arXiv:2204.06618v1 [cs.CC] 13 Apr 2022

Formal Language Recognition by Hard Attention Transformers:
Perspectives from Circuit Complexity

Yiding Hao, Dana Angluin, and Robert Frank
Yale University
New Haven, CT, USA

firstname.lastname@yale.edu

Abstract

This paper analyzes three formal models of
Transformer encoders that differ in the form
of their self-attention mechanism: wunique
hard attention (UHAT); generalized unique
hard attention (GUHAT), which general-
izes UHAT; and averaging hard attention
(AHAT). We show that UHAT and GUHAT
Transformers, viewed as string acceptors,
can only recognize formal languages in the
complexity class AC?, the class of lan-
guages recognizable by families of Boolean
circuits of constant depth and polynomial
size. This upper bound subsumes Hahn’s
(2020) results that GUHAT cannot recog-
nize the DYCK languages or the PARITY
language, since those languages are outside
AC? (Furstetal., 1984). In contrast, the
non-AC? languages MAJORITY and DYCK-
1 are recognizable by AHAT networks, im-
plying that AHAT can recognize languages
that UHAT and GUHAT cannot.

1 Introduction

The Transformer architecture for neural net-
works (Vaswani et al., 2017) has yielded remark-
able advances in performance on a variety of
benchmark tasks in natural language processing.
These advances have spurred considerable interest
in understanding the capabilities and limitations
of the Transformer architecture. While Trans-
former networks are extremely complex when de-
ployed at scale, theoretical studies such as those
of Pérezetal. (2019), Yunetal. (2020), Hahn
(2020), and Merrill et al. (2022) have uncovered
meaningful insights about the expressive power of
Transformers by formulating abstract models of
the self-attention mechanism and analyzing their
computational power.

In this work, we analyze three restricted mod-
els of self-attention based on their ability to rec-
ognize formal languages. All three models use

hard attention—meaning that each attention head
attends only to the position or positions with the
highest attention score, with no attention paid to
any of the other positions—but differ in how they
behave in the case of ties in the maximum at-
tention value. In the first two models we study,
the attention mechanism returns the value at ex-
actly one position (for example, the leftmost) in
case several positions tie for the maximum atten-
tion value. The first such model, which we call
generalized unique hard attention Transformers
(GUHAT) and was defined by Hahn (2020), im-
poses no restrictions on the nature of activation
values or the functions the network uses to com-
pute them. The second model, unique hard atten-
tion Transformers (UHAT), was defined and stud-
ied by Yaoetal. (2021) and is a more concrete
version of GUHAT that incorporates restrictions
on the nature of activation values and computa-
tions. In the third model, which we call averag-
ing hard attention Transformers (AHAT), the at-
tention mechanism returns the uniform average of
the values at positions with the maximum atten-
tion value. This is the definition of hard attention
used by Pérez et al. (2019), Yun et al. (2020), and
Merrill et al. (2022).!

Our main contribution is to prove that GUHAT
and UHAT can only recognize formal languages
in ACY, the class of formal languages recognized
by a family of Boolean circuits of constant depth
and polynomial size, whereas AHAT can recog-
nize formal languages outside of AC?. More for-
mally, we prove that any formal language recog-
nized using a GUHAT is also recognized by a fam-
ily of Boolean circuits of constant depth and poly-
nomial size, establishing AC® as an upper bound
on the expressiveness of UHAT and GUHAT. We
also show that every UHAT can be simulated by
an AHAT, establishing UHAT as a subclass of
AHAT. Based on the classical results of Furst et al.

"Merrill et al. (2022) call it saturated hard attention.

http://arxiv.org/abs/2204.06618v1

(1984), our upper bound subsumes Hahn’s (2020)
results that GUHAT cannot recognize the DYCK
languages or the PARITY language, neither of
which belongs to AC°. Furthermore, our re-
sult combines with Pérez et al.’s (2019) AHAT
implementation of the MAJORITY language and
Bhattamishra et al.’s (2020) AHAT implementa-
tion of DYCK-1 (neither of which is in ACY) to
show that AHAT can recognize languages that
GUHAT cannot. Recently, Merrill et al. (2022)
have given an upper bound on the power of AHAT:
namely, that every formal language recognizable
using averaging hard attention is recognizable us-
ing a family of circuits of constant depth and poly-
nomial size with Boolean and majority gates; that
is, a family of circuits in the complexity class TC?,
known to be a strict superset of AC’. Taken to-
gether, our paper establishes the following rela-
tionships between the three models we consider of
hard-attention Transformers.

UHAT C GUHAT C ACY
UHAT C AHAT ¢ AC®

2 Preliminaries

Let 3 be a fixed finite alphabet of symbols, and let
$ be a distinct end-of-sequence symbol not in .
The set of strings of symbols over X of length n is
denoted by X", and the set of all finite strings over
> is denoted >*. A (formal) language over X is
any subset of >*.

The set of integers between 7 and j inclusive
is denoted [i..j]. Define the function ¢ : N —
N as ¢(n) = [logy(n + 1)] for all n, and define
bin(i,n) to be the binary representation of 7 as a
string of length ¢(n), for every i € [l..n]. For
example, bin(6,30) = 00110. If P is a logical
predicate, then { P} denotes the truth value of P;
for example, {(x > y) V (z > 3)} = 1 when
x > yorz > 3, and is 0 otherwise.

3 Circuit Complexity

Our analysis of UHAT and GUHAT is carried
out within the framework of circuit complexity, in
which the complexity of a computational system
is measured by the size, depth, and types of gates
of a Boolean circuit implementing that system. In
this section we review the basic concepts, defini-
tions, and results of circuit complexity used by our
analysis. A detailed overview is provided in Chap-
ter 6 of Arora and Barak (2009).

3.1 Boolean Circuits

Boolean circuits are a formal model of compu-
tational systems based on logic gates. Roughly
speaking, a Boolean circuit consists of binary-
valued input and output layers, with feedforward
connections” to one another via intermediate gates
that implement logical operations. We use the fol-
lowing definition of Boolean circuits.

Definition 1. A Boolean circuit with n inputs and
m outputs is a labeled directed acyclic graph satis-
fying the following conditions. There are n distin-
guished input vertices labeled with the variables
x1,%92,...,%Ty. Each input vertex has fan-in 0.
The rest of the vertices are gates, each having a
label from Constant-0, Constant-1, NOT, AND,
or OR. The Constant-0 and Constant-1 gates have
fan-in 0, NOT gates have fan-in 1, and AND and
OR gates have unbounded fan-in. Finally, the la-
bels 21, 29, . .., 2, are applied to some (not neces-
sarily distinct) vertices; these are the outputs.

We refer to the edges of a Boolean circuit as
wires. The size of a circuit is the number of wires
it contains, and the depth of a circuit is the maxi-
mum length of a directed path of wires from an in-
put vertex to an output. A Boolean circuit C' com-
putes a Boolean function from {0, 1}" to {0, 1}";
we denote its output on input x = 123 ...xT, by

C(z).

Observe that a Boolean circuit has a fixed num-
ber of input vertices, and therefore can only take as
input bit strings of a fixed length. We would like to
define circuit computation for a map defined on all
of {0,1}*. To that end, we allow different circuits
for inputs of different lengths.

Definition 2. A family of circuits is a sequence
{C,}, where for each integer n > 0, C), is a
Boolean circuit with n inputs and one output. A
map f from {0,1}* to {0,1} is computed by a
family of circuits {C), } if and only if for all n and
allz € {0,1}", f(x) = Cy(x).

The class ACY is defined by setting restrictions
on the size and depth of circuits within a family of
Boolean circuits.

Definition 3. A family of circuits is of constant
depth if there exists a constant K such that the
depth of C,, is bounded by K for all n. A fam-
ily of circuits is of polynomial size if there exists a
constant ¢ such that the size of (), is bounded by

2We consider only acyclic circuits.

n¢ + c for all n. The set AC is the set of fami-
lies of Boolean circuits of both constant depth and
polynomial size.

We relate formal languages with families of
circuits by identifying languages L C >* with
Boolean functions that classify strings as belong-
ing to L or not. Formally speaking, let > be a
finite alphabet. A binary symbol encoding of %
is an injective map h from X to {0,1}*, where
s = £(]X]). Thus h maps each symbol to a dis-
tinct binary string of length s. We extend A to a
homomorphism on strings from >*. We say that
the circuit family {C,,} recognizes the language
L over ¥ if there is a binary symbol encoding h
of ¥ such that for every n and every x € X",
Csn(h(z)) = 1if and only if x € L. With this
definition of language recognition via Boolean cir-
cuits, we say that a language is in AC? if and only
if it is recognized by a family of Boolean circuits
in AC.

3.2 Non-AC° Languages

Having defined the class AC®, we present some
examples of languages not belonging to this class.
First, the following three languages were shown
by Furst et al. (1984) to fall outside ACY.

Definition 4. We define the following languages
over the alphabet {0,1}. The language PARITY
is the set of all strings containing an even number
of 1s; MAJORITY is the set of strings with at least
as many 1s as Os; and EQUALITY is the set of
strings with exactly as many 1s as Os.

Additionally, we show later in this paper
(Corollary 3) that DYCK-1 also falls outside ACP.

Definition 5. The language DYCK-k is the set of
strings over an alphabet of k types of pairs of
brackets that are correctly nested and matched.
For example, DYCK-2 over the alphabet {(,), [,]}
can be described by a context free grammar with
productions S — &, S — (5), S — [5], and
S — SS. The language DYCK-(k, D) is the set
of strings in DYCK-k in which the depth of nest-
ing of brackets never exceeds D. The language
SHUFFLE-k is the shuffle (arbitrary interleaving)
of strings from k& versions of DYCK-1 each using a
different type of bracket pair.

Finally, we define PALINDROMES, a language
shown in Section 5 to be in GUHAT.

Definition 6. The language PALINDROMES is the
set of strings equal to their reverses, which can be

described by the context free grammar with pro-
ductions S — ¢, 5 — o0, and S — oSo for each
alphabet symbol o.

4 Hard Attention Transformers

We now define the three kinds of hard atten-
tion Transformers studied in this paper: GUHAT,
UHAT, and AHAT. These formalisms are models
of computation inspired by the encoder portion
of the Transformer architecture. They conceptu-
alize Transformers as cascading layers of feature
extractors that convert a sequence of embeddings
into increasingly higher-level representations.

4.1 General Framework

We begin by presenting a general framework that
subsumes the three hard attention Transformer
models. Formally, a generalized Transformer is
a device that maps a string x € £*$ to 1 or 0, sig-
nifying that x is accepted or rejected, respectively.
Each such device is parameterized by a collection
of functions described as follows.

Definition 7. A generalized Transformer with K
layers and H attention heads is a tuple T =
(A, f 28, 70, fitg | k€ [LK]Lh €
[1..H]) where

e Y is the input alphabet,
» A is the set of activation values,
o [XU{$} xNxN — Ais the input function,

. gtﬁ : A x A — R is the attention function
for layer k and head h,

o fPool A* x R* — Ais the pooling function,

o fact . AHTL 5 Ais the activation function
for layer k, and

e g: A —{0,1} is the model output function.

On input z1xs ...z, where x,, = $, a string
O

yno) e A" of initial activation values

(0)
'y
is given by
©) _ o
y; = f(wi,i,n)
Each layer k then produces a string

for all i.
y® = oyl

ues from the previous activation values y
ygk_l)ygc_l) . yﬁf_l) as follows. First, each at-
tention head h produces an n x n matrix of atten-
tion scores a; j . p, given by

k—1 k—1
aigon = i (00 Y)

€ A" of activation val-
(k=1) _

for all positions ¢, j of the input string. Next, the
pooling function converts each row of attention
scores into an activation value based on y*~1):

1((k—=1) (k—1) k—1
bi,k,h = fpoo <y1 y Yo a"'ay1(1)a
@ 1k hs A2 k.hy - - - ,ai,n,k,h>-

Finally, the layer output 3/(*) is computed using the
layer’s activation function:

u = 7 (0 b b)

When y*) has been computed for all k& € [1..K],
the final output of the generalized Transformer
T'(z) is computed by applying the model output
function to the last symbol of y); that is,

T(w) =g (s1).

If T'(z) = 1, we say that T' accepts x; otherwise,
we say that T" rejects x. The language recognized
by T, denoted L(T), is the set of strings x € ¥*
such that T" accepts z$.

The formalism we have presented above is fully
generalized in the sense that we have placed no
restrictions on the activation values A or the func-
tions f, fatt, fpool) fact or g other than to specify
their domains and co-domains. The three hard at-
tention Transformer models are derived by placing
restrictions upon these elements.

4.2 Unique and Averaging Hard Attention

The first restriction we consider is on the form of
the pooling function. We consider two types of
pooling functions: the unique hard attention func-
tion, used in GUHAT and UHAT, and the averag-
ing hard attention function, used in AHAT.

In unique hard attention, the pooling function
simply selects the activation value from the previ-
ous layer corresponding to the argmax of the row
of attention scores. In case of a tie, the leftmost
activation value is selected.

Definition 8. The unique hard attention function
is the pooling function fUHA : A* x R* — A
defined as follows. On inputs (y1,¥y2,...,Yn) €
A™ and (a1, ag,...,a,) € R™ let j € [1..n] be
the least position that maximizes a;. Then,

fUHA(

yl?"'7yn7a17"'7an):yj'

Averaging hard attention is similar to unique
hard attention, except that in the case of a tie, the
selected activation values are averaged.

Definition 9. Let 4 be a vector space over a
field containing Q. The averaging hard atten-
tion function is the pooling function fAHA

A* x R* — A defined as follows. On inputs
(ylay27 cee 7yn) € An and (a17a27 e 7an) S Rn’
let j1,jo, ..., Jm € [1..n] be all the positions that

maximize a;. Then,

1 m
fAHA(y17"' 7yn7a17"' 7an) - Ezyjz
=1

The GUHAT model is defined as the class of
generalized Transformers that use unique hard at-
tention.

Definition 10. A generalized unique hard atten-
tion Transformer is a generalized Transformer
whose pooling function is fUHA. We use the term
GUHAT to refer to the class of generalized unique
hard attention Transformers, and also to the class
of languages they recognize.

The GUHAT model mostly follows the defini-
tions of Hahn (2020). It is slightly generalized in
allowing the input function f to depend on the in-
put length n, and in allowing the activation func-
tion f2°* to depend on the layer k, but these gener-
alizations are immaterial. In particular, it is not
necessary to assume that the input length n is
provided to the input function: if the input func-
tion were f(o,i) = (o,4), the subsequent layer
could direct attention at every position to posi-
tion n (because it uniquely contains the end-of-
sequence symbol $), at which point the value of n
is available at every position.

4.3 Restricted Models: UHAT and AHAT

GUHAT allows the activation values .4 and the
functions f, fi'f, fi", and g to take on any arbi-
trary mathematical value. In practical applications
of Transformer networks, however, these compo-
nents are restricted in specific ways. Many vari-
ations of hard attention Transformers attempt to
incorporate these restrictions into theoretical mod-
els, though they do not entirely agree on the details
of these restrictions.

The UHAT and AHAT models adopt many of
these restrictions, largely following the definitions
of Yao et al. (2021). For the sake of computability,
we require activation values to be vectors of ra-
tional numbers. Following Pérez et al. (2019), we
restrict scalars to be rational as well. Next, we as-
sume that the input function f is decomposed into

a token embedding function and a position em-
bedding function. Mirroring the more familiar de-
scription of attention functions in terms of query,
key, and value matrices, we use a bilinear form
for attention functions proposed in Luong et al.
(2015). In addition to the unique and averaging
hard attention mechanisms, we allow the pooling
function to be future-masked (where for position ¢
only those positions j with j < ¢ are considered in
the attention computation) or past-masked (simi-
larly for j > 7). Finally, we assume that activation
functions and the model output function are com-
puted by feedforward neural networks with ReLU
activation. These restrictions are summarized be-
low.

Definition 11. For d € N, a restricted Trans-
former of dimension d is a generalized Trans-
former such that

« the set of activation values is A = Q¢;

* the input function is given by

f(O',i,’l’L) = fe(a) —|—p(i,n),

where f. : £ U {$} — Q7 is the token em-
bedding function and p : N x N — Q% is the
position embedding function;

¢ each attention function is of the form
att AN TA /
TenW,) =y Apny’,
where Ay, j, € Qdxd,

* the pooling function may be future-masked or
past-masked,

* each activation function is computed by a
feedforward neural network with ReLLU ac-
tivation;

* the output function g is computed by a feed-
forward neural network with ReLU activation
followed by a softmax layer, with g(y) = 1 if
and only if the output of the network on input
y is greater than or equal to 1/2.

Because X is finite, we may assume that the to-
ken embedding function is given by a table lookup.
Our formulation of position embedding is some-
what more general than the definition of Yao et al.
(2021), who take the position embedding to be a
scalar defined as p(i,n) = i/n that occupies one
position of the initial activation vector.

The UHAT and AHAT models are defined to be
restricted Transformers that satisfy the above con-
ditions and use unique and averaging hard atten-
tion, respectively.

Definition 12. A unique hard attention Trans-
former is a restricted Transformer whose pooling
function is fUHA or a future- or past-masked ver-
sion thereof. An averaging hard attention Trans-
former is a restricted Transformer whose pooling
function is fAHA or a future-or past-masked ver-
sion thereof. We use the terms UHAT and AHAT,
respectively, for these classes of Transformers,
and also for the classes of languages they recog-
nize.

UHAT is clearly a subclass of GUHAT because
the former imposes restrictions on the form of the
input, attention, activation, and output functions.
We suspect, but do not prove, that this inclusion
is proper. Moreover, we briefly argue below that
UHAT is properly contained in AHAT.

Proposition 1. UHAT is a strict subclass of AHAT.

Proof sketch. Since AHAT recognizes non-AC"
languages (Pérez et al., 2019; Bhattamishra et al.,
2020), it suffices to show that UHAT C AHAT.
Let 7" be a UHAT of dimension d recognizing L.
We define a UHAT 7' of dimension d + 2 recog-
nizing L that has no ties in its attention values.
Since the pooling functions fYHA used in UHAT
and fAHA ysed in AHAT are identical in the ab-
sence of ties, replacing the pooling function of 7
with fAHA gives us an AHAT recognizing L.

Let N be a sufficiently large integer depending
on n, specified below. Each activation value gjgk)
in T is yz(k) from T" with two additional constant
components, set to 1 and i/N by the input func-
tion. The attention function f,jt,g(gg’“*”,g]("“*l))
computes a; ; . using the original attention func-
tion and activation values, subtracting the value
j/N. This is achievable with a bilinear map.

If for j < { the attention values a; ;5 and
a; o are tied in 7', then after subtracting j/N
and ¢/N respectively, the tie is broken in favor of
j. However, N must also be large enough to pre-
serve the order of any two attention values that are
not tied. There are a finite number of different at-
tention values that arise in the computation of 7" on
all the inputs of length n, and it suffices to choose
N so that n/N is less than the distance between
any pair of such attention values. O

4.4 Prior Results for These Models

Hahn (2020) shows that the languages 1* and
{a"b™ | m > 1} are in GUHAT, and the
languages PARITY and DYCK-k for all £ >
1 are not in GUHAT. Pérez et al. (2019) show
that even without positional information, the lan-
guage MAJORITY is in AHAT. Bhattamishra et al.
(2020) show that SHUFFLE-k is in AHAT, which
implies that DYCK-1 is in AHAT. Yao et al. (2021)
show that the language DYCK-(k, D) is in UHAT.
The latter two results use positional masking, but
no other positional information.

S PALINDROMES in GUHAT

Let us now illustrate how a GUHAT computes by
way of example. In this section, we describe a
GUHAT with 2 layers and 1 head that recognizes
the language PALINDROMES over the alphabet
¥ = {a, b, c}. Broadly speaking, this Transformer
works as follows. The first layer is responsible for
comparing each symbol of the input string with
the corresponding symbol on the opposite side of
the string, and marking whether the two symbols
match. The second layer reads these markings,
searching for a mismatch identified by the first
layer. If one is found, the model output function
returns 0; otherwise, it returns 1. For intuition, we
simultaneously illustrate the Transformer’s com-
putation on the input abcca$, which should be re-
jected.

The input function is defined as f(o,i,n) =
(0,i,n) for each 0 € ¥ and ¢ € [1..n]. For our
example input, the initial (layer 0) activation val-
ues are shown in the first row of Figure 1. These
activation values are not rational-valued vectors,
of course, but the GUHAT model imposes no re-
striction on the form these values can take.

We define the attention function for layer 1,

i1 ((0,4,n), (0", 4,n)), tobe {(j =n—i)V (i =
j = n)}. For each position i < n, this selects
the activation at the correct corresponding posi-
tion, n — ¢. For position n, it selects the activation
at position n.
We define the activation function for layer 1 as

SEi#xj

act - -
1=7]=nNn

1 ((xivi7n)7 (I'j,j,n)) =

(0,4), otherwise.

The layer 1 activation values for our example in-
put are shown in the second row of Figure 1. This

indicates that positions 2 and 4 found mismatched
symbols, and positions 1, 3, and 5 did not.

Layer 2 gathers the relevant information from
layer 1 into the last position. The layer 2 attention
function is defined by f3'((r,), (s, 7)) = s. This
directs the attention at every position to the left-
most activation value (s, j) from layer 1 such that
s = 1. In our example, the leftmost such position
is 2, with its activation of (1,2). If the input se-
quence had instead been a valid palindrome, none
of the positions @ € [1..n — 1] would have been
marked with (1,7) by layer 1. In this case, the
leftmost position with s = 1 would have been the
final position n, which has the activation value of

(1,n).
We define the layer 2 activation function as
2((r,4),(s,7)) = (i,7). For our example in-

put, the activation values for layer 2 are shown in
the third row of Figure 1. The activation value at
position n will be (n,n) if and only if no earlier
position found a symbol mismatch, so the model
output function is simply ¢((i,5)) = {i = j}.
With the input sequence abcca$, the activation for
position 6 at layer 2 is (6, 2) and the output value
is 0. For a valid palindrome such as abcba$, the
activation for position 6 at layer 2 is (6, 6) and the
output value is 1. Generalizing this construction to
an arbitrary alphabet 3., we have the following.

Proposition 2. For any finite alphabet ¥, the lan-
guage PALINDROMES over 3. is in GUHAT.

6 A Normal Form for GUHAT

Despite the abstractness and generality of the
GUHAT model, we can define a normal form rep-
resentation and show that every Transformer 7" in
GUHAT is equivalent to a Transformer in GUHAT
in this normal form with the same number of lay-
ers and heads. The key idea is to preserve in the
activation values all the information from previous
layers that has been used to compute them, by re-
quiring that the input and activation functions just
return the tuple of their arguments. We also re-
quire that attention values be integers in the small-
est relevant range.

Definition 13. A GUHAT with K layers and H
heads is in informative normal form if and only if
the following conditions are satisfied.

* The input function is f(o,i,n) = (0,i,n).

* For each layer k € [1..K], the activation val-
ues are (H + 1)-tuples of activation values

Input | T = a b c c a $
Initial Activation Values vy = (a,1,6) (b,2,6) (¢,3,6) (c,4,6) (a,5,6) ($,6,6)
Layer 1 Activation Values yM = (0,1) (1,2) (0,3) (1,4) (0,5) (1,6)
Layer 2 Activation Values y? = (1,2 (2,2) (3,2) (4,2) (5,2) (6,2)
Output ‘ g (yé2)) = 0

Figure 1: Activation values computed by a GUHAT Transformer for PALINDROMES as it rejects the input abcca$.

at layer k£ — 1, and the activation function is
defined by

fl?Ct(yabl" i ’bH) = (y’bla oo ,bH)

* For each layer k € [1..K] and attention head
h € [1..H], the attention function f2 returns
an integer in [0..N — 1], where N is the total
number of possible ordered pairs of activa-

tion values at layer k£ — 1.

Lemma 1. For any Transformer T' € GUHAT,
there exists a Transformer T € GUHAT in in-
formative normal form such that L(T) = L(T).
Moreover, T has the same number of layers and
heads as T

Proof. Let T be a GUHAT with K layers and H
heads, with input alphabet ¥, input function f, at-
tention functions f{f, activation functions f{,
and output function ’g. We describe how to con-
struct functions for an equivalent Transformer Tin
GUHAT in informative normal form, which also
has K layers and H heads. We assume that n is
the input length.

For 1" the input function f(o,,n) is defined to
return the triple (o,4,n). Note that there are at
most |X|n possible initial activation values. We
also define a function ¢ that translates initial ac-
tivation values for 7" into initial activation values
for T' by to(o,i,n) = f(o,i,n).

Now, we induct on the layers of 7" and T. As-
sume that we have defined attention and activa-
tion functions for 7' for layers before k£ (where
the initial activation values are treated as “layer
0”), and a translation function t;_ that translates
all possible activation values for 7" from the pre-
vious layer into activation values for 7" from the
previous layer. To define the attention function
for T' for layer k for head h, we enumerate all
the possible pairs g; and g; of activation values
of T at layer k — 1, and determine the corre-
sponding attention values of 7', which we denote

by vk n(9i,95) = fih(te—1(9i), te-1(7;)). We

make a list of all the distinct resulting values and
sort them into increasing order. Then we define
Fe%(9i,4) to be the rank of vy (g, 7;) in this
sorted list. The activation function for 7" for layer
k is, by definition,

ract

k (y,bl,...,bH):(y,bl,...,bH).

The translation function for layer k is defined by

tk(y, bl, e ,bH)
= 2 te—1(y)s tho1(b1)s- -+ s th1(bm))s

that is, we translate each of the component activa-
tion values using ¢;_1 and then apply the activa-
tion function of T'.

Finally, the output function for 7" is defined by
9(y) = g(tx (9)), that is, we translate the layer K
activation value § of 7' to the layer K activation
value of 7', and apply the output function of T'.

By construction, T is in informative normal
form, and it has K layers and H heads. It is not
difficult to see that for any input x, the translations
t5()) of the activation values ¢ of T are equal to
the corresponding activation values of T, and the
outputs 7'(z) = T(z) are equal as well. Thus,
L(T) = L(T). 0

To illustrate the construction of 7" in the proof
of Lemma 1, we briefly show how an informa-
tive normal form version of the Transformer for
PALINDROMES from Section 5 would process the
input z = abcca$. Because the attention functions
in that example return O or 1, their translation is
simplified.

The initial activation values and layer 1 atten-
tion function are the same as in the example. The
resulting layer 1 activation sequence, consisting of
a sequence of paired initial activations and atten-
tion values, is

((a’717 6)7 (a’7 57 6))7
((6,2,6), (c,4,6)),...,(($,6,6),($,6,6)).

The translation ¢; maps ((x;,i,n),(x;,7,n)) to
(0,7) if &; = x; and (1,4) if x; # ;. When
applied to the above activation sequence, this
yields the previous example’s layer 1 activation se-
quence.

The layer 2 attention function applied to a pair
of layer 1 activation values ((x;,4,n), (x;,7,n))
and ((xg, k,n), (x4, ¢, n)) first applies the transla-
tion function ¢; to these two activation values to
recover the pairs (r,7) and (s, j), and then applies
the example’s layer 2 attention function to these to
yield the attention value s.

The layer 2 translation function maps a layer 2
activation value

(((xlv i, n)? (I'j7j, n))? ((xk‘v k, n)v (va l n)))

to (i, k). For layer 2 and position 6 the activation
value for this input is

(((3,6,6),(3,6,6)), ((b,2,6), (¢, 4,6))),

which is mapped to (6, 2) by to. The previous ex-
ample’s output function compares 6 and 2 and re-
turns 0, rejecting the input z.

7 From GUHAT to Circuits

In this section we show that for every language
L € GUHAT, we can construct a family of
Boolean circuits of constant depth and polynomial
size that also recognizes L. This will prove the
following, which is our main result.

Theorem 1. Every language in GUHAT is recog-
nized by a family of circuits in AC°.

Let L be a language over 3. that is in GUHAT.
By Lemma 1, we may assume that L is recognized
by GUHAT Transformer 7' in informative normal
form. Assume 7" has K layers and H heads.

What we describe below is a family of cir-
cuits to recognize the end-marked language LS,
which can easily be converted to a family of cir-
cuits that recognizes L by hard-wiring the repre-
sentation of the end-of-sequence symbol $ at the
end of the input string using constant gates. Let
s = L(|X|] + 1) and let h be any binary sym-
bol encoding for ¥ U {$}. We construct a fam-
ily of Boolean circuits {C),} of constant depth
and polynomial size such that for all positive in-
tegers n and all x € X"~ !, x € L if and only if
Con(h(z9)) = 1.

The key step of the proof is to bound the num-
ber of bits needed to represent attention and acti-
vation values for an input sequence of length n by

O(logn), where the suppressed constants depend
on K and H.

Lemma 2. Let T' be a GUHAT in informative nor-
mal form with K layers and H heads, and al-
phabet Y. Let s = ((|X| + 1). Then for any
input of length n and any k € [0..K], the ac-
tivation values at layer k can be represented by
(H + 1)*(20(n) + s) bits, and for k > 1, the
attention scores at layer k can be represented by
2(H + 1)*=1(20(n) + s) bits.

Proof. For an input sequence of length n, the ini-
tial activation values are (o,i,n), where 0 € ¥ U
{$} and ¢ € [1..n]. This can be represented by a
string of 2¢(n) + s bits. At each successive layer,
the activation values are a tuple of (H + 1) values
from the previous layer, which multiplies the num-
ber of bits required to represent them by (H + 1).
Also, the range of attention scores is bounded by
the number of ordered pairs of activation values at
the previous layer, so attention values can be rep-
resented by twice the number of bits to represent
an activation value at the previous layer. U

It is worth observing that the bounds provided
by Lemma 2 do not hold in the case of AHAT. At-
tention scores may be the result of the average of
an arbitrary subset of the possible inputs, which
means that there are exponentially more possible
activation values at each layer.

The following elementary facts about Boolean
circuits will be useful.

Lemma 3. An arbitrary Boolean function f of n
inputs and m outputs can be computed by a depth
3 circuit of size at most m(n2" + 2" 4+ n).

Proof. Express each output z; of f as a disjunc-
tive normal form (DNF) formula of at most 2"
terms, each with at most n literals. Convert each
DNF formula to a circuit with one OR gate with
inputs from an AND gate for each term, each of
whose inputs is either an input to the function, or
the result of applying a NOT gate to an input. In
each such circuit, the OR gate has at most 2" input
wires, each AND gate has at most n input wires,
and each of at most n NOT gates has one input
wire, for a total size bounded by n2" + 2" + n.
The final circuit consists of these m separate cir-
cuits computing in parallel, and its size is at most
m times the size of each one. The longest possible
path to an output from an input is through a NOT,
an AND, and the OR gate, for a depth of at most
3. 0

Corollary 1. If a Boolean function f has at most
clogn inputs and at most dlogn outputs, then it
may be computed by a Boolean circuit of depth
3 and size at most (dlogn)(n®(clogn) + n® +
clogn).

With the O(logn) bound on the number of
bits to represent activation and attention values,
Lemma 2 yields circuits of constant depth and size
polynomial in n for the input, attention, activation,
and output functions. Additional circuitry is nec-
essary to implement the comparison of attention
scores and selection of the activation value to at-
tend to for each position, layer, and head.

We construct the overall circuit Cy,, according
to the layers of T, starting with the input function.
Let the inputs to 7" be x; for i € [1..n]. The inputs
to Cyy, are x; j for i € [1..n] and j € [1..s], where
x; ; are the bits of h(z;), representing the binary
encoding of input symbol z;. At layer O for posi-
tion ¢, the value of yl(o) = f(zi,i,n) = (x4,1,n)
is achieved by having the input wires x; ; for j €
[1..s] followed by a sequence of constants 0 or 1
representing bin(z,n) and bin(n, n) for a total of
2¢(n) 4 s wires representing the value (z;,4,n).

Inducting on layers, we assume that for some
k € [1..K] the circuit C§, has been constructed
to contain the wires representing all the activation
values yfkil) for ¢ € [1..n] at layer £ — 1. The
portion of the circuit computing the representa-
tions of activation values at layer k is described
as follows. Fix a position ¢ € [1..n] and a head
h € [1..H]. For each j € [1..n], there is a circuit
Aj; j ,» that has as input the wires for the activation

(k=1) g =D

values y i and as output, wires rep-
resenting the nonnegative integer attention score
a; jk,p in binary. Each of these circuits A; ;5
has 2(H + 1)k=1(2¢(n) + s) inputs and outputs
by Lemma 2, and therefore can be computed using
depth 3 and size polynomial in n, by Corollary 1.
All Hn? such circuits for layer k operate in paral-

lel, for overall depth 3 and size polynomial in 7.

We next describe the circuit that implements
the pooling function fUHA. For each pair j, j/ €
[1..n], there is a circuit D; j ;i , , Whose inputs are
the outputs of A; ; 1., and A; j: 1 ;, and whose out-
put is a single wire g; ; i 1., With a value of 1 if
a; jknh = Q;jkn and O otherwise. Because of
the bounds on the number of inputs and outputs,
each of these circuits can have depth 3 and size
polynomial in n by Corollary 1. These n? circuits

all compute in parallel.’> Then for each position
J» whether j maximizes a; jx n can be computed
by an AND gate whose inputs are g; ; j . n for all
j' € [1..n]. Let the output of this AND gate be
denoted ™My 5.k h- Then My 5.kh = 1 if and only if
the position j maximizes a; ;. This increases
the depth by 1.

For each j, an indicator z; ; is computed
by an AND gate whose inputs are m; j , and
NOT(m; jr i) for all j* < j. Thus, z;jrn = 1
if and only if j is the leftmost position that maxi-
mizes a; j . n- This increases the depth by 2.

Finally, these indicator values are used to com-
bine the layer £ — 1 activation values in a selection
circuit, yielding the representation of the activa-
tion value b; 1, = yj(-k_l) such that 2; 5, = 1.
In general, such a selection circuit takes as input ¢
selector bits 21, ..., 2, where exactly one z; = 1,
and ¢ input values wy, . . . , w;, where each w,. con-
sists of S bits. It outputs .S bits representing the
selected w; (for which z; = 1). Letting w, 5 de-
note bit s of w;,., the computation can be described
as vp s = Wrs A 2z forr € [1..t] and s € [1..5],
which can be computed by one layer of ¢S AND
gates in parallel. Then the bits of the output are
us = \/f:1 vps for s € [1..5], which can be
computed by one layer of S OR gates in parallel.
Thus, the selection circuit adds 2 to the depth, and
a polynomial in 7 to the size.

Because each activation function for a GUHAT
in informative normal form simply returns its ar-
guments, no further computation is needed for the

activation values. The representation of the ac-
(k)
/i

representing yz(U followed by those represent-

ing b; . 1, through b; ;. 7.

tivation value gy, is just the sequence of wires

To produce the output of the circuit, we note that
the representation of ySLL) has O(logn) bits and
the output of g is a single bit, so g can be imple-
mented by a Boolean circuit of constant depth and
size polynomial in n, by Corollary 1. This con-
cludes the proof of Theorem 1.

Furstet al. (1984) prove that the PARITY,
EQUALITY, and MAJORITY languages are not in
ACY, which immediately implies the following.

Corollary 2. GUHAT does not contain the lan-
guages PARITY, MAJORITY, or EQUALITY.

31n fact, comparison of two b-bit integers can be done with
a Boolean circuit of constant depth and size polynomial in b,
but that is not necessary for the present purpose.

To see that the DYCK-k languages are also not
in ACY, we reduce from the EQUALITY language.

Corollary 3. Forall k > 1, the language DYCK-k
is not in AC°, and is therefore not in GUHAT.

Proof. 1t suffices to prove this for £k = 1. Assume
that there is a family {C),} of Boolean circuits in
ACY that recognizes DYCK-1. We may assume that
the binary symbol encoding is ~([) = 0 and h(]) =
1. We show how to use this to construct a family
{E,} of Boolean circuits in AC" that recognizes
the EQUALITY language, a contradiction.

FE),, is constructed from Cj,, as follows. If the
inputs to E,, are x1,...,x,, then E,, consists of
Cs,, with its first n inputs set to the constant 0, its
middle n inputs set to x1,...,x,, and its last n
inputs set to the constant 1.

Let = be any element of {0, 1}". If the number
of occurrences of 0 is not equal to the number of
occurrences of 1in z, then the input to Cs,, has un-
equal numbers of [and | symbols, which is not in
DYCK-1 and z is rejected. If the number of occur-
rences of 0 is equal to the number of occurrences
of 1 in x, then in any prefix of the input to Cs,,, the
number of occurrences of | is less than or equal to
the number of occurrences of |. At the end of the
input, the number of occurrences of | is equal to
the number of occurrences of |, so the input to C'3,,
is in DYCK-1 and x is accepted. Thus {E,} is a
family of Boolean circuits in AC? that recognizes
the language EQUALITY, a contradiction. O

8 Discussion and Conclusions

We have defined formal language recognition by
the encoder portion of a Transformer network us-
ing generalized unique hard attention (GUHAT),
unique hard attention (UHAT), and averaging hard
attention (AHAT), and shown that languages in
UHAT and GUHAT are recognizable by constant
depth, polynomial size families of circuits, that
is, families of circuits in the complexity class
ACP. This strengthens the negative result of Hahn
(2020) that the languages PARITY and DYCK-k
are not in GUHAT, and provides a simpler and
more general proof. Combined with prior results
of Pérez et al. (2019) showing that the language
MAJORITY is in AHAT, or Bhattamishra et al.
(2020) showing that the language DYCK-1 is in
AHAT, this shows that AHAT contains languages
that are not in GUHAT or UHAT.

Many intriguing open questions remain. What
classical closure properties hold for the classes of

languages GUHAT, UHAT, and AHAT? Closure
under complement just requires complementing
the output function g, and closure under pairwise
union and intersection should be straightforward
using a parallel approach; but what about closure
under homomorphism, inverse homomorphism,
concatenation, or Kleene star? We briefly observe
that GUHAT and UHAT cannot be closed under
both Kleene star and concatentation lest they con-
tain all regular languages, including PARITY.

Existing formal models and indeed practical im-
plementations of Transformers vary in their repre-
sentation of position information, whether as an
absolute representation of position, a ratio (e.g.,
position i in a sequence of length n as i/n),
through angle information (e.g., position i by the
pair (cos 6;,sin ;) where 6; = mi/2n), or as an
arbitrary learned embedding. In the UHAT and
AHAT models, the choice of positional encod-
ing can facilitate positional comparison (e.g., an
angle-based encoding allows for equality testing
via dot products) or make it uncomputable (e.g., if
positional encodings enumerate Turing machines
that halt on their own encodings). It remains to
be understood what effect such differences in po-
sition representation have on the expressive power
of a model.

More generally, is it possible to prove that soft
attention, which we have not addressed here, is
strictly more powerful than even averaging hard
attention? Yao et al. (2021, Theorem B.3) present
a construction for a soft attention Transformer
that recognizes DYCK-k. This construction cru-
cially employs specialized encodings of position
and layer normalization, whose formal power re-
mains to be understood.

Finally, given the success that Transformers
have had as models of natural language, it is
perhaps surprising that these models’ expressive
power seems to be best characterized (or at least
bounded) in terms of circuit complexity. Math-
ematical explorations of natural language have
most commonly employed the approach to lan-
guage complexity afforded by the Chomsky hier-
archy and its refinements, which is based on au-
tomata and formal grammars. The apparent in-
comparability of these approaches suggests that
the exploration of different types of Transformer
models might offer a new approach to the study of
the formal properties of natural language.

Acknowledgements

We thank the reviewers and the action editor for
their work in reviewing this paper.

References

Sanjeev Arora and Boaz Barak. 2009. Computa-
tional Complexity: A Modern Approach. Cam-
bridge University Press, Cambridge, United
Kingdom.

Satwik Bhattamishra, Kabir Ahuja, and Navin
Goyal. 2020. On the Ability and Limitations of
Transformers to Recognize Formal Languages.
In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Process-
ing (EMNLP), pages 7096-7116, Online. Asso-
ciation for Computational Linguistics.

Merrick Furst, James B. Saxe, and Michael Sipser.
1984. Parity, Circuits, and the Polynomial-
Time Hierarchy. Mathematical Systems Theory,
17(1):13-27.

Michael Hahn. 2020. Theoretical Limitations
of Self-Attention in Neural Sequence Models.
Transactions of the Association for Computa-
tional Linguistics, 8:156-171.

Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to
attention-based neural machine translation. In
Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing,
pages 1412-1421, Lisbon, Portugal. Associa-
tion for Computational Linguistics.

William Merrill, Ashish Sabharwal, and Noah A.
Smith. 2022. Saturated Transformers are
Constant-Depth Threshold Circuits. Computing
Research Repository, arXiv:2106.16213v3 [cs].

Jorge Pérez, Javier Marinkovi¢, and Pablo
Barcel6. 2019. On the Turing Completeness
of Modern Neural Network Architectures. In
ICLR 2019 Conference Track, New Orleans,
LA, USA. OpenReview.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
L.ukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is All you Need. In Advances in Neu-
ral Information Processing Systems 30, pages

5998-6008, Long Beach, CA, USA. Curran As-
sociates, Inc.

Shunyu Yao, Binghui Peng, Christos Papadim-
itriou, and Karthik Narasimhan. 2021. Self-
Attention Networks Can Process Bounded Hier-
archical Languages. In Proceedings of the 59th
Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International
Joint Conference on Natural Language Pro-
cessing, volume 1: Long Papers, pages 3770-
3785, Online. Association for Computational
Linguistics.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh
Rawat, Sashank Reddi, and Sanjiv Kumar.
2020. Are Transformers universal approxima-
tors of sequence-to-sequence functions? In
ICLR 2020 Conference Track, Online. OpenRe-
view.

