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ABSTRACT

Several machine learning methods leverage the idea of locality by
using k-nearest neighbor (KNN) techniques to design better pattern
recognition models. However, the choice of KNN parameters such
as k is often made experimentally, e.g., via cross-validation, leading
to local neighborhoods without a clear geometric interpretation. In
this paper, we replace KNN with our recently introduced polytope
neighborhood scheme - Non Negative Kernel regression (NNK).
NNK formulates neighborhood selection as a sparse signal approx-
imation problem and is adaptive to the local distribution of samples
in the neighborhood of the data point of interest. We analyze the
benefits of local neighborhood construction based on NNK. In par-
ticular, we study the generalization properties of local interpolation
using NNK and present data dependent bounds in the non asymptotic
setting. The applicability of NNK in transductive few shot learning
setting and for measuring distance between two datasets is demon-
strated. NNK exhibits robust, superior performance in comparison
to standard locally weighted neighborhood methods.

Index Terms— Neural networks, polytope interpolation, local
methods, generalization, leave one out, k-nearest neighbor.

1. INTRODUCTION

Local neighborhood methods such as k-nearest neighbor (KNN) [1]
and Nadarya-Watson estimator (weighted k-nearest neighbor esti-
mator) [2, 3] are some of the most popular non-parametric learning
methods with application in density estimation, classification and
regression [4]. What is meant by local in these methods is based
on the choice of an appropriate feature space for data representation
and a similarity kernel or distance. Thus, the use of a weighted KNN
method requires a careful choice of k and of the weights assigned to
the selected neighbors. Theoretical results in [4, 5, 6] suggest that
the value of k in the asymptotic regime, where the number of sam-
ples (N ) goes to infinity, should be such that k ! 1 and k/N ! 0.
In practice, for N finite, [7, 8] recommend k to be set to a fractional
power of the dataset size. This approach can yield poor performance
and, as a general rule of thumb, the choice of k is often made us-
ing task specific cross validation. Other works such as [9, 10] make
use of labels in the training dataset to obtain an adaptive choice of
k. However, these methods lack a geometrical interpretation relating
the resulting locality (e.g., the value of k obtained via cross vali-
dation) and the intrinsic dimension of the data samples. Further,
these methods do not extend to scenarios where no label information
exists. Nevertheless, the simplicity and empirical success of local
neighborhood methods such as KNN makes them a popular choice in
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machine learning. They can even be used for modern deep learning
systems, with the goal of achieving regularized classification models
[11, 12], as well as semi-supervised [13, 14] and unsupervised [15]
learning systems, amongst others.

This paper takes as a starting point our recently proposed local
neighborhood construction, Non Negative Kernel regression (NNK)
[16], and explores novel applications of local methods. NNK finds
a first approximation of the neighborhood using KNN, but instead
of using the resulting points directly, it optimizes and reweighs this
selection, leading to a sparser and stable set of neighbors having a
geometric interpretation. In this work, we leverage the geometrical
properties of the NNK solution to theoretically bound its generaliza-
tion from the Bayes estimator and its leave-one-out estimate. Our
analysis makes explicit the relationship between generalization, the
smoothness of the functional values (e.g., labels) at nearby points,
and the local distribution of data. Experimentally, we evaluate the
application of locally weighted NNK estimators in a transductive
few shot learning scenario [17] and propose a new distance measure
in the space of datasets based on the theoretical properties of NNK1.

2. PRELIMINARIES AND BACKGROUND

2.1. Notation

Throughout the paper, lowercase (e.g., x and ✓), lowercase bold
(e.g., x and ✓), uppercase (e.g., X and Y ), and uppercase
bold (e.g., K and �) letters denote scalars, vectors, random
variables, and matrices, respectively. We use I : {0, 1} !
{0, 1} to indicate the truth value of an expression. Dtrain =
{(x1, y1), (x2, y2) . . . (xN , yN )} is the set of training data obtained
from an unknown distribution in X⇥Y and Di

train the set obtained
by removing the point (xi, yi) from Dtrain. We use µ to represent
the marginal distribution of X , supp(µ) its non zero support in X ,
and ⌘(x) = E(Y |X = x) the conditional mean of Y . The risk or
generalization error associated with a function ⌘̂ : X ! Y is repre-
sented as Rgen(⌘̂) = E[l(⌘̂(x), y)], where l(⌘̂(x), y) corresponds
to the error between actual and estimated value of y.

2.2. NNK interpolation

In NNK, neighborhood selection is formulated as a signal represen-
tation problem, where each data point is to be approximated using a
dictionary formed by its neighbors [16]. This problem formulation
leads, for each data point, to an adaptive and principled approach to
the choice of neighbors and their weights. While KNN is used as

1A longer version of the work is posted on ArXiv.org with experiments in
additional scenarios, such as explainability and model selection in deep learn-
ing models, demonstrating robustness and superior performance of NNK over
conventional KNN-based approaches [18]



an initialization, NNK performs an optimization akin to orthogonal
matching pursuit [19] in kernel space resulting in a stable representa-
tion with a geometric interpretation. The Kernel Ratio Interval (KRI)
theorem in [16] states, for a given data point i and similarity kernel
K 2 [0, 1], a necessary and sufficient condition for both j and k to
be NNK neighbors of i:

Kj,k <
Ki,j

Ki,k
<

1
Kj,k

. (1)

Geometrically, KRI reduces to a series of hyper plane conditions,
one per NNK neighbor, which applied inductively lead to a convex
polytope around each data point x, denoted NNKpoly(x). Our pro-
posed unbiased NNK interpolation at x is defined as

⌘̂(x) =
X

i2NNKpoly(x)

✓i yiP
j2NNKpoly(x) ✓j

(2)

where NNKpoly(x) is the convex polytope formed by k̂ neighbors
identified by NNK and ✓ denotes a k̂ length vector of non zero values
obtained from the solution to the data approximation objective, i.e.,

✓⇤ = min
✓S�0

||�(x)��S✓S ||2

= min
✓S�0

K⇤,⇤ � 2✓>
S KS,⇤ + ✓>

S KS,S✓S (3)

where �S = [�(x1) . . .�(xk)] corresponds to the kernel space
representation of the k nearest neighbors of x. KS,⇤ corresponds to
the kernel evaluated between the neighbors (set S) and x.

3. THEORETICAL ANALYSIS OF LOCAL
INTERPOLATION WITH NNK

3.1. A general bound on NNK classifier

In this section, we study the generalization risk associated with
the NNK estimator of equation (2) under a general assumption of
smoothness. Our analysis follows a similar setup and proof style as
the simplicial interpolation analysis in [20], but adapted to NNK in-
terpolation. Note that simplicial interpolation [20] is impractical for
high dimensional data, a typical setting in modern machine learning,
while a simpler method such as KNN does not have the geometric
properties required for our analysis. Further, a simplicial interpo-
lation, even when feasible, leads to an arbitrary choice of the con-
taining simplex when data lies on one of the simplicial faces. This
situation becomes increasingly common in high dimensions, wors-
ening interpolation complexity. By relaxing the simplex constraint
of [20] to convex polytope structures, such as those obtained using
NNK, we obtain robust interpolation estimates that are dependent on
the intrinsic dimension of the space around each training data.

In summary, NNK combines some of the best features of exist-
ing methods, providing a theoretical interpretation and performance
guarantees as the simplicial interpolation [20], while being practical
and realizable with a complexity comparable to that of KNN-based
schemes. We first study NNK in a regression setting and then ex-
tend the results for classification2. We assume each yi is corrupted
by independent noise and hence can deviate from the Bayes optimal
estimate ⌘(xi). Note that the result does not make specific assump-
tions about y and holds for any signal (class label, cluster or set
membership) associated with each data point x.

2All proofs related to theoretical statements in this section are included in
the supplementary material

In a regression setting, the generalization error of function ⌘̂ is
given by the mean squared error, i.e., Rgen(⌘̂) = E[(⌘̂(x) � y)2].
Statistically, the Bayes estimate corresponding to the conditional
mean ⌘(x) is the optimal predictor and bounds other estimators as
E[R(⌘̂,x) � R(⌘,x)]  E[(⌘̂(x) � ⌘(x))2]. In Theorem 1, we
present a data dependent bound on the excess risk of NNK as com-
pared to the Bayes estimator, in a non-asymptotic setting.

Theorem 1. For a conditional distribution ⌘̂(x) obtained us-
ing unbiased NNK interpolation given training data Dtrain =
{(x1, y1), (x2, y2) . . . (xN , yN )} in Rd ⇥ [0, 1], the excess mean
square risk is given by

E[(⌘̂(x)� ⌘(x))2|Dtrain]  E[µ(Rd\C)] +A2E[�2↵]

+
2A0

E[k̂] + 1
E[�↵

0
] +

2

E[k̂] + 1
E[(Y � ⌘(x))2] (4)

under the following assumptions
1. µ is the marginal distribution of X 2 Rd and C =

Hull(�(x1),�(x2) . . .�(xN )) is the convex hull of the
training data in transformed kernel space.

2. The conditional distribution ⌘ is Holder (A,↵) smooth in ker-
nel space.

3. The conditional variance var(Y |X = x) satisfies (A0,↵0)
smoothness condition.

4. The maximum diameter of the polytope formed with NNK
neighbors for any data in C is represented as � =
maxx2C diam(NNKpoly(x)), where NNKpoly(x) denotes the
convex polytope around x formed by k̂ neighbors of NNK.

Remark 1. The first term in the bound corresponds to extrapolation,
where the test data falls outside the interpolation area (i.e., outside
of the convex hull of points, C) while the last term corresponds to
label noise. The remaining terms capture the dependence of the in-
terpolation on the size of each polytope defined for test data, and
the smoothness of the yi’s over this region (i.e., within each poly-
tope). Note that a smaller �, arising when test samples are covered
by smaller polytopes, leads to a risk closer to optimal. This is im-
portant because NNK leads to a polytope having smallest diameter
or volume among all polytopes obtained with exactly k̂ points cho-
sen from the k nearest neighbors (as guaranteed by the conditions
of (1)). From the theorem, this corresponds to a better risk bound.
The bound associated with simplicial interpolation is a special case,
where each simplex enclosing the data point is a fixed size poly-
tope containing d + 1 vertices. Thus, in our approach the number
of points (neighbors) forming the polytope is variable (dependent on
local data topology), while in the simplicial case it is fixed and de-
pends on the dimension of the space. Though the latter bound seems
better (excess risk is inversely related to k̂), the diameter of a sim-
plex increases with d making the excess risk possibly sub optimal
compared to NNK.

Corollary 1.1. Based on an additional assumption that supp(µ) be-
longs to a convex and bounded region of Rd, the excess mean square
risk converges asymptotically as

lim sup
N!1

E[(⌘̂(x)� ⌘(x))2]  E[(Y � ⌘(x))2] (5)

Remark 2. The asymptotic risk of NNK interpolation method in
the regression setting is bounded, similar to the 1-nearest neighbor
method, by twice the Bayes risk. The rate of convergence of the pro-
posed method depends on the kernel function: how close two data



points need to be for them to be indistinguishable depends on the
parameters chosen for the similarity kernel.

Now, we turn our attention to a binary classification setting,
where the domain of Y is reduced to {0, 1}. The risk associated to
a classifier f̂ is defined as Rgen(f̂) = E[P (f̂(x) 6= y)]. Similar to
regression, this risk can be associated with that of the Bayes optimal
classifier f⇤ = I(P (Y = 1|X = x) > 0.5) as E[R(⌘̂,x) �
R(f⇤(x),x)]  E[P (f̂(x) 6= f⇤(x))].

Corollary 1.2 presents a bound on the excess risk associated with
the plug-in NNK classifier f̂(x) = I(⌘̂(x) > 0.5) for Dtrain =
{(x1, y1), . . . (xN , yN )} in Rd⇥{0, 1} using Corollary 1.1 and the
relationship between classification risk and regression risk [4].

Corollary 1.2. A plug-in NNK classifier under the assumptions of
Corollary 1.1 has excess classifier risk bounded as

lim sup
N!1

E[R(f̂(x))�R(f(x))]  2
p

E[(Y � ⌘(x)2] (6)

Remark 3. The classification bound presented here makes no as-
sumptions on the margin associated to the classification boundary
and is thus only a weak bound. The bound can be improved expo-
nentially as in [20] with stronger assumptions such as h-hard margin
boundary condition [21].

3.2. Leave one out stability

The leave one out (LOO) procedure (also known as deleted estimate
or U-method) is an important statistical measure with a long history
in machine learning [22]. Unlike empirical error, it is almost unbi-
ased [23] and is often used for model (hyperparameter) selection.
The LOO error associated with NNK interpolation is given by

Rloo(⌘̂|Dtrain) =
1
N

NX

i=1

l(⌘̂(xi)|Di
train, yi) (7)

where the NNK interpolation estimator in the summation for xi is
based on all training points except xi.

Theoretical results by Rogers, Devroye and Wagner [24, 25]
about generalization of k-nearest neighbor methods using LOO per-
formance are relevant to our proposed NNK algorithm. The number
of neighbors k̂ around each data point x in our method is dependent
on the local distribution of data and replaces the fixed k from their
results by an expected value, E[k̂].

Theorem 2. The leave one out performance of the NNK interpola-
tion classifier given �, the maximum number of distinct points that
can have the same nearest neighbor, is bounded as

P (|Rloo(⌘̂|Dtrain)�Rgen(⌘̂)| > ✏)  2e�N✏2/18 +

6e�N✏3/(108 E[k̂](2+�))

Remark 4. The value of � is common to both KNN and NNK set-
tings and is dependent on the dimension of the space where the data
is embedded. The exact evaluation of � is difficult in practice but
bounds do exist for this measure in the sphere covering literature
[26, 27]. The theorem allows us to relate the LOO risk of a model to
the generalization error. Unlike the bound based on hyperparameter
k in KNN methods, the bound for NNK is adaptive to the training
data, capturing the distribution characteristics of the dataset.

4. NEIGHBORHOOD METHODS IN MACHINE
LEARNING

We briefly group nearest neighbor methods in machine learning into
three categories based on the type of data (Labeled, UnLabeled) at
the decision point x and associated neighbors forming the polytope
NNKpoly(x) in Table 1. In this work, we center our experiments

Data � Neighbor Applications Reference
L � L Generalization and

robustness analysis,
Curriculum learning

Section 3, [18]

UL � L Semi Supervised
Learning, Transductive
learning, Explainable

predictions

Section 4.1

UL � UL Clustering, Two sample
statistic, Distance
between datasets

Section 4.2

Table 1: Overview of local neighborhood methods based on the
availability of labels (Labeled, UnLabeled) at data point and cor-
responding neighbors with few applications in each category. The
last column in Table links to relevant materials in our work corre-
sponding to the setting in each group.

around the range normalized cosine kernel defined as,

K(xi,xj) =
1
2

✓
1 +

hxi,xji
kxik kxjk

◆
(8)

though our theoretical statements and claims make no assumption
on the type of kernel, other than it be positive with range [0, 1]. In
particular, we transform the input data using the non linear mapping
hw corresponding to deep neural networks (DNN) parameterized by
w to modify our kernel definition as

KDNN (xi,xj) =
1
2

✓
1 +

hhw(xi),hw(xj)i
khw(xi)k khw(xj)k

◆
(9)

The theoretical analysis in Section 3 and the empirical study for
model selection using LOO in our longer version [18] demonstrate
the advantages of NNK in the labeled data setting (L � L). In this
paper, we focus on experimental results demonstrating advantages of
NNK over KNN for the (UL � L) and (UL � UL) cases3. Through
these experiments, our aim is to show that simple local methods can
achieve good results, even though additional training or parameter
turning may be needed to be competitive with state of the art.

4.1. A simple few shot framework (UL � L)

In few shot learning (FSL), one is given a set of base data Dbase =
{(x1, y1), . . . (xN , yN )} where yi 2 {1, 2, . . . Cbase} and a sup-
port data Dsup for Cnovel classes with a small m number (e.g., a
common setting in FSL uses m = 1/5) of training examples for
each class. The aim of few shot learning is to construct a model that
can perform well on the Cnovel classes. This setup is referred to as
m-shot Cnovel- way learning system. Due to the limited availabil-
ity of data in the novel classes, a FSL model needs to exploit the
base dataset for training so that it can be successful in transferring to
the novel class with good classification performance. One approach

3Source code for all experiments is available at github.com/STAC-USC

https://github.com/STAC-USC/


adapted by several FSL systems [28, 29, 30] is to train a model with
Dbase for feature extraction followed by a 1-nearest neighbor clas-
sification, or other simple classifiers, on features extracted on Dsup.

In this work, we study a simple few shot learner based on lo-
cal NNK interpolation, where each unlabeled data point is classified
using labeled data neighbors obtained using a deep feature extrac-
tor trained on the base dataset. We focus on the transductive FSL
setting where unlabeled test data is available during model construc-
tion. We iteratively refine the predictions on the unlabeled test data
by selecting for each point a pseudo label, i.e., the label for which the
prediction has most confidence, and using these pseudo labels as ad-
ditional support data. Note that this process does not involve expen-
sive training of the neural network model or fine tuning of additional
parameters to improve performance. Algorithm 1 describes the pro-
posed method for transductive classification of test data queries XQ

using NNK. For comparison, we also evaluate the proposed algo-
rithm by replacing the NNK interpolation classifier in the framework
with a locally weighted KNN classifier. The proposed FSL frame-
work can be adapted to a semi-supervised inductive classifier setting
by pseudo labeling the available unlabeled data (instead of the test
data as done for augmentation in the transductive case) followed by
classification of queries using this augmented support dataset.

Algorithm 1: NNK Transductive Few Shot Learning
Input : Neural Network hw, Datasets Dbase,Dsup,

Test queries XQ, No. of Neighbors k
1 Train hw using Dbase

2 while XQ not empty do
3 for xi 2 XQ do

/* Nxi:hw(xi) neighbors in Dsup */
4 yi = Label xi using Nxi in NNK interpolator (2)
5 end

/* Pseudo label confident predictions
in each class - (X⇤

Q,Y
⇤
Q) */

6 Dsup = Dsup [ (X⇤
Q,Y

⇤
Q)

7 XQ = XQ �X⇤
Q

8 end
Output: Class predictions YQ

Experiment Setup: We apply our proposed FSL framework on
two standard benchmark datasets mini-Imagenet[28] and tiered-
Imagenet[31] which are subsets of ImageNet[32] dataset with 100
and 608 classes respectively. All images are resized to 84 ⇥ 84 via
rescaling, cropping. For few shot evaluation, we follow a setting
similar to [13, 14, 29, 30, 33] where we draw random samples of
1/5-shot 5- way tasks: each task has 5 novel classes with 1/5 la-
beled (support) data and is tested on 15 queries per class.

We use wide residual network architecture [34] as our model
backbone with 28 convolutional layers and a widening factor of 10.
We do not perform any hyperparameter search and restrict ourselves
to the settings from [29] for training the model using Dbase. The
network is trained in batches of 256 for 90 epochs with data aug-
mentation from [35] and initial learning rate 0.1 which is reduced
by a factor of 10 at fixed schedules. We perform early stopping
using 1-nearest neighbor classification on randomly sampled set of
5-validation classes. For both NNK and weighted KNN classifier,
we set a max k value and resort to using the entire support set when
the number of examples in Dsup is smaller than k.

Method mini-ImageNet tiered-ImageNet
1-shot 5-shot 1-shot 5-shot

SimpleShot [29] 63.50 80.33 69.75 85.31
KNN (k = 5) 74.73 81.29 76.39 84.32
NNK (k = 5) 73.25 80.88 79.86 86.42
KNN (k = 20) 66.67 76.83 70.19 79.21
NNK (k = 20) 74.44 85.09 80.64 88.41
KNN (k = 50) 51.59 63.43 55.36 65.92
NNK (k = 50) 74.99 85.05 80.73 88.61

Requiring extra training / hyperparameter tuning
Fine-tuning [30] 65.73 78.40 73.34 85.50
EPNet [14] 70.74 84.34 78.50 88.36
LaplacianShot [13] 74.86 84.13 80.18 87.56
PT+MAP [33] 82.92 88.82 85.41 90.44

Table 2: 1-shot and 5-shot accuracy (in %, higher is better) for 5-
way classification on mini-ImageNet and tiered-ImageNet averaged
over 600 runs. Results from KNN, NNK transductive classification
are compared to an inductive method SimpleShot (CL2N)[29] and
listed performances from recently studied transductive methods such
as [30, 14, 13, 33]. We see that NNK outperforms KNN as k in-
creases, while achieving robust performance. Further, our simple
framework is comparable to, and often better than, recent and more
complex transductive FSL algorithms that require additional train-
ing, fine-tuning of hyperparameters or preprocessing as in [33].

Table 2 presents our results using local neighborhood based FSL
in comparison with recent FSL learners in literature. We do not com-
pare to approaches that are semi supervised (extra unlabeled data per
class in Dsup) or perform data augmentation, as such approaches
make use of additional data statistics or induce specific bias through
augmentation. Further, we note that prior methods report results
with various network architectures; to eliminate the effect of net-
work backbone in FSL models, we compare our framework only
with models having Wide-ResNet-28-10 backbone.

4.2. Distance between datasets (UL � UL)

The empirical performance of deep neural networks in transfer learn-
ing and domain adaptation setting has generated renewed interest
in the field [36, 37]. In a simple scenario, a model is trained on a
dataset (possibly labeled) and then applied to unseen data or fine-
tuned to the new data. In this context it would be useful to develop a
practical tool to identify in advance when and if a model will transfer
well to a particular dataset. In this section, we introduce an asym-
metric metric to characterize distance between datasets as a first step
towards capturing the likelihood of success in model transfer. The
distance measure is label independent and can be obtained for any
two datasets (different modalities and domains) provided a kernel
can be defined to quantify similarity of samples across datasets. The
asymmetric nature of our distance is justified by the fact that transfer
from a simple to difficult data is more difficult than the other way.

Definition 1. Given dataset samples D1 = {x1,x2 . . .xM} and
D2 = {y1,y2 . . .yN}, the NNK distance between the datasets for
a given kernel K 2 [0, 1] is defined as

NNK(D1|D2) =
1
M

X

xi2D1

min
✓S�0

Ki,i � ✓>
S KS,i + ✓>

S KS,S✓S

(10)



Fig. 1: (Left) CIFAR-10 and (Right) CIFAR-100. Wide-ResNet-28-10 model accuracy vs NNK distance (10) between clean dataset and
5 different noise levels of various corrupted datasets. The accuracy on the clean dataset is denoted by dashed line and the size of the
scatter point corresponds to the standard deviation of the terms within the summation in each distance. We see that the proposed distance
NNK(Dclean|Dcorrupt) is indicative of the model’s generalization with performance decreasing with increasing distance.

where set S = {ys1 , . . .ysk} corresponds to the set of k nearest
neighbors of xi from D2. KS,i corresponds to the kernel similarity
evaluated between the neighbors and xi.

Let �a(xi) denote the approximation obtained with the data in-
terpolation in NNK equation (3). Then, the minimization objective
J (xi) associated with a data xi in equation (10) can be rewritten as

J (xi) = Ki,i � ✓>
S KS,i + ✓>

S KS,S✓S

= ||�(xi)� ✓>
S �S ||2 = ||�(xi)� �a(xi)||2 (11)

where set S corresponds to set of neighbors from D2 that is used
to estimate xi in D1. Thus, NNK distance is the difference between
the actual observation and the approximated value of the observation
based on another set of samples. Intuitively, the average value of
J (xi) captures the extent to which dataset D2 fits the dataset D1.

Proposition 1. The NNK distance from Definition 1 is asymmetric,
non-parametric and satisfies

1. Positivity: NNK(D1|D2) � 0

2. Identity: NNK(D1|D2) = 0 () D1 ✓ D2

3. Triangle Inequality:
NNK(D1|D2)  NNK(D1|D3) + NNK(D3|D2)

Note that a similar definition of distance using k-nearest neigh-
bors is not straightforward. This is in part due to the fact that k and
the weights in KNN are not explicitly chosen to minimize an approx-
imation objective. For example, consider a KNN distance definition
where we use the interpolation of equation (11), by replacing the
weights obtained from NNK optimization with the relative similarity
between xi and its KNN neighbors i.e., ✓KNN = KS,i/(1

>KS,i):

KNN(D1|D2) =
1
M

X

xi2D1

Ki,i � 2✓>
KNNKS,i + ✓>

KNNKS,S✓KNN

(12)

This KNN distance lacks basic properties of distance. For example,
it is easy to see that the distance grows as k increases (since we
add additional terms corresponding to points that are farther away).
Also, consider the case where both the datasets are the same, ideally
we would want distance between them to be zero but the defined
KNN distance is nonzero for all values of k > 1. This hints at the
fact that it may not be possible to design a suitable distance without
optimizing the set of neighboring points and weights (as in NNK).

Experiment Setup: We evaluate the proposed distance metric
with CIFAR-10 and CIFAR-100 datasets [38] and their corrupted
variants from [39]. As in FSL experiment, we use a Wide-ResNet-
28-10 architecture for constructing a deep learning model for each
CIFAR dataset. The network is trained using only training dataset
with data augmentation in batches of 128 for 200 epochs with learn-
ing rate 0.1 and weight decay 5e�4 as used in [40]. We use features
extracted at the penultimate layer of the trained network to measure
NNK distance between the clean test dataset and various corrupted
versions of the test dataset. We observe a power law relationship
between the proposed distance metric and the model performance in
both datasets with accuracy decreasing as NNK distance increases.

Figure 1 shows the relationship between the defined NNK dis-
tance and the performance of the model on the datasets. The distance
allows us to understand the predictive performance of a pre-trained
model on a new dataset (corrupted test dataset Dcorrupt), given its per-
formance on past dataset (Dclean). We believe such a measure could
improve the process of transfer learning, where one can choose a par-
ticular model from a pool of pre-trained models that is more adaptive
to the new dataset for fine tuning.

5. CONCLUSION

In this work, we presented a theoretical study of the Non Negative
Kernel regression (NNK) framework and its performance in deep
learning settings. In particular, we studied the performance of neigh-
borhood methods in a transductive few shot learning scenario where
we show that NNK approach offers a competitive and robust base-
line in comparison to other methods, without requiring additional
training and parameter tuning. Further, we introduced a notion of
distance between datasets and observed its relationship to model per-
formance as the distance increases. Our ultimate goal is for the NNK
framework to encourage the study and use of interpretable and ro-
bust neighborhood methods in machine learning. Prototypes, sub-
sampling, and approximation schemes are key to scaling neighbor-
hood methods to large datasets (N > 106). We leave as future work,
the design and study of computationally scalable NNK techniques
leveraging the geometrical aspects of the framework.
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Supplementary material
6.1. Proof of Theorem 1

Proof. The proof follows a similar argument as in the simplicial interpolation bound in [20]. The expected excess mean squared risk can be
partitioned based on disjoint sets as4

E[(⌘̂(x)� ⌘(x))2] = E[(⌘̂(x)� ⌘(x))2|X /2 C]P (X /2 C) + E[(⌘̂(x)� ⌘(x))2|X 2 C]P (X 2 C)
 E[(⌘̂(x)� ⌘(x))2|X /2 C]P (X /2 C) + E[(⌘̂(x)� ⌘(x))2|X 2 C] (13)

For points outside the convex hull, NNK extrapolates and no guarantees can be made on the regression without further assumptions. Thus,
(⌘̂(x)� ⌘(x))2  1 which reduces the first term on the left of equation (13) to that of theorem as P (X /2 C) = E[µ(Rd\C)].

Let ✓ denote a k̂ length vector of non zero values obtained from the solution to NNK interpolation objective (3). We represent the nor-
malized weights used to obtain the NNK estimate (2) as wi =

✓iPk̂
i=1 ✓i

. The normalized weights w follow a Dirichlet(1, 1 . . . 1) distribution

with k̂ concentration parameters.

⌘̂(x)� ⌘(x) =
k̂X

i=1

wi(yi � ⌘(x)) =
k̂X

i=1

wi(yi � ⌘(xi) + ⌘(xi)� ⌘(x)) =
k̂X

i=1

wi✏i +
k̂X

i=1

wibi (14)

where ✏i = yi�⌘(xi) corresponds to Bayesian estimator errors (noise) in the training data and bi = ⌘(xi)�⌘(x) is related to bias associated
to the NNK estimator. By smoothness assumption on ⌘ we have

|bi| = |⌘(xi)� ⌘(x)|  A||�(xi)� �(x)||↵  A�↵ (15)

The inequality with � is a direct consequence of its definition, i.e., the maximum distance between the any two vertices forming the
NNKpoly(x). Since bi and ✏i are independent, the second term on the right of equation (13) can be further partitioned as

E[(⌘̂(x)� ⌘(x))2|X 2 C] = E[

0

@
k̂X

i=1

wi✏i

1

A
2

|X 2 C] + E[

0

@
k̂X

i=1

wibi

1

A
2

|X 2 C] (16)

Using Jensen’s inequality
⇣Pk̂

i=1 wibi
⌘2


Pk̂

i=1 wib
2
i and the bound from equation (15), we have

E[

0

@
k̂X

i=1

wibi

1

A
2

|X 2 C]  E[
k̂X

i=1

wib
2
i |X 2 C]  E[

k̂X

i=1

wiA
2�2↵|X 2 C] = A2�2↵ (17)

Let ⌫(x) = var(Y |X = x). Under independence assumption on noise, the ✏ terms in equation (16) can be rewritten as

E[

0

@
k̂X

i=1

wi✏i

1

A
2

|X 2 C] = E[
k̂X

i=1

w2
i ✏

2
i |X 2 C] = EK

2

4
k̂X

i=1

EX|K [w2
i |X 2 C]EX|K [✏2i |X 2 C]

3

5

 EK

2

4 2

(k̂ + 1)(k̂)

k̂X

i=1

⌫(xi)

3

5  EK

2

4 2

(k̂ + 1)(k̂)

k̂X

i=1

⌫(x) + |⌫(xi)� ⌫(x)|

3

5

where we use the fact that wi follows Dirichlet distribution. Now, the smoothness assumption on var(Y |X) gives us

|⌫(xi)� ⌫(x)|  A0||�(xi)� �(x)||↵
0
 A0�↵

0
(18)

=) E[

0

@
k̂X

i=1

wi✏i

1

A
2

|X 2 C]  2

(EK [k̂] + 1)

⇣
⌫(x) +A0�↵

0⌘
(19)

Combining equations (17) and (19), we obtain the risk bound for NNK interpolation for points within the convex hull of training data C, i.e.,

E[(⌘̂(x)� ⌘(x))2|X 2 C]  A2�2↵ +
2

(EK [k̂] + 1)

⇣
⌫(x) +A0�↵

0⌘
(20)

Equation (20) along with the extrapolation bound for points outside the convex hull C obtained earlier gives the excess risk bound for NNK
estimator and concludes the proof.

4All expectation in this proof are condition on Dtrain. For the sake of brevity, we do not make this conditioning explicit in our statements.



6.2. Proof of Corollary 1.1

Proof. The nearest neighbor convergence lemma of [1] states that for an i.i.d sequence of random variables D = {x1,x2 . . .xN} in Rd, the
nearest neighbor of x from the set D converges in probability, NN(x) !p x. Equivalently, this would correspond to convergence in kernel
representation of the data points. Thus, the solution to NNK data interpolation objective is reduced to 1-nearest neighbor interpolation with
EK [k̂] = 1 and lim supN!1 � = 0. Now, under the assumption that the supp(µ) belongs to a bounded and convex region in Rd, the first
term on the right of equation (4) corresponding to NNK extrapolation vanishes i.e., lim supN!1 EX [µ(Rd\C)] = 0.

Applying the asymptotic vanishing property of � and EX [µ(Rd\C)] in Theorem 1 gives us the result of Corollary 1.1.

6.3. Proof of Corollary 1.2

Proof. The excess classification risk associated with a plug-in NNK classifier is related the regression risk (see Theorem 17.1 in [4]) as

E[R(f̂(x))�R(f(x))]  E[I(f̂(x) 6= f(x))]  2E[|⌘̂(x)� ⌘(x)|] (21)

From Corollary 1.1, we have

lim sup
N!1

E[(⌘̂(x)� ⌘(x))2]  E[(Y � ⌘(x)2]

By Jensen’s inequality

lim sup
N!1

(E[|⌘̂(x)� ⌘(x)|])2  lim sup
N!1

E[(⌘̂(x)� ⌘(x))2] (22)

Combining with equation (21) gives the required risk bound.

6.4. Proof of Theorem 2

Proof. The proof is based on the k-nearest neighbor result from Theorem 1 in [25] which states that

P (|Rloo(⌘̂|Dtrain)�Rgen(⌘̂)| > ✏)  2e�N✏2/18 + 6e�N✏3/(108k(2+�)) (23)

As in [25], where the result is extended based on the 1-nearest neighbor, here it suffices to replace k by EK [k̂] since each data point on average
cannot be NNK neighbors to more than EK [k̂]� + 2  EK [k̂](� + 2) data points, where gamma corresponds to maximum number of data
points that can share the same nearest neighbor.

6.5. Additional Experiments

Figure 2 shows the relationship between the defined NNK, KNN distance and the performance of the model on all corruptions used in [39].
We see a similar trend in distance as before with the accuracy of the model decreasing smoothly with increasing NNK distance. As noted in
section 4.2, though the performance of the model decreases with proposed KNN distance as well, it is unclear if this distance captures the
right measure of complexity between the datasets and remains unclear in terms of interpretability.

(a) CIFAR-10 (b) CIFAR-100

Fig. 2: Wide-ResNet-28-10 model accuracy vs NNK distance (10) , KNN distance (12) between clean dataset and 5 different noise levels
of all corruptions from [39]. The accuracy on the clean dataset is denoted by dashed line and the size of the scatter point corresponds to
the standard deviation of the minimization objection in equation (10). Apart from the robustness to the choice of k in comparison to KNN
distance, we conjecture that NNK distance NNK(Dclean|Dcorrupt) captures subtle difference in datasets, as can be seen distinctly in the small
distance�high accuracy region of the CIFAR-10 plots, and is more principled and interpretable.


	 Introduction
	 Preliminaries and Background
	 Notation
	 NNK interpolation

	 Theoretical analysis of Local interpolation with NNK
	 A general bound on NNK classifier
	 Leave one out stability

	 Neighborhood methods in Machine Learning
	 A simple few shot framework (UL - L)
	 Distance between datasets (UL - UL)

	 Conclusion
	 References
	 Proof of Theorem 1
	 Proof of Corollary 1.1
	 Proof of Corollary 1.2
	 Proof of Theorem 2
	 Additional Experiments


