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Abstract
Avoided crossings of level pairs with opposite slopes can form potential-energy minima for the
external degree of freedom of quantum particles, giving rise to metastable states on the avoided
crossings (MSACs). Nonadiabatic decay of MSACs is studied by solving the two-component
Schrödinger equation in diabatic and adiabatic representations. Non-perturbative lifetime values
are found by evaluating wave function flux and scattering phases of time-independent solutions, as
well as wave-function decay of time-dependent solutions. The values from these methods generally
agree well, validating the utilized approaches. As the adiabaticity parameter, V, of the system is
increased by about a factor of ten across the mixed diabatic/adiabatic regime, the MSAC character
transitions from marginally to highly stable, with the lifetimes increasing by about ten orders of
magnitude. The dependence of MSAC lifetime on the vibrational quantum number, ν, is discussed
for several regimes of V. Time-dependent perturbation theory yields lifetimes that deviate by
�30% from non-perturbative results, over the range of V and ν studied, while a semi-classical
model based on Landau–Zener tunneling is up to a factor of twenty off. The results are relevant to
numerous atomic and molecular systems with metastable states on intersecting, coupled potential
energy curves.

1. Introduction

Potential wells emerging from two intersecting diabatic potentials with opposite slopes, coupled by an
(approximately) constant interaction, are abound in physics and chemistry [1, 2]. Examples include atom
traps in optical lattices with Raman couplings [3–6], confinement of Bose–Einstein condensates on
radio-frequency-dressed (RF-dressed) magnetic potentials with spin-dependent slopes [7–10], atom
trapping in general [11–13], atom interferometry in RF-dressed magnetic guiding potentials [14–17],
dressed atom-RF-field states in cavity quantum electrodynamics [18, 19], Rydberg atoms in external fields
[20–22], and intersecting potential energy curves (PECs) with radially dependent adiabatic electronic states
in Rydberg–Rydberg [23, 24], Rydberg-ground [23, 25] and Rydberg-ion [26–29] molecules. If the slopes of
the diabatic potentials have opposite signs, the upper adiabatic potential surface exhibits a potential well.
The classical motion in such adiabatic-potential wells is a bound, periodic oscillation about the avoided
crossing. The semi-classical Landau–Zener (LZ) tunneling equation [30, 31] has sometimes been applied to
estimate the nonadiabatic decay rates of analogous quantum states in adiabatic-potential wells. The LZ
estimates are exponentially dependent on several parameters, including a fixed, classical mass-point velocity
that must be estimated based on the vibrational quantum motion. LZ estimates of nonadiabatic decay rates
of quantum states with low vibrational quantum numbers can differ significantly from their true
quantum-mechanical values [13, 29].

In this paper, we present a non-perturbative quantum-mechanical analysis of nonadiabatic decay of
low-lying metastable states at avoided crossings (MSACs). Similar descriptions have previously been
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employed to model wave-packet dynamics on intersections [13, 32] and in Rydberg-ground molecules
[33, 34]. Here, we concentrate on the nonadiabatic lifetimes of quasi-stationary MSACs, which are
important in the aforementioned applications. After explaining our model and the utilized techniques in
section 2, in section 3 we obtain solutions of the time-dependent Schrödinger equation (TDSE) and
time-independent Schrödinger equations (TIDSEs) in both diabatic and adiabatic representations. We
extract nonadiabatic MSAC lifetimes from six non-perturbative methods, and compare and interpret the
results. The analysis is performed for a range of coupling strengths between the diabatic potentials, for
MSACs with vibrational quantum numbers ranging up to about 15. In section 4, we compare the
non-perturbative MSAC lifetime results with estimates based on time-dependent perturbation theory, and
with semi-classical estimates based on the LZ formula. The paper is concluded in section 5.

2. Methods

2.1. System under study
In the system of interest, the physical Hamiltonian in the diabatic representation,

Ĥp = − �
2

2M

⎛
⎜⎜⎜⎝

d2

dx2
p

0

0
d2

dx2
p

⎞
⎟⎟⎟⎠+

⎛
⎝−αp

2
xp Vp

Vp
αp

2
xp

⎞
⎠ , (1)

acts on a two-component wave function (ψ1(x),ψ2(x)) with a position-independent, internal state space
denoted as {|1〉, |2〉}, in that order. The constants αp and Vp are chosen positive and real. The effective
particle mass is denoted M, and the external degree of freedom has a spatial coordinate xp. The diabatic
energies of the internal states {|1〉, |2〉} as a function of xp are V1 = −αpxp/2 and V2 = αpxp/2, respectively,
with differential slope αp, and the constant coupling between these states is Vp.

For convenient description of different physical systems, we use the following units for length, energy,
time and frequency,

Length : l0 = 3

√
�2

Mαp

Energy : w0 =
�

2

Ml20

Time : t0 =
�

w0

Frequency : f0 =
w0

�
(2)

Expressing length and energy in these units, the Hamiltonian in equation (1) transforms into the scaled
Hamiltonian in diabatic representation,

ĤD = −1
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dx2
0
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⎞
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with scaled position x = xp/l0 and scaled coupling strength

V =
Vp

w0
. (4)

The characteristic half width of the crossing region in scaled units (s.u.) is xw = 2V; in physical length units
it is xwp = Vl0 = 2Vp/αp. The scaled coupling V serves as an adiabaticity parameter: the larger V, the more
adiabatic a system will behave, and the less affected the MSACs will be by nonadiabatic decay. In the
following, we will use the s.u. defined in equation (2).

The x-dependent adiabatic-state basis {|u〉, |d〉} for the internal degree of freedom, and the adiabatic
potentials Vu and Vd, are defined by ĤD|u〉 = Vu(x)|u〉 and ĤD|d〉 = Vd(x)|d〉, with u and d standing for
‘up’ and ‘down’ in energy, Vu positive, and Vd = −Vu. With the notation |u〉(x) =

∑
i=1,2 χu,i(x)|i〉 and
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Figure 1. PECs and nonadiabatic couplings in the Hamiltonian in equation (6) for the cases V = 0.306 (a) and V = 1.528
(b). In order to show the first-order coupling, Adu, on a physically relevant energy scale, we plot Adu divided by the position
uncertainty of the ground state in harmonic approximation, Δx0 = V1/4. Note the scaling factors for the nonadiabatic couplings
in (b). The wave-function densities of the lowest 9 (a) and 12 (b) MSACs are also shown. The baselines of the individual wave
function plots correspond with the respective resonance energies, Wν , on the vertical axis.

|d〉(x) =
∑

i=1,2 χd,i(x)|i〉, the first- and second-order nonadiabatic couplings are

Aα,β(x) = −
∑
i=1,2

χ∗
α,i(x)

d

dx
χβ,i(x)

Bα,β(x) = −1

2

∑
i=1,2

χ∗
α,i(x)

d2

dx2
χβ,i(x). (5)

There, the index i denotes diabatic and the Greek letters denote adiabatic basis states. The χα,i can be
chosen real. The 2 × 2 matrix Aα,β then is anti-symmetric at any value of x, with α and β being u or d. The
diagonal elements of Bα,β(x) are compounded with the adiabatic potentials to yield the PECs
Ṽα(x) = Vα(x) + Bα,α(x), with α = u or d. The adiabatic Hamiltonian, which is a special case of the
Born–Huang representation [35, 36] for the case studied in our paper, then writes

ĤA = −1

2

⎛
⎜⎝

d2

dx2
0

0
d2

dx2

⎞
⎟⎠+

(
Ṽu(x) 0

0 Ṽd(x)

)
+

⎛
⎜⎝ 0 Bud(x) + Aud(x)

d

dx

Bdu(x) − Aud(x)
d

dx
0

⎞
⎟⎠ . (6)

This Hamiltonian acts on the adiabatic wave functions, (ψu(x),ψd(x)). As visualized in figure 1, the
nonadiabatic A- and B- couplings vanish for x � V, with V from equations (3) and (4).

2.2. Time-independent solutions
2.2.1. Diabatic representation
A straightforward method to arrive at a non-perturbative solution is to solve the TIDSE for the
Hamiltonian from equation (3). Here, we are interested in the energy range W > V, where MSAC
resonances exist. The MSAC resonance energies and corresponding two-component wave functions are
obtained numerically. As a spatial integration method, we have chosen a 4th order Runge–Kutta method,
which allows for first-derivative terms (needed in the adiabatic representation discussed in section 2.2.2). In
the following, relevant details are explained.

It is well-known from textbooks that for a spin-less particle on a linear potential the wave-function
solutions are given by Airy functions (see, e.g. [37]). In the case of two coupled linear potentials, as in
equation (3), the matching of the boundary conditions in the classically forbidden regions turns out to be
numerically delicate due to the coupling V between the classically-allowed, Airy-function-like solutions to
the co-located classically forbidden ones. In the asymptotic regions, the allowed solutions are, locally,
approximately given by a(x)cos(kx + φ), with a slowly-varying local amplitude a(x), wave number
k(x) =

√
2(|x|/2 + W), the quantum state’s scaled energy W, and a phase φ. For large |x|, the

classically-forbidden solutions are then approximately given by − a(x)V
|x|/2+W cos(kx + φ). The amplitudes of

the forbidden solutions drop off quite slowly in |x|, because V is fixed and never ‘turns off’. In the
numerical implementation, this exacerbates the tendency of the classically-forbidden solutions to
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exponentially diverge at large |x|. The issue is addressed by choosing sufficiently small values for the spatial
step size, Δx, and for the slope iteration parameter, s, explained in the next paragraph. The issue is less
pronounced in the adiabatic approach, because the nonadiabatic A- and B-couplings both do ‘turn off’ at
large |x| (see section 2.2.2).

The energy spectrum of the Hamiltonian in equation (3) is continuous and ranges from −∞ to ∞. The
numerical treatment is simplified by the symmetry of the real-valued solutions. For each energy W there
exists an even and an odd solution. Even solutions, which are associated with even-parity MSACs, are of the
form ψ1(x) = 1 − sx and ψ2(x) = 1 + sx for |x| → 0, with a slope parameter s. The odd solutions are of the
form ψ1(x) = 1 + sx and ψ2(x) = −1 + sx for |x| → 0. Further, for any x it is ψ2(−x) = ψ1(x) for the even
and ψ2(−x) = −ψ1(x) for the odd solutions. For any energy W, this leaves only one parameter—the slope
s—to be iterated. In both even and odd cases, the slope parameter s is iterated to minimize the classically
forbidden wave-function components at the spatial-range limit, |x| = xmax. We vary xmax depending on V
and W, so as to allow for maximum outward propagation before the wave functions diverge due to
numerical inaccuracies. For each energy W, this procedure yields exactly one even and one odd physical
solution.

2.2.2. Adiabatic representation
The TIDSE in the adiabatic picture has the Hamiltonian from equation (6). The even adiabatic solutions are
of the form ψu(x) = 1 and ψd(x) = sx for |x| → 0, and the odd ones are of the form ψu(x) = sx and
ψd(x) = 1 for |x| → 0. As in section 2.2.1, the slope parameter s is iterated to minimize the classically
forbidden wave-function components ψu(x) at the spatial-range limits, |x| = xmax. For each energy value W,
there exist exactly one even and one odd solution. In the numerical treatment, the tendency of the
classically forbidden solutions on the respective PECs to exponentially diverge at large |x| is less pronounced
in the adiabatic representation than it is in the diabatic representation (section 2.2.1), because the
nonadiabatic A- and B-couplings ‘turn off ’ at large |x|, whereas in the diabatic representation the constant
coupling V does not ‘turn off’ at large |x|.

2.2.3. MSAC resonances
The energies Wν of the MSAC resonances, labeled by an integer vibrational quantum number ν, can be
determined iteratively by locating the energy values at which the amplitudes of the sinusoidal wave-function
tails in the respective classically-forbidden regions become minimal near the edges of the spatial integration
range, |x| = xmax. We label the resonances starting with ν = 0 for the MSAC ground state. The coupling
parameter V is varied between 0.3 (least adiabatic) and 2.8 (most adiabatic), in s.u. as defined in
equations (2) and (4). We find all MSAC resonances within an energy range of about V < W � V + 3.8.
For V ranging between 0.3 and 2.8, the number of MSACs with V < Wν � V + 3.8 ranges from 9 to 15,
respectively. The integration limit, xmax, is shifted outward with increasing V and ν in order to locate the
MSAC energies as accurately as possible over the entire V- and ν-range studied. Here, xmax is varied
between xmax = 13 at the lowest V and ν , and xmax = 19 at the largest V and ν.

For illustration, in figure 1 we show plots of the adiabatic potentials Ṽd and Ṽu and the A- and
B-potentials for V = 0.306 and V = 1.5275, as well as the obtained lowest MSACs. In addition to
Aud(x) = −Adu(x), in the present problem it is also Bud(x) = −Bdu(x). Figure 1 illustrates the rapid drop in
amplitude of both the A- and B-potentials with increasing V. The diagonal B-potentials, Bdd(x) and Buu(x),
become apparent in the V = 0.306-case in the form of small humps on the Ṽ(x) in the range |x| � 1. The
A-couplings generally appear to be more important than the B-couplings, as confirmed directly in
section 4.1 and as commonly accepted in molecular physics. A feature that becomes important in the
interpretation of the ν-dependence of the MSAC lifetimes in section 3.2 is that at low V the approximate
reach of the A- and B-potentials, given by the crossing half width, xw = 2V, is smaller than the typical wave
function extents, whereas at large V the A- and B-potentials are spread out over the entire typical
wave-function extent.

2.2.4. MSAC lifetimes from flux calculation
The main interest in the present work is in the nonadiabatic lifetime of the lowest MSAC resonances. To
that end, we compute even and odd solutions on a dense grid of the continuous energy W, and determine
the resonance centers, Wν , as described in section 2.2.3. In either representation, the MSAC resonance
centers Wν are found by minimizing the amplitudes of the sinusoidal wave-function tails in the peripheral
regions, |x| ∼ xmax, relative to the wave-function amplitudes in the MSAC trapping region near x = 0. As
seen in figure 2, in the asymptotic regions both classically allowed and forbidden wave-function tails are
locally of the form ψ(x) = a(x)cos[k(x)x + φ(W)], with a slowly-varying amplitude a, an energy-dependent
phase φ, and a slowly-varying wave number k. In the diabatic representation, the oscillatory behavior of the
classically-forbidden tails results from the fixed coupling V, which induces π-out-of-phase

4



New J. Phys. 24 (2022) 053043 A Duspayev et al

Figure 2. Details for the lifetime calculations in diabatic (a) and adiabatic (b) representations, with diabatic potentials
V1/2 = ∓x/2 and adiabatic potentials Vu and Vd (all quantities in s.u.). The displayed case is for a coupling strength of
V = 1.5275 s.u.. The wave functions ψ1 and ψ2 in (a), and ψu and ψd in (b), show the vibrational MSAC ν = 2. The insets in
(a) and (b) show magnified views of the wave-function tails in the classically forbidden regions of the respective higher-energy
potentials. Note that ψu in the inset in (b) is multiplied by a factor of 100. The markers xl, xk and xw in the main plots as well as
xp and the open circles in the insets are to illustrate details of the flux calculations explained in the text.

classically-forbidden tails. Denoting the amplitude of the classically allowed tail aa, and that of the
co-located classically forbidden tail af , at the spatial integration boundary xmax the amplitude af ∼ aaV

xmax/2+W

can be on the order of 10% of aa (see, for instance, the inset of figure 2(a)). In the adiabatic representation,
the oscillatory behavior of the classically-forbidden tails primarily results from the diminishing
nonadiabatic A-coupling, which induces π/2-out-of-phase forbidden tails with much smaller amplitudes
than in the diabatic representation (note that in the inset in figure 2(b) the classically forbidden tail of ψu is
magnified by a factor of 100).

To explain the flux method, we first consider a scalar problem, in which there is only one internal state.
In that case, the steady-state wave-functions in the peripheral regions are superpositions of scalar in-going,
reflected and transmitted waves ∝ exp(±ikx). At the exact resonance centers, the amplitudes of the
peripheral waves are minimal relative to the resonance amplitudes near x = 0, the transmission is unity, and
the reflectivity is zero (as is the case, for instance, in quantum double-barrier problems and optical loss-free
Fabry–Perot interferometers). A plane transmitted wave of the form A exp(ikx) at positive x, therefore,
corresponds with an incident wave AI exp(ikx) at negative x, with the same magnitude, |AI| = |A|. The
resonantly enhanced wave-function near x = 0 symmetrically emits the transmitted wave, A exp(ikx) for
x > 0, as well as a delayed reflected wave AR,Del exp(−ikx) that perfectly destructively interferes with the
direct reflected wave, AR,Dir exp(−ikx), where |A| = |AR,Del| = |AR,Dir| and AR,Del = −AR,Dir. If one were to
switch off the incident wave, AI exp(ikx), the direct reflected wave, AR,Dir exp(−ikx), would also cease,
leaving the delayed reflected and the transmitted waves, which have amplitudes with equal magnitudes |A|.
The outgoing flux, j = 1

2i (ψ
∗ d

dxψ − ψ d
dxψ

∗), summed over the positive- and negative-x domains and after
terminating the incident wave, is 2k|A|2. Denoting the norm of the resonantly enhanced, trapped
wave-function as P0, an exponential decay of the resonance norm at a decay rate of Γ = 2k|A|2/P0 occurs.
Since P0 itself is proportional to |A|2, the factor |A|2 drops out at the end of the calculation of Γ.

The analysis presented in the previous paragraph extends to real-valued solutions with peripheral
wave-functions of the form a cos(±kx + φ), obtained in our work, as those can be written as superpositions
of complex plane-wave solutions. Therefore, Γ = 2k|a|2/P0. Further, if there are two internal states, as is the
case in the present paper, both P0 and the flux are summed over these states. For the result to be accurate, it
is important to first find the resonance center energy, Wν , at which the wave-function tails have minimal
amplitudes relative to the trapped wave-function near x = 0.

We first discuss the implementation in diabatic representation, in which the norm P0 of the MSAC wave
functions P0 =

∫ xk
−xk

[|ψ1(x)|2 + |ψ2(x)|2]dx. We define the integration boundary xk via
∫ xk

xl
k(x)dx = rk,

where xl is the positive classical turning point of the state of interest on Vu(x), xk > xl, and
k(x) =

√
2(Vu(x) − W). In this way, the limit xk is set such that P0 captures the decaying tails of the MSAC

resonances in the classically-forbidden regions to within rk semi-classical 1/e decay lengths outside the
classical turning points. Here we use rk = 3, which is large enough for P0 to capture the entire resonance
norm, and small enough to not include substantial probability from the oscillatory wave-function tails. The
exact value of rk is not important. Note that we define the boundaries via the upper adiabatic potential,
Vu(x), in both the diabatic and adiabatic representations. The limits xl and xk are visualized in figure 2.
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The amplitudes a1 and a2 of the oscillatory wave-function tails are found by first locating a position xp

where the (classically allowed) tail of ψ1(x) takes an extremal value close to the positive limit of the spatial
integration range, xmax (see circle in the inset of figure 2(a)). Near xp, both wave functions ψi(x) then are of
the form ψi(x) = ai cos[ki(xp)x + φi], with i = 1, 2. Using three adjacent carrier points of each ψi(x) with xp

at the center, we compute the wave numbers ki(xp) =

√
|

d2

dx2 ψi(xp)

ψi(xp) | and the amplitudes

ai(xp) =
√

ψi(xp)2 + ( d
dxψi(xp)/ki(xp))2. Due to the position-independence of the diabatic internal states,

{|1〉, |2〉}, the fluxes in the two wave-function components just add up. The 1/e lifetime τ nad,FC = 1/Γnad,FC,
obtained from the time-independent MSAC wave function in the diabatic picture, then is given by

τnad,FC =
1

Γnad,FC
=

P0

2(k1a2
1 + k2a2

2)
. (7)

It is noted that k1 ≈ k2 in all cases, whereas the ratio a2/a1 increases with V.
We also obtain the lifetimes in the adiabatic representation, in which the wave-function computation is

numerically more stable. The norm integral P0 is computed with the same boundary xk as in the diabatic
representation, P0 =

∫ xk
−xk

[|ψu(x)|2 + |ψd(x)|2]dx. We then find a peak location xp of the
(classically-allowed) tail of ψd(x) near the integration limit, xmax (see circle in the inset of figure 2(b)). In
the flux calculation in the adiabatic representation, the x-dependence of the adiabatic internal-state basis
{|u〉(x), |d〉(x)} must be considered. This is accomplished by transforming the adiabatic two-component
wave function, (ψd(x),ψu(x)), into diabatic representation, (ψ1(x),ψ2(x)), at three adjacent x-values
centered at xp. The decay rate Γad,FC and the 1/e lifetime τ ad,FC of the time-independent MSAC wave
function in the adiabatic picture are then computed from (ψ1(x),ψ2(x)) at xp, using equations from the
previous paragraph.

2.2.5. MSAC lifetimes from the Breit–Wigner formula
In an alternative, quite different method, we also obtain the MSAC lifetimes from the Breit–Wigner formula
(BW) [38]. In the asymptotic regions, time-independent real-valued solutions on the classically allowed
potentials are locally of the form ψ(x) = a cos(k(x)x + φ(W)), with an energy-dependent phase φ. The
asymptotic solution is a superposition of incident and back-scattered waves of respective forms exp(−ikx)
and exp(i (kx + 2δ)), with the usual scattering phase shift δ [38]. It is thus seen that the phase φ in the
time-independent solution equals the scattering phase, δ = φ. According to the BW formula, the decay rate
of a MSAC, at the center of the scattering resonance, is given by ΓBW = 2(dW/dφ), where the derivative is
taken at a fixed location xB well outside the classically allowed range of the bound component of the MSAC
wave function. Here we pick a location close to xmax; the exact value of xB is not important. The phase is
then obtained from the classically-allowed tails of the wave functions ψ1(x) or ψd(x) at xB, in the diabatic
and adiabatic representations, respectively, using

φ(W) = tan−1

(
− 1

ψ(xB)

dψ(x)

dx

∣∣∣∣
x=xB

)
+ mπ, (8)

where the integer m is continually adjusted as a function of W for continuity of φ(W). We subtract a
background phase φ0(W) that arises from the phase shift of the non-resonant solutions away from the
MSACs and that is computed from

φ0(W) =

∫ xB

0

√
2(W − V∗(x))dx, (9)

where the potential V∗(x) = −x/2 in the diabatic and V∗(x) = Vd(x) in the adiabatic representation. Note
that for vanishing coupling, V = 0, the phase would be that of an Airy-function solution [37]). The BW
decay rates and lifetimes then become

τ∗,BW =
1

Γ∗,BW
= 2

d(φ∗ − φ∗,0)

dW
, (10)

where ∗ = nad and ∗ = ad for the diabatic and adiabatic representation, respectively.
In summary of this subsection, we obtain four values for the nonadiabatic decay times of MSACs from

solutions of time-independent two-component Schrödinger equations in diabatic and adiabatic
representation, namely τnad,FC, τnad,BW, τ ad,FC, and τ ad,BW. As expected and shown below, these generally
agree very well with each other, with the values from the adiabatic picture being more accurate due to the
vanishing of the A- and B-coupling terms at large |x|.
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2.3. Time-dependent methods
In our time-dependent computations, we utilize the scaled Hamiltonians in equations (3) and (6) from
section 2.2 to find the MSAC lifetimes by propagating MSAC wave functions. For instance, in the adiabatic
representation the TDSE reads

i
∂ψd(x, t)

∂t
= −1

2

∂2ψd(x, t)

∂x2
+ Ṽd(x)ψd(x, t) +

[
Bdu(x) + Adu(x)

∂

∂x

]
ψu(x, t)

i
∂ψu(x, t)

∂t
= −1

2

∂2ψu(x, t)

∂x2
+ Ṽu(x)ψu(x, t) +

[
Bud(x) − Adu(x)

∂

∂x

]
ψd(x, t). (11)

In addition to Aud(x) = −Adu(x), in the present problem we also have Bud(x) = −Bdu(x) for all x. The
TDSE in diabatic representation follows from equation (3).

As initial conditions for the MSAC wave functions at time t = 0 in the diabatic and the adiabatic
representations, we use the respective time-independent solutions obtained in section 2.2.3. The MSAC
wave functions from section 2.2.3 exhibit oscillatory tails near the boundaries of the integration grid, as
seen in figure 2. To avoid numerical instability, the MSAC wave functions entered as initial states are set to
zero between their outermost nodes and the respective spatial integration boundaries, ±xmax.

At the core of the TDSE method is to absorb the outgoing flux and to eliminate reflections from the
boundaries [39]. The wave-function norms then drop exponentially, thereby revealing the decay time of the
MSAC entered as initial state. The absorption is implemented by padding all diagonal potentials with
imaginary absorbing layers near the spatial integration boundaries at ±xmax. The absorbing layers rise
smoothly from zero at locations well-outside the classical turning points, ±xl, to a maximal value at ±xmax.
The utilized time-propagation method is a Crank–Nicolson scheme [40] that is similar to schemes used in
our recent work on tractor atom interferometry [41] and Rydberg-ion molecules [29], where nonadiabatic
transitions were quantitatively described. More details on the method can be found there. In the present
work, the time-dependent computations are performed with a spatial-grid step size of Δx = 10−3, the same
as in the time-independent methods described in section 2.2, and a time-step size of Δt = 10−3 (all in s.u.).
We have checked that a reduction of Δt does not significantly affect the lifetimes found for the MSAC wave
functions. The TDSE computations in the diabatic and adiabatic representations yield MSAC lifetimes
denoted τ nad,TDSE and τ ad,TDSE, respectively.

3. Results

3.1. Comparison of methods
In figure 3(a), we first present a comparison of results for a moderately adiabatic case, V = 1.528, for ν = 0
to 11. The log-scale plot shows excellent agreement of lifetime data from all six methods over the entire
range of ν, over which the lifetime drops by about a factor of 30. Among the methods, we consider the
adiabatic wave-function flux results, τ ad,FC, to be the most accurate and precise for the following reasons.
The adiabatic analysis is less prone to numerical inaccuracy in the classically-forbidden tails of the wave
functions, because the adiabatic couplings A and B drop off rapidly with increasing |x| (see figures 1 and 2,
and arguments presented in section 2.2). This reduces the amplitude of the classically-forbidden tails,
thereby alleviating their tendency towards exponential divergence. Further, the flux method is insensitive to
background-phase effects, which affects the BW method at low V (see section 3.2).

To exhibit small deviations of the results of the other five methods from τ ad,FC, in figure 3(b) we show
the ratios τ ∗/τ ad,FC, with ∗ denoting the other methods. Importantly, the values for τ deviate by no more
than 11% from τ ad,FC. The four results from the TIDSE agree to within 2% from each other, for V = 1.528,
with small deviations attributed to numerical inaccuracy and to the systematic inaccuracy of the BW
method at low V (see section 3.2). The computations based on the TDSE deviate by up to 11% from τ ad,FC.
This may be due to the susceptibility of the time-dependent computations to imperfections of the
absorbing-wall implementation, such as less-than-perfect absorption of the outgoing flux and spurious
reflections. Indeed, for ν � 4, where the absorbing walls are the farthest away from the high-amplitude
regions of the MSAC wave functions, the TDSE lifetime results deviate by less than about 5% from the
TIDSE results. It is also noted that the diabatic and adiabatic TDSE calculations differ by less than about 1%
from each other for all ν-values. This indicates that numerical issues, such as spatial-step or time-step sizes,
introduce about the same, %-level of uncertainty in the TDSE and the TIDSE calculations.

Overall, the close agreement across the six methods in figure 3 proves the fundamental validity of all
methods used. The quite good agreement between the TDSE and TIDSE calculations provides a particularly
high level of validation, as the methods of how to extract the lifetimes from the TDISE and TDSE
computations are quite different, yet both approaches yield very similar results.
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Figure 3. MSAC lifetimes obtained with all six methods, for vibrational states ν = 0 to 11, for an intermediate case of the
coupling strength (V = 1.5275 s.u.), plotted vs MSAC level energy W. The top panel demonstrates the overall agreement between
all data and the drop-off of the lifetimes as a function of ν. For improved visualization of small deviations, in the lower panel we
show the ratios between the lifetimes from five methods relative to τ ad,FC.

3.2. Lifetimes vs adiabaticity
A main outcome of the work are the MSAC lifetimes over a wide range of the adiabaticity V and the
vibrational quantum number ν. We have performed computations for a set of V-values ranging from
V = 0.306 (least adiabatic) to V = 2.75 (most adiabatic). To assist with the interpretation of various
regimes, we define the quality factor, Q, of the resonances as the angular frequency in harmonic
approximation times the state’s norm divided by the time derivative of the norm, or Q = τω = τ/(2

√
V).

There, ω is evaluated from the adiabatic potential Vu(x) near x = 0. Note Q is unit-less and the same in
scaled and physical units.

In figure 4(a) we show the Q-values for the MSAC vibrational ground state, ν = 0, versus V. Noting that
the number of oscillations after which the survival probability drops below 50% is approximately Q/9, it is
seen that the ground-state MSACs may be considered only barely oscillatory for 0.3 < V � 0.6, as in these
cases it only takes a few oscillation periods or less for half of the ground-state MSAC population to decay.
For V ≈ 1 it already takes a few tens of oscillation periods before the ground-state MSACs are half decayed.
However, as V rises above about a value of 2, the ground-state MSACs quickly become highly stable against
nonadiabatic decay. At the largest V-value tested, V = 2.75, it takes > 109 oscillation periods for half of the
ground-state MSAC population to nonadiabatically decay (see figure 4(a)). The rapid stabilization of
MSACs as a function of V is related to the factor of −V2 in the exponential expression for the LZ tunneling
probability (see section 4.2).

The wide range of MSAC level damping is further visualized in figure 4(b), where we show four
examples of the wave-function scattering phases, φ(W) − φ0(W), that are used for the calculation of BW
lifetimes according to section 2.2.5. At the MSAC energies, Wν , the phases exhibit rises in steps of π. The
energy widths of the rises drop from a large fraction of the level spacing at V = 0.306 to too narrow to be
visible at V = 2.444. Figure 4(b) reiterates the vast range of nonadiabatic damping behavior that is seen
over the range 0.3 < V < 2.444, a range over which V varies by about one and Q by about ten orders of
magnitude.

Figure 4(b) also shows that at the lowest V-values the resonances are wide enough and the slopes at the
resonances, d(φ− φ0)/dW, are small enough that background trends and cross talk between neighboring
MSACs will affect the d(φ− φ0)/dW-readings at the resonance centers, Wν . This makes lifetimes from the
BW formula inaccurate at low V, as seen below. Lifetimes from flux calculations are not susceptible to this
type of inaccuracy.

In figure 5 we show lifetime results from TIDSE computations for ten values of V for MSACs within an
energy range of about 3.8 s.u. from the potential minima of Vu. (The computationally more intensive TDSE
computations were performed only for the intermediate case of V = 1.528.) Figure 5(a) demonstrates good
agreement between the TIDSE methods over a wide range of conditions. For all ν-values studied, the MSAC
lifetimes increase by six to ten orders of magnitude, as V is increased from 0.306 to 2.75. In the following,
we discuss the dependence of the lifetimes on ν in several regimes of V.
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Figure 4. (a) Quality factors, Q, as defined in the text, for the MSAC ground states, ν = 0, vs coupling strength V. Circles
around data points indicate the cases selected for panel (b). (b) Wave-function phases, φ(W) − φ0(W), vs energy for four values
of V selected in panel (a).

In the nonadiabatic regime, V � 0.6, the lifetime barely depends on the vibrational quantum number, ν,
and for the least-adiabatic case, V = 0.306, the lifetime actually increases with ν . This behavior, which may
seem counter-intuitive at first, reflects the fact that for V � 1 the anti-crossing half width, xw = 2V, which
is an estimate for the reach of the A- and B-couplings, only is a fraction of the spatial extent of the MSAC
wave function on Ṽu, as seen above in figure 1(a). As a result, for V � 1 the spatial extent of the interaction
range that causes the nonadiabatic decay, measured relative to the wave-function extent, decreases with
increasing ν, leading to an increase in lifetime with increasing ν . This mechanism becomes more
transparent in an analysis based on Fermi’s golden rule (FGR) (see section 4.1). Arguing semi-classically,
one may say that at the lowest V-values studied the lifetime increases with ν because with increasing ν the
MSAC particle spends less of its time in the anti-crossing region. It is noted that increasing ν for the
purpose of increasing the MSAC lifetime is not a useful concept to generate long-lived MSACs (for atom
trapping, for instance), because of the generally very low Q-values at V � 0.6 (see figure 4(a)).

For V � 1.2, the MSAC resonances become increasingly adiabatic, with Q-values beginning to range
above 100. In the adiabatic regime, the MSAC lifetimes decrease with increasing ν, which is opposite to the
trend that is seen in the nonadiabatic regime. The decrease of τ with increasing ν accelerates with
increasing V; at V = 2.75, the largest value studied, the lifetime ratio between ν = 0 and ν = 10 exceeds a
factor of 1000. In order to understand this behavior, one may first compare the relative importance of the
A- and B-coupling terms in the adiabatic representation. It is found in section 4.1 that the A-term is quite
dominant. As a consequence, at sufficiently large V, the gradient of the trapped wave function, ∂

∂xψu,
averaged over the wave-function extent, factors decisively into the nonadiabatic coupling strength. This
means that, at the larger V-values, the lifetime should drop with increasing ν , as observed. Noting that
wave-function gradient and classical velocity are related, the velocity dependence of the LZ equation
predicts the same trend (see section 4.2).

Next, we discuss the deviations between the lifetimes obtained with the TDISE methods. For visibility of
small deviations, we display the ratios τ ∗/τ ad,FC on a fine scale in figure 5(b). The adiabatic and nonadia-
batic flux-calculation results agree very well in all regimes. We reiterate that τ ad,FC is still considered to be
the most accurate and precise (see section 3.1). For τ ad,FC � 200, which roughly corresponds with V � 1,
the BW data also agree well. However, for τ ad,FC � 200 they yield up to about 20% shorter lifetimes than
the flux methods. It is also noted that the two BW results from the diabatic and adiabatic representations
still agree very well with each other. The systematic deviation of the BW from the flux-calculation data at
low V (nonadiabatic regime) may be attributed to the facts that at low V neighboring BW resonances begin
to cross-talk, and that background phase slopes become a significant fraction of the slopes d(φ− φ0)/dW at
the resonance centers (see figure 4(b)), rendering the BW data less accurate at low V. It is further seen that

9



New J. Phys. 24 (2022) 053043 A Duspayev et al

Figure 5. (a) Results of lifetime calculations using the methods indicated in the legend, for a range of values of the coupling
strength V. The calculations cover all MSAC resonances that are less than about 3.8 scaled energy units above the
adiabatic-potential minimum of Vu at x = 0. (b) Ratios between the lifetimes shown in (a) and τ ad,FC vs τ ad,FC. The plot includes
data points for all V- and ν-values also shown in (a).

the numerical noise of the diabatic BW calculations can reach 5% at large V, where the resonances become
extremely narrow and the computation of the slopes d(φ− φ0)/dW becomes less accurate.
Notwithstanding, the overall good agreement, seen on the fine scale in figure 5(b), validates methods and
results across the entire V- and ν-regimes studied.

4. Approximation methods

4.1. Perturbation theory
The adiabatic representation lends itself to a perturbative description of nonadiabatic decay [13, 42]. In this
approach, we find bound MSACs on Ṽu(x) used in equation (6), neglecting the nonadiabatic A- and
B-couplings (but keeping the diagonal B-terms). These states differ from the true MSACs in that they are
infinitely-long-lived, and in that their energies, Wν,FGR, are up to 0.07 s.u. below the true resonance
energies, Wν . The energy deviations are most notable at small coupling V, where the off-diagonal
nonadiabatic terms are large and cause the largest shifts Wν − Wν,FGR. We denote the wave functions of the
coupling- and decay-free approximations of the MSACs as ψu,ν,FGR(x). The ψu,ν,FGR(x) are weakly coupled
to the continuum of free-particle states on the potential Ṽd(x). The solutions on Ṽd(x) are, asymptotically,
identical with Airy functions [37]. Factoring in that on Ṽd(x) the wave functions extend to both ±∞, as
opposed to just one side on a linear potential, we normalize the free states such that the amplitude of their
oscillatory tails at large positive x is

ψd,W ,FGR(x) ≈
√

1

π
|x + 2W|−1/4. (12)

There, W is the level energy. The solutions ψd,W,FGR(x) normalized in that way are orthonormal in unit
energy, i.e. it is 〈ψd,W′,FGR|ψd,W,FGR〉 = δ(W − W ′). According to FGR, the transition rate from |ψu,ν,FGR〉 to
|ψd,W,FGR〉 then is given by ΓFGR = 2π|M|2, with a matrix element
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Figure 6. (a) and (d) Wave functions ψu(x) and ψd(x) for MSAC ν = 3 at V = 0.306 and V = 2.75, respectively. (b) and (e)
Transition amplitudes mA(x), mB(x) and mΣ(x), defined in the text, for the states in (a) and (d), respectively. (c) and (f)
M(x) =

∫ x
mΣ(x′)dx′ for the states in (a) and (d), respectively. The transition matrix element M in FGR, given by M(x) at the

right margins, and the FGR lifetimes for the state, τ FGR, are indicated in the boxes. Note the magnified y-scales in (e) and (f).

M = 〈ψd,W ,FGR|B̂du + iÂdup̂x|ψu,ν,FGR〉

=

∫
ψ∗

d(x)

[
Bdu(x) + Adu(x)

d

dx

]
ψu(x)dx, (13)

where we abbreviate ψu(x) = 〈x|ψu,ν,FGR〉 and ψd(x) = 〈x|ψd,W,FGR〉. The free-particle energy in the integral
equals that of the quasi-bound state, W = Wν,FGR. Also, here all ψ(x) are real, and the integration range is
limited by the range of ψu(x). Since in the present problem Bdu(x) and d/dx have odd and Adu(x) has even
parity in x, even ψu(x) decay into odd solutions ψd(x) and vice versa. The FGR lifetimes then are

τFGR = 1/(2π|M|2). (14)

The FGR calculation is visualized in figure 6 for a small and a large V-value, for the case ν = 3. While
the bound and free wave functions, ψu(x) = 〈x|ψu,ν=3,FGR〉 and ψd(x) = 〈x|ψd,W,FGR〉, look quite similar in
the two cases (see figures 6(a) and (d)), the coupling matrix elements are very different. We define the
matrix-element ‘densities’ mA(x) = ψd(x)Adu(x) d

dxψu(x), mB(x) = ψd(x)Bdu(x)ψu(x), and the coherent sum
mΣ(x) = mA(x) + mB(x), and display these functions in figures 6(b) and (e). For V = 0.306 the m-densities
are large, localized to within just the central lobe of ψu(x), and largely uni-polar, whereas for V = 2.75 the
m-densities are weak, spread-out over the entire reach of ψu(x), highly oscillatory and bi-polar. In both
cases, mA(x) is much larger than mB(x) in magnitude, on average. As a result, for small V the nonadiabatic
decay is fast and largely driven by couplings localized to within a small, interior region of ψu(x), whereas for
large V the nonadiabatic decay is slow and spread-out over the entire range of ψu(x). These observations
validate statements that we have made in section 3.2 with regard to the ν-dependence of the MSAC lifetimes
in different regimes of V.

In figures 6(c) and (f) we show the integrals of m(x), whose asymptotic values, M = M(xmax), give the
FGR lifetimes according to equation (14). Due to symmetry, the integral M(x) has odd parity about a
symmetry point at x = 0 (crosshair in figure 6(c)), and it is M = M(xmax) = 2M(x = 0). For low and
moderate values of V, the large amplitudes and the somewhat uni-polar characteristics of m(x) lead to
numerically stable results for M and τ FGR. At large V, however, the integral in equation (13) is numerically
challenging because of the bipolar and highly oscillatory behavior of mΣ(x). It is seen in figure 6(f) that at
large V the integral M =

∫
mΣ(x)dx comes down to a very small, nearly-vanishing remainder after

integration, as evidenced by the fact that M(x) has a near-perfect zero crossing at x = 0, leading to a very
small matrix element M. To get converging values for M, at the largest V-values studied we had to decrease
the spatial step size in the wave-function computations and in the integral for M by a factor of up to about
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Figure 7. Ratios between lifetimes from a perturbative calculation based on FGR, τFGR, and from the semi-classical LZ
approximation, τ LZ (see section 4.2), divided by the lifetime τ ad,FC from the non-perturbative calculation, versus τ ad,FC. For
reference, we also show τ nad,FC/τ ad,FC. The data points encompass all MSACs also shown in figure 5. Numbers next to the LZ data
points with the largest deviations are vibrational quantum numbers, ν.

100 relative to the step size used in the non-perturbative methods. Nevertheless, even at the largest V
considered the FGR computations are still quite fast because the wave functions to be computed are scalar.

In figure 7 we present the ratio τFGR/τ ad,FC for all values of V and ν also shown in figure 5. As in
figures 3(b) and 5(b), τ ad,FC is used as a reference because the non-perturbative adiabatic wave-function flux
calculation is the most accurate and precise. The lifetime ratios are plotted on a log scale covering about two
decades, which is fine enough to observe relative deviations as small as about 1% and wide enough to also
cover relative deviations for a LZ model (see section 4.2). The τFGR/τ ad,FC-ratios, plotted in figure 7 versus
τ ad,FC, follow a quite well-defined trend line at 0.1 to 0.3 below unity, with the lowest deviations occurring
in the nonadiabatic and adiabatic limits on the left and right margins of the plot, respectively. At the largest
τ ad,FC-values, corresponding to large V- and low ν-values, there is additional numerical noise on the order
of ±0.1, caused by the delicate nature of the M-matrix elements at large V (see figure 6 and related
discussion).

The FGR approach in this work differs from typical applications of FGR in which the wave functions are
perturbation-independent, and the perturbation has a tunable strength. In contrast, in the present case the
perturbation V is fixed for a given set of wave functions ψu(x) and ψd(x), and the wave functions themselves
depend on the fixed perturbation V (via the diagonal B-terms included in Ṽu and Ṽd). The matrix-element
densities m(x) have a complex spatial structure and are in first order only. The deviations of the FGR from
the non-perturbative results are notable, albeit not exceeding about 30%. A practical concern relies in the
fact that at large V the spatial step size in the FGR calculation of the matrix element M has to be set very
small to achieve convergence, due to the delicate nature of the M-integral at large V (see figure 6).

4.2. Landau–Zener model
For a semi-classical estimate of MSAC lifetimes using the LZ equation, we use a LZ tunneling ‘attempt rate’
of twice the vibrational frequency, which gives an attempt rate of R = (Wν+1 − Wν−1)/π (s.u.). The LZ
coupling equals V and the differential slope of the diabatic potentials equals s = 1, in s.u.. For a fixed
particle velocity, v, the LZ tunneling probability is PLZ = exp(−2πV2/(sv)), and the lifetime
τ LZ = 1/(RPLZ), in s.u.. Assuming that a semi-classical picture with a point-particle velocity v suffices to
describe the quantum problem of interest, one still needs a rule for how to get v. From Fourier transforms
of MSAC wave functions in any representation (diabatic or adiabatic), one expects and finds that v could be
on the order of

√
Wν − V , which also accords with the classical virial theorem for a harmonic oscillator.

Further, classically the velocity peaks at v =
√

2(Wν − V) at the crossing. For the largest V and lowest ν
studied in this work, these v-values produce τ LZ-values that are about 20 orders of magnitude too long. As
the exponent in the LZ tunneling probability is ∝−1/v, we may surmise that the high-velocity wings in the
Fourier transforms of the MSAC wave functions govern the LZ decay rate. Empirically, one finds that
v =

√
2Wν , used in the following, overall leads to the best LZ estimates for the MSAC lifetimes (that can

still be several orders of magnitude off).
The deviations of τ LZ from quantum calculations are shown in figure 7 in terms of τ LZ/τ ad,FC. It is seen

that, over our range in V and ν studied, the LZ model may serve as a very rough guideline to predict MSAC
lifetimes, as the τLZ-values stay within a factor of about 20 from τ ad,FC. The inaccuracy of the τ LZ-values
accelerates in the adiabatic region (large τ ad,FC). The strong ν-dependence of τ LZ/τ ad,FC, seen especially in
the adiabatic region, reiterates that we have no well-founded rule for the classical velocity v. As such, the
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poor overall agreement of τ LZ with the quantum results reflects the fact that a semi-classical model applied
on a problem that is in the quantum domain of the vibrational motion is not necessarily accurate.

Considering quantum–classical correspondence, we add that with increasing ν our model system
becomes more classical, and with decreasing V the nonadiabatic transitions become relatively well-localized
in the spatial region near x = 0. As a result, for V � 1, and for V � 1 and ν exceeding a V-dependent limit
evident from figure 7, the τ LZ-values deviate by less than about 50% from the corresponding τ ad,FC-values,
and the agreement improves with increasing ν. These observations accord with the expectation that
quantum and classical results should converge in these limits.

5. Conclusion

We have computed nonadiabatic lifetimes of metastable states on symmetric avoided crossings. Among six
non-perturbative quantum methods, the results of which generally agree well, a wave-function flux method
implemented in the adiabatic representation is the most accurate and precise, with lifetime uncertainties
estimated at about 1%. Using the given relations between scaled and physical units, the results presented in
figure 5(a) are portable to a variety of applications, including Rydberg molecules [23, 25] and atom
trapping and guiding on dressed potentials [12].

In addition to providing accurate, non-perturbative lifetime data, our comparisons have shown that
time-dependent perturbation theory in first order, applied to states in the adiabatic representation, with the
off-diagonal nonadiabatic terms treated as a perturbation, yields approximate lifetimes that deviate by less
than about 30% from the non-perturbative values. Semi-classical estimates based on the LZ tunneling
formula were generally found to be quite inaccurate. The inaccuracy is largest for vibrational ground states
in the adiabatic (long-lifetime) regime, which is the case of greatest relevance in atom trapping and guiding.
Expanding on earlier works in atom trapping [13] and Rydberg molecules [29], the non-perturbative
methods tested in the present work can be generalized to problems with more than two adiabatic potentials
with non-linear spatial dependence and variable mutual couplings.

Additionally, nonadiabatic lifetimes of metastable states on conical intersections [43–46] may be of
interest in quantum chemistry. A minimal, two-dimensional model of a conical intersection with spatial
coordinates x and y has a diabatic Hamiltonian

ĤD,2D = −1

2

⎛
⎜⎜⎝

∂2

∂x2
+

∂2

∂y2
0

0
∂2

∂x2
+

∂2

∂y2

⎞
⎟⎟⎠+

1

2

⎛
⎝ −x βy

βy x

⎞
⎠ ,

with a constant β. Holding the y-coordinate constant, the problem coincides with that of an anti-crossing,
considered in our present work. However, dynamics along the y-degree of freedom connects the quantum
solutions with the true degeneracy point at x = y = 0, which will fundamentally alter the physics of
nonadiabatic decay of states on the upper potential energy surfaces. Future work may address this topic, as
well as the role of curvatures of diabatic potentials.
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Realization of a deeply subwavelength adiabatic optical lattice Phys. Rev. Res. 2 013149
[7] Leanhardt A E, Chikkatur A P, Kielpinski D, Shin Y, Gustavson T L, Ketterle W and Pritchard D E 2002 Propagation of

Bose–Einstein condensates in a magnetic waveguide Phys. Rev. Lett. 89 040401
[8] Zobay O and Garraway B M 2004 Atom trapping and two-dimensional Bose–Einstein condensates in field-induced adiabatic

potentials Phys. Rev. A 69 023605
[9] White M, Gao H, Pasienski M and DeMarco B 2006 Bose–Einstein condensates in RF-dressed adiabatic potentials Phys. Rev. A 74

023616
[10] Hofferberth S, Fischer B, Schumm T, Schmiedmayer J and Lesanovsky I 2007 Ultracold atoms in radio-frequency dressed

potentials beyond the rotating-wave approximation Phys. Rev. A 76 013401
[11] Colombe Y, Knyazchyan E, Morizot O, Mercier B, Lorent V and Perrin H 2004 Ultracold atoms confined in rf-induced

two-dimensional trapping potentials Europhys. Lett. 67 593–9
[12] Garraway B M and Perrin H 2016 Recent developments in trapping and manipulation of atoms with adiabatic potentials J. Phys.

B: At. Mol. Opt. Phys. 49 172001
[13] Burrows K A, Perrin H and Garraway B M 2017 Nonadiabatic losses from radio-frequency-dressed cold-atom traps: beyond the

Landau–Zener model Phys. Rev. A 96 023429
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