
Journal of Biomechanics 129 (2021) 110860

Available online 8 November 2021
0021-9290/© 2021 Elsevier Ltd. All rights reserved.

A computer-vision method to estimate joint angles and L5/S1 moments 
during lifting tasks through a single camera 

Hanwen Wang , Ziyang Xie , Lu Lu , Li Li , Xu Xu * 

Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA   

A R T I C L E  I N F O   

Keywords: 
Musculoskeletal disorders 
Low-back injuries 
Markerless motion tracking 
Joint kinematics 
L5/S1 joint moment 

A B S T R A C T   

Weight lifting is a risk factor of work-related low-back musculoskeletal disorders (MSD). From the ergonomics 
perspective, it is important to measure workers’ body motion during a lifting task and estimate low-back joint 
moments to ensure the low-back biomechanical loadings are within the failure tolerance. With the recent 
development of advanced deep neural networks, an increasing number of computer vision algorithms have been 
presented to estimate 3D human poses through videos. In this study, we first performed a 3D pose estimation of 
lifting tasks using a single RGB camera and VideoPose3D, an open-source library with a fully convolutional 
model. Joint angle trajectories and L5/S1 joint moment were then calculated following a top-down inverse 
dynamic biomechanical model. To evaluate the accuracy of the computer-vision-based angular trajectories and 
L5/S1 joint moments, we conducted an experiment in which participants performed a variety of lifting tasks. The 
body motions of the participants were concurrently captured by an RGB camera and a laboratory-grade motion 
tracking system. The body joint angles and L5/S1 joint moments obtained from the camera were compared with 
those obtained from the motion tracking system. The results showed a strong correlation (r > 0.9, RMSE < 10◦) 
between the two methods for shoulder flexion, trunk flexion, trunk rotation, and elbow flexion. The computer- 
vision-based method also yielded a good estimate for the total L5/S1 moment and the L5/S1 moment in the 
sagittal plane (r > 0.9, RMSE < 20 N⋅m). This study showed computer vision could facilitate safety practitioners 
to quickly identify the jobs with high MSD risks through field survey videos.   

1. Introduction 

Manual materials handling (MMH) is considered one of the work- 
related risk factors of low-back musculoskeletal disorder (da Costa & 
Vieira, 2010; U.S. Department of Labor, 2016; Yang et al., 2016). From 
the ergonomics perspective, it is critical to measure joint kinematics and 
evaluate L5/S1 joint moment during a lifting task, and ensure the low- 
back joint loadings are within the failure tolerance to avoid low-back 
injuries (Skals et al., 2021; Coenen et al., 2014)”. One valid method to 
capture workers’ body motion is to use an optical marker-based motion 
tracking system. Such a system is capable of obtaining three- 
dimensional coordinates of markers that are attached to the workers’ 
bodies in a laboratory environment. The dynamic moments at L5/S1 
joint are then calculated using workers’ body motion together with body 
segment inertial properties (Kingma et al., 1996). To date, numerous 
studies have used an optical motion tracking system to investigate the 
L5/S1 joint moment for identifying the risks associated with a variety of 
lifting tasks (Desjardins et al., 1998, Kingma et al., 1998, Larivière & 

Gagnon, 1998). However, applying an optical motion tracking system is 
less practical for field studies due to its bulky size, high cost, and 
required expertise. 

To overcome these limitations, a few studies sought to develop 
video-based coding systems that use human raters to observe workers’ 
postures from the videos recorded in field studies. Raters estimate body 
pose in selected keyframes extracted from the recorded videos by fitting 
the poses to a predefined digital manikin. The workers’ motion trajec
tories are then reconstructed by interpolating the rater-identified poses 
in the keyframes. In previous studies, L5/S1 joint moments were further 
estimated by combining the reconstructed motion and a biomechanics 
model (Coenen et al., 2011, Xu et al., 2012). While this method does not 
rely on a laboratory-based motion tracking system for capturing 
workers’ body motion, it remains labor-intensive as raters would need to 
observe a large number of video frames. In addition, the accuracy of the 
reconstructed body motion heavily relies on the experience of raters as 
well as the view angle of the videos. 

Researchers have also sought to apply depth sensors, such as 
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Microsoft Kinect and Intel RealSense, to track and assess body motion. In 
one study, a depth sensor was used to capture shoulder kinematics 
during computer use for office ergonomics assessment (Xu et al., 2017). 
In another study, lumbosacral (L5/S1) load during static load-handling 
activities was estimated by a Kinect-driven model (Asadi and Arjmand, 
2020). Depth sensors are low-cost, portable, and can provide a reason
able accuracy on human pose reconstruction. On the other hand, their 
coverage area is quite limited (Shum et al., 2013, Han et al., 2013), and 
the accuracy can be substantially affected by the illumination conditions 
of the environment (Azzari et al., 2013). 

With the recent development of advanced deep neural networks, an 
increasing number of computer vision algorithms have been presented 
to estimate 3D human pose. For example, Openpose, an open-source 
system to detect the human body from single images, implemented 3D 
poses reconstructions using multiple 2D calibrated images (Cao et al., 
2021). By using Openpose, a recent study used two synchronized videos 
during walking to compute lower limb joint kinematics by applying a 
triangulation algorithm on the 2D joint center coordinates derived from 
videos (D’Antonio et al., 2020). While Openpose can yield 3D poses from 
synchronized videos, camera calibration among multiple cameras is 
time-consuming and requires expertise in computer vision, which could 
be a technical burden for ergonomics practitioners. Another recent study 
trained three artificial neural networks using the data obtained by a 
motion tracking system to predict 3D postures, segmental orientations, 
and lumbosacral moments during load-handling activities (Aghazadeh 
et al., 2020). While the proposed method in this study achieved prom
ising results, its efficiency for field use remains unclear since the hand 
locations need to be manually input for pose estimation and moment 
prediction. 

In recent years, a single-camera-based 3D pose reconstruction algo
rithm named VideoPose3D was developed (Pavllo et al., 2019). A semi- 
supervised approach was introduced to process unlabeled video without 
any 2D ground truth annotations. This approach is able to estimate 3D 
poses by using a fully convolutional model generated by dilated tem
poral convolutions over 2D joint points. Because this algorithm only 
relies on the video captured from a single camera, it has a good potential 
for ergonomists to investigate workers’ body postures and the associated 
joint loadings in the field through the recorded video. 

In this study, we developed a computer-vision-based method for 
estimating joint kinematics and analyzing low-back joint moments 
during lifting tasks. Particularly, Detectron2 (Wu et al., 2019) was 
adopted for 2D key-point detection, and VideoPose3D (Pavllo et al., 
2019) was applied to process the unlabeled video data and reconstruct 
workers’ 3D poses. A top-down inverse dynamic biomechanical model 
was then applied to the estimated 3D pose for estimating the joint angles 
and the moment at L5/S1 joint. To examine the validity of this proposed 
method, we conducted an experiment where participants perform a 
variety of lifting tasks, and their motion were concurrently captured by a 
camera and a laboratory-based motion tracking system. The joint 
angular trajectories and peak L5/S1 joint moment derived from the 
proposed method were compared against those derived from the motion 
tracking system. 

2. Methods 

2.1. Experiment design 

After a discussion with a few safety practitioners, we conducted the 
following experiment to mimic commonly observed lifting tasks in in
dustry. Twelve male participants (age 47.50 ± 11.30 years; height 1.74 
± 0.07 m; weight 84.50 ± 12.70 kg) were asked to lift a 10 kg crate (39 
× 31 × 22 cm) and place it on a shelf. The crate was filled with sponge in 
which 10 1-kg metal bars were evenly distributed to ensure the crate 
gravity center is at the geometric center. The participants were asked to 
stand in front of the crate and finish the lifting tasks without moving the 
feet. The initial distance between a participant and the crate as well as 

the lifting speed were chosen by the participants. According to the 
NIOSH lifting equation (Waters et al., 1993), a number of factors, such as 
lifting heights and asymmetric lifting angles, commonly exist in indus
trial lifting applications (e.g. warehouses, packing houses). The experi
ment consists of three vertical lifting ranges: floor to knuckle height, 
floor to shoulder height, and knuckle to shoulder height. Additionally, 
each lifting range was combined with three asymmetric angles (0◦, 30◦

to the right, and 60◦ to the right), which is the angle of the end position 
relative to the starting position of the crate. Each lift condition was 
repeated twice in a full-factorial randomized design. Considering the 
balance among storage volume, reconstruction accuracy and processing 
efficiency, all lifting trials were captured by a camcorder (GR-850U, 
JVC) with a resolution of 720 × 480 pixels. The camera was placed on 
the rear-right side (135 degrees from the sagittal plane). Participants’ 
body motion was also concurrently recorded by a motion tracking sys
tem (Motion Analysis, Santa Rosa, CA) through 45 reflective markers 
(Cappozzo et al., 1995) attached to the bony landmarks of the partici
pants at 100 Hz. 

2.2. Computer vision method 

The workflow of the proposed video-based L5/S1 joint moment 
estimation method includes three major steps: 2D key-point detection, 
3D reconstruction, and joint angle and moment calculation (Fig. 1). The 
input is the videos of each participant, and the output is the joint angle 
and the L5/S1 joint moment. 

2.2.1. 2D key-point detection and 3D reconstruction 
The recorded videos are first processed in Detectron2 (Wu et al., 

2019) to estimate 2D key-points in each frame. In the input layer, the 
estimated 2D (x, y) coordinates of the J joints in each frame are applied 
in a temporal convolution with C output channels and W kernel size. B 
ResNet-style blocks surrounded by a skip-connection (He et al., 2016) 
first perform a 1D convolution with kernel size W and dilation factor D =

WB , followed by a convolution with kernel size = 1. In this study, J =
17, C = 1024, W = 3 and B = 4. The model parameters follow the choice 
of the original VideoPose3D architecture based on three primary con
siderations (Pavllo et al., 2019). First, the model must avoid overfitting 
with the selected parameters. Second, the test error must saturate 
quickly, eliminating the need to model long-term dependencies. Third, 
17 key points including shoulder, elbow, and wrist are used to articu
lately represent the human pose under different conditions. Each 
convolution process is followed by batch normalization (Ioffe & Szeg
edy, 2015), rectified linear units (Nair & Hinton, 2010), and a dropout 
layer except the last layer (Srivastava et al., 2014). The receptive field of 
each block increases exponentially by a factor of W , while the quantity 
of parameters increases linearly. Thus, the receptive field for any output 
frame will include information extracted from all input frames. 

A semi-supervised training method introduced in VideoPose3D 
(Pavllo et al., 2019) is then applied to the last layer for predicting the 3D 
poses in video frames. Since we do not include any ground truth pose 
data or the camera extrinsic parameters for the recorded videos, this 
method does not train a traditional supervised loss where the ground 
truth 3D poses data is set as the target. A projection layer is added after 
3D pose estimation, and the 3D predicted poses are regressed and pro
jected back to 2D coordinates. A penalty is applied if the 2D coordinates 
from the projection process are far from the 2D data input. As the global 
position of key joints can be arbitrary for human kinetics analysis, the 
coordinates of the reconstructed key joints are transformed in a way that 
the coordinates of the mid-hip joint are considered as the origin. 

2.2.2. Angle and moment calculation 
It should be noted that most of the output “joints” in VideoPose3D, 

such as “Shoulder” and “Hip”, do not have a practical anatomical 
meaning. Thus, we used 9 of 17 output “key joints” from VideoPose3D to 
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estimate the positions of 10 anatomical joint centers or bony landmarks 
that were later used for biomechanical analysis (middle column in 
Table 1). For those joints that are not identified in VideoPose3D, such as 
C7 and L5/S1 joint, the anthropometric parameters were used to esti
mate their positions (Chaffin & Anderson, 1991). For validation pur
poses, these joint centers and bony landmarks were also estimated by the 
marker set of the motion tracking system (right column in Table 1). The 
locations of hip joint center, shoulder joint center, and L5/S1 are based 
on Seidel et al. (1995), de Leva (1996), and Reynolds (1982), corre
spondingly. The coordinates from both systems were first filtered by a 

fourth-order Butterworth low-pass filter at 8 Hz. Body segments 
including upper arms, forearms, hands, head, trunk above L5/S1 joint, 
were then defined according to a top-down inverse dynamic biome
chanics model (Kingma 1996). 

Body segment inertial properties, including mass (m) and moment of 
inertia (I), were estimated based on a previous anthropometry study 
(Zatsiorsky, 2002) as well as participants’ weight and stature. The center 
of mass location (CoMi) of each body segment, i , was determined as a 
proportional location of the segment length, which can be determined 
from the distal and proximal joint center location. Angles of the right 
elbow flexion, angles of the right shoulder flexion, abduction and rota
tion, together with the angles of trunk flexion, lateral bending and 
rotation (described in Table 2 and Fig. 2) across a lifting task were 
calculated based on the instantaneous orientations of the anatomical 
axes of the body segments following the ISB recommendation (Wu et al., 
2005, Wu et al., 2002). The L5/S1 joint moments (ML5S1) were calcu
lated by an inverse dynamics model (Eq. (1)) (de Leva, 1996). 

Fig. 1. Workflow of the single camera-based computer vision method.  

Table 1 
The joint centers and bony landmarks derived by VideoPose3D and a motion 
tracking system.  

Joint centers of bony 
landmarks for 
biomechanical analysis 

VideoPose3D-based 
counterparts 

Motion tracking system- 
based counterparts 

Left hip joint center Left hip Left hip joint center 
Left shoulder joint center Left shoulder Left shoulder joint center 
Left elbow joint center Left elbow (Left lateral humeral 

epicondyle + left medial 
humeral epicondyle)/2 

Left wrist joint center Left wrist (Left radial styloid + left 
ulnar styloid)/2 

Right hip joint center Right hip Right hip joint center 
Right shoulder joint 

center 
Right shoulder Right shoulder joint center 

Right elbow joint center Right elbow (Right lateral humeral 
epicondyle + right medial 
humeral epicondyle)/2 

Right wrist joint center Right wrist (Right radial styloid + right 
ulnar styloid)/2 

Mid hip (Left hip + right hip)/2 (Left hip + right hip)/2 
Mid shoulder (Left shoulder + right 

shoulder)/2 
(Left shoulder + right 
shoulder)/2 

C7 Mid shoulder + (mid 
shoulder - mid hip) ×
0.2248  

C7 

L5/S1 Mid hip + (mid 
shoulder – mid hip) ×
0.1934  

L5/S1  

Table 2 
List of the angles to be estimated by VideoPose3D and motion tracking system.  

Angle Angle Definition 

Shoulder flexion The angle between the projection of upper arm and the 
projection of trunk on global Z-X plane 

Shoulder 
abduction 

The angle between the projection of upper arm and the 
projection of trunk on global Y-Z plane 

Shoulder rotation The angle between the projection of upper arm and the 
projection of trunk on global X-Y plane 

Elbow flexion The angle between the projection of forearm and the extension 
line of upper arm on global Z-X plane 

Trunk flexion The angle between the projection of trunk on global Z-X plane 
and the global Y-Z plane 

Trunk lateral 
bending 

The angle between the projection of trunk on global Y-Z plane 
and the global Z-X plane 

Trunk rotation The angle between the projection of trunk on global X-Y plane 
and the global Y-Z plane  
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ML5S1 = − (rr − rL5S1) × Fr −
∑k

i=1
[(ri − rL5S1) × mig ] +

∑k

i=1
[(ri − rL5S1)

× miai ] +
∑k

i=1
(Iiαi) (1)  

where Fr is the external force applied on the hands; mig , ai and Iiαi are 
gravity, acceleration and angular momentum of body segment i that are 
above the L5/S1 joint; rr , ri and rL5S1 are the position vectors of the 
external force, center of segment mass and the L5/S1 joint, k is the 

number of segments included in this model (upper arms, forearms, 
hands, head and trunk). Note that VideoPose3D is not capable to provide 
the 3D locations of an object beyond 17 human body key points. Thus, 
we assume that the weight of the crate is equally distributed on both 
hands during lifting tasks. The load applied on hands is then estimated 
based on the hand acceleration and the mass of the crate. This 
assumption was also applied to calculate L5/S1 moment by the motion 
tracking system. 

Fig. 2. The angles to be estimated.  

Fig. 3. The angle of major joints above the L5/S1 for a representative lifting trial (a 60◦ asymmetric lift with floor-to-shoulder height). The dash lines represent the 
computer-vision-based method and the solid lines represents the motion tracking system-based method. 
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2.3. Joint angle and L5/S1 moment validation 

The performance of our proposed computer-vision-based lifting task 
assessment method is validated against the motion tracking system- 
based method. Linear regressions between the two methods were per
formed on the extracted joint angles and the peak L5/S1 joint moment 
for all lifting trials. The root-mean-square error (RMSE), the average 
absolute error (AAE) with absolute percent error, and correlation coef
ficient (r) were also calculated to describe the performance of the pro
posed method. The estimation errors were calculated by subtracting the 
reference values from the estimated values. Histograms of the estimation 
error across all trials were constructed to indicate the degree of under
estimation and overestimation. 

3. Results 

As a representative trial illustrated in Fig. 3 and Fig. 4, all partici
pants finished their lifting tasks in less than eight seconds. Good con
sistency was observed between the estimated values and the references 

for joint angle trajectories and the L5/S1 joint moment. Across all lifting 
trials, strong correlations (r > 0.9) between the estimated value and the 
references were found on shoulder flexion, trunk flexion, trunk rotation, 
and elbow flexion. For shoulder abduction, shoulder rotation and trunk 
lateral bending, the corresponding correlation coefficients were lower 
(0.590, 0.627 and 0.504, respectively). The average absolute error was 
within 10◦ for all estimated angles except for shoulder abduction 
(16.16◦), shoulder rotation (15.95◦) and elbow flexion (10.37◦) (Fig. 5). 
Based on the histograms of the estimation errors for joint angle trajec
tories across all the lifting conditions (Fig. 6), the computer-vision-based 
method overestimated the joint angles for shoulder abduction, shoulder 
rotation and trunk rotation. The error distributions of shoulder flexion, 
trunk flexion, lateral bending and elbow flexion were approximately 
symmetric and zero-centered. 

For the L5/S1 peak moment, the computer-vision-based method 
yielded a good estimate of the moment in the sagittal plane and the total 
moment. The corresponding correlation coefficients were above 0.9, 
RMSE were below 20 N⋅m and the absolute percent errors were less than 
12% (Fig. 7(a)). The correlation coefficients of the L5/S1 moment in the 

Fig. 4. (a) The estimated L5/S1 moment vs. reference L5/S1 moment in the coronal plane. (b) The estimated L5/S1 moment vs. reference L5/S1 moment in the 
sagittal plane. (c) The estimated L5/S1 moment vs. reference L5/S1 moment in the transverse plane (d) Total estimated L5/S1 moment (vector summation of 3D 
moments) vs. total reference moment. All figures are from the same representative lifting trial (a 60◦ asymmetric lift with floor-to-shoulder height). 
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coronal plane and the transverse plane were smaller (0.785 and 0.199). 
Although the average absolute errors of the coronal plane and the 
transverse plane seemed to be lower than that of the sagittal plane, the 
absolute percentage errors in those two planes were much larger due to 
the small magnitude of the moments in these two planes. The histograms 
(Fig. 7(b)) showed that the proposed computer-vision-based method 
overestimated the peak moment in the coronal plane and under
estimated the peak moment in the transverse plane. 

4. Discussion 

In this study, a computer-vision-based method was proposed to es
timate joint angular trajectories and 3D L5/S1 joint moment during 
lifting tasks. The input of this method is the videos captured by a single 
camera. This method was validated against the references derived from 
a laboratory-based motion tracking system. Compared with the results 
from several previous computer-vision-based works (Aghazadeh et al., 
2020, Mehrizi et al., 2018, Mehrizi et al., 2019), our method showed 
comparable efficiency and accuracy in the prediction of the joint kine
matic and the moment at L5/S1 joint. The correlation coefficient and the 
linear regression outcomes indicated that the proposed method could 
provide a reasonable estimate on joint kinematics of shoulder flexion, 
trunk flexion, trunk rotation, and elbow flexion. The total L5/S1 peak 
moment and the peak moment in the sagittal plane were strongly 
correlated with the references obtained by the motion tracking system. 
The histograms of estimation errors showed that the frequencies of 
overestimation and underestimation were approximately identical for 
the peak moment in the sagittal plane. 

On the other hand, the estimated angular trajectories of shoulder 
abduction, shoulder rotation and trunk lateral bending were not well 
correlated with the references. Due to the resolutions of the input videos, 
the computer-vision-based method has a limited sensitivity compared to 
a motion tracking system. In other words, our proposed method is less 
sensitive to small joint angle variations. Since the majority of the body 
movements occurs in the sagittal plane, the small joint motions in the 

transverse and coronal planes, such as shoulder rotation, were captured 
with less accuracy. Although our proposed method was less accurate 
than a previous study (Mehrizi et al., 2018) in terms of joint angle 
prediction, the current results could be less overfitted. This is because 
the deep neural network adopted in this study was trained by a 
completely independent multimodal dataset (Human3.6 M) (Ionescu 
et al., 2011, 2014), rather than a dataset created under the same labo
ratory conditions. 

The correlations of the estimated peak moments in the coronal and 
transverse planes were not as good as the ones in the sagittal plane. 
Similarly, this could be explained by the limited sensitivity of the 
computer-vision-based method. The small movements of lateral bending 
and rotation were difficult to be precisely estimated. In turn, the accu
racies of the moments in the coronal and the transverse planes were 
affected by these errors in 3D pose reconstructions. Yet, the moments of 
the coronal and the transverse planes were not dominant in the total L5/ 
S1 moment. Therefore, the correlation coefficient and the absolute 
percentage errors of the total L5/S1 moment were close to those of the 
L5/S1 moment in the sagittal plane. 

To further evaluate whether different asymmetric lifting angles (0◦, 
30◦ to the right, and 60◦ to the right) could affect the estimation error of 
the total moment at L5/S1 joint, a post-hoc Tukey test was further 
performed. Fig. 8 shows that the trials an asymmetric angle of 60 ◦had 
the smallest estimation error, since trials with 60◦ asymmetric angle 
contained more body segment movements in the coronal plane and 
transverse plane. As the camera is set at 135◦, asymmetric lifting tasks 
allow camera to observe more body movement without view obstacle, 
and thus provide a more robust estimate on peak total moment. 

It has also been found that for most trials, shoulder abduction and 
shoulder rotation had a significant angle difference at the start and end 
of the lifting when a participant was in a standing posture. Such 
discrepancy is attributable to the different definitions between the mo
tion tracking system-based joint center locations and the VideoPose3D 
identified “joint centers”. For example, in the motion tracking system- 
based method, the shoulder joint center was identified based on de 

Fig. 5. The comparison between the estimated joint angles and the reference joint angles. r is the correlation coefficient. RMSE is the root-mean-square error. E 
indicates the average absolute error (AAE). Reg refers to the linear regression between the estimated and reference joint angles. The solid line is the linear regression 
line that generated from the data points and the dashed diagonal line is the identity line. 
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Leva (1996), which was described by the positions of acromion and 
elbow. The hip joint was identified by Seidel et al. (1995), which was 
calculated based on the right and left PSIS and L5/S1 joint. In the 
computer-vision-based method, the “joint centers” for a frame are pre
dicted as the pixels with the highest confidence yielded by a temporal 

convolutional model, which has no practical anatomical meaning. 
It should be noted that joint detection can be affected when the 

camera view of a body segment is blocked by other objects or other body 
segments for a short moment. Disturbance in the estimated body joint 
location will lead to substantial errors in body joint acceleration, which 

Fig. 6. Histograms of the estimation error of the joint angles. “Frequency” indicates the number of trials whose error is within a specific error range.  
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Fig. 7. (a) The comparison between the estimated peak 3D L5/S1 moment and the reference peak 3D L5/S1 moment for all lifting trials. r is the correlation co
efficient. RMSE is the root-mean-square error. E indicates the average absolute error (AAE). Reg refers to the linear regression between the estimated and reference 
moments. The solid line is the linear regression line that generated from the data points and the dashed diagonal line is the identity line. (b) Histograms of the 
estimation error of the peak 3D L5/S1 moment. 
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in turn results in errors in kinetics analysis and moment estimations. The 
underestimation of the peak moment in the transverse plane and the 
overestimation of the peak moment in the coronal plane can be partially 
attributed to view occlusion during the lifting tasks. In the current study, 
the camera was placed at the rear-right side (135 degrees from the 
sagittal plane). In a few lifting conditions, when the participants placed 
the crate on the shelf, their left forearms were blocked by the trunk and/ 
or the right arms. Consequently, the left wrist was reconstructed at a 
location closer to the trunk compared to the reality, which resulted in an 
overestimated moment in the coronal plane. In addition, the incorrect 
reconstructed position of the left wrist also resulted in a smaller angular 
acceleration, which led to underestimated moments in the transverse 
plane. 

There are a few limitations that need to be addressed. First, the 
generalizability of the proposed method should be further investigated 
by introducing multiple camera view angles and placement locations. 
Our results indicates that the peak L5/S1 moment error can be affected 
by the interaction between lifting conditions and the camera placement. 
Therefore, there might exist optimal camera view angle and placement 
for an individual lifting task. Second, our proposed method was vali
dated for lifting tasks without moving the feet. In a previous study, 
significant errors were found on the peak L5/S1 joint moments if ficti
tious force was ignored when the body-centered reference frame was 
moving (Xu et al., 2013). Whether a computer-vision-based method can 
estimate joint moment for other common occupational tasks, such as 
pushing and pulling, where foot movements exist should be further 
investigated. Third, as the experiment was performed in a laboratory 
environment, the lifting tasks were performed within confined ranges. 
For example, all asymmetric lifting trials started from symmetric 
standing positions and were towards the right side, only two asymmetric 
angles were included in the experiment design, and the lateral bending 
angle in each task was relatively small. In addition, only one lifting 
weight was adopted in the current study. Such limited lifting conditions 
may result in less complete body motion patterns and thus limit the 
generalizability of the outcomes. Fourth, in our top-down inverse dy
namics model, we assumed an equal weight distribution on both hands 

across the lifting tasks. If the weight in a crate is not well balanced, this 
assumption may lead to an underestimated lateral bending moment. 
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