above the L5/S1 for a representative lifting trial (a 60° asymmetric lift with floor-to-shoulder height). The dash lines represent the
computer-vision-based method and the solid lines represents the motion tracking system-based method.
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2.3. Joint angle and L5/S1 moment validation

The performance of our proposed computer-vision-based lifting task
assessment method is validated against the motion tracking system-
based method. Linear regressions between the two methods were per-
formed on the extracted joint angles and the peak L5/S1 joint moment
for all lifting trials. The root-mean-square error (RMSE), the average
absolute error (AAE) with absolute percent error, and correlation coef-
ficient (r) were also calculated to describe the performance of the pro-
posed method. The estimation errors were calculated by subtracting the
reference values from the estimated values. Histograms of the estimation
error across all trials were constructed to indicate the degree of under-
estimation and overestimation.

3. Results
As a representative trial illustrated in Fig. 3 and Fig. 4, all partici-

pants finished their lifting tasks in less than eight seconds. Good con-
sistency was observed between the estimated values and the references

L5/S1 moment of Coronal Plane

70

Moment (N-m)

Moment (N-m)
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for joint angle trajectories and the L5/S1 joint moment. Across all lifting
trials, strong correlations (r > 0.9) between the estimated value and the
references were found on shoulder flexion, trunk flexion, trunk rotation,
and elbow flexion. For shoulder abduction, shoulder rotation and trunk
lateral bending, the corresponding correlation coefficients were lower
(0.590, 0.627 and 0.504, respectively). The average absolute error was
within 10° for all estimated angles except for shoulder abduction
(16.16°), shoulder rotation (15.95°) and elbow flexion (10.37°) (Fig. 5).
Based on the histograms of the estimation errors for joint angle trajec-
tories across all the lifting conditions (Fig. 6), the computer-vision-based
method overestimated the joint angles for shoulder abduction, shoulder
rotation and trunk rotation. The error distributions of shoulder flexion,
trunk flexion, lateral bending and elbow flexion were approximately
symmetric and zero-centered.

For the L5/S1 peak moment, the computer-vision-based method
yielded a good estimate of the moment in the sagittal plane and the total
moment. The corresponding correlation coefficients were above 0.9,
RMSE were below 20 N-m and the absolute percent errors were less than
12% (Fig. 7(a)). The correlation coefficients of the L5/S1 moment in the

L5/S1 moment of Sagittal Plane
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Fig. 4. (a) The estimated L5/S1 moment vs. reference L5/S1 moment in the coronal plane. (b) The estimated L5/S1 moment vs. reference L5/S1 moment in the
sagittal plane. (c) The estimated L5/S1 moment vs. reference L5/S1 moment in the transverse plane (d) Total estimated L5/S1 moment (vector summation of 3D
moments) vs. total reference moment. All figures are from the same representative lifting trial (a 60° asymmetric lift with floor-to-shoulder height).
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Fig. 5. The comparison between the estimated joint angles and the reference joint angles. r is the correlation coefficient. RMSE is the root-mean-square error. E
indicates the average absolute error (AAE). Reg refers to the linear regression between the estimated and reference joint angles. The solid line is the linear regression
line that generated from the data points and the dashed diagonal line is the identity line.

coronal plane and the transverse plane were smaller (0.785 and 0.199).
Although the average absolute errors of the coronal plane and the
transverse plane seemed to be lower than that of the sagittal plane, the
absolute percentage errors in those two planes were much larger due to
the small magnitude of the moments in these two planes. The histograms
(Fig. 7(b)) showed that the proposed computer-vision-based method
overestimated the peak moment in the coronal plane and under-
estimated the peak moment in the transverse plane.

4. Discussion

In this study, a computer-vision-based method was proposed to es-
timate joint angular trajectories and 3D L5/S1 joint moment during
lifting tasks. The input of this method is the videos captured by a single
camera. This method was validated against the references derived from
a laboratory-based motion tracking system. Compared with the results
from several previous computer-vision-based works (Aghazadeh et al.,
2020, Mehrizi et al., 2018, Mehrizi et al., 2019), our method showed
comparable efficiency and accuracy in the prediction of the joint kine-
matic and the moment at L5/S1 joint. The correlation coefficient and the
linear regression outcomes indicated that the proposed method could
provide a reasonable estimate on joint kinematics of shoulder flexion,
trunk flexion, trunk rotation, and elbow flexion. The total L5/S1 peak
moment and the peak moment in the sagittal plane were strongly
correlated with the references obtained by the motion tracking system.
The histograms of estimation errors showed that the frequencies of
overestimation and underestimation were approximately identical for
the peak moment in the sagittal plane.

On the other hand, the estimated angular trajectories of shoulder
abduction, shoulder rotation and trunk lateral bending were not well
correlated with the references. Due to the resolutions of the input videos,
the computer-vision-based method has a limited sensitivity compared to
a motion tracking system. In other words, our proposed method is less
sensitive to small joint angle variations. Since the majority of the body
movements occurs in the sagittal plane, the small joint motions in the

transverse and coronal planes, such as shoulder rotation, were captured
with less accuracy. Although our proposed method was less accurate
than a previous study (Mehrizi et al., 2018) in terms of joint angle
prediction, the current results could be less overfitted. This is because
the deep neural network adopted in this study was trained by a
completely independent multimodal dataset (Human3.6 M) (Ionescu
et al., 2011, 2014), rather than a dataset created under the same labo-
ratory conditions.

The correlations of the estimated peak moments in the coronal and
transverse planes were not as good as the ones in the sagittal plane.
Similarly, this could be explained by the limited sensitivity of the
computer-vision-based method. The small movements of lateral bending
and rotation were difficult to be precisely estimated. In turn, the accu-
racies of the moments in the coronal and the transverse planes were
affected by these errors in 3D pose reconstructions. Yet, the moments of
the coronal and the transverse planes were not dominant in the total L5/
S1 moment. Therefore, the correlation coefficient and the absolute
percentage errors of the total L5/S1 moment were close to those of the
L5/S1 moment in the sagittal plane.

To further evaluate whether different asymmetric lifting angles (0°,
30° to the right, and 60° to the right) could affect the estimation error of
the total moment at L5/S1 joint, a post-hoc Tukey test was further
performed. Fig. 8 shows that the trials an asymmetric angle of 60 “had
the smallest estimation error, since trials with 60° asymmetric angle
contained more body segment movements in the coronal plane and
transverse plane. As the camera is set at 135°, asymmetric lifting tasks
allow camera to observe more body movement without view obstacle,
and thus provide a more robust estimate on peak total moment.

It has also been found that for most trials, shoulder abduction and
shoulder rotation had a significant angle difference at the start and end
of the lifting when a participant was in a standing posture. Such
discrepancy is attributable to the different definitions between the mo-
tion tracking system-based joint center locations and the VideoPose3D
identified “joint centers”. For example, in the motion tracking system-
based method, the shoulder joint center was identified based on de
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Fig. 6. Histograms of the estimation error of the joint angles. “Frequency” indicates the number of trials whose error is within a specific error range.

Leva (1996), which was described by the positions of acromion and
elbow. The hip joint was identified by Seidel et al. (1995), which was
calculated based on the right and left PSIS and L5/S1 joint. In the
computer-vision-based method, the “joint centers” for a frame are pre-
dicted as the pixels with the highest confidence yielded by a temporal

convolutional model, which has no practical anatomical meaning.

It should be noted that joint detection can be affected when the
camera view of a body segment is blocked by other objects or other body
segments for a short moment. Disturbance in the estimated body joint
location will lead to substantial errors in body joint acceleration, which
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Fig. 7. (a) The comparison between the estimated peak 3D L5/S1 moment and the reference peak 3D L5/S1 moment for all lifting trials. r is the correlation co-
efficient. RMSE is the root-mean-square error. E indicates the average absolute error (AAE). Reg refers to the linear regression between the estimated and reference
moments. The solid line is the linear regression line that generated from the data points and the dashed diagonal line is the identity line. (b) Histograms of the

estimation error of the peak 3D L5/S1 moment.
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Comparison of Peak Total L5/S1 Moment over Different Asymmetric Angles
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Fig. 8. Post-hoc comparison of the estimation errors of peak L5/S1 joint moment over different asymmetric lifting angles.

in turn results in errors in kinetics analysis and moment estimations. The
underestimation of the peak moment in the transverse plane and the
overestimation of the peak moment in the coronal plane can be partially
attributed to view occlusion during the lifting tasks. In the current study,
the camera was placed at the rear-right side (135 degrees from the
sagittal plane). In a few lifting conditions, when the participants placed
the crate on the shelf, their left forearms were blocked by the trunk and/
or the right arms. Consequently, the left wrist was reconstructed at a
location closer to the trunk compared to the reality, which resulted in an
overestimated moment in the coronal plane. In addition, the incorrect
reconstructed position of the left wrist also resulted in a smaller angular
acceleration, which led to underestimated moments in the transverse
plane.

There are a few limitations that need to be addressed. First, the
generalizability of the proposed method should be further investigated
by introducing multiple camera view angles and placement locations.
Our results indicates that the peak L5/S1 moment error can be affected
by the interaction between lifting conditions and the camera placement.
Therefore, there might exist optimal camera view angle and placement
for an individual lifting task. Second, our proposed method was vali-
dated for lifting tasks without moving the feet. In a previous study,
significant errors were found on the peak L5/S1 joint moments if ficti-
tious force was ignored when the body-centered reference frame was
moving (Xu et al., 2013). Whether a computer-vision-based method can
estimate joint moment for other common occupational tasks, such as
pushing and pulling, where foot movements exist should be further
investigated. Third, as the experiment was performed in a laboratory
environment, the lifting tasks were performed within confined ranges.
For example, all asymmetric lifting trials started from symmetric
standing positions and were towards the right side, only two asymmetric
angles were included in the experiment design, and the lateral bending
angle in each task was relatively small. In addition, only one lifting
weight was adopted in the current study. Such limited lifting conditions
may result in less complete body motion patterns and thus limit the
generalizability of the outcomes. Fourth, in our top-down inverse dy-
namics model, we assumed an equal weight distribution on both hands

across the lifting tasks. If the weight in a crate is not well balanced, this
assumption may lead to an underestimated lateral bending moment.
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