MELNIKOV METHOD FOR NON-CONSERVATIVE
PERTURBATIONS OF THE RESTRICTED THREE-BODY
PROBLEM

MARIAN GIDEAT, RAFAEL DE LA LLAVE!, AND MAXWELL MUSSER'

ABSTRACT. We consider the planar circular restricted three-body prob-
lem (PCRTBP), as a model for the motion of a spacecraft relative to
the Earth-Moon system. We focus on the collinear equilibrium points
L1 and Lo. There are families of Lyapunov periodic orbits around ei-
ther Ly or Lo, forming Lyapunov manifolds. There also exist homoclinic
orbits to the Lyapunov manifolds around either L; or Lo, as well as het-
eroclinic orbits between the Lyapunov manifold around L; and the one
around L. The motion along the homoclinic/heteroclinic orbits can be
described via the scattering map, which gives the future asymptotic of a
homoclinic orbit as a function of the past asymptotic. In contrast with
the more customary Melnikov theory, we do not need to assume that the
asymptotic orbits have a special nature (periodic, quasi-periodic, etc.).

We add a non-conservative, time-dependent perturbation, as a model
for a thrust applied to the spacecraft for some duration of time, or for
some other effect, such as solar radiation pressure. We compute the first
order approximation of the perturbed scattering map, in terms of fast
convergent integrals of the perturbation along homoclinic/heteroclinic
orbits of the unperturbed system. As a possible application, this result
can be used to determine the trajectory of the spacecraft upon using the
thrust.

1. INTRODUCTION

1.1. Motivation. A motivation for this work is the following situation from
astrodynamics. Consider a spacecraft traveling between the Earth and the
Moon. Assume that the spacecraft is coasting along the stable/unstable
hyperbolic invariant manifolds associated to the periodic orbits near one of
the center-saddle equilibrium points, at some fixed energy level. Such an
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orbit is driven by the gravitational fields of the Earth and the Moon, and
does not require using the thrusters. The total energy is preserved along
the orbit. One can describe the motion of the spacecraft in terms of some
geometrically defined coordinates: an ‘action’ coordinate describing the size
of the periodic orbit associated to the stable/unstable invariant manifold,
an ‘angle’ coordinate describing the asymptotic phase of the motion, and
a pair of ‘hyperbolic’ coordinates describing the position of the spacecraft
relative to the corresponding stable/unstable manifold.

Suppose now that we want to make a maneuver in order to jump from the
hyperbolic invariant manifold on the given energy level to another hyperbolic
invariant manifold on a different energy level. Mathematically, turning on
the thrusters amounts to adding a small, non-conservative, time-dependent
perturbation to the original system. If such a perturbation is given, we
would like to estimate its effect on the orbit of the spacecraft. More precisely,
we would like to compute the change in the action and angle coordinates
associated to the orbit as a result of applying the perturbation. We want to
obtain such an estimate in terms of the original trajectory of the unperturbed
system, and of the particular perturbation.

Other non-Hamiltonian perturbations, for instance, due to solar radiation
pressure and solar wind, can be considered (see [MNF87]).

In this paper we investigate the general problem of adding a non-Hamiltonian
perturbation to a homoclinic/heteroclinic trajectory and computing the ef-
fect on the homoclinic/heteroclinic orbits.

Note that adding a non-Hamiltonian perturbation (e.g., a small dissipa-
tion) may destroy all the periodic orbits. Nevertheless, the normally hy-
perbolic manifold, formed by the collection of periodic orbits, persists (see
details later). In contrast with the most customary versions of the Melnikov
theory, which assume that the asymptotic orbits are periodic or quasiperi-
odic, and that they preserve their nature under perturbation, we consider
homoclinic excursions to a normally hyperbolic manifold. The asymptotic
orbits could change their nature under the perturbations. For example, a
family of Lyapunov periodic orbits subject to a small dissipation could get
transformed into a family of orbits that converge to a critical point (see

[ILK19]).

1.2. Brief description of the main results and methodology. While
we consider a general set up and derive some general results on the effect
of non-conservative, time-dependent perturbation on homoclinic orbits, the
main motivation of this work resides with the PCRTBP.

In the PCRTB, the family of periodic orbits about either L; or Lo forms
a normally hyperbolic invariant manifold (NHIM). Each NHIM has hyper-
bolic stable and unstable manifolds. We will assume that the stable and
unstable manifolds of the NHIM corresponding to either L or Lo intersect
transversally, and also that the unstable (stable) manifold of the NHIM cor-
responding to L intersects transversally the stable (unstable) manifold of
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the NHIM corresponding to Lo. This assumption can be verified numeri-
cally for a wide range of energy levels and mass parameters in the PCRTBP
(see, e.g., [KLMROO]). Thus, there exist homoclinic orbits to either one of
the NHIM’s, as well as heteroclinic orbits between the two NHIM’s. There
exist scattering maps associated to the transverse homoclinic intersections,
as well as to the transverse heteroclinic intersections.

There exist some neighborhoods of L and of Ly where the Hamiltonian
of the PCRTBP can be written in a normal form, via some suitable symplec-
tic action-angle and hyperbolic coordinates (1,0, y,z). In particular, each
NHIM can be parametrized in terms of the action-angle coordinates (I, ).
Therefore, the scattering map can also be described in terms of these coor-
dinates. In the unperturbed case, the scattering map is particularly simple:
it is a shift in the angle coordinate (a phase shift).

The fact that we use normal form coordinates to express the Hamiltonian,
and we subsequently estimate the scattering map in terms of the action-angle
coordinates, is a matter of practical convenience. Normal forms are often
used to compute numerically, with high precision, the periodic orbits and
the NHIM’s around the equilibrium points, as well as the corresponding
stable and unstable manifolds, e.g., [Jor99, GLMS01, GSLMO01, GJSMO01a,
GJSMO1b].

For applications, it is important to note that the scattering map for the
PCRTBP can be computed numerically with high precision; see [CDMRO06,
DGRI16, CGdIL16].

We study the effect of a small, non-Hamiltonian, time-dependent pertur-
bation that is added to the system. Provided that the perturbation is small
enough, the NHIM’s will persist [Fen72], although periodic orbits inside the
NHIM’s may disappear. Also, the transverse homoclinic/heteroclinic orbits,
hence the scattering map, will survive in the perturbed system.

The main contribution is that we compute the effect of the non-conservative,
time-dependent perturbation on the action and angle components of the
scattering map. More precisely, we use Melnikov theory to provide explicit
estimates — up to first order with respect to the size of the perturbation
— for the difference between the perturbed scattering map and the unper-
turbed one, relative to the action and angle coordinates. The resulting
expressions are given in terms of fast convergent improper integrals of the
perturbation evaluated along segments of homoclinic/heteroclinic orbits of
the unperturbed system. One important aspect in the computation is that,
in the perturbed system, the action is a slow variable, while the angle is a
fast variable.

We stress that, unlike the usual treatments of Melnikov theory, when
one studies orbits homoclinic to hyperbolic fixed points, periodic or quasi-
periodic orbits, here we study orbits homoclinic to NHIM’s. The asymptotic
dynamics inside the NHIM’s may change under the perturbation.

The effect of the perturbation on the action-angle components of the scat-
tering map can be interpreted, in the context of astrodynamics, as follows.
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The difference in the action coordinates between the perturbed and the un-
perturbed scattering map can be interpreted as the change in energy due to
the maneuver, or equivalently, the change in the ‘size’ of the periodic orbit
which the homoclinic/heteroclinic orbit is asymptotic to. The difference in
the angle coordinates between the perturbed and the unperturbed scatter-
ing map can be interpreted as the change in asymptotic phase due to the
maneuver.

We mention here that there are numerous works on using hyperbolic
invariant manifolds to design low-energy space mission, see, for example
[KLMRO00, GLMS01, GSLM01, GJSM01a, GJSM01b, Bel04, BGT10, PA14],
and the references listed there. We hope that our results can be used to op-
timize the thrust that needs to be applied in order to maneuver between
hyperbolic invariant manifolds on different energy levels.

1.3. Related works. The study of Hamiltonian systems subject to non-
conservative perturbations is of practical interest in physical models, such
as in celestial mechanics, where dissipation leads to migration of satellites
and spacecrafts [MNF87, GEPC17, dILK19, CCdIL20].

Computation of the scattering map, similar to the one in this paper, have
been done in the case of the pendulum-rotator model subject to Hamiltonian
perturbations, e.g., [DAILS08, GdIL18]. The rotator-pendulum model is a
product system and is naturally endowed with action-angle and hyperbolic
coordinates. It has two conserved quantities: the action of the rotator and
the total energy of the pendulum. The effect of the perturbation on the ac-
tion component of the scattering map is relatively easy to compute directly.
On the other hand, the effect on the angle component of the scattering map
is more complicated to compute, since this is a fast variable. To circumvent
this difficulty, the papers [DdAILS08, GdIL18] use the symplecticity of the
scattering map to estimate indirectly the effect of the perturbation on the
angle component of the scattering map.

The perturbed scattering map has been computed in the case of the
pendulum-rotator model subject to non-conservative perturbations in
[GdILM21]. Since the perturbations are not Hamiltonian, the symplectic
argument used in [DdILS08] can no longer be applied. Therefore, to deter-
mine the effect of the perturbation on the angle component of the scattering
map, a direct computation is performed in [GdILM21].

The PCRTBP model considered in this paper presents some significant
differences from the pendulum-rotator model. First, it has only one con-
served quantity, namely the total energy. Second, the PCRTBP is not a
product system, and does not carry a globally defined system of action-
angle and hyperbolic coordinates. Third, in the unperturbed case the stable
and unstable manifolds associated to a NHIM do not coincide. For these
reasons, we construct locally defined systems of action-angle and hyperbolic
coordinates along the unstable manifold as well as along the stable manifold,
respectively. At the intersection of the unstable and stable manifolds, the
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two coordinate systems do not agree in general. So the computation of the
perturbed scattering map has to take into account the ‘mismatch’ between
these coordinate systems. The dynamics in these coordinate systems fails
to be of product type, as there is a coupling between the action-angle and
the hyperbolic coordinates, which also needs to be taken into account in the
computation. All of these features make the computation of the perturbed
scattering map for the planar circular restricted three-body problem more
intricate than for the rotator-pendulum system. Some of the calculations are
simplified taking advantage that some of the variables in the unperturbed
system are slow variables, but we can deal with perturbation theory for fast
variables by observing that, near the NHIM’s, the difference between the
variables and their asymptotic values is slow (a technique already used in
[GdILM21].

1.4. Structure of the paper. In Section 2 we describe a general set-up
for two-degrees of freedom Hamiltonian systems subject to non-conservative,
time-dependent perturbations. We also state the main result, Theorem 2.1.
It provides an expansion of the perturbed scattering map in terms of the
unperturbed scattering map, where the first order term in the expansion is
given explicitly in Section 5, in Proposition 5.2 and Proposition 5.7. Section
3 describes how to verify the hypotheses of Theorem 2.1 in the context of
the PCRTBP. Section 4 defines some suitable coordinate systems, which we
use to describe the geometric objects of interest. The proof of the main
result is given in Section 4.

2. SET-UP AND MAIN RESULT

Consider a (real analytic) C*¥, symplectic manifold (M, §2) of dimension 4.
Each point z € M is described via a system of local coordinates z = z(p, q)
with (p, ¢) € R?2xR2, such that  relative to these coordinates is the standard
symplectic form

2
(2.1) depAdqudpi/\dqi.
i=1

On M we consider a non-autonomous system of differential equations

(2.2) %z = X%(2) + eX(2, t;0),

where X0 : M — TM is a C*-smooth vector field on M, X' : M x R x
(—e0,e0) = TM is a time-dependent, parameter dependent C"-smooth vec-
tor field on M, with r sufficiently large, and € € R is a ‘smallness’ param-
eter, taking values in the interval (—eg,&¢) around 0. The dependence of
X'(z,t;¢) on the time ¢ is assumed to be of a general type — not necessarily
periodic or quasi-periodic.

The flow of (2.2) will be denoted by ®L.
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The assumptions that the manifold M is 4-dimensional and that X is an-
alytic are motivated by applications to celestial mechanics (we will consider
the special case when the unperturbed system is given by the PCRTBP).
We will use the assumption that X is analytic only to be able to quote
several normal form theorems. We believe it could be weakened to finitely
differentiability at the price of providing some new normal form theorems.

The assumption that X! is only C" and possibly non-Hamiltonian is also
motivated by applications, as X! can be chosen to model the thrust applied
to a spacecraft for some time. In particular X! can have compact support
in space and in time. Note that even if the perturbation were analytic, the
NHIM’s which play a role in our treatment can only be assumed to be finite
differentiable. The regularity is limited by ratios between the tangential and
normal contraction rates, as well as by the regularity of the perturbation.
Since the motion on the unperturbed NHIM is integrable, we have that for
¢ small enough, the tangential rates are close to zero, so that the limitations
of regularity due to the rates become irrelevant.

Below, we will require that the vector fields X0, X! satisfy additional
assumptions.

2.1. The unperturbed system. We assume that the vector field X0 rep-
resents an autonomous Hamiltonian vector field, that is, XY = JVH, for
some C* Hamiltonian function Hy : M — R, where J is an almost complex
structure compatible with the standard symplectic form given by (2.1), and
the gradient V := V, is with respect to the associated Riemannian metric.
The Hamilton equation for the unperturbed system is:

d
(2.3) pr JV Hy(z).
2.1.1. Unperturbed NHIM and action-angle coordinates. We assume that the
Hamiltonian flow associated to Hj satisfies the conditions (A-i) and (A-ii)
below. In Section 3, we will see that these conditions can be verified in the

PCTBP.

(A-i) There exists an equilibrium point Ly of saddle-center type, that is, the
linearized system DJV Hy at L1 has eigenvalues of the type £\, tiw,
with A\,w # 0.

Consequently, by the Lyapunov Center Theorem [Mos58], there exists
a l-parameter family of periodic orbits \g(h), parametrized by the energy
level H = h, for h € (H(L1), h1) with hy sufficiently small, such that Ag(h)
shrinks to Ly as h — H(L;). This family of periodic orbits determines a
2-dimensional manifold Ag ~ D x T € M which is a normally hyperbolic in-
variant manifold (NHIM) with boundary for the Hamiltonian flow ®} of Hy,
where D is closed interval with non-empty interior contained in (H(L1), h1).
The notion of a NHIM is recalled in Definition A.1, Appendix A.

The NHIM A is symplectic when endowed with the form €5 , where {2
is given by (2.1). Moreover, Ay is foliated by the periodic orbits Ag(h), i.e.,
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Ao = Upep Mo(h). The flow ® on each A\g(h) is a constant speed flow. In
particular, the dynamics restricted to the NHIM is integrable. Therefore Ag
can be parametrized in terms of symplectic action-angle variables (I, ), so
that each periodic orbit Ag(h) represents a level set I, of the action variable.
The action I}, is uniquely determined by the energy level Hy = h. In fact, as
we will see in Section 4.1, there exists a system of action-angle and hyperbolic
variables (I,6,y,x) in a neighborhood of L; such the Hamiltonian Hy can
be written in a normal form, and (I, 6) on Ay coincide — up to a phase shift
— with the action-angle coordinates described above.

2.1.2. Homoclinic connections.

(A-ii) There exists a relatively compact open set & in M such that the
unstable manifold WY, (Ao) and the stable manifold W5, (Ag) inside
Jintersect transversally along a homoclinic channel I'g € 7.

The definition of a homoclinic channel is given in Appendix B, Definition
B.1.

The unstable and stable manifolds of each periodic orbit \g(h) are con-
tained in the same energy level as \g(h), i.e., W*(Ao(h)), W3(Ao(h)) S My,
where M}, = {z € M | H = h}. By (A-ii), these manifolds intersect transver-
sally within the energy level. Hence, each homoclinic orbit is asymptotic,
in both forward and backwards time, to the periodic orbit A\g(h). The ho-
moclinic channel I'y consists of a 1-dimensional family of homoclinic orbit
segments.

In Section 4.1, we will see that the normal form coordinates (I, 6, y, x) can
be extended via the flow ®} along neighborhoods of W"(Ag) and W5(Ay),
yielding two systems of action-angle and hyperbolic variables (I, 6", y*, x"),
(I*,6°%,y°, x°), respectively. Relative to these two systems of coordinates
WH"(Ag) can be described locally by y" = 0, and W5(Ag) can be described
locally by 2° = 0. The coordinate systems (I, 6", y*, x") and (I%, 6%, y*, x°)
do not agree with one another in a neighborhood of the homoclinic chan-
nel T'y.

2.1.3. Unperturbed scattering map associated to a homoclinic channel. Let
Q7 : W"(Ag) — Ao be the projection mapping defined by Q7 (29) = %,
where z, € Ag is the footpoint of the unstable fiber through zy € W*"(Ay).
Similarly, let QT : WS(Ag) — Ag be the projection mapping defined by
Q" (20) = 2§, where z§ € Ag is the footpoint of the stable fiber through
z0 € W5(Ap). The stable and unstable fibers are defined in Appendix A,
equation (A.4).

Consider the homoclinic channel I'y from condition (A-ii). By the defi-
nition of a homoclinic channel, QF restricted to I'y is a diffeomorphism onto
its image. To any homoclinic channel we can associate a scattering map,
which is defined in Appendix B, Definition B.2. Specifically, the scattering
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map oq associated to I'g is given by:

o0: Q2 (Tp) € Ay — Q+(F0) c Ay,

+

2.4
&4 oo(zg ) = 29 »

provided that there exists a homoclinic point zg € I'g such that Q7 (zg) = 2,
and Q7 (z9) = zar . For more details on the scattering map, see Appendix B.

The energy preservations along the stable and unstable manifolds of pe-
riodic orbits implies that oy leaves each periodic orbit A\g(h) invariant, that
is, o0(Ao(h)) € Ao(h).

Fixing a point 29 € I', we have that oo(z; ) = 2 = 7z, + A, for some A
depending on zy. The invariance property of the scattering map (B.2), and
the fact that @} restricted to Ag(h) is linear implies that

00(Ph(z ) = P'(z) = (2 +A) = (%) + A,

for all ¢ for which ®(z0) remains in I'g. This implies that, in terms of the
action-angle coordinates (I,0), o¢ is given by a shift in the angle

oo(1,0) = (1,0 + A(D)),

for some function A that depends differentiably on I. We stress that A also
depends on the choice of the homoclinic channel I'y.

2.2. The perturbation. The vector field X! is a time-dependent, parameter-

dependent vector field on M.

(A-iii) We assume that X1 = X1(2,t;¢) is C"-differentiable in all variables
with uniformly bounded derivatives on A& x R x (—eg,ep), where the
set A is as in the condition (A-ii).

Above, we assume that r is suitably large. We will not assume that X' is
Hamiltonian. Thus, our setting can be used to model dissipation or forcing
applied to a Hamiltonian system. Note that non-Hamiltonian perturbations
are very singular, in the sense that periodic and homoclinic orbits may
disappear. On the other hand, the NHIM’s and their stable and unstable
manifolds persist and can be used as the basis for perturbative calculations.

As a particular case, we will also write our results for the case when the
perturbation X! in (2.2) is Hamiltonian, given by

(2.5) Xz, t;e) = IV Hy(2,t;¢),

where H7 is a time-dependent, parameter-dependent C"-smooth Hamiltonian
function on M.

When the perturbation is added to the system, as we will see in Sec-
tion 5.1, the NHIM for the unperturbed system can be continued to a
NHIM for the perturbed system, and the transverse homoclinic/heteroclinic
orbits for the unperturbed system can be continued to transverse homo-
clinic/heteroclinic orbits for the perturbed system, provided that the per-
turbation is sufficiently small. Hence there exists an associated scattering
map for the perturbed system.
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The goal is to quantify the effect of the perturbation on the corresponding
scattering map.

2.3. Extended system. We consider the system (2.2) under the conditions
(A-i), and (A-ii). We associate to it the extended system

4 XO() + X (2 k0,
dr
(2.6) ;
—t =1,
dr

which is defined on the extended phase space M = M x R. We denote
z = (z,t) € M. The independent variable will be denoted by 7 from now
on. We will denote by ®7 the extended flow of (2.6). We have

BT(z,t) = (BT(2),t + 7).

In the extended phase space we have the following:

1~\0 = AO x R
is a NHIM with boundary for the extended unperturbed flow <I) 0, and
FO = FO x R

is a homoclinic channel for ®7.
The scattering map associated to 'y is given by

Go(1,0,t) = (1,0 + A(I), t).

2.4. Main result. We describe a general set up for two-degrees of freedom
Hamiltonian systems subject to non-conservative, time-dependent pertur-
bations. We stress that some of the results below hold in a more general
setting. Theorem 2.1 gives a first order approximation of the perturbed
scattering map 6., where the 0-th order term is the unperturbed scattering
map &g, and the 1-st order term is given by explicit Melnikov-type formulas.

The unperturbed scattering map 6y is defined on the unperturbed NHIM
Ag. The manifold Ag is parametrized by (I,6,t), where (I,6) are the action-
angle coordinates described in Section 2.1.1. The perturbed scattering map
&, is defined on the perturbed NHIM A, which persists from Ag, and whose
existence is given by Theorem 2.1-(i). Moreover, the perturbed NHIM A,

can be parametrized in terms of the coordinates (I, 6,t). See Section 5.1.1.
Therefore, in Theorem 2.1-(iii)-(2.7), we express both the unperturbed and
the perturbed scattering map in terms of the (I, 6, t)-coordinates.

Theorem 2.1. Consider the system (2.2).
Assume that the unperturbed system X satisfies the conditions (A-i) and
(A-ii) and that the perturbation X' satisfies the condition (A-iii).
Then, there exists 1, with 0 < €1 < &g, such that the following hold true:
(i) For all € € (—e1,€1), there is a C'-family of NHIMs A, for the eax-
tended flow &)2, for some £ =1
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(ii) For alle € (—e1,¢e1), the unstable and stable manifolds of Ao, W™(A.)

and W*(A.), respectively, intersect transversally, in the extended

phase space ]TJ, along a homoclinic channel fg,;
(iii) The perturbed scattering map 6. associated to Iz can be written as

(2.7) Go(I,0,t) = 6o(I,0,t) +eS(I,0,t) + Ope(€2),

where S = (81,89, 8%) is a mapping from some domain in D x T xR
to R x T x R as follows:
(iii-a) the components ST and SY are given by (5.17) and (5.40), re-
spectively, and
(iii-b) the component St is given by SY(I,0,t) = t.

We recall the notation Ogx (+) used above: f = Ok (g) means that | f|or <
M| gllcr for some M > 0, where k > 0, and | - o+ is the C¥-norm. In the
sequel, to simplify the notation we will write O(-) without the subscript
indicating the function space topology, whenever this can be inferred from
the context.

2.5. Heteroclinic connections. Instead of the conditions (A-i) and (A-
ii) we assume that the Hamiltonian flow associated to Hy satisfies the con-
ditions (A’-i) and (A’-ii) from below.
Condition (A’-i) has two parts (A’-i-a) and (A’-i-b).
(A’-i-a) There exists two equilibrium points L1, Lo of saddle-center type.

We do not assume that the two equilibrium points are on the same energy
level, that is H(L1) # H(L2) in general. Consequently, for each equilibrium
point Li, Lo there exists a 1-parameter family of closed orbits )\(l)(h), for
h € D, and A3(h) for h € D? where D', D? are some closed intervals
contained in some neighborhoods of H(Lj), H(L3), respectively.
(A’-i-b) There exists an interval of energies D S D' n D?, with non-empty
interior, such that there are periodic orbits \j(h), A3(h) for all h €
D. Moreover, there exist normal form coordinates (I',0%,y*, 2') and
(I2,602%,y%,2%) defined around A} := Upep No(h) and Lambda} :=
Unep A8(h), respectively. These normal form coordinates are as in
Section 4.1.

We remark that the normal form coordinates in (A’-i-b) already exist in
small neighborhoods of L; and Lg, respectively. Condition (A’-i-b) requires
these normal form coordinates to extend to the specified energy range.

Condition (A’-ii) has two parts (A’-ii-a) and (A’-ii-b).

(A’-ii-a) There exists a relatively compact open set H in M such that the
unstable manifold WY (A}) and the stable manifold W%, (A3) inside
J intersect transversally along a heteroclinic channel I'y c JZ.

The definition of a heteroclinic channel is given in Definition B.3, Appen-
dix B. As a consequence, there exist transverse heteroclinic orbits from A(l)
to A(Q). Each such heteroclinic orbit is asymptotic in backwards time to a
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periodic orbit A(l)(h), and is asymptotic in forward time to a periodic orbit
A2 (h).

We require an additional non-degeneracy condition (A’-ii-b) formulated
in terms of normal forms, which will be given in Section 4.1, Remark 4.4. As
we will see, (A’-ii-b) consists of some explicit and verifiable conditions that
the derivatives of certain functions are non-zero. In the case of homoclinic
connections we do not need a separate assumption analogous condition to
(A’-ii-b), as this is automatically satisfied; see Section 4.1.

2.5.1. Unperturbed scattering map associated to a heteroclinic channel. As
before, we define Q! : WU(A}) — A} by Q1 (20) = 25, where z; € A}
is the footpoint of the unstable fiber through 29 € WY(A}), and Q2 :
W5(A3) — A2 by QT2(20) = 27, where 2z € A3 is the footpoint of the
stable fiber through 2o € W*(A3).

Associated to the heteroclinic channel I'y we can define the scattering
map as in Definition B.4 in Appendix B. Specifically,

o0 : QN To) € AL - QF3(T) € A2,
is given by
oo(zy) = 25
provided that there exists a zo € I'g such that Q71 (2) = z, and Q7?(z) =
2

Since Hy is constant along heteroclinic orbits, we have that I(z5 ) = I(zg).
Then the scattering map, expressed in terms of the action-angle coordinates,
is given by

o0(1,0) = (1,0 + A(D)),
for some function A that depends smoothly on 1.

In this case, we can obtain a result similar to Theorem 2.1. For brevity, we
will not provide the precise formulas for the components of the corresponding
expansion of the perturbed scattering map, which is analogous to (2.7). Such
formulas are analogues of (5.17) and (5.40).

3. GEOMETRIC STRUCTURES IN THE PLANAR CIRCULAR RESTRICTED
THREE-BODY PROBLEM.

In this section we survey the status of the verification of the conditions
(A-i) and (A-ii), from Section 2.1, or the conditions (A’-i) and (A’-ii) from
Section 2.5, in the concrete model of the PCRTBP. Some of the verifications
in the literature are rigorous and some of them are numerical.

Of course, the verification of the hypothesis of Theorem 2.1 in a concrete
model does not affect the validity of the rigorous arguments establishing
Theorem 2.1, and the reader interested only in rigorous results may safely
skip this section.

We note that, since our hypothesis are mainly transversality conditions,
they can be verified with finite precision calculations, which seem to be safe
calculations for today’s standard and could well be accessible to “computer
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assisted proofs”. We hope that this work could stimulate more extensive
verifications.

The PCRTBP is a model describing the motion of an infinitesimal body
under the Newtonian gravity exerted by two heavy bodies moving on circular
orbits about their center of mass, under the assumption that these orbits
are not affected by the gravity of the infinitesimal body.

We can think of the heavy bodies (referred to as primaries) representing
the Earth and Moon, and the infinitesimal mass representing a spaceship.

It is convenient to study the motion of the infinitesimal body relative to
a co-rotating frame which rotates with the primaries around the center of
mass, and to use normalized units. Henceforth, the masses of the heavy
bodies are 1 — p and u, where p € (0,1/2]. Relative to the co-rotating
frame, the heavier mass 1 — pu is located at (u,0), and the lighter mass p is
located at (—1 + p,0). The motion of the infinitesimal body relative to the
co-rotating frame is described via the autonomous Hamiltonian

(p1 +q2)? + (p2 — q1)?
2

where (p,q) = (p1,p2,q1,q2) € R?* represents the momenta and the coordi-
nates of the infinitesimal body with respect to the co-rotating frame,

(3.1) Ho(p1,p2: 1, q2) =

- v(q17 q2)7

2 2
n 1—
Gita lop p
2 T 2
1/2
r= (g — )2 +g3)"
ra = ((g1 +1—p)? +¢2)

Above V(q1, g2) represents the effective potential, and r1, ro represent the
distances from the infinitesimal body to the masses 1 —u and p, respectively.
The phase space

M = {(p,q) e R*[q # (1,0), and g # (=1 + p1,0)}

is endowed with the symplectic form

Vg1, q2)

(3.2)

)

1/2

Q =dp1 Adg + dpa A dgo.

Note that the phase space M is not compact.
The equations of motion of the infinitesimal body are given by the Hamil-
ton equations corresponding to (3.1), that is

d
(3.3) pride JV Hy(z),

where z = z(p1,p2,q1,92) and J represents the standard almost complex
structure.

The Hamiltonian Hy is an integral of motion, so the flow ®} of (3.3) leaves
invariant each energy hyper-surface

(34) Mh = H(;l(h) = {(p17p2,Q17Q2) € M|H0(pl7p2aQI7QQ) = h’}
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The system has three equilibrium points L1, Ly, L3 located on the ¢;-axis,
and two other equilibrium points L4, L5, each lying in the (¢, g2)-plane and
forming an equilateral triangle with the primaries. The first three of the
equilibrium points are attributed to Euler, and the last two are attributed
to Lagrange. In our convention, L; is located between the primaries, Lo
is on the side of the lighter primary, and L3 is on the side of the heavier
primary. The linearized stability of L1, Lo, L3 is of center-saddle type. The
linearized stability of L4, Ls is of center-center type, for p less than some
critical value picy.

We note that condition (A-i) is satisfied for each of the equilibrium points
Ly, Lo, Ls.

For i = 1,2,3, for each energy level h, with H(L;) < h and h sufficiently
close to H(L;), there exists a unique periodic orbit A\g(h) near the equilib-
rium point L;, which is referred to as a Lyapunov orbit. The existence of
such periodic orbits follows from the Lyapunov Center Theorem (see, e.g.,
[Mosb8]). Moreover, there exists a neighborhood of L; in the phase space
where the Hamiltonian Hy can be written in a normal form relative to some
suitable coordinates (1,6, y, x); see Section 4.1.

Each Lyapunov orbit is hyperbolic in the energy surface, so it has asso-
ciated 2-dimensional unstable and stable manifolds denoted W™ (\g(h)) and
W= (Ao (h)).

Numerical evidence, as well as computer assisted proofs, show that these
periodic orbits can be continued for energy levels h > H(L;) that are not
close to H(L;) (see, e.g., [Bro68, CR12]).

Normally hyperbolic invariant manifold for the unperturbed system. For
an energy range h € D sufficiently close to the energy of L;, the family of
Lyapunov orbits

(3.5) Ay = U Ao(h),

heD

defines a 2-dimensional NHIM with boundary for the Hamiltonian flow of
(3.3). The NHIM carries the symplectic structure {5, and it can be de-
scribed in terms of the action-angle coordinates (I, 6). The action I = Ij, is
uniquely defined by the energy h, and 6 is symplectically conjugate with I
with respect to 5,. The variable I is a first integral along the trajectories
of the flow on A, and the action level sets are in fact the Lyapunov orbits
Ao(h). The motion restricted to each Lyapunov orbit is a rigid rotation in
the variable 8, with the frequency depending on the energy level.

The NHIM Ag and its unstable and stable manifolds W"(Ag) and W*(Ap)
have simple descriptions in terms of the normal form coordinates (1,6, y, =)
in a neighborhood of Ly: Ag corresponds to x =y = 0, W"(Aq) corresponds
to y = 0, and W*(Ay) corresponds to z = 0.

Homoclinic connections. We first focus on the dynamics around the equi-
librium point L;. There are analytic arguments (see [LMS85]) showing that,
for a discrete set of values of p that are sufficiently small, and for each h
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sufficiently close to H(L1), the branches of W"(\o(h)) and WS(Ag(h)) on
the side of the heavier primary do not collide with the primary and inter-
sect transversally along some homoclinic orbit yo(h), not necessarily unique.
Numerical evidence, as well as computer assisted proofs, show that this prop-
erty holds in fact for a large range of values of masses p and energies h; see,
e.g. [KLMR00, GLMS01, GSLM01, GJSM01a, GJSMO01b, Cap12].

Each choice of a transverse homoclinic orbit vo(h) can be continued in en-
ergy h to a family of such homoclinic orbits, which forms a homoclinic man-
ifold [ J,ep Y0(h). Moreover, we can ensure that W"(Ao(h)) and W3(Ao(h))
are contained inside some compact subset # of the phase space.

We define the transverse homoclinic manifold 'y as an open disk con-
tained in (J,cpY0(h). It consists of a 1-dimensional family of segments of
homoclinic orbits. In order to define the scattering map, we need that the
stable (resp. unstable) fibers of Ag are transverse to I'g relative to W*(A)
(resp. W"(Ap)), as per condition (B.1). This is automatically satisfied pro-
vided h is sufficiently close to H(Lj), since the flow is transverse to the
corresponding fibers relative to W*(Ag) (resp. W"(Ag)). This can be easily
seen, for instance, from (4.6).

To define the scattering map, we also need that QF are diffeomorphisms
from I'g onto their images; see Definition B.1. We can achieve this by further
restricting to a suitable submanifold

heD
so that I'g is a homoclinic channel.

In this way, we can ensure condition (A-ii).

In summary, for the PCRTBP, we can verify the existence of the geometric
structures of interest and the corresponding conditions (A-i) and (A-ii)from
Section 2.1.

Heteroclinic connections. We now focus on the dynamics around the
equilibrium points Ly and L. They satisfy condition (A’-i-a). For energy
levels h with H(L1) < h, there exists a family Aj(h) of Lyapunov orbits
near Ly, and for H(Lg) < h there exists a family A3(h) of Lyapunov orbits
near Lo. Moreover, there exist normal form coordinates (I', 0%, y', z') and
(I%,6%,y%, 22%) defined around L; and Lo, respectively, for some suitable
energy ranges. These normal form coordinates are as in Section 4.1.

Numerical evidence shows that families of periodic orbits near L1 and Lo
can exist simultaneously, for some energy range. Therefore, we consider an
interval of energies D such that, for h € D we have the following: there exists
families of periodic orbits Aj(h) near Ly, and A3(h) near Lo, the following
sets
Ay = A,

heD
Ag = M),

heD

[en)
|

(3.7)
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are NHIM’s for the Hamiltonian flow of (3.3), and the normal form coor-
dinates (I',6',y', z') and (12, 62,42, 22) are defined in some neighborhoods
of A} and A2, respectively, granting (A’-i-b).

Numerical evidence, as well as computer assisted proofs, show that there
exist transverse heteroclinic connections determined by WY(A§(h))nW3(A\3(h))
and WY(A3(h))nWS3(A{(h)) for certain ranges of energies. See, e.g., [KLMROO,
GLMS01, GSLMO01, GJSMO01a, GJSM01b, WZ03, CM06, BGT10]. In either
case, we denote the corresponding family of heteroclinic orbits by vo(h). We
consider a range of energies h € D for which this additional condition on the
existence of transverse heteroclinic connections is satisfied.

The transverse intersection of the unstable manifold WY(A}) with the
stable manifold W5(A2) define a heteroclinic manifold | J,cp Y0(h), which
depends on the choice of the family of heteroclinic orbits vo(h). One can
always restrict to a submanifold

(3.8) To < (),

heD

that is a heteroclinic channel.

If that is the case, the condition (A’-ii-a) is verified.

The remaining condition (A’-ii-b), which will be given in Section 4.1, Re-
mark 4.4, consists of some explicit non-degeneracy conditions on the normal
forms. Such condition can also be verified numerically.

Thus, the conditions (A’-i) and (A’-ii) from Section 2.5 are checkable
numerically.

It would be of interest to verify if Theorem 2.1 can be applied when the
equilibrium point L3 is also considered; some numerical results concerning
the dynamics around L3 can be found in [BO06, CCP16, JN20, GLMSO01,
GSLMO1, GJSMO01a, GJSMO1b].

In summary, in this section we have outlined how the conditions of the
Theorem 2.1 can be verified in the PCRTBP. The theoretical results of
Theorem 2.1 are independent on the application to the PCRTBP.

4. COORDINATE SYSTEMS AND EVOLUTION EQUATIONS

4.1. New coordinate systems for the unperturbed system. We con-
sider the case of homoclinic connections described by conditions (A-i) and
(A-ii). Under these assumptions, the manifolds W"(Ag) and W*(Ay) inter-
sect transversally along the homoclinic channel T'.

The next proposition states that, in a neighborhood of each W"(Ay)
and WS(Ag), there exists a system of symplectic coordinates such that Ag,
WHY(Ap) and W*(Ap) have very simple descriptions, and moreover the unper-
turbed Hamiltonian Hy can be written in a normal form relative to the cor-
responding coordinates. As before, for z € W5%(Ag), we denote 2= = QF(2).
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Informally, we have three systems of coordinates near the homoclinic in-
tersection. Omne is given by the normal form. Two other systems of co-
ordinates are obtained propagating — by the unperturbed dynamics — the
coordinate system along the stable and unstable manifolds.

As it is standard, we will think of the collections of coordinates as defining
a geometric point. At the same time, we note that the coordinates are
functions on a manifold. Therefore, we can compute the evolution of the
coordinates using the usual calculus formulas in the ODE. As we will see, in
perturbative calculations, it will be enough to use the unperturbed evolution.

Hence near the NHIM we have three coordinate systems, but on the NHIM
the three coordinate systems agree.

Near the homoclinic intersection, we have two systems of coordinates. The
two systems of coordinates do not agree because the propagation happens
in two different ways. Nevertheless, the coordinate change can be computed
from the unperturbed dynamics.

Proposition 4.1 (Normal Forms). There exist three systems of analytic,
symplectic coordinates', and some analytic functions ho = ho(I), g1 = g1(I),
and g2 = g2(I, xy), defined for some range of energies h € D, as follows:
(N) A coordinate system (1,0,y,x) in a neighborhood A" of Ay such that
for z € N we have:
(N-i1) z € Ag if and only if x(z) = y(z) = 0;
(N-ii) z € W"(Ag) if and only if y =0, and z € W3(Ao) if and only if
xz=0;
(N-iii) for z € W"(Ag) we have I(z) = I(27) and 6(z) = 0(z7), and
for z € W3(Ag) we have I(z) = I(z1) and 6(z) = 0(zT);
(N-iv) Hy restricted to A can be written in a normal form
HO(pv q) :HO(Ia xy)
=ho (I) + (zy)g1 (1) + (zy)* g2(I, 2y).
(U) A coordinate system (1%, 0", y", x") in a neighborhood 4™ of W"(Ag)
such that for z € N* we have:
(U-1) z € Ag if and only if x"(2) = y*(z) = 0;
(U-ii) z € W™ (Ao) if and only if y* = 0;
(U-iii) for z € W"(Ap) we have I*(z) = I"(27), and 0" (2) = 0"(27);
(U-iv) Hy restricted to 4™ can be written in a normal form
(4 2) HO(pv Q) :H(l)l(Iuaxuyu)
' =ho (I) + (@"y“)g1 (I") + ("y")? g2(I", 2"y").
(S) A coordinate system (I°,0°,y°, ) in a neighborhood NS of W*5(Ag)
such that for z € N* we have:
(S-i) z € Ag if and only if 2°(z) = y*(z) = 0;
(S-ii) z € W*3(Ag) if and only if x° = 0;

(4.1)

Leoordinates obtained from (p, q) via a canonical transformation
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(S-iii) for z € W3(Ag) we have I3(z) = I(271), and 63(z) = 63(zT);
(S-iv) Hy restricted to A° can be written in a normal form

Ho(p, q) =Hy(I*, z°y")
=ho (I*) + (2% g1 (I%) + (2°9°)® go(I°, 2°9°).

(C) The coordinate systems (I",0%,y", ") and (I%,6°% y° %) coincide
with (I,0,y,z) on Ao, i.e.,

(4.4) (I%,0% y" z%) = (I°,6°,y°, 2°) = (I,60,y,x) on Ay.

(4.3)

Proof. Part (N) follows from [Gio01], so we will not give a detailed proof.

We only summarize the procedure to obtain the normal form in a neigh-
borhood of a center-saddle equilibrium point for a 2-degrees of freedom
Hamiltonian Hy. First, the Hamiltonian Hj is expanded in a Taylor series
around that equilibrium point (shifted to the origin) as

Ho(p,q) = Ha(p,q) + H3(p, q) + Ha(p,q) + ...,

where H;(p,q) is an homogeneous polynomial of degree j in the variables
(p1,p2,q1,q2). Then, by making a linear canonical change of coordinates
(p,q) — (x,y), with the eigenvectors of the linearized system given by
JV H5(0,0) as the axes of the new system, the quadratic part Hy of Hy
can be written in the new coordinates (x,7) € R* as

w
HQ(xay) = )‘xlyl + E(mg + y%))

where £A; = £\ and +)\9 = +iw are the eigenvalues of JVH5(0,0). Then,
via another linear canonical change of coordinates

T =y = oy = 2R w:@iﬂ
9 ) \/ﬁ ) \/i b)

we obtain Hy written in complex variables as

HY (&,m) = M + iwang = A& + Aaonp.

The next step is to apply a sequence of changes of coordinates to kill all
monomials for which the exponent of ¢; is different from the exponent of
n;. Since the eigenvalue A\; = A is real and A2 = iw is imaginary, there
are no small divisors. The only possible source of divergence is due to the
use of Cauchy’s estimates for the derivatives required by the normalization
procedure. In [Gio01] the accumulation of derivatives is controlled via a
KAM technique. The process can be continued to any order.
Thus, in the limit Hy can be written as an expansion

Ho(&,m) = HY (&1m1, &amp) + HLY (€1m, Eomz) + HY (&1m1, &) + - . .,

where H; is an homogeneous polynomial in {171, {2172 of degree j. The series
expansion of Hy is convergent in a neighborhood .4 of the origin, and the
coordinate change x = z(§,n), y = y(&,n) is canonical and given in terms of
convergent series.
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There exist periodic orbits Ag(h) around the equilibrium point for all
energy levels h sufficiently close to the energy level of the equilibrium point.
This implies that the NHIM Ag = ( J,cp Ao(h) is contained in 4", for some
suitable energy range h € D.

To express Hy in action-angle coordinates one applies the canonical trans-
formation

& = VIexp(if), ny = —ivIexp(—ib).
Finally, denote = = &1, y = 1. We obtain the normal form
(4.5) Ho(I,zy) = Avy + wl + Hs(I,zy) + Hy(I,zy) + .. ..
Moreover, in these coordinates the following hold:
(i) The normally hyperbolic invariant manifold Agisgivenby z =y = 0,
and each periodic orbit in Ay corresponds to a level set of I;
(ii) The local unstable fibers W, (z) for z € Ag are given by 6 = const.

and y = 0;
(iii) The local stable fibers W, (z) for z € Ay are given by § = const. and
z = 0;

(iv) The local unstable invariant manifold WY, (Ao) is given by y = 0;

(v) The local stable invariant manifold W%, (Ag) is given by = = 0.
The equations of motion are
d

—1=0
dt ’
d oHY  oHY
: i__)\_&HéV_aHiV
dty B y ox ox R
d oHY  oHYN

Note that Hamiltonian Hy on .4 has two first integrals I and xy, which
are independent and in involution.
This implies that, if z € WY, (Ag) (resp. z € W5,(Ay)), since zy = 0, we
have I(z) = I(27) (resp. I(z) = I(z1)).
The Hamiltonian Hy restricted to Ag is given by
ho(I) := wl + HY(I) + HY(I) + ...,

where we denote Hy(I,0) = ho(I), and HJN(I7 0) = HJN(I) for all j. Each
Lyapunov orbit Ay in Ag corresponds to a unique level set of I, so we can
write \g(h) = Ao(I).

By regrouping the terms of the polynomials H jN (I,zy) for j = 3, we can
rewrite (4.5) in powers of xy up to the second order as
(4.7) Ho(1,0,y,2) = ho(I) + (zy)g1(I) + (zy)?g2(1, xy),

for some analytic functions hg = ho(I), g1 = 1(I), and g2 = g2(1, xy).
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For points z € WY, (Ag) or z € W5, (Ay), since zy = 0, we have

d oh
700 =57 U(2).

This implies that if z € WY (Ag) (resp. z € W5, (Ag)), we have 6(z) = 6(z")
(resp. 6(z) = 0(zT)).

The coordinate system (I, 0, y, z) constructed above is the coordinate sys-
tem from part (N).

Now we construct the coordinate system claimed in part (U).

We extend the coordinate system (I, 0, y, x) along the flow to a neighbor-
hood 4™ of WY(Ap), up to a neighborhood of the homoclinic manifold, as
follows. Let T, > 0 be a time such that ®J*(.4) 2 T. Let 4™ := & (A).
Each point z € A is of the form z = ®l"(¢) with ¢ € .#". We define the
coordinates (I, 0", y", z") of z to be equal to the coordinates (1,6, y, ) of
¢, or equivalently

(4.8) (I",6"y", 2")(2) = (1,6,y,2)(®5 ().

Since the coordinates (I, 6", y", x") of a point z are the coordinates
(I,0,y, ) of ®57"(2), then the coordinate change in symplectic,

The restriction of the coordinates (I,6",y", z") to A N A™ is given
by (I,0,y,x) o (I>5T“. For every z € Ag n A" we have I'(z) = I(z) and
0" (z) = 6o <I>5T“(z) = 0(z) —w(I(2))Ty. We make a symplectic coordinate
change in the action-angle variable

(I%,0%) — (I*,0" + w(I")Ty),

where we use the same notation for the old and for the new coordinates.
Since » = y = 2" = y" = 0 on Ag, we obtain that (1", 0", y",2") = (I,0,7,y)
on Ag n A,

We obtain that the normal form expansion of Hy in the coordinates
(I",0") is the same as in (4.7):
H(Iu7 euayuv xu)

=ho(I o ®5™)
+ (@oag™) - (yo o3 ™)) g1(1 0 @5™)

2
+(@oag™) o rg™) g (To 2™ (zo85™) - (yo 25™))
:ho(Iu) + (:ruy“)gl(l) + (xuyu)Zgz(Iu,xuyu)'

Now we construct the coordinate system claimed in part (S). Let Ts > 0
be a time such that ®;7(4#) 2 T. In general, Ty # Ty,.

We extend the coordinate system (I,60,y,z) along the flow to a neigh-
borhood .48 of W*(Ap), up to the homoclinic manifold, as follows. Start
with the coordinates (I,6,y,z) defined on the neighborhood .4 of Ag. Let
N = @aTS(JV). Each point z € A4 is of the form z = (I)aTS(C) with
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¢ € 4. We define the coordinates (I%,6° y°,25) of z to be equal to the
coordinates (I,6,y,x) of {, or equivalently

(4.9) (1%, 6%, %, 2%)(2) = (I,0,,2)(Py"(2)).
Since the coordinates (I®, 6%, 3°, 2°) of a point z are the coordinates (1,6, y, x)o

@gs of z, then the coordinate change is symplectic. Finally, we make the
symplectic coordinate change

(I%,6°) — (I, 0° —w(I®)Ts),

where we use the same notation for the old and for the new coordinates.

We obtain that the normal form expansion of Hj in the coordinates
(I",0") is the same as in

HY (P, 6%, %, 2%) = ho(I°) + (2°9) 01 (I°) + (a°y°) 2 g2, %)

Sincex =y = 25 = 3% = 0 on Agn A5, we have (I%,60°, 5, 2%) = (1,0, z,y)
on Ay N A3,

Finally, we restrict the Hamiltonian to an energy range h € D such that
Ao = Upep A S A AN A5. Moreover, we restrict D such that W"(Ay),
W#(Ag) are contained in %, where the set % is as in condition (A-ii).

By the above constructions, the coordinates (1,0, y, z), (I, 0", y", ") and
(I%,60°%,y°, x®) satisfy the properties listed in Proposition 4.1. O

We note that Hy satisfies the following non-degeneracy condition, in terms
of the above normal form coordinates:

ohg
(4.10) a1 J0) 70,

g1 (IO) 7é07

for all Iy = Iy(h) with h € D, provided D is contained in a sufficiently small
neighborhood of the energy value of the equilibrium point L.
Indeed, by condition (A-i) we have

ho(I) =wl + O(I?),
g1(I) =A+ O(I),

in a sufficiently small neighborhood of the equilibrium point L, which imply
(4.10).

Remark 4.2. Tt is important to note that the coordinates (1", 0", z", y") and
(I*,6%,2°,4°) do not generally agree at homoclinic points away from the
Lyapunov orbit, where both coordinate systems are well defined. Neverthe-
less, for any homoclinic point z € My, n W (Ag) n W5(Ag), we have that
I(z) = I*(z) = I.

Remark 4.3. The above result on the existence of a convergent normal form
in a neighborhood of a center-saddle point, obtained via a convergent canon-
ical coordinate transformation, is valid for 2-degrees of freedom Hamiltonian
systems. For higher degree of freedom Hamiltonian systems, a similar re-
sult is true under some additional non-resonance conditions (see [GioO1]).

(4.11)
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A related approach to the normal form that we use here can be found in
[Mos58]. A numerical methodology for the effective computations of normal
forms is developed in [Jor99].

Remark 4.4. We now discuss the case when we have heteroclinic connections
between two NHIMs A(l) around L1 and A(Q) around Ls, as in Section 2.5. The
manifolds WU(A}) and W*(A3) are assumed to intersect transversally.

The construction of the normal form coordinates from Proposition 4.1
only works in a small neighborhood of the equilibrium point. In the case
of heteroclinic connections, since L and Lo are on different energy level,
the theory does not guarantee the simultaneous existence two normal form
coordinate system around Lj and Ls respectively, for some common energy
range.

In this case, we need to make a separate assumption that there exist two
systems of normal form coordinates around L; and Lo, for some common
energy range. Indeed, this assumption is already made in (A’-i-b).

Based on this assumption, we can construct, as in the proof of Proposition
4.1, two systems of coordinates

o (It glu ylu 2bwyin a neighborhood A1 c 7 of WH(A}),

o (I%5,0%% y*5 22%) in a neighborhood 425 € # of WS(A3),
so that that Hy can be written relative to these coordinate as

Ho =hg(I™") + (z""y " )gp (1) + (@ y )2y (110, iy,

HO :h%(IQ,S) + (CL‘Q’Syz’S)g%(I?’S) + (1,2,sy2,3)29% (12787 l_2,sy2,3)‘

In the case of heteroclinic connections, we explicitly require the following
non-degeneracy condition, analogous to (4.10):

(A’-ii-b) The Hamiltonian Hy, written in the corresponding normal form co-
ordinates, satisfies:

oh}
6[1?‘1 (IO) #0,
g1(Io) #0,
Oh?
g%(IO) 7507
for all Iy = Io(h) with h € D.

We remark that these conditions are automatically satisfied in small neigh-
borhoods of L; and L, respectively. Condition (A’-ii-b) requires these
conditions to hold on the specified energy range.

4.2. The scattering map for the unperturbed system. Consider the
scattering map og associated to I'g. We will express the scattering map in
terms of the coordinates (I, 6", y", x") and (1%, 6%, y°, z%).

Consider a homoclinic point zyp € W"(A\,) n W*(A). Both coordinate
systems (1", 0%, y", z") and (I®, 0% y°, x°) are defined around z.



22 MARIAN GIDEAT, RAFAEL DE LA LLAVE}, AND MAXWELL MUSSERT

By Proposition 4.1 the action coordinate of zg € I'y is the same as the
action coordinate of the unstable and stable foot-points z, 2§ € Ag, that
is I(zy) = I'(z5) = I"(20) = I®(20) = I®(2f) = I(zd). Therefore the
scattering map og preserves the I-coordinate. Hence og is a phase shift on
I-level-sets in Ag wherever it is defined:

(4.12) oo(1,0) = (1,0 + A(I)).

In general, 0"(zg) # 6°(zp). It is easy to see that the phase-shift de-
termined by the unperturbed scattering map is given by the ‘mismatch’
between the two angle coordinates.

Proposition 4.5. Let h be a fized energy level and let zg € T'g n Mj,.

(i) The angle mismatch 0°(zy) —0"(20) is a constant that depends only on
h, so we write it as 6*(h) — 0"(h).

(ii) The scattering map oo is given by (I,0) — oo(I,0) = (1,0 + A(1)),
where A(I) = 05(h) — 0" (h) for I = Ij.

Proof. (i) If zp is a point in Ty n M}, then I'g n M), consists of points of the
form ®f(z), t € [t1,t2], for some interval [t1,¢2] containing 0.

From Q% (20) = z3 and Q7 (z) = 2, , by the equivariance property (A.5)
we have Q1 (®f(20)) = @} (27 ) and Q™ (P} (20)) = Pf(zy ) for t € [t1,12]. By
By Proposition 4.1 (U-iii) and (S-iii), and by the fact that the dynamics
restricted to Ay, is a rigid rotation in 6, we have

0% (@0(z0)) — 0" (@5 (20)) =0(P5(2g)) — O(PG(20))
=0(z ) — 0(z ),
which depends only on the energy level h.
(ii) In action-angle coordinates, if z, = (I,6), then oo(z,) = 2
(1,0 + A(I)). From (i) we immediately deduce that A(I) = A(I(h))
6%(h) — 6" (h).

oo

We now turn the attention to the unperturbed homoclinic channel T
in the extended phase space. By the transversality conditions (B.3) on a
homoclinic channel, we have that the fibers of A¢ intersect To transversally.
Therefore I'y can be parametrized in terms of the coordinates (I", 0", t), as
well as in terms of the coordinates (1%, 6°, t):

Lo ={(I", 0%, y%, 2% t)|y* = 0, 2" = z5(I", 0%, 1)},

(413) S NS .8 .S S S(TS ps S
:{(I,H,x,y,t)|y :yo(I,e,t),fE :O}

Each homoclinic point % € Ty is associated to unique I = I® = I, ", and
95, with 98(20) - 9“(20) = A(Io)

The corresponding scattering map is given by
Go(1,0,6) = (1,0 + A(I), 1),

Thus, we have that Iy is a graph over the (1", 0", t)-variables, as well as
a graph over the (1%, 6%, t)-variables. On I'g we have two coordinate systems
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(I",0",t) and (I®,60°,t), with the corresponding coordinate change given by
(4.14) (I°,6°,t) = (1", 0" + A(I"),1).

4.3. Perturbed evolution equations. In the sequel, we will identify the
vector fields X0 and X' with derivative operators acting on functions. In
general, given a smooth vector field X and a smooth function f on a manifold
M, and (2j)jeq1,....dim(M)} @ system of local coordinates, then

(4.15) (Xf)(z) = D (X);(2)(0=, H)(2).
J

Consider one of the coordinate systems defined in Section 4.1. To simplify
notation, we will denote such a coordinate system by (I,6,z,y). Below
we provide evolution equations of these coordinates, expressing the time-
derivative of each coordinate along a solution of the perturbed system. We
include the expression for a general perturbation, as well as for the case
when the perturbation is Hamiltonian:

H,
%1 = (X" +ex)(1) = —% +eXx(I)
(4.16) om, om,
T e
H,
%9 — (X0 4 ex)(6) = % +ex(0)
(4.17) _omy | _om
~ o1 Tar
d oH
oy =X0(y) +eX(y) = _aT;O +eX'(y)
(4.18) om, om
or "oz
%m = X%z) +eXxl(2) = %};0 +eXx(x)
(4.19) _omy ot
Oy © oy

5. PROOF OF THE MAIN RESULT

In this section we prove Theorem 2.1.

5.1. Perturbed normally hyperbolic invariant manifolds. In this sec-
tion we prove the assertions (i) and (ii) of Theorem 2.1. Still, we note that
those assertions hold under more general conditions than the ones assumed.

We only give the details in the case when Hj satisfies the conditions (A-i)
and (A-ii). The case when Hj satisfies (A’-i) and (A’-ii) follows similarly.
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5.1.1. Persistence of the normally hyperbolic invariant manifold under per-
turbation. We have that Ag is a NHIM for the flow ®f of X°. Then D®}(2)
satisfies expansion/contraction rates as in Appendix A, for all z € Ay, where
we denote the constant and the expansion and contraction rates by C, A_,
Aby Ay fhes —, b, Tespectively.

It is immediate that Ag = Ag x R is a NHIM for the flow ég of the
extended system (2.6). We note that Ay is a non-compact manifold with
boundary.

The theory of normally hyperbolic invariant manifolds, [Fen72, HPS77,
Pes04] (a handy summary of the results of the theory is [DAILS06]), as-
serts the persistence of NHIM’s under small perturbations. The persistence
of non-compact manifolds when the perturbation has uniformly bounded
derivatives in all variables is shown in [HPS77, Section 6]. This generality
is crucial for infinite dimensional manifolds [BLZ99, BLZ08]. When the un-
perturbed NHIM has a boundary, in the literature, one can find the results
of persistence for inflowing or overflowing manifolds on the boundary (these
conditions are automatic when the boundary is invariant). In such ca case,
the persistent manifold is not necessarily invariant but only locally invariant,
and is not necessarily unique. See Appendix A.

Under the assumption (A-iii) of Theorem 2.1, X' = X!(z,t;¢) has uni-
formly bounded derivatives in all variables. Therefore, there exists €1 such
that the manifold Ay persists as a normally hyperbolic manifold A., for all
|e| < e1, which is locally invariant under the flow ®7.

In terms of the normal form coordinates (1,6, y, x) from Proposition 4.1-
(N), the unperturbed NHIM is given by

Ao ={(1,0,y,2,t)|x =y = 0}.

Then the perturbed NHIM can be written as a graph over the (I,6,t)-
coordinates over a suitable domain, i.e.,

]\5 = {(I7O7y7w7t) |.73 = ‘T&‘(Iaevt)a y = y&(‘[797t)}

See Appendix A. Consequently, every point Z. € A, is determined by its
coordinates (I,0,1).

The NHIM A, is O(e) close in the C’~topology to Ag, where ¢ is as in
(A.3). The locally invariant manifolds are in fact invariant manifolds for an
extended system, and they depend on the extension. Hence, they do not
need to be unique. Nevertheless, given a smooth family of systems, it is
possible to choose the invariant manifolds in such a way that the invariant
manifolds depend smoothly on parameters, as well as the stable and unstable
bundles and the stable and unstable manifolds.

For the perturbed NHIM A., |e| < €1, there exists an invariant splitting
of the tangent bundle TA., similar to that in (A.1), so that D®7(Z) satisfies
expansion /contraction relations similar to those in (A.2) for all z € A, for
some constants C, 5\,, 5\+7 S\C, fie, fi—, fi4. These constants are independent



NON-CONSERVATIVE PERTURBATIONS 25

of £, and can be chosen as close as desired to the unperturbed ones, that is,
to C, A, Ay, Agy e, s v, Tespectively, by choosing €1 suitably small.
There exist unstable and stable manifolds WY (A.), W*(A.) associated to
A., and there exist corresponding projection maps 7 : W“([XE) — A,, and
QF - WS(A.) — A..
For 2t = Qt(%), with Z € W3(A.) we have

(5.1) A(BT(2), BT (E1)) < Cze™+,  forall 7 > 0,

and for 27 = Q7 (2), with 2 e W"(A.) we have
(5.2) d(®T(2),®I(27) < Cze™-,  for all 7 <0,

for some C; > 0. The constant C; can be chosen uniformly bounded, pro-
vided that we restrict to z to the compact neighborhood % given by (A-ii),
and we use the fact that X! = X!(z,t;¢) is uniformly differentiable in all
variables. o
_ To simplify notation, from now on we will drop the symbol ™ from C, C;
)‘—7 )‘+7 :&'—7 ﬂ-i—a )‘Ca ,ac' _

In the sequel, we will fix a choice A, and all computations will be per-
formed relative to that choice. Nevertheless the estimate for the perturbed
scattering map . are independent of the choice of the locally invariant
manifold A..

5.1.2. Persistence of the transverse intersection of the hyperbolic invari-
ant manifolds under perturbation. For the unperturbed system the unstable
and stable manifolds WU(Ag), W*(Ao) intersect transversally along the 3-
dimensional homoclinic channel T'y. By the persistence of transversality un-
der small perturbations, it follows that W"(A.), W3(A.) intersect transver-
sally along T'., for all |¢| < e, provided e is chosen small enough. The
condition (B.1) in the definition of a homoclinic/heteroclinic channel is also
a transversality-type condition, so it is also persistent under small pertur-
bations. We conclude that (i) and (ii) from Theorem 2.1 hold true for all
le| < e1, provided ¢ is chosen small enough.

Recall from Section 4.2 that the unperturbed homoclinic channel I'y can
be described as a graph over the (I, 6", ¢)-variables, as well as a graph over
the (I, 0°,t)-variables. It follows that for the perturbed system, for |e] < &1
with e, sufficiently small, the perturbed homoclinic channel T’z can also be
described as a graph over the (I%, 6%, t)-variables, as well as a graph over the
(1", 0", t)-variables. More precisely, we have

{
{

with y3(I", 69, 1) = O(c), 28(I", 6%, t) = xi(I", 6%, t) + O(e), yS(I°, 6%, 1) =
yS(I5,6%, ) + O(c), and z3(I*, 6, ¢) = O(e).

(5 3) Iu’eu’yu’xuﬂf) |yu = y?(lu>9u7t)7 zt = xlal(Iuvgu?t)}v
‘ [ Poo° y° a8 t) | y° = y2(1°,6°,t), o° = a2(1°,60°,t)},

P -
I'. =

(
(
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Therefore, each homoclinic point Z. € T, is associated to unique coordi-
nate triples (I",0%,¢) and (I®, 6%, t), which satisfy (4.14).

We now describe how to match a perturbed homoclinic point Z. € T to
an unperturbed homoclinic point Zy € fo. As we represent both fe and fo
as graphs over the same coordinates, we have a canonical way to match the
homoclinic points.

To each point Zy € I'g, of local coordinates (I%,65,t) and (I', 0", t), with
(I5,65,t) = (I, 0" + A(I"),t), we assign the point 2. € I'; that has the same
local coordinates (I%,60°%t) and (I, 6",t), via the graph representations in
(5.3).

More precisely, if Zy € Ty is given by

(Iy, 05,0, z5(1", 6%, t9),to), and
(16, 05, v5 (15, 05, to) 0, o),
with I§ = I and 6 = 65 + A(I}}), then we associate to it 2. € [, given by
(I(l)lﬂ 087 yz—:u(IE]J’ 9(1)17 to), x::l(léla 6(1]17 tO)a tO) and
(I(SJv Hgvy:(lts)ﬂ 0(8)7t0)7x:(18’9(s)7t0)7t0)7

respectively. Note also that the representation of the NHIM in these coor-
dinates will also change. B
Therefore, to Zy € I'y we associate Z. € I'. with

IP(z) — I'(%) =0,

(5.4) 0°(2:) — 0"(2:) =0°(%0) — 6" (0),

and with the same time-coordinate ¢g.

This choice can be understood geometrically. The intersection I'; is a
smooth manifold. By the theory of normally hyperbolic manifolds, it de-
pends smoothly on parameters. This manifold is parameterized by the
(I,0,t) coordinates. To specify a family of points, we impose a condition on
these coordinates.

By letting all the choices vary — over all the (I,60,t) that satisfy (5.4) —
we can compute the whole manifold.

The choice (5.4) is one out of many possible choices. We have made it to
simplify several calculations.

In the sequel we will compare the scattering map associated to Zy with the
scattering map associated to Z. satisfying (5.4). The method of calculation
we will use is to compute the leading terms of the change of the coordinates
of the asymptotic points zX. We note that these points exist because of
the theory of smooth dependence of the NHIM on parameters. Once we
know that these points exist and that they are asymptotic, we compute
the change of coordinates by the dynamics. For the slow variables, we can
compute the change of coordinates using the unperturbed dynamics. Since
the unperturbed system conserves energy, the changes of energy are caused
by the perturbation, so they are a slow variable. For the fast variables,
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we will need to introduce extra cancellations between the dynamics in the
asymptotic trajectory and the homoclinic one.

5.2. Perturbed scattering map. In this section we prove the assertion
(iii) of Theorem 2.1.

We recall that the existence of the scattering map and its smooth depen-
dence on parameters follows from the standard theory of normally hyperbolic
invariant manifolds. The only thing we have to do is to compute the formu-
las for the derivatives knowing that they exist. This be done by estimating
the change of the coordinate functions along the connecting orbits.

We start with the unperturbed system (2.3). We recall that for a given
homoclinic channel I'g, the corresponding scattering map oy, is a phase-shift
of the form

oo(1,0) = (1,0 + A(I)).

We choose and fix an energy level h of Hy, and a point zg € I'g n M},. In

the (I'™®,0"5, y*® x"™%)-coordinates, zo is given by

(55) z20 = (1870573/870) = (1(1)17‘9(1)17071‘101)7

where I = I = Ip. The effect of the flow @7 on zy in these coordinates is
given by

(5.6)  ®g(20) = (15,05 + w(lo)7,4°(7), 0) = (Ig, b +w(lo)7,0,2"(7)),

where y*(7) and z"(7) are the y*-component and the z"-component, respec-
tively, of ®{(zp) evaluated at time 7, and w(lp) = %.

There exist uniquely defined points z, , zg in Ag(h) such that W"(z, ) N
(Do n Mp) = W3(25) n (Ton My) = {z0}. In the (I,0,y,z)-coordinates, the

foot-points zoi are given by
(5'7) ZO_ = (10790_707 0)7 Za_ = (18’08_707 0)7

where 05 = 0f and Qar = 0. The effect of the flow ®] on zai in these
coordinates is given by

D (25 ) = (I, 0y +w(lo)T,0,0),

(5.8) 4 (25) = (Io, 05 + w(lo)T,0,0).

The scattering map o takes z; € Ag(h) into zg € Ag(h).

In the extended system (2.6), the corresponding homoclinic point is Zy =
(20,t0) for some ty € R. The scattering map o takes Z; = (z;,%p) into
28_ = (Za_ s t()).

We will compute the effect of the perturbation on the scattering map .

When we add the perturbation there exists a homoclinic point z. € T.
corresponding to Zy = (29, tp) from the unperturbed case, such that Z. satis-
fies the condition (5.4). Associated to . € I'. we have the points 2, 2+ in
A, such that W"(2.) nT. = {3.}, and W3(2) n . = {%.}. The scattering
map &, takes zZ € A. into e A..
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In the sequel we will make a quantitative comparison between
Zy P Golz) =%,
and

e 0e(5) =5

5.2.1. Estimates. Below we will refer to the notation in (5.5), (5.6), (5.7),
and (5.8). To simplify notation, we denote I = I°(Z,), I} = I"(Z.), I
BED), I = P, & = (B5)(3), €5 = (3D, €8 = (2 (5),
e = (e (),

Note that in the following, the coordinates of the scattering map can
be considered as functions of the point. Hence, the symbols O(e) can be
interpreted as relative to the C™ norm.

Lemma 5.1. (i) Estimates on I:
(5.9)  IF -1 = 0(e), I — I = O(e), I — I~ = O(c).

(ii) Estimates on hy:

ho(IZ") — ho(I7)

(" -I) (lo) ) +0O(?),
o [27o)
ho(1E7) = ho(I)

12— 1) (G ) + o),
(iii) Estimates on &:

(5.11) € =0(), & = 0(), & = 0(e?), & = 0(e?).

(iv) Estimates on gp:

0 (I5%) = (Io) + ZHD)IEY — 1) + O(),

(5.12) gl
g1(I;7) =g1(Lo) + W(IO)(IW —Ip) + O(e?),
201 .

(v) Estimates on Ff

991 ey 2991 1) 4+ T (1~ 1) + O(2),

(5.13) a‘” gf ;I o
91 [ u— gl gl u, _

Proof. (i) Due to (5.3), we have . = Z + O(¢) and 2F = 75 + O(e), we
have I%(2.) = I*%(%) + O(e), and I®"(3¥) = I*"(35) + O(e). We note
the graph property of T'. (5.3). guarantees that Z. and %, have the same
time-coordinate tg € R.

The fact that I%(Z%) = I5%(Z;) = Iy yields the estimates in (i).
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(ii) We estimate the term ho(I5T) —ho(I2). Applying the integral form of
the Mean Value Theorem we have

Gy o) —holr) = = ) [ D+ (-
0
We write the integrand of (5.14) as a Taylor expansion
(5.15)
oho ,, ot sy _%ho
D0tz + (-1 =70 1)
82h0 s+ s+ S S
+ o Qo) (2T = Ig7) + (1 = )(L2 — I5))
+ 0(e%)
where we used
oho ,, ot s 0Oho ?ho |, ot o %ho
D015+ (1= 1)1 = 2 (1y) amd T2 013 + (1= 0)15) = T2 1)
Since I5T — I§* = O(e) and If — I§ = O(e), we have
dho s+ s dho
(5.16) D013 + (1~ ) = T2 () +0().

Since I8T — If = O(g) from (5.14) we obtain the first estimate in (5.10).
The other estimate follows similarly.
(iii) The fact that £&" = O(e) follows from Z. = Zp+O(e), and £>"(2y) = 0,
hence £9"(2;) = £ (Z0) + O(e) = O(e).

In the same way we obtain &t = &'~ = O(e). To prove that in fact
&t = €9 = 0(e?), we proceed as follows. For £, we use the Taylor
expansion:

=G+ DG (ST -6 + 0,

where - denotes the dot product and we used that &t — &* = O(e). We
have

5 =0
and

DG - (67 = &) =27 () (e — ") + 97 (5 )@l —agh) =0,
since y*(2)) = 2°(%7) = 0 on Ag. Therefore (5.2.1) implies
ST =0(e?).
Similarly we obtain
& 20(52)'
(iv) We write g1(I2%) as a Taylor expansion, using that I5" — I5™ = O(e),

obtaining

0B = i (I57) + ZHETIE - ) + 0(),

ol
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Since I§* = Iy, the first equation in (5.12) follows.
Similarly

(1) = () + I~ 1) + O,

and I~ = Iy yield the second equation in (5.12).
(v) The proof is similar to that of (iv). O

5.2.2. Change in action by the scattering map. We now give the expression
of the action-component S of the mapping S in (2.7), where [ is the action-
coordinate described in Proposition 4.1-(N).

Proposition 5.2. The change in I by the scattering map 6. is given by the
following formula

=1 4o .
Do) [ (@) - ¥ H) @) de
dho
o1

(Io)>_1 jooo (X Ho)(@5(27)) — (" Ho) (¥F(20)) ) dr

When the perturbation is Hamiltonian X' = JVHy, in (5.17) we have
X'Hy = {Hy, Hy}, where {-,-} denotes the Poisson bracket.

Proposition 5.2 implies that
G1(1,0,t) = 64(1,0,t) +87(1,0,t) + O(?),

where ST is given by the first two terms on the right hand-side of (5.17).
The expression of €S’ is particularly simple since I is a slow variable.
Below we will refer to the notation in (5.5), (5.6), (5.7), and (5.8).
We note that we can express the right-hand side of (5.17) in terms of the
(I%5,0%5 yms x%5) coordinates, by making the following substitutions:
= (5,05 + w(lp)T,0,0,t0 + 7),
(25) (15,605 +w(lo)T,0,0,t0 + 7),
= (15,65 + w(lo)7,5°(7),0,t0 + 7)
(‘[O ’ 08 + W(IO)T, 07 xu(T)7 tO + T) .

To prove Proposition 5.2 we will use the following:
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Lemma 5.3. The change in Hy by the scattering map &, is given by the
following equation

(5.18)

Ho(eE) = o) ===

+o0

(XM Ho) (@5 (55)) — (X Ho)(@5(20)) ) dr
0
—e| (@ @aE) — (X ) @) dr
+0 (7).
Proof of Lemma 5.3. First, note that

(X% + exYHy = XA°Hy 4+ e X1 Hy = {Hy, Ho} + X Hy = e X' Hy.

Second, applying Lemma D.1 and Lemma D.2 from Appendix D, for
F = Hy, we have

(5.19)
HoE) ~ Hoz) === [ (& H)@) — (¥ Ho) (55 dr
+0 ('79)
0 = ~
(500 ToG=) — Hol) =sf_m (X Ho)(@5(57)) — (X Ho)(@5(20)) ) dr

+0 (1)
Subtracting the two equations from above, after cancelling out the com-
mon term Hy(Z:) representing the value of Hy at the homoclinic point Zp,
we obtain (5.18) with an error term of order O(e!¢). Since the function
Ho(z2}) — Ho(27) can be expanded as a Taylor series in €, by matching the
corresponding terms of this Taylor expansion with the terms in (5.19) minus
(5.20), it follows that the error term O(e!*?) must equal O(g?). O

Proof of Proposition 5.2. By Proposition 4.1 we have
(621)  Ho(E) =ho(E) + (€9 (E) + (€, &),

e 15
(5.22) Ho(22) =ho(I¥7) + (E87)g1(I17) + (&87)2g2 (11, €87).
Subtracting we obtain
Ho(z") — Ho(z) =(ho(IZ") = ho(I¥7))
(5.23) + (£ (IZ7) = (&7)gn (IE7))
+0(e?)
where the error term O(g2) in the above is due to Lemma 5.1 equation (5.11).

The term ho(I5T) — ho(I}~) in (5.23) is given, by Lemma 5.1 equation
(5.10), as
ohy

20 k)~ k(1) = (2 - 120 (G + 0



32 MARIAN GIDEAT, RAFAEL DE LA LLAVE}, AND MAXWELL MUSSERT

Since, by Lemma 5.1 equation (5.11), we have

(5.25) =067, &7 =0,
we obtain
(5.26) (E5)g1(I27) = (&7)q1IE7) = O(?).
Thus, from (5.23) and using (5.24) we have
G2 ) - ) = 0 - 1) (SR ) < o).

As the left-hand side of (5.27) is given by (5.18), since % # 0 by (4.10),
solving for ISt — I~ yields

(5.28)

—1
rr-rm=(F) (i) - mi)

. (aahIO(I)) -1 J+OO ((X Ho) (cp (ZO )) — (XlHO) ((i)E (%))) dr

0
—c (%@0(1)) - J_OOO ((x Ho) (cp (zo )) — (X' Hp) (<i>g (20))) dr
+0 (elﬂ’) )

By the same argument as in the proof of Lemma 5.3, the error term
O(e'*9) in (5.28) must equal O(¢?). This shows (5.17). O

Proposition 5.4.
(5.29)

Bop = (5;]0 (Io))>_1 | (@) — (X ) @) dr

0
-1 400 _ -
—e(Gram) at [ (@) - (e @ico) ar
+0 (7).
(5.30) 1
n ~ N
peer=e (Gea) [ (@G ) - () @G ) dr
-1 0
—e(Gpun) am [ (€@ - e
+0(e%).

Proof. The formula for Hy(z1)— Ho(2:) is given by (5.19). The normal form
expansion of Hy at a homoclinic point Z. can be written with respect to the
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two sets of coordinates as

(5.31) Ho(Z:) = ho(I2) + (€)91(I2) + (£)*92(I2,€)
(5.32) Ho(2:) = ho(12) + (€)91(12) + (€)% g2(12, €2)
Subtracting (5.31) from (5.21) we obtain
(5.33)
Ho(27) — Ho(Ze) =ho(I2") — ho(I2) + () g1 (IZ%) — (€)g1(I2) + O(<?)

- (Graw) -
HEN () — (1)
HET - D01 +O)

cho
=| = (I T -1
(G e -
+ (&7 = &)g1(Lo) + O(e?).
In the above we have used Lemma 5.1, equations (5.10), (5.11), and (5.12).
Applying Lemma D.1 and Lemma D.2 from Appendix D, for F = £, we
have
+00 e s
g me | (W)@ () - ()@ () dr
+ 0O (SHQ) .

Thus, using (5.33), (5.19), and (5.34) we obtain (5.29).

Equation (5.30) follows similarly.

The argument that the error term O(g!'*?) can be replaced by O(g?)
follows in the same way as in the proof of Lemma 5.3. U

(5.34)

Let 7 € R be some value of the time variable. Applying the formula (5.29)
to ®7(zF) and ®7(Z) instead Z and Z, respectively, and the formula (5.30)
to ®7(Z7) and ®7(Z.) instead ZZ and Z., respectively, we obtain:

Corollary 5.5. For any time 7 € R we have
L(97(21))—12(®7 (%))

= (Zoa) [ (@)
— (X Ho)(®5* (20)) ) d
(5.35) e B . -
ve(Gram) a7 (@erare)

—(X1€)(@F* (%)) ds

+0 (52) .
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INOT(3))— 197 (%))

-+ (Gpa) [ (wmiec

—0

~ (X" Ho) (85 (20)) ) ds
(5.36)

. (%f?g())))lgluo) fooo (e @5+(z)

_(Xléu)(&)g+g(§0))> dc

Corollary 5.6.

+00 _ B
| (@erdae) - rlexdse) dr
(5.37)

0 ~ -
- [ (@ren@s - (en@g) dr = o

Proof. Let us denote

o0 R .
7= [ (@erdnen) - @)
(5.38) 0

—__0 leu/ FT(2— leuN(F T2
== (e - @@ an) dr

Recall that, by condition (5.4), we have I! = I:. Subtracting (5.36) from
(5.35), and comparing with (5.17), we should have

-1
(Sran) s+ =0

By (4.10), we have that %(Io) # 0 and g1([y) # 0, therefore

(5.39) JT+J =0.

5.2.3. Change in angle by the scattering map. We now give the expression
of the angle-component S? of the mapping S in (2.7), where 6 is the angle-
coordinate described in Proposition 4.1-(N).
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Proposition 5.7. The change in 0 by the scattering map . is given by the
following equation

(5.40)
P () 0 ()
—A) =z | (X)) - X)) dr

o (W) - @) o

te (5;’”‘20 (10)) (%’?(1@)1 L m ((Xlﬂo)(i%(%o+ )

(X" Ho)(®f (%)) ) rdr

2 -1 +0
ve(Gpe) (Fpu) [ (@)
(X" Ho)(®f (%)) ) 7dr

+0(%),
where A(ly) is the phase-shift on the action level set Iy that defines the
unperturbed scattering map 6o (see Proposition 4.5).

Proposition 5.7 implies that

G2(1,0,t) = G0(1,0,t) + A(Iy) +eSY(1,6,t) + O(?),

where £S? is given by the first four terms on the right hand-side of (5.40).

The expression of eS? is more complicated than the one for eS! since 6 is a
fast variable.

Proof. We will begin by computing the difference of the #° evaluated at
a homoclinic point and at the footpoint of the stable fiber through the
homoclinic point. By Lemma D.2 from Appendix D, we have

) - - A [par) - o)

Now by equation (4.17) we have:

& X',
dr oI te
We can break the integral up into two parts:
*0 (0Hy - . OHy,-.
Gay 4= (SR - SR o
and
+00 ~ ~
(5.42) B- _EJ (V1@ — X))
0
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As for the integral B, eX'6° is O(¢). So, by Lemma D.4 from Appendix
D, we can express the integral in terms of the unperturbed system plus an
error term:

B=—¢ FOO (Xles(ci)g(zg)) — Xles(ég(zo))> dr + O(e're).
0

Returning to the integral (5.41), we now use the normal form (4.3) of Hy
given by Proposition 4.1, yielding

0H oh 0 0
(5.43) = S (D) (@) 5 + (€ SRE.E),

where £° = z°%y°.
Thus, the integral A given by (5.41) breaks into three parts

Ga = - [ (GRen) - SR o
s 091 sO09% &r
a5 = - [ (¢S - e D) ) ar

G40 As= — [ (©PGREED) - @PFREED ) ar

0

From Lemma 5.1 equation (5.11) we have £&3(®(21)) = O(e?) and £5(®(3,)) =
O(¢) in (5.46). Thus, we can immediately obtain that Az is O(g?).

We use the integral form of the Mean Value Theorem to rewrite the
integral A;. Recall that

1 152
g(b)—g(a) - (b—a)L g;;(aﬂ(b—a))dt

Applying this result to A; for b = I(®7(21)), a = I3(®7(3.)), and F = %,
yields

+a0 B _
(5.47) A= —JO (IP(®L(Z7) — IN(®L(%:)))Ce(7) dr,

where C; stands for the integral

L 82%h

(5:48) Celr) = | g [P(B1G) +1 (P(B1G) - P(#1(2))) | .
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We evaluate the expression I3(®7(2})) — I3(®7(3.)) in (5.47) by invoking
Corollary 5.5, obtaining

(5.49)

—¢ (aahIO (Io)))_l J+OO ((XIHO)((i)70—+<(26r)) _ (XIHO)((i)SJrc(gO))) de

0

-1 +00 ~ I
te (g’;g (Io))) gl(IO)L ((Xlés)@gﬂ(gg)) — (X1§S)(<I>S+<(2o))) ds
+0 (7).

The next part of the integrand is

= [ 20 i ) o (1 (i ) - 1 (32 50))

Using Gronwall’s inequality — Lemma C.1 —, we can write

Ce(1) = Co(7) + O(£°),

where 0 < ¢ < 1. However, when ¢ = 0, I® along the flow of the footpoint
Z4 is equal to I® along the flow of the homoclinic point Zy. Since I® (%) = Iy
we obtain

0hy

Co(r) = W(IO)’

which is a constant.
Putting these expressions together, we can write A; as

(5.50)

(G) ()" (i

(X HD)(@5+<(ZO))) dedr

e (Do) (o) i [ [T (@rerirc)
_(X1§S)((i)6+c(20))> dedr
+0 (e79).

We will now write the double integrals in (5.50) in a simpler form. We
show only the details of the computation from the first double integral that
appears in (5.50), since the second double integral can be treated in a similar
fashion. Denote by .#* the following improper integral

+00

(5.51) ﬁm:—f (X H) (B() — (X Ho) (B8 (20)))do.

T
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Since (X1Ho)(®Y(2])) — (X Ho)(®y(%0))) approaches 0 exponentially as
v — 400, the above integral is convergent and moreover

d 5 ~ jod ~
(7 () = (X Ho)(D5(%)) — (X" Ho)(D5(%0)).
That is, .#5(7) is the antiderivative of 7 — (X Hp)(®F(Z5))— (X" Ho)(®F(%0))
satisfying the condition that it equals 0 at +oo.
Making the change of variable v = ¢ 4+ 7 with dv = do the double integral

in (5.50) becomes

(5.52)
[ [ @ mdse - @ @ = - [ s
Using Integration by Parts we obtain
- Oﬂo I(7)dr = — 7.9%(7) :w
(5.53) # [ @ ) () — (4 o) o)) e

+o0 ~ ~
- | @) - @ ) @ Gyrar
In the above, the quantity 7.#%(7) obviously equals 0 at 7 = 0, and equals
0 when 7 — 400 since, by I’'Hospital Rule

J5(7) (X" Ho) (95 (%)) — (X" Ho) (95 ()

lim = lim — 3 =0,
T—>+0 T T—+00 T

since (X1 Ho)(®F(%5)) — (X' Ho)(®F(%0)) approaches 0 at exponential rate
as 7 — +a0.

A similar computation can be done to write the second double integral
that appears in (5.50) as a single integral.

Thus, we obtain the following expression of Ai:

(S (o) [ ()

0
(X Ho)(¥)(50)) ) 77
9 —1 +c0 ~
P e (GEw) () e [ (e
(X1 (®5(20)) ) rdr
+0 (e'19).

Finally, we turn to the integral Ay given by (5.45). Using Lemma 5.1
equations (5.13) and (5.11), (5.34), as well as integration by parts similarly
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to above, we express Ao as

(5.55)
—FOO ((fsagl)( 2z - (55591)( E(zg))> dr

:
(2w [ (e - eudre) i
+ 0O(e'19)
w (B [ (@@ - e )
+ 0(e'9)
— (L) [ (werane - wendrE) rir

+ O(elto). ’
In the above, we have used that
(X0 4 exh)es = X0 4 eX1es = (€5, Hy} +eX1¢® = e X8 + 0(e2).
Combining (5.54) and (5.55) we obtain

(5.56)
6 () —0° (2.)

~(Grw) (Fr) [ (@mse)

0

- (Gpea) (Fru) a7 (weraran)

In the above, we have also replaced the error term O(e'*2) by O(e?), by
calling the same argument as in the proof of Proposition 5.2.
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A similar computation yields:
(5.57)
0" (27) —0" (%)

e (Thw) (Lo [ (s
— (X" Ho) (85 (20)) ) mdr

(f}? ) (5 <fo>>)_lgl<fo> [ (e

~(X'€")(@F(20))) mdr
0 = ~
(a;? Uo)) f_w ((X1e)(@5(2)) — (X€)(®f (20))) T
+0(£%).
Subtracting (5.57) from (5.56) yields 6° (1) — 0" (27) = 6° (2.) — 0" (Z.),

plus an epsilon order term consisting of the sum of six integrals, plus an
error term of order O(¢?). Using the notation (5.38), four of these integrals

e (Do) (o) i,

e (2109 (20w i,
(aag;( 0)) Jt
(‘;g; (Io)> J .

By Corollary 5.6, since J© +.J~ = 0, the sum of the first two expressions
in (5.58) equals 0, and the sum of the last two expressions in (5.58) equals 0.

Also, we recall from Section 5.1.2, that for a given unperturbed homoclinic
point Zy we selected a perturbed homoclinic point Z. satisfying condition
(5.4), that is 65(z.) — 0"(2c) = €°(Z9) — 0"(20) = A(I(20)).

Combining these results we obtain (5.40). O

(5.58)
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APPENDIX A. NORMALLY HYPERBOLIC INVARIANT MANIFOLDS

We briefly recall the notion of a normally hyperbolic invariant manifold.
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Definition A.1. Let M be a C"-smooth manifold, ®* a C"-flow on M. A
submanifold (with or without boundary) A of M is a normally hyperbolic
invariant manifold (NHIM) for ®° if it is invariant under ®!, and there exists
a splitting of the tangent bundle of T'M into sub-bundles over A

(A.1) T.M =FE®E.®T.A, VzeA
that are invariant under D®? for all ¢ € R, and there exist rates
ALK AL <A <0< e < p— < s

and a constant C' > 0, such that for all z € A we have

(A 2)
e < |D®(2)(v)| < Cet |v| for all t > 0, if and only if v € ES,
C’et”+ v < [D®!(2)(v)|| < Ce = |v|| for all t < 0, if and only if v € EY,
CelPe|u| < |D®!(2)(v)|| < Celllte|y| for all ¢ € R, if and only if v € TLA.

In the case when ®! is a Hamiltonian flow, the rates can be chosen so that
Al = —piy, Ap = —pi—, and Ae = —fic.

The regularity of the manifold A depends on the rates A=, AT, u~, u¥,
Ae, and .. More precisely, A is C’-differentiable, with ¢ < r — 1, provided
that

E,U/C—i_)\—l- < 0,

(A-3) Che + pu— > 0.

The manifold A has associated unstable and stable manifolds of A, de-
noted WU(A) and W*3(A), respectively, which are C*~!-differentiable. They
are foliated by 1-dimensional unstable and stable manifolds (fibers) of points,
WH(z), W5(2), z € A, respectively, which are as smooth as the flow.

These manifolds are defined by:

We(A) ={y|d(®L(y),\) — 0 as t — +o0 }
={y|d(®L(y), A) < Cye'*+,t = 0},
(A.4) WU(A) ={y | d(®L(y),A) > 0 as t > —o0 }
={y | d(®L(y),A) < Cye'~,t > 0},
Wo(z) ={y | d(®'(y), ®'(z)) < Cy et >0,
WY (x) ={y|d(®"(y), ®*(x)) < Cye'~, t < 0}.

The fibers W"(z), W9(z) are not invariant by the flow, but equivariant
in the sense that

(W (2)) = WH(D'(2)),

(5-5) (=) = WH(@(2).
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Since WS(A) = (J,cp W**(2), we can define the projections along the

fibers
A QT WE(A) - A, QF(2) = 2T iff ze W3 (2T),
(8.6) Q7 WYHA) - A, Q () =27 iff ze W(27).

The point z* € A is characterized by

(A7) d(®'(z),®'(2T)) < C.e?+,  forallt=0.
and the point z~ € A by
(A.8) d(®'(2), @' (27)) < C,e~, forall t <0,

for some C, > 0.

For our applications, the most important result about NHIM’s is that
they persist when we perturb the flow. This is the fundamental result of
[Fen72, HPS77, Pes04].

The standard assumption for persistence is that the unperturbed NHIM
is a compact manifold without a boundary. The persistence of the NHIM
also holds when the compactness assumption is replaced with the assump-
tion that the perturbation has uniformly bounded derivatives in all variables
[HPS77, Section 6]. There are also proofs of persistence in the infinite dimen-
sional case which do not require compactness, such as in [BLZ99, BLZ08].

We remark that the particular case when the perturbation is periodic or
quasi-periodic in time can be reduced to the compact case. More precisely,
we can rewrite the system (2.2) as

%z =X0(z) +eX'(z,0),
d

aly/

a7

where 6 ranges over a torus T¢, and w € R¢ is a rationally independent vector
when d > 1. If the flow of £z = X°(z) admits a compact NHIM Ay, the
extended system for € = 0 admits a compact NHIM Ag x T which persists
for small enough &, using the standard theory. The torus T¢ is sometimes
called ‘the clock manifold’.

In the case when the manifold has a boundary, the persistence result re-
quires a step of extending the flow. This makes that the persistent manifold
is not invariant but only locally invariant and not unique (it depends on the
extension).

When we are given a family of flows, it is possible to choose the extensions
depending smoothly on parameters and obtain that the manifolds depend
smoothly on parameters.

The precise meaning of the smooth dependence is that the we can find
parametrizations k. : Ag — A.. The parametrizations k. can be chosen so
that

d
£k5(2') S E;l @ E;,
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where the splitting E} @ E% corresponds to the invariant manifold of the
perturbed system. In this case we obtain A. as a graph over the central
variables on Ag; see [DAILSO0S].

The maps k.(x) are jointly C" as functions of x,e. The proof of this well
known result is not very difficult. It suffices to consider an extended flow
dt(x,e) = (L(x),¢), which is a small perturbation of ®}(z, ) = (®4(x),¢).
The regularity of the NHIM of ® gives the claimed regularity of the NHIM
of ®! with respect to parameters.

From the same proof (using the invariant objects of the extended flow),
it easily follows the regularity with respect to parameters of the stable and
unstable bundles and the stable and unstable manifolds.

APPENDIX B. SCATTERING MAP

Assume that W"(A), W5(A) have a transverse intersection along a man-
ifold T" satisfying;:

T.I' = T,W3(A) n T,IWY(A), for all zeT,

B.1
(B-1) T.M=T,T®T,W"(:")®T,W(z"), for all zeT.

Under these conditions the projection mappings Q% restricted to I' are
local diffeomorphisms. We can restrict I' if necessary so that QF are diffeo-
morphisms from I' onto open subsets UT in A.

Definition B.1. A homoclinic channel is a homoclinic manifold I' satisfying
the strong transversality condition B.1, and such that

Q‘ip T - U* =0T (D)

are C'~!-diffeomorphisms.

Definition B.2. Given a homoclinic channel I'; the scattering map associ-
ated to I' is defined as

o:=cl :UTC AU CA,
o=0To ()L

Equivalently, o(z7) = 2z, provided that W"(z7) intersects W*(z1) at a
unique point z € I'.

The meaning of the scattering map is that, given a homoclinic excursion,
it has two orbits in the manifold is asymptotic to. It is asymptotic to
an orbit in the past and to another orbit in the future. The scattering
map considers the future asymptotic orbit as a function of the asymptotic
in the past. When we consider all the homoclinic orbits in a homoclinic
channel we obtain a scattering map from an open domain. The intuition
of the scattering map is that if we observe the orbit for long times, we just
measure the effect of the homoclinic excursion on the asymptotic behavior.
The scattering map is a very economical way of studying these excursions
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since it is a map only on the NHIM. Furthermore, as we will see now, it
satisfies remarkable geometric properties.
Due to (A.5), the scattering map satisfies the following property

(B.2) 3T ool =% Mo pT

for any T € R.

If M is a symplectic manifold, ® is a Hamiltonian flow on M, and A € M
is symplectic, then the scattering map is symplectic. If the flow is ex-
act Hamiltonian, the scattering map is exact symplectic. For details see
[DAILS08].

In a similar fashion, we can define heteroclinic channels and associated
scattering maps.

Given two NHIM’s A! and A2, we can define the projection mappings
Q4 WSH(AY) — A for i = 1,2. Assume that WY(A!) intersects transver-
sally W*(A?) along a heteroclinic manifold T so that:

T.I' = T,WY(AY) n T,W*(A?), for all z €T,

(B.3) B
T.M=T.T®T,W"(" )®T,W(z"), for all zeT,
where 2~ = Q71(2) € Al and 2t = QF2(2) € A%

We can restrict I' so that Q7! : T' — Al and Q2 : ' — A? are diffeo-
morphisms onto their corresponding images.

Definition B.3. A heteroclinic channel is a heteroclinic manifold I" satis-
fying the strong transversality condition B.3, and such that
—1 - . -
Qp LU =0 IT) < AL,
Q2T 5 Ut = Q™) € A2,

are C!~'-diffeomorphisms.

Definition B.4. Given a heteroclinic channel I', the scattering map asso-
ciated to I' is defined as

o:=0t :U- CcA' 5 Ut C A2,

o =020 Q7L

From the result of the regularity with respect to parameters of the stable
and unstable manifolds and the fact that the scattering map is expressed in
terms of transverse intersections, we obtain that the scattering map depends
smoothly on parameters. Thus, the goal of this paper is not to prove the
derivative of the scattering map with respect to the perturbation parameter
exists, only to give explicit formulas knowing that the derivative exists.
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APPENDIX C. GRONWALL’S INEQUALITY

In this section we apply Gronwall’s Inequality to estimate the error be-
tween the solution of an unperturbed system and the solution of the per-
turbed system, over a time of logarithmic order with respect to the size of
the perturbation.

Lemma C.1. Consider the following differential equations:
d

(C.1) @Z(t) = X0z,t)
(C.2) %z(t) = X%z, t) +eX(2,t,¢)

Assume that X0, X1 are uniformly Lipschitz continuous in the variable z,
Cy is the Lipschitz constant of X°, and X' is bounded with |X'|| < Cy, for
some Co,C1 > 0. Let zg be a solution of the equation (C.1) and z: be a
solution of the equation (C.2) such that

(C.3) [20(to) — 2z (to)|| < ce.
Then, for 0 < g9 < 1, k < 1§°,andK—c+ G, we have
(C.4) J20(t) — z:(t)| < Ke®, for 0 <t—ty < kln(1/e).

For a proof, see [GAILM21].

APPENDIX D. MASTER LEMMAS

In this section we recall some abstract Melnikov-type integral operators
and some of their properties from [GdILM21].

Consider a system as in (2.2) and the extended systems as in (2.6).

Assume that, for some €1 > 0, and for each ¢ € (—¢1,¢1), there exists a
normally hyperbohc invariant manifold A. for ®7 T, as well as a homoclinic
channel T., which depend Cé smoothly on e. Assomated to T'. we have
projections Q* : I, — QF(I.) < A., which are local diffeomorphisms. We
are thinking of <I> , A., T as perturbations of <I>0, Ao, .

For %y € Fo let Ze € F be the corresponding homoclinic point satisfy-
ing (5.4). Because of the smooth dependence of the normally hyperbolic
manifold and of its stable and unstable manifolds on the perturbation, Z. is
O(e)-close to % in the C’-topology, that is

(D.1) 5 =%+ 0(e).
Let (3.,¢) € M +— F(3.,¢) € R* be a uniformly C'-smooth mapping on
M x R.
We define the integral operators
TR = | (P@IED) - F@IE)) dn

(D.2) 0

I7(F,87,5.) = J_OOO (F(ci)g(z;)) . F(ég(zg)) dr.
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Lemma D.1 (Master Lemma 1). The improper integrals (D.2) are conver-
gent. The operators 3T (F,®7, z.) and I~ (F,®T, z.) are linear in F.
Lemma D.2 (Master Lemma 2).
03 F(4) ~ F(2) = - 37(X° + cx)F, 47, %),

F(z0) —F(2) =7 (X% +cxHF, 07, 2,).
Lemma D.3 (Master Lemma 3).
IT(F, L, %) =37(F, @], %) + O(£9),
J(F,®7,2.) =3 (F, ®F, %) + O(9),
for 0 < o < 1. The integrals on the right-hand side are evaluated with
Xt =Xx1(-0).
Lemma D.4 (Master Lemma 4). If F'= O¢1(e) then
IT(F, 7, 2.) =37 (F, @], 29) + O('T9),
I (F,®7,2.) =3 (F, ®f, 29) + O(e12),

for 0 < o < 1. The integrals on the right-hand side are evaluated with
Xt =Xx1(-0).

(D.4)

(D.5)

The proofs of the above lemmas can be found in [GdILM21], and similar
arguments can be found in [GdIL18].
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