Manuscript

10
11
12

13

Click here to
access/download;Manuscript;resonance_textfigs_clean_01jul2

Network resonance Stark et al., 2022

Network resonance can be generated independently at

distinct levels of neuronal organization

Eran Stark'’, Amir Levi', and Horacio G. Rotstein?

1Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of

Medicine, Tel Aviv University, Tel Aviv, Israel

’Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers

University, Newark, New Jersey, USA

* Corresponding author.

Email: eranstark@tauex.tau.ac.il (ES)

L]


mailto:eranstark@tauex.tau.ac.ilh
https://www.editorialmanager.com/pcompbiol/download.aspx?id=1463449&guid=c59f4e67-e299-4a50-b61f-8141a775a654&scheme=1
https://www.editorialmanager.com/pcompbiol/download.aspx?id=1463449&guid=c59f4e67-e299-4a50-b61f-8141a775a654&scheme=1

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Network resonance Stark et al., 2022

Abstract

Resonance is defined as maximal response of a system to periodic inputs in a limited frequency band.
Resonance may serve to optimize inter-neuronal communication, and has been observed at multiple
levels of neuronal organization. However, it is unknown how neuronal resonance observed at the
network level is generated and how network resonance depends on the properties of the network
building blocks. Here, we first develop a metric for quantifying spike timing resonance in the presence
of background noise, extending the notion of spiking resonance for in vivo experiments. Using
conductance-based models, we find that network resonance can be inherited from resonances at
other levels of organization, or be intrinsically generated by combining mechanisms across distinct
levels. Resonance of membrane potential fluctuations, postsynaptic potentials, and single neuron
spiking can each be generated independently of resonance at any other level and be propagated to
the network level. At all levels of organization, interactions between processes that give rise to low-
and high-pass filters generate the observed resonance. Intrinsic network resonance can be generated
by the combination of filters belonging to different levels of organization. Inhibition-induced network
resonance can emerge by inheritance from resonance of membrane potential fluctuations, and be
sharpened by presynaptic high-pass filtering. Our results demonstrate a multiplicity of qualitatively
different mechanisms that can generate resonance in neuronal systems, and provide analysis tools
and a conceptual framework for the mechanistic investigation of network resonance in terms of circuit

components, across levels of neuronal organization.

Author summary

How one part of the brain responds to periodic input from another part depends on resonant circuit
properties. Resonance is a basic property of physical systems, and has been experimentally observed
at various levels of neuronal organization both in vitro and in vivo. Yet how resonance is generated in

neuronal networks is largely unknown. In particular, whether resonance can be generated directly at
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the level of a network of spiking neurons remains to be determined. Using detailed biophysical
modeling, we develop a conceptual framework according to which resonance at a given level of
organization is generated by the interplay of low- and high-pass filters, implemented at either the
same or across levels of neuronal organization. We tease apart representative, biophysically-plausible
generative mechanisms of resonance at four different levels of organization: membrane potential
fluctuations, single neuron spiking, synaptic transmission, and neuronal networks. We identify
conditions under which resonance at one level can be inherited to another level of organization,
provide conclusive evidence that resonance at each level can be generated without resonance at any
other level, and describe a number of representative routes to network resonance. The proposed

framework facilitates the investigation of resonance in neuronal systems.

Introduction

Resonance refers to the maximal response of a system to periodic input in a limited (finite non-zero;
“resonant”) frequency band. In neuronal systems, resonance has been observed at multiple levels of
organization and quantified using various metrics, in all cases capturing the notion of optimal gain. In
the simplest case, similarly to RLC circuits, the subthreshold response of an isolated neuron to
oscillatory inputs has been measured in terms of the impedance amplitude profile, quantifying the
amplitude response of the membrane potential fluctuations as a function of the input frequency
(Gutfreund et al., 1995; Hutcheon et al., 1996a; Hu et al., 2002, 2009; Hutcheon and Yarom, 2000; Puil
et al.,, 1986; Wang, 2010). A neuron exhibits cellular-level resonance of membrane potential
fluctuations if the impedance magnitude peaks at a non-zero frequency. Otherwise, individual
neurons may behave as low-pass filters (Puil et al., 1986; Pike et al., 2000; Zemankovics et al., 2010)
or may exhibit more complex behavior depending on the number and type of ionic currents and their
time scales (Pike et al., 2000; Izhikevich, 2001; Richardson et al., 2003; Rotstein and Nadim, 2014). In

addition to resonance of membrane potential fluctuations, cellular-level resonance may occur at the
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spiking level: spikes may preferentially occur at specific frequencies of an oscillatory input current
(Hutcheon et al., 1996a; Pike et al., 2000), yielding spiking resonance. Beyond the cellular level,
resonance may occur at the level of synaptic transmission: the amplitude of postsynaptic potentials
(PSPs) may peak at some instantaneous rate of the presynaptic spikes (Markram et al., 1998; Izhikevich
et al., 2003; Drover et al., 2007). Finally, computational modeling (Akam and Kullman, 2010; Kang et
al., 2010; Vierling-Claassen et al., 2010; Ledoux and Brunel, 2011; Veltz and Sejnowski, 2015; Sherfey
et al., 2018), in vitro (Schmidt et al., 2017), and in vivo experiments (Stark et al., 2013), showed that
resonance may occur at the network level.

Theoretical studies have shown that subthreshold resonance can be communicated to the spiking
regime (Richardson et al., 2003; Engel et al., 2008; Rotstein, 2017). A possible implication of this
observation is that resonance can be inherited over levels of neuronal organization, either directly or
indirectly. For instance, subthreshold resonance at theta frequencies may be expected to create
spiking resonance at theta frequencies, which may in turn generate network resonance at theta
frequencies when resonant spiking neurons interact with other neurons. Alternatively, the interplay
of the positive and slower negative feedback effects operating at interacting levels of organization
may communicate resonance across these levels. However, direct periodic activation of hippocampal
CA1 pyramidal cells that have been shown to exhibit subthreshold resonance in vitro (Leung and Yu,
1998; Hu et al.,, 2002) did not produce network resonance in vivo, whereas direct activation of
inhibitory neurons did (Stark et al., 2013). Thus, it is still unclear whether and under what conditions
resonance at one level of organization is causally related to (e.g., is inherited from) resonance at
another level. One obstacle to addressing these issues is the lack of a general framework for
investigating the mechanisms of generation of neuronal resonance in terms of the frequency-
preference properties of system components.

The specific question we address in this paper is whether resonance observed at one level of
organization is necessarily inherited from resonance at lower levels of organization (e.g., membrane

potential fluctuations, single neuron spiking, postsynaptic potentials). Previous work showed the
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presence of resonance in networks of rate models (Ledoux and Brunel, 2011; Veltz and Sejnowski,
2015) Other work demonstrated resonance in spiking neurons (Knight, 1972; Gerstner, 2000; Brunel
et al., 2001; Brunel et al., 2003; Engel et al., 2008). However, a direct link between resonance in a
single spiking neuron and a network of spiking neurons has not been shown (although see Ledoux and
Brunel, 2011, describing a comparative analysis between resonance in networks of spiking neurons
and rate mdoels). An alternative manner in which network resonance can be generated is by the
existence of independent processes that may share some building blocks, and act to generate
resonance at distinct levels. This alternative scenario does not preclude the existence of neuronal
systems in which resonances are communicated across levels of organization, particularly from the
subthreshold to the network levels.

To tackle this question, we carry out detailed conductance-based modeling of individual neurons
and neuronal networks. We identify and analyze a number of case studies at various levels of
organization and increasing levels of complexity, where the generation of resonance depends on
mechanisms confined to each level. Capturing the complexity of the problem, particularly the
interaction between levels of organization, requires going beyond the linear domain and weak signals
where the classical mathematical analysis of linear systems is possible and mean-field theory of
irregularly spiking neurons is applicable. Therefore we entirely rely on computer simulation of a
number of scenarios carefully designed to address a specific question or shed light on a specific issue.
We find that despite the nonlinearities and complexity of the neuronal systems examined, the
resonance-generating mechanisms can be described in terms of the interplay of low-pass filters (LPFs)
and high-pass filters (HPFs). The filtering building blocks (or modules) depend on the biophysical and
dynamic details and structure specific to each level. In contrast, network resonance can be generated
by combining low- and high-pass filtering mechanisms across levels of organization, in the lack of

resonance at any other level of organization.
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Results

Two distinct types of spiking resonance: cycle-averaged firing rate resonance

and spike timing resonance

In the context of rhythmic systems (Fig. 1A), one can differentiate between two types of responses:
an oscillator and a resonator. In an electric oscillator that receives as input a square pulse of current,
the output is an oscillatory voltage (Fig. 1B, left). The generation of oscillations in neuronal systems
has been studied extensively (Buzsaki, 2006; Wang, 2010). A second type of rhythmic system is a
resonator (Fig. 1B, right). Resonance is defined as a maximal response of the system to a periodic
input at a non-zero finite frequency or frequency band. In neuronal systems, resonance has often been
discussed in the context of current input to a single neuron (Hutcheon and Yarom, 2000). In a single
neuron, resonance at the subthreshold level occurs when the amplitude of the response variable (e.g.,
voltage: the membrane potential, V,,) peaks at a non-zero frequency of the input (e.g., current)
applied to the neuron (Fig. 1B, right). This can be quantified using the impedance amplitude profile,
capturing the ratio between the output and input amplitudes at every input frequency. Ultimately,
neurons transmit their output as spikes. A natural direct extension of the analog (subthreshold)
definition of resonance to the spiking domain is “cycle-averaged firing rate resonance” (Fig. 1C), which
can be fully quantified by the cycle-averaged firing rate metric. In cycle-averaged firing rate resonance,
the rate of spikes fired by the neuron is maximal when the frequency of the input (e.g., the presynaptic
spike train or the current applied to the neuron) is at a non-zero frequency band.

The usage of a discrete output (spikes) allows a second type of resonance to be considered, which
we denote as “spike timing resonance” (Fig. 1D). In spike timing resonance, the cycle-averaged firing
rate can be the same for all input frequencies (Fig. 1D, top left). However, spikes occur at a more
limited range of phases at some frequency (e.g., 10 Hz; Fig. 1D, bottom left) compared to other
frequencies (e.g., 5 or 15 Hz; Fig. 1D, bottom left). Hence the output, namely the instantaneous firing

rate, is maximal at a given phase of a non-zero finite frequency (the resonant frequency). Therefore,
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spike phase must be taken into account when quantifying the preferred frequency response
phenomenon. In this setting, the input (i.e., the oscillatory current) and the output (i.e., the spike
times) are more coherent at the resonant frequencies (Fig. 1D, bottom right). The spikes exhibit more
consistent phase locking at the resonant frequencies, which can be quantified using the spectral
coherence. For the remainder of this article, we refer to the magnitude of the complex spectral
coherence simply as “coherence”. Coherence ranges 0-1 and is maximal when spikes exhibit perfect
phase locking to the periodic input. Thus, in spike timing resonance, the coherence metric exhibits a
maximum at a finite, non-zero frequency.

In principle (and as illustrated in Fig. 1CD), cycle-averaged firing rate resonance and spike timing
resonance are independent phenomena, and one can occur without the other. Indeed, previous work
in freely-moving mice showed that pyramidal cells exhibit inhibition-induced spike-timing resonance,
without exhibiting cycle-averaged firing rate resonance (Stark et al., 2013). Spiking fingerprints, as the
ones presented by the 2D color images in Fig. 1CD, are useful tools to visualize the possible occurrence
of firing rate resonance. To generate a fingerprint, the number of spikes is counted at every relevant
frequency and phase (over all trials), and divided by the time spent in that bin, yielding instantaneous
rates.

Previously, spiking resonance generated in the noise-driven regime was quantified by computing the
modulation of the instantaneous firing rate averaged over many trials in response to sinusoidal input
(e.g., Richardson et al., 2003; Ledoux and Brunel, 2011). In the lack of noise, the modulation metric is
insensitive to the number of spikes in every cycle. In the presence of high noise, the metric loses
sensitivity to the precise phase. In contrast, the coherence metric is sensitive to both the number of
spikes and the spike phase, both in the presence and in the lack of noise.

Both cycle-averaged firing rate resonance and spike timing resonance pertain to maximizing the
output of the system at a non-zero input frequency. This is distinct from stochastic resonance
(Wiesenfeld and Moss, 1995; Mejias and Torres, 2011), where the input-output relations are

maximized at a non-zero level of noise (in the presence of an external input); and from coherence
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resonance (Pikovsky and Kurths, 1997; Lee et al., 1998; Linder et al., 2004), where the system exhibits
maximally-coherent oscillations at a non-zero level of noise (in the absence of a periodic input).

In summary, resonance in the spiking domain can be visualized using fingerprinting and quantified
using cycle-averaged firing rate, coherence, or both. From the perspective of a postsynaptic neuron,
cycle-averaged firing rate resonance and spike timing resonance capture the input for neurons
sensitive to firing rate and spike timing, respectively. When all (or at least most) spikes are generated
directly by the input, the two types of spiking domain resonance coincide. This can be achieved in
modeling studies and in controlled in vitro experiments in a relatively straightforward manner.
However, when there are additional spurious spikes not created by the input as typically observed in

vivo, resonance may appear and detected only as spike timing resonance.
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Figure 1. Cycle-averaged firing rate resonance and spike timing resonance

(A) To quantify the response, a system is given an input (e.g., current or spikes) and the output is measured.

(B) Left: Induced oscillations are defined are as a rhythmic output in response to a non-rhythmic (e.g., pulse or noise) input.
Right: Resonance is defined as a maximal response of the system to periodic input at a non-zero finite input frequency or
frequency band. In neuronal systems, this definition readily applies to analog quantities, e.g., the membrane potential
fluctuations.

(C) Cycle-averaged firing rate resonance is a direct extension of the analog quantity. A synthetic neuronal signal was
constructed in which firing rate at the 8-12 Hz range was twice the firing rate at other frequencies (top left). Actual spike
trains were realized by randomly drawing the number of spikes per cycle from a Poisson distribution. This corresponds to a
horizontal band in the fingerprint, a 2D frequency-phase map of instantaneous firing rates (second panel from right). Here

and in all fingerprints, blue corresponds to 0 spk/s, and red correspond to the instantaneous firing rate indicated in the title
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(here, 56 spk/s). The image is expanded to show 1% cycles in the phase axis (abscissa). In this configuration, resonance is
fully quantified by the cycle-averaged firing rate (top right).

(D) In spike timing resonance, the firing rate may be identical at all input frequencies (top left), but spikes occur at specific
phases in the resonant frequency band. A signal was constructed in which the phase of every spike was drawn randomly
from a von Mises distribution, for which the concentration parameter k was higher at the 8-12 Hz range (bottom left). This
corresponds to a high instantaneous firing rate at a specific combination of frequency and phase (red patch in the fingerprint;
second panel from right). In this configuration, the cycle-averaged firing rates are similar across frequencies (top right), and

resonance can be quantified using the input-output spectral coherence metric (bottom right).

10
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Building blocks necessary for generating network resonance in neuronal

systems

With the metrics for cycle-averaged firing rate and spiking timing resonance in hand, we examine
how resonance at one level of organization is related to frequency-dependent mechanisms at another
level of organization. From an electrical circuit perspective, at least two building blocks are required
for resonance to occur: (i) high-pass filtering, and (ii) low-pass filtering. Amplification within the band-
pass filter may further enhance resonance. The building blocks and their interactions may be highly
nonlinear. In neuronal systems, building blocks are realized by biophysical constructs which can have
the same or distinct origins (e.g., distinct combinations of currents). The building blocks producing a
given resonance may occur at the same or at distinct levels of organization (e.g., synaptic and spiking).
In general, the frequency-dependent building blocks remain to be identified, and their interaction

within and across levels of organization remains to be understood.

Resonance generated at the subthreshold level can be inherited to the

network level

We begin with the best studied type of neuronal resonance, of membrane potential fluctuations
(Fig. 2A; sometimes referred to as “subthreshold” resonance; Puil et al., 1986; Gutfreund et al., 1995;
Hutcheon et al., 1996ab). To determine whether subthreshold resonance can be inherited to the
network level via spiking resonance, we first examine the communication of subthreshold level to the
spiking level; and then study the communication from the spiking level to the network level. We
modeled membrane potential resonance using a conductance-based neuron with leak, persistent
sodium, and h-currents, augmented with threshold spiking and reset. In the Iygp+/s model, the
subthreshold impedance profile peaked at 7.5 Hz (Fig. 2A, top right). In this case, the LPF corresponds
to the membrane capacitance and leak current (“RC”); the HPF, to the regenerative (h-) and leak

currents; and the persistent sodium current acts primarily to amplify the band-pass response.

11



220
221
222
223
224
225
226

Network resonance
A Membrane potential fluctuations
A, =0.05 pajm?
-52 4 Hz 3
AVAVAVAN ]
% 53 Q £
= a2
> =
-54 /\/W\ a=0mV 8
g 1l
0 200 400 600 800 1000 3
8Hz £
52 £
04
< 0o 10 20 30 40
Z 53
>
RSN AVAVAVAVAVAVAVAN b
D 200 400 600 8OO 1000
T
-52 18 Hz £
s :°
£ -5 £
>
[ 77 PR
0 200 400 600 800 1000 0 10 20 30 40
Time [ms] Frequency [Hz]
- 2 c=0mv
C An=015uacm% o=0omv D .
67 spksis oherence
40 ; 08
w i
£ "
= |
3 |
2 i
g 20 i 04
g :
w i
|
0 ' ' 0
B 0 ™ 0 10 20 30 40
Phase [rad] Frequency [Hz]
F Ay = 0.14125 pajem?
Network
A o =0.0125mV o=3mV

L e———

0.1 pAfem?
I

(T 1 )
Lol L L Il J [l Il [T L

e

88 spks/s

Frequency [Hz]
- oW
S S

i
i
-

a o

w0 ow
Phase [rad]
T 1

y T T -
15 20 25 30 35 40
Frequency [Hz]

Stark et al., 2022

B Ajy = 0.15 pAvom? Spiking
s0 aHz 6
I~ w 3
= &
g’ £ 4
> g=0mv 2
-50 % 3
2 2
0 200 400 600 800 1000 -2
i
50 B8 Hz 1
0
S g 0 10 20 30 40
E
>
-50
0.4
0 200 400 €00 800 1000
0.3
50 16 Hz g
202
= =
E° 8
> 0.1
L e,
0
0 200 400 600 800 1000 0 10 20 30 40
Time [ms] Frequency [Hz]
E A, =015 pAtcm2 Firing rate
2 Coherence [spks/s]
06 20
5
% ; 04
2 10
4
0.2
0 0 0
0 10 20 30 40 0 10 20 30 40
Frequency [Hz] Frequency [Hz]
Vm
>
: L I -
TS e ‘ | b
W aphpii i o
0.3
§ 02
o
3
501
(s
0 T T v y v y v J
0 5 10 15 20 25 30 35 40

Frequency [Hz]

u
<

3

0
Phase [fad].?
T

35
Frequency [Hz]

Figure 2. Resonance generated at the level of membrane potential fluctuations can be inherited to the network level

(A) A model neuron, consisting of leak current, persistent sodium current (/na,p), h-current (/4), and threshold-based spiking

with voltage reset, was driven by periodic current at various frequencies. Here and in B-D, =0 mV. Left: Current input (dark

blue traces, arbitrarily scaled) and membrane potential output (black traces) at three selected frequencies. Top right:

Impedance profiles. A simplified model neuron with leak current and membrane capacitance shows only a low-pass filter

(LPF) response (“RC”; dotted line). A simplified model with reduced capacitance shows only a high-pass filter (HPF) response

12
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(“ly”; dashed line). The full model shows resonance around 7-8 Hz (“RC, Iy, Ina,”). Bottom right: phase of the membrane
potential fluctuations at every frequency of the input current.

(B) The model neuron of panel A was driven by higher-amplitude sinusoidal currents. Left: Spikes are produced specifically
at the input frequency that corresponds to the peak of the impedance profile (panel A, top left). Right: The Ingp+Is spiking
model neuron shows firing rate (top) and spike timing (bottom) resonance.

(C) Spiking fingerprint (firing rate as a function of frequency and phase) for the same data as in panel B. Spikes occur at a
specific frequency and near zero phase, corresponding to the co-occurrence of both firing rate and spike timing resonance.

(D) The model neuron was driven by input currents of various amplitudes (Ai,) while holding noise at zero (c=0 mV).
Horizontal dashed line indicates the Ai, value used in panels B and C. At higher A, values the coherence becomes multi-
modal.

(E) The model neuron was driven by a fixed-amplitude input current (Aj, = 0.15 ©/A/cm?) while varying membrane potential
variability o. Coherence (left) and firing rate (right) are shown as a function of noise magnitude. At higher noise magnitudes,
spikes occur at all frequencies and spiking resonance is lost.

(F) Top left: An E-cell, modeled by a Insp+/n spiking neuron as in panel A, was connected via an excitatory (AMPA-like)
synapse to a target I-cell, modeled as a non-resonant leaky integrate and fire (nrLIF) neuron. Bottom left: Constant-amplitude
periodic current in the form of a linear chirp (0-40 Hz, 20 s) was applied to the E-cell (purple trace), that also received low-
magnitude noise (0=0.0125 mV). The target cell received higher noise (6=3 mV). Top right: The target cell exhibits both
background and transmitted spikes. Bottom right: Spiking resonance is observed for both model neurons.

(G) Top: Voltage traces of four target I-cells (nrLIF; green) that received feedforward connections from 16 E-cells (/ng,p+/n
spiking; purple). All E-cells received exactly the same periodic input current; each cell received independent noise. Bottom:
Coherence for every individual model cell (light traces), and averaged coherence for the target cells (heavy green trace).
Spiking resonance is exhibited for the indirectly-activated target cells. Inset: spiking fingerprint for an I-cell.

(H) The periodic input current was applied only to the I-cells; current amplitude was increased 16-fold; same network as in

panel G. No spiking resonance is generated in the I-cells.

13
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To understand whether and under what conditions resonance at the level of membrane potential
fluctuations can be inherited to the network level, we increased the amplitude of the current input to
the Ingp+lh model neuron. At the minimal input amplitude required to generate spikes (0.15 pA/cm?),
the spikes occurred specifically around 7-8 Hz (Fig. 2B, left), the same frequency at which the
impedance profile peaked (Fig. 2A). Spikes occurred near the zero phase of the input, so both cycle-
averaged firing rate resonance and spike timing resonance were observed (Fig. 2B, right; fingerprint
at Fig. 2C). To understand the conditions under which resonance is inherited to the spiking domain in
the Ingptlh model, we first modified input amplitude. We found that at higher amplitudes, spikes
occurred coherently not only around 8 Hz but also at multiple other frequencies (Fig. 2D). Second, we
modified the amount of background inputs (noise; modeled by membrane potential variability, c) in
the model, while holding the input amplitude fixed at 0.15 uA/cm?. We used a range of noise levels
between 0-2 mV, which is higher than observed during intracellular recordings using sharp electrodes
from freely-moving mice (English et al., 2014). Under high noise circumstances, spikes occurred at all
frequencies and spiking resonance was lost (Fig. 2E). Nevertheless, for a certain range of input
amplitudes and noise levels, resonance at the level of membrane potential fluctuations is readily
inherited to the spiking domain.

Next, we connected a resonant excitatory cell (E-cell; modeled as an Inqp+/» spiking neuron) via an
excitatory (AMPA-like) synapse to a target cell, modeled as a leaky integrate and fire (LIF) neuron that
did not exhibit subthreshold resonance (Fig. 2F). The postsynaptic target LIF received relatively high
background input (=3 mV), and exhibited spontaneous spiking (Fig. 2F, top right). When oscillatory
chirp current was applied to the presynaptic neuron, the E-cell spikes induced additional spikes in the
target cell, which displayed spiking resonance at the same frequency range as the presynaptic E-cell
(Fig. 2F, bottom right). We denote this phenomenon as “inherited network resonance”: resonance
observed at the network level, which is inherited from frequency-dependent mechanisms at another
level of organization. A similar pattern was observed in a larger network, consisting of 16 resonant E-

cells that made feedforward excitatory connections on four non-resonant target cells (Fig. 2G).

14
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Notably, in the same network, applying the oscillatory current directly to the target cells did not induce
resonance in the target cells, even when current amplitude was increased (Fig. 2H). In summary,
resonance generated at the level of membrane potential fluctuations (Fig. 2A) can be inherited to the
spiking domain at low and intermediate noise levels (Fig. 2B-E). This extends previous modeling results
linking subthreshold and spiking resonance (Hutcheon et al.,, 1996b; Richardson et al., 2003) by
showing that when input is very strong (Fig. 2D) or when noise is very high (Fig. 2E), subthreshold
resonance is no longer communicated to the spiking level. Furthermore, subthreshold resonance can

be inherited, via spiking resonance, to the network level (Fig. 2F-G).

Resonance can be generated directly at the spiking level

Conceptually, a subthreshold LPF generated by the passive (RC) properties of the membrane could
interact with a spiking-domain HPF to generate spiking domain resonance. We therefore examined
the HPF mechanism that underlies the generation of spiking resonance in the lack of resonance at the
level of membrane potential fluctuations. First, we applied low-current input (0.05 uA/cm?) to a LIF
model neuron without noise, which yielded an impedance profile corresponding to an LPF (Fig. 3A).
When current amplitude was increased (to 0.115 uA/cm?), spikes started to occur at the peaks of the
oscillatory input cycles. Once a first spike is generated, the after-spike reset of the LIF prevents another
spike from occurring until the membrane is recharged. If the cycle is sufficiently short, this results in
only one spike per cycle, for a range of frequencies (Fig. 3B, left). Since there are more cycles per unit
time (e.g., second) at higher frequencies, the generation of a single spike per cycle automatically
corresponds to high pass filtering. We identify the “spike discretization” effect as an HPF. Together
with the subthreshold LPF (Fig. 3A), the net outcome is spiking resonance (Fig. 3B, right; Fig. 3C). Thus,
consistent with earlier work (Knight, 1972; Gerstner, 2000; Brunel et al., 2001), an isolated LIF model
neuron can generate spiking resonance in the lack of noise. However, the band-pass (resonant) spiking
response is generated by frequency-dependent mechanisms at two distinct levels of organization.

Specifically, the subthreshold LPF interacts with a spiking HPF based on the discretization effect.
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Figure 3. Resonance can be generated directly at the spiking level

(A) A leaky integrate and fire (LIF) model neuron was driven by periodic current at various frequencies. Left: Current input
(blue, arbitrarily scaled) and membrane potential (black) at three selected frequencies. Top right: Impedance profile shows
an LPF response.

(B) The model neuron of panel A was driven by higher-amplitude periodic currents. Left: Spikes are produced at the peaks
of the input cycles. At higher frequencies (e.g., 12 Hz), more cycles occur per unit time than at lower frequencies (4 Hz),
corresponding to an HPF (discretization effect). Right: Combined with the subthreshold LPF (panel A), the “resonant LIF”
(rLIF) exhibits spiking resonance.

(C) Spiking fingerprint of the rLIF model; conventions are the same as in Fig. 2C. Spikes are generated at a specific range of
frequencies and phases, corresponding to spiking resonance.

(D) Coherence as a function of input amplitude for the rLIF model; conventions are the same as in Fig. 2D. At higher
amplitudes, spikes occur at all input frequencies and the narrow-band resonance disappears.

(E) Coherence (left) and firing rate (right) as a function of noise level, holding input amplitude fixed (Aj, = 0.115 pA/cm?)
for the rLIF model. When membrane potential variability increases, spikes occur at all input frequencies and the narrow-
band resonance disappears.

(F) A modified LIF neuron was constructed with spike dependent calcium dynamics (“calcium LIF”). The calcium-LIF model
neuron has an LPF impedance profile (bottom right, inset). However, when driven by periodic current sufficient to generate
spikes, the spikes appear at a specific frequency band (around 8 Hz; black traces). Without the calcium conductance, only a
low-pass spiking filter remains (red traces).

(G) Spiking fingerprint of the calcium-LIF model; conventions are the same as in Fig. 2C.

(H) Sensitivity analysis of the calcium-LIF to the calcium conductance G.. The width of the resonant frequency band

increases with G..
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To determine the conditions under which spiking resonance can be generated in a LIF model neuron,
we first modified the input current amplitude. We found that narrow-band resonance occurred only
at a small range of input amplitudes (Fig. 3D). Furthermore, when background noise was increased,
spikes occurred at all input frequencies, and the narrow-band spiking resonance disappeared (Fig. 3E;
Knight, 1972; Brunel et al., 2001). Thus, band-limited spiking resonance in an isolated LIF that lacks
resonance of membrane potential fluctuations occurs only at a limited range of parameters.

The spiking resonance in the LIF model neuron involved a spiking-domain HPF based on the
discretization effect, but spikes were consistently generated below the resonant frequency. Following
a sodium spike, neurons exhibit a calcium transient: a rapid increase and slower decrease of calcium,
which is the basis of calcium imaging (Grienberger and Konnerth, 2012). We used the calcium
transients to design a modified version of a LIF model neuron that includes spike-dependent calcium
dynamics (Fig. 3F). By construction, the calcium current activates only in the presence of spikes.
Without the calcium current, the model exhibited only a LPF response in the subthreshold domain
(Fig. 3F, bottom right inset), and the spiking response exhibited a similar profile (Fig. 3F, red lines).
Adding the spike-dependent calcium dynamics did not change the subthreshold response, but a
spiking band-pass filter emerged (Fig. 3F-G). During the calcium transient, the membrane potential
was more depolarized, allowing the generation of a spike in response to a lower current input,
effectively reducing spiking threshold. Thus, the occurrence of one spike favored the occurrence of
another spike during a specific time window dictated mainly by the calcium activation and
deactivation time constants. Thus, we identify the calcium transients as a second spiking-domain HPF.
Combined with the subthreshold LPF, spiking resonance emerged (Fig. 3F-G). Increasing the calcium
conductance widened the resonant band (Fig. 3H). Together with spike discretization in the isolated
LIF, the two case studies identify spiking HPFs. In particular, these cases demonstrate that spiking
resonance can be generated directly at the spiking level, without resonance at the level of membrane

potential fluctuations.
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Resonance generated directly at the spiking level can be inherited to the

network level

To determine whether and how spiking resonance generated by a single LIF can propagate to other
cells, we first connected the resonant LIF (“rLIF”; Fig. 3B) as an E-cell to a postsynaptic target cell in a
feedforward manner (Fig. 4A, top left). The E-cell received a low level of membrane potential noise,
keeping spiking within the resonant range (see Fig. 3E). In contrast, the target cell was modeled as a
non-resonant LIF (“nrLIF”) by increasing the membrane potential noise, and exhibited spontaneous
spiking. When an oscillatory current input was applied to the E-cell, both the E-cell and the target cell
displayed resonance (Fig. 4A, right). The same phenomenon was observed in a larger network with
feedforward excitatory connections: when current input was applied only to the E-cells, both the E-
cells and the target cells exhibited resonance (Fig. 4B; target cell fingerprint in Fig. 4B inset). Thus, in
a feedforward network of LIF neurons, network resonance emerges by inheritance from the spiking
domain, without feedback or any additional frequency-dependent mechanisms at the synaptic or
network levels. In previous work, spiking resonance was observed in recurrent LIF networks, in which
E- and I-cells were connected with negative feedback (Ledoux and Brunel, 2011). The present
observations show that network resonance can emerge in LIF networks without any recurrency or
negative feedback, but rather by inheritance from resonance generated at the single neuron spiking

level.
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Figure 4. Resonance generated at the spiking level can be inherited to the network level

(A) Top left: An E-cell, modeled by an rLIF as in Fig. 3B, was connected via an excitatory (AMPA-like) synapse to an I-cell,

modeled by an nrLIF. Bottom left: Constant-amplitude periodic current in the form of a linear chirp was applied only to the

E-cell (purple trace), that also received low-magnitude noise (0=0.02 mV). Here and in B-E, Aj,¢ = 0.115 pA/cm?. Top right:

The I-cell, that received higher magnitude noise (0=2 mV), exhibits both background and transmitted spikes. Bottom right:

Spiking resonance is observed for both model neurons. Inset: Spiking fingerprints for an E-cell and for an I-cell.

(B) Top: Voltage traces of four target I-cells (nrLIF; green) that received feedforward connections from 16 E-cells (rLIF;

purple). All E-cells received exactly the same periodic input current; each cell received independent noise. Bottom:

Coherence for every individual model cell (light traces), and averaged coherence for the E-cells (heavy purple traces) and the

I-cells (heavy green traces). The indirectly-activated I-cells exhibit spiking resonance. Inset: Spiking fingerprints for an E-cell

and for an I-cell.

(C) The noise level to the E-cells was quadrupled (same network as in panel B). Spiking resonance of the I-cells is

maintained, at a shifted (increased) resonant frequency. Inset: Spiking fingerprints for an E-cell and for an I-cell.
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(D) Coherence of the directly-activated E-cells (/eft) and the indirectly-activated I-cells (right), as the magnitude of the noise
applied to the E-cell was varied systematically. Horizontal dashed lines indicate the E-cell noise levels used in panels B and
C. Each row shows the average coherence (color coded) across 16 E-cells (left) or four I-cells (right).

(E) Quantification of the maximal coherence magnitude (/eft) and the peak (“resonant”) frequency (right) for the dataset

of panel D. Bands show SEM across cells. At low noise levels, E-cell and I-cell exhibit similar resonant frequencies.
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When the noise applied to the E-cells was quadrupled, coherence magnitude for both the E-cells and
the target cells was reduced (Fig. 4C), although spiking in the target cells was still limited to specific
phases (Fig. 4C, inset). With gradually increased noise, E-cell coherence gradually diminished (Fig. 4D-
E, left), whereas the resonant frequency in the target cells gradually shifted to higher values (Fig. 4D-
E, right). These results emphasize that even if resonance in a (LIF) network is entirely inherited from
the single neuron spiking level, the properties of the single cell spiking resonance and network

resonance may differ.

Resonance generated at the synaptic level can be inherited to the network

level

In addition to the level of membrane potential fluctuations (Fig. 2) and the spiking level (Fig. 3),
resonance may be generated directly at the level of postsynaptic potentials (PSPs; Thomson et al.,
1993; Markram et al., 1998; Izhikevich et al., 2003; Drover et al., 2007). Following the previous work,
we modeled resonance at the PSP level using short-term synaptic dynamics (Fig. 5). The model neuron
was a LIF with a very high spiking threshold (leaky integrator), and input was given as periodic spike
trains (without oscillatory current injection; Fig. 5A). At the level of membrane potential fluctuations,
the LIF exhibited only a low pass response (same as the LIF in Fig. 3A). When short-term synaptic
dynamics included both synaptic depression and facilitation, the excitatory PSP (EPSP) magnitude was
highest around 8 Hz (Fig. 5A-B). This phenomenon is referred to as synaptic, or PSP, resonance
(Markram et al., 1998; Izhikevich et al., 2003; Drover et al., 2007). In the depression/facilitation model
of synaptic resonance, the LPF corresponds to synaptic depression (Fig. 5C, dotted line) and the HPF
corresponds to synaptic facilitation (Fig. 5C, dashed line). Notably, when no synaptic plasticity was
modeled, we identified an intrinsic synaptic HPF (Fig. 5C, grey), consistent with temporal summation

of multiple spikes by the membrane time constant. Thus, consistent with previous results (Markram
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413  etal., 1998; Izhikevich et al., 2003), resonance at the level of postsynaptic potentials can be generated

414  without resonance at the level of membrane potential fluctuations.

22



415
416
417
418
419
420

Network resonance

Stark et al., 2022

A Postsynaptic potentials D Postsynaptic spiking
Synaptic s0 Synaptic
5,—50 < -50 { 1 spks/s depression + S 0 1 spksls . 8 depression +
> > Nﬂﬂaﬂoﬂ E 2 facilitation
S 52l S .52 >—50~I—I—I—I—I—I—l—|—|—|» E°
NN EEEN | £
0 4 8 -10 0 10 20 30 0 4 8 5 4
V= 0mv S0 V= -50 mv
;_50 __-50{ 10 spks/s o=0mVv 5 10 spksfs E 2 o=0.05mVv
2 E
E E =
> > 521 - 0
i i _/‘\ > o l l l
IT1 11111 1d1 | - 0 10 20 30 40
0 04 08 10 0 10 20 30 Q 04 08
50
50 __-50] 40 spks/s = 20 spksis 08
z LT e
S 52 >'-52 =
i I ] 1 SD:I:I:I:I::I:I::I:I:I:I:304
0 0.1 02 -10 0 10 20 30 0 0.2 04 5
50 B
50 -50 | 100 spksis s 40 spksis UD 02
z z —— E °
S W N I O N B Sendd
0 0.04 0.08 -10 0 10 20 30 0 0.1 02 0 10 20 30 40
Time [s] Time [ms] Time [s] Presynaptic spike rate [spks/s]
166 spks/s Coherence
—_ 0.3
- '
498 N ?epresslon E ! 0.8
5 3 Y Facilitation .-~/ 8 4 H
£ & Synaptic o8 T ) : s 02 06
&, depression + = /I E | T )
i facilitation @ 06 = 20 : I
w o / a 3 @ 0.4
o 50.2 w / No @ ! =
2 i 04 /plasticity %. ! Z 01
> 504 7 g 10 ! 02
7] 2 g v '
-50.6 & g T e < . : N 0
0 20 40 60 80 100 10 20 30 40 - 0 ™ 0 10 20 30 40
Presynaptic spike rate [spks/s] Presynaptic spike rate [spks/s] Phase [rad] Presynaptic spike rate [spks/s]
G Synaptic H
depression + Network
facilitation
No synaptic Layer 1 U
plasticity —
Layer 2
i f o =0.05mV
04
o
g
o
2 Layer3 =
502 Y
8 o=0mV E |
0- .
0 5 10 15 20 25 30 35 40
Presynaptic spike rate [spks/s]
Layer 2 (0.26)
40 | = =
. | E 15 E 15
TR s 3 3 8
2 ayer 2 2
Bl e g 2 2
x o o~ £
T Py Py 3
10 Layer 2 % 05 R %‘ 05

o

Layer 2 noise [mV]

0 0

o 10
Presynaptic spike rate [spks/s]

20 30

o
Presynaptic spike rate [spks/s]

10 20 30

Layer 2 noise [mV]

Layer 2 noise [mV]

Figure 5. Resonance generated at the level of postsynaptic potentials can be inherited to the network level

(A) A LIF model neuron was driven by periodic spike trains at various rates via an excitatory (AMPA-like) synapse that

exhibited synaptic depression and facilitation. Threshold was set to a high value (Vi = 0 mV) to prevent spiking. Here and in

B-C, o= 0 mV. Left: After several spikes, the excitatory postsynaptic potentials (EPSPs) stabilize. Right: Traces shown at an

expanded time scale. The magnitude of the EPSPs is maximal at intermediate rates.
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(B) EPSP magnitude for the LIF with synaptic depression and facilitation, measured over a wide range of presynaptic spike
rates. Magnitude peaks at an intermediate frequency, corresponding to synaptic resonance.

(C) Scaled EPSP magnitude as a function of presynaptic spike rate for the LIF with synaptic depression and facilitation (black;
same as in B). Scaled EPSP magnitudes for a synaptic plasticity model only with depression (dotted line) correspond to an
LPF. Scaled EPSP magnitudes for a model only with facilitation (dashed line) or a model without synaptic plasticity (passive
membrane; grey line) correspond to HPFs.

(D) The LIF with synaptic resonance model neuron of panel A was modified to allow spiking (Vi = -50 mV). Here and in E,
o= 0.05 mV; Ij, = 1.3 uA/cm?. Left: Spikes are generated predominantly at intermediate frequencies. Right: The model
exhibits spiking resonance.

(E) Spiking fingerprint of the LIF with synaptic resonance model; conventions are the same as in Fig. 2C. Spikes are
generated at a specific range of frequencies and phases, corresponding to spiking resonance.

(F) Coherence as a function of noise level. Dashed line indicates noise level of 0.05 mV, used in D-E. The resonant frequency
(and coherence magnitude) shifts with increased noise. Spiking resonance is exhibited for a wide range of noise levels.

(G) A diverging-converging feedforward network of LIF neurons was constructed. The first layer included a single point
process neuron which fired a single spike at the peak of every cycle of a linear chirp (0-40 Hz over 20 s). The second layer
included 50 identical LIF with synaptic depression and facilitation (as in D); all neurons received excitatory (AMPA-like)
connections from the layer 1 neuron, and every neuron received independent membrane potential noise. All layer 2 neurons
received bias current of /i, = 1.2 uA/cm?. The third layer included a single LIF without short term synaptic dynamics.

(H) Neurons in the second layer spike at a wide range of input presynaptic spike rates, whereas the third layer (output)
neuron spikes at a narrower range of presynaptic spike rates.

(1) Second layer spike trains exhibit spiking resonance (thick black trace, averaged coherence over all inner-layer trains),
consistent with noisy inheritance from the PSP level (as in F). The output spike train exhibits narrow-band network resonance
(red trace).

(J) The feedforward network was constructed and stimulated as in G, with different noise levels (o= 0-2 mV at 0.025 mV
increments) received by layer 2 LIF neurons while keeping the noise received by the output (layer 3) neuron zero. The black
curve shows the meanzSEM firing rate of the 50 layer 2 neurons. The vertical dashed line corresponds to the frequency for
which layer 2 coherence peaks (K, left).

(K) Peak coherence is observed for intermediate noise levels. Coherence between the input spike train (blue train in H)
and the spike train of every layer 2 neuron was estimated and averaged over all 50 layer 2 neurons. The process was repeated
for every noise level, and the coherence are shown as rows in the left matrix (blue/red colors correspond to 0/0.26
coherence). The same process was carried out for the layer 3 neuron (right matrix; blue/red colors corresponding to 0/0.74

coherence). The white dashed lines correspond to the noise level and frequency for which layer 2 coherence peaks (0.3).
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(L) For every noise level, the peak layer 2 coherence magnitude (/eft) and the frequency for which the coherence peaks
(right) are plotted. Layer 3 coherence magnitude is higher than layer 2 coherence for all noise levels. Layer 2 and layer 3
coherence peak at intermediate noise levels, exhibiting stochastic resonance. The resonant frequency of layer 3 is lower than

the resonant frequency of layer 2 at every noise level, including at the stochastic resonant frequency (25 Hz for layer 2).

25



457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

Network resonance Stark et al., 2022

To determine whether PSP resonance can be inherited to the spiking level, we set the spiking
threshold in the model LIF to a “standard” value (-50 mV). Under these conditions, the model neuron
exhibited spiking resonance, at frequencies similar to those exhibited by the PSPs (Fig. 5D). As for
spiking resonance inherited from the subthreshold level (Fig. 2C) and resonance generated directly at
the spiking level (Fig. 3C, Fig. 3G), the spiking resonance inherited from the PSP level occurred around
zero phase (i.e., the input spikes; Fig. 5E). In this case, a short phase lag occurred, consistent with
synaptic delay (i.e., the rise time of the EPSP; Fig. 5A). When the level of noise was increased,
coherence magnitude was reduced, and the resonant frequency shifted to higher frequencies (Fig.
5F). Thus, resonance generated at the level of postsynaptic potentials can be inherited to the spiking
level.

Noisy LIF with synaptic resonance exhibit spiking resonance at a frequency higher than the PSP
resonant frequency (Fig. 5F). To examine the effect of PSP resonance on spiking resonance in a
network of neurons, we constructed a diverging/converging feedforward network consisting of
multiple noisy LIF with synaptic resonance that received the exact same input spike train (Fig. 5G).
Indeed, the cells exhibited spiking resonance at a frequency higher than the PSP resonant frequency
(Fig. 5HI). When these LIF converged on a common target, the target neuron exhibited resonance (Fig.
5HI), at a frequency shifted back to the PSP resonant frequency. Thus, resonance generated at the
level of postsynaptic potentials can be inherited to the network level.

In the model of network level synaptic resonance (Fig. 5G-lI), the resonance of the output (layer 3)
neuron is at a lower frequency and has lower coherence with the input, compared to the intermediate
(layer 2) LIFs. To understand what the resonant peak of the layer 3 neuron depends on, we repeated
the simulation while varying layer 2 noise levels (independent noise for every LIF). Increasing the noise
of the layer 2 neurons (while keeping the noise of the output neuron zero) yielded monotonically
increasing firing rates of both layers (Fig. 5J). However, the coherence of both layers did not increase
monotonically but rather peaked at an intermediate noise level (Fig. 5K), exhibiting stochastic

resonance (Wiesenfeld and Moss, 1995; Linder et al., 2004; Mejias and Torres, 2011). Specifically, the
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maximal layer 2 coherence was obtained at a noise level of 6 =0.48 mV (¢ = 0.25 mV was used in Fig.
5G-l). At that noise level, layer 2 coherence peaked (0.3) at a resonant frequency of 25 Hz, whereas
layer 3 exhibited higher magnitude coherence (0.72) at a frequency of 17 Hz (Fig. R5L). Thus, stochastic
resonance, defined as an optimal response to an input at an intermediate noise level, can be observed

in parallel to resonance, defined as a peak of the response at an intermediate frequency.

Resonance can be generated intrinsically at the network level via excitatory

inputs

In principle, the frequency-dependent mechanisms (low- and high-pass filters) do not have to occur
at the same level of organization. One example is spiking resonance in LIF, in which we identified the
LPF as the membrane capacitance and leak current, and the HPF as spike discretization (Fig. 3B-E). To
determine if frequency-dependent mechanisms across levels of organization can yield network
resonance, we combined low-pass filtering at the PSP level and HPF at the spiking level. The PSP-level
LPF was realized as synaptic depression (Fig. 6A; cf. Fig. 5C, dotted line). The HPF at the spiking level
was manifested as spike discretization (grey curves in Fig. 6B, right). When driven with presynaptic
spike trains of various rates, the LIF with synaptic depression model exhibited spiking resonance (Fig.
6B, black lines), with a resonant frequency around 7-8 Hz (Fig. 6B-C). Resonance was maintained in
this model over a range of noise values, with a relatively small frequency shift (Fig. 6D). We denote
this phenomenon as “intrinsic network resonance”: resonance exhibited at the network level, in the
lack of resonance observable at any other level of organization (around the frequency of interest). As
in the previous three cases of network resonance (Fig. 2F-H, Fig. 4, and Fig. 5G-l), resonance is
observed at the spiking level, in postsynaptic neurons. Yet in contrast to the cases of inherited network
resonance, in the present case, no other level of organization exhibits resonance around the frequency

of interest.
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Figure 6. Intrinsic network resonance can be generated by combining frequency-dependent mechanisms at the level of

postsynaptic potentials and at the spiking level

(A) EPSP magnitude for a LIF with synaptic depression (high threshold, Vi, = 0 mV) as a function of presynaptic spike rates.

Here and in B-C, o= 0.05 mV. Without synaptic facilitation, EPSP magnitude is highest at the lowest rates, corresponding to

a synaptic LPF.

(B) The LIF with synaptic depression of panel A was modified to allow spiking (Vi = -50 mV). Left: Spike rate is highest at

intermediate frequencies (e.g., 10 Hz). At higher frequencies (e.g., 20 Hz), spikes following the first spike are depressed.

Right: In the LIF with synaptic depression model, the combination of the synaptic LPF (panel A) and the spike discretization

HPF (grey line) yields spiking resonance (black line). Without synaptic depression, resonance disappears (grey line).

(C) Spiking fingerprint of the LIF with synaptic depression model; conventions are the same as in Fig. 2C. Spikes are

generated at a specific range of frequencies and phases, corresponding to network resonance.
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519 (D) Coherence as a function of noise level. Dashed line indicates noise level of 0.05 mV, used in B-C. With increased noise,
520 the resonant frequency shifts and coherence magnitude decreases. Spiking resonance is exhibited for a wide range of noise
521 levels.
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Resonance inherited to the network level can be uncovered via inhibitory

inputs

Previous work showed that resonance can be observed in the spiking of postsynaptic neurons, i.e.,
at the network level, even when the synaptic connections are inhibitory (Stark et al., 2013). When an
isolated (subthreshold resonant) pyramidal cell (PYR), modeled with h-current and full spiking
dynamics, was driven directly by a periodic input current, spiking resonance was generated (around
10 Hz; Fig. 7A). This corresponds to resonance inherited from the level of membrane potential
fluctuations, as observed in a simpler model neuron (Fig. 2). We connected an I-cell, modeled with full
spiking dynamics, to a resonant PYR (modeled as in Fig. 7A) via an inhibitory (GABAa-like) synapse,
without feedback. When only the I-cell in the two-cell model was driven, the PYR exhibited spiking
resonance (around 8 Hz; Fig. 7B). This network resonance is inherited from the PYR spiking resonance
(Fig. 7A), which was in turn inherited from resonance of the membrane potential fluctuations. Indeed,
spike generation in the PYR required /4. However, the IPSP-induced PYR spikes occurred at the troughs
of the input given to the I-cell (Fig. 7B, bottom right), at an opposite phase compared to direct
activation (Fig. 7A, bottom right). This is consistent with in vivo observations (Stark et al., 2013) and
contrasts with all other cases studied so far (membrane potential: Fig. 2C; spiking: Fig. 3C, 3G; PSP:
Fig. 5E; EPSP network: Fig. 6C), in which the resonant spikes occurred around the peak of the input
cycle. Thus, network resonance can also be inherited from the single neuron level using synaptic

inhibition.
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Figure 7. Inhibition-induced network resonance can be inherited from the level of membrane potential fluctuations

(A) A PYR model neuron, with h-current and full spiking dynamics, was driven by a constant-amplitude periodic current in

the form of a linear chirp (0-40 Hz, 20 s; Ajx® = 0.2 uA/cm?). Top: Membrane potential response during a single trial. Center:

Raster plots from 20 independent trials. Bottom: Quantification of spiking resonance. As in the simpler model (Fig. 2), the

LPF and HPF correspond to RC (membrane capacitance and leak current) and the h-current, respectively. PYR spikes are

generated around the peak of the input cycles in a narrow frequency band around 10 Hz, exhibiting spiking resonance.

(B) The PYR model neuron of panel A was connected via an inhibitory (GABAx-like) synapse to a presynaptic I-cell (INT).

Only the INT was driven by a constant amplitude periodic current (Aj,’ = 0.5 uA/cm?). Other possible synaptic connections

were kept at zero (light grey lines in the cartoon, top right), isolating the contribution of feedforward inhibition. The PYR

spikes after a series of INT spikes, around the trough of the input cycles given to the INT. The narrow-band PYR spiking

exhibits IPSP-induced (network) resonance. All conventions are the same as in panel A.
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In the model of inhibition-induced network resonance (Fig. 7B), the frequency-dependent
mechanisms were inherited from the single-cell properties. Specifically, the PYR h-current acted as a
HPF. Although the model exhibited resonance, spikes were also generated below and above the
resonant frequency (Fig. 7B). To construct a model of inhibition-induced network resonance that does
not generate PYR spiking at low frequencies, we added a HPF at the level of the I-cell (Fig. 8). This was
done by modeling gamma-band resonance (previously observed in vitro; Pike et al., 2000) at the level
of membrane potential fluctuations, by adding a resonant (M-) current to the I-cell. When driven with
a periodic input current of low amplitude, the impedance profile of an isolated gamma-resonant
interneuron (YINT) exhibited a peak (around 40 Hz; Fig. 8A, right panels). When input amplitude was
increased, the resonance generated at the level of membrane potential fluctuations was inherited to
the spiking level. The peak coherence occurred at similar frequencies as resonance of membrane
potential fluctuations (around 40 Hz), and the YINT spikes occurred around the input peak (zero phase;
Fig. 8B). Furthermore, when the YINT was connected to the PYR (modeled as in Fig. 7A) via a single
inhibitory synapse (as in Fig. 7B), the PYR exhibited spiking resonance (around 10 Hz; Fig. 8C).
However, the phase of the PYR spikes (relative to the current input applied to the I-cell) differed in the
two models of inhibition-induced network resonance (compare fingerprints in Fig. 7B and Fig. 8C).
Furthermore, in the YINT network model, the produced PYR spikes were confined to the resonant

frequency.
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Figure 8. Inhibition-induced network resonance is sharpened by presynaptic high-pass filtering

(A) A gamma-interneuron (yINT) model neuron, with M-current and full spiking dynamics, was driven by constant
amplitude periodic current in the form of a linear chirp (0-80 Hz, 10 s; Ai' = 0.5 pA/cm?). The impedance profile (second
subpanel from left) shows a wide peak centered around 40 Hz, exhibiting resonance of the membrane potential fluctuations.

(B) The YINT model neuron of panel A was driven by a higher-amplitude periodic current (0-80 Hz, 10 s; Ajy' = 0.9 pA/cm?).
Spikes are generated at the peaks of the input cycles, at a frequency band centered around 40 Hz (30-50 Hz). Thus, the yINT
model neuron exhibits spiking resonance, inherited from the level of membrane potential fluctuations. Far right: Coherence
as a function of input amplitude; horizontal dashed line indicates A/’ = 0.9 p/A/cm?. At higher amplitudes, the spiking
bandwidth increases.

(C) The YINT model of panel A was connected, via an inhibitory (GABAx-like) synapse, to a PYR (as in Fig. 7B), and driven by
a constant amplitude linear chirp (0-40 Hz, 20 s; Ajy = 2.1 pA/cm?). Top: Membrane potentials during a single trial. As in Fig.
7B, PYR spikes are generated after yINT spikes. However, the yINT spikes occur at higher input frequencies than the INT
spikes, sharpening the PYR spiking resonance. Center: Raster plots of the PYR spikes from 20 independent trials. Right:

Quantification of the IPSP-induced network resonance.
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Discussion

Routes to network resonance

In this work, we tested the hypothesis that resonance in networks of spiking neurons is necessarily
inherited from resonance at lower levels of organization. From electric circuit theory it is clear that
one can construct a macro-circuit consisting of multiple embedded subcircuits, each being able to
produce resonance on its own. However, neuronal networks are naturally evolved, highly nonlinear
electric circuits which may not have an intrinsic resonance-generating property. This is primarily
because the neuronal building blocks that determine the frequency-dependent properties (e.g.,
positive and negative feedback effects, history-dependent processes) rely on different biological
substrates at different levels of organization (e.g., resonant and amplifying ionic currents, excitation
and inhibition, synaptic depression and facilitation).

Examining four levels of neuronal organization and a number of representative case studies, we
found that resonance can either be inherited from one level to another, or be generated
independently at each and every level. In networks of spiking neurons, resonance can be generated
directly at the network level. We showed that it is possible for a given system to display resonance at
one level of organization — membrane potential fluctuations, postsynaptic potentials, single neuron
spiking, or network — but not in others. Spiking resonance and resonance of postsynaptic potentials
are not necessarily accompanied by resonance of membrane potential fluctuations, and network
resonance can be generated without resonance at any other level of organization. Thus, the
mechanisms that can generate neuronal resonance at different levels of organization are distinct (Fig.
9, center). A direct implication of these observations is that when a system presents resonance at
multiple levels of organization, these can be derived from either similar (inherited) or independent
mechanisms. A second direct implication is that neuronal networks in different brain structures may

exhibit qualitatively similar resonant properties by disparate mechanisms.
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Figure 9. Network resonance can be generated by interacting low- and high-pass filters across levels of neuronal
organization

(A) Frequency-dependent building blocks include high-pass filters (HPF, top) and low-pass filters (LPF, bottom). HPFs
include inductive/resonant ionic currents (/n, Figs. 2, 7, 8; , lv, Fig. 8), acting at the level of membrane potential fluctuations;
spike discretization and calcium-dependent spiking (Figs. 3, 4, 6); and synaptic facilitation and temporal summation (Fig. 5).
LPFs include membrane capacitance and leak current (Figs. 2-4, 7, 8), and synaptic depression (Figs. 5, 6).

(B) The frequency-dependent building blocks (filters) can interact either within the same level of organization (e.g., top
row: membrane potential fluctuations; third row: postsynaptic potentials) or across levels of organization (e.g., second and
fourth rows).

(C) Interaction of HPF and LPF (within or across levels of organization) can generate resonance. If the interaction is within
the same level of organization (e.g., membrane potential fluctuations), resonance can be generated at that level, and may
(under certain conditions) be inherited to the network level (top pathway). Alternatively, network resonance may be

generated intrinsically, by HPF and LPF across levels of organization (bottom pathway).
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General framework for nonlinear decomposition of resonance

Mechanistic studies aim to provide explanations of a given phenomenon in terms of a number of
constituent building blocks whose choice depends on both the phenomenon and the desired level of
explanation. For neuronal systems, there are a number of available sets of building blocks, but not all
of them are appropriate for the investigation of resonance across levels of neuronal organization. The
biophysical explanation, in terms of the ionic currents of the participating neurons, synaptic currents,
short-term plasticity and other biological components, becomes extremely complex for larger
networks. The same occurs for the dynamical systems explanation in terms of nonlinearities, time
scales, and vector fields. Circuit building blocks such as positive and negative feedback loops are
applicable to some, but not all levels of neuronal organization. For example, while subthreshold
resonance results from negative feedback interactions between the membrane potential and
restorative ionic currents, synaptic resonance results from history-dependent mechanisms.

Our results support the hypothesis that the set of LPFs and HPFs are appropriate building blocks to
explain the generation of resonance (BPFs) and that this approach can be used irrespective of the level
of organization, and across levels of organization. We further hypothesize that this approach is
universal. In other words, to understand the generation of resonance at a given level of organization,
one must identify the constituent LPFs and HPFs. From this perspective, the decomposition of BPFs
into LPFs and HPFs is not a mere description of resonance, but rather an explanatory theoretical tool
to understand resonance in terms of structural and functional building blocks. A deeper understanding
might be achieved by linking filters with specific sets of building blocks (Fig. 9). Provided that the
technology exists, the filters may be experimentally identified by making the necessary perturbations.
Therefore, understanding the generation of LPFs and HPFs in terms of the neuronal substrates
contributes to the understanding of the biophysical and dynamic mechanisms underlying the
generation of resonance.

The proposed LPF-HPF framework has the advantage of incorporating, within a single conceptual

umbrella, disparate processes such as negative feedback processes (capacitive, leak, resonant, and
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amplifying currents), history-dependent processes (synaptic depression and facilitation), and spike
discretization. It is not conceived as an analysis tool, but rather serves as a conceptual tool in which
mechanistic models can be designed and their predictions tested by comparing modeling results to
data. Further research is needed to explicitly integrate amplification in this framework, to establish a
general LPF-HPF amplification framework for neuronal systems, and to identify the appropriate filters
and amplification processes. Additional research is also needed to investigate the consequences of
the interplay of multiple filters (e.g., two LPFs and one HPF) and across levels of organization, and to
establish whether multiplicities produce degeneracies or richer patterns (e.g., anti-resonances).

The identification of the LPF and HPF constituting a given BPF is not a straightforward process,
primarily due to two factors: the nonlinearities involved, which are typically strong; and the
qualitatively different biophysical components operating at different levels of organization. In linear
systems, for which analytical calculations are possible, the BPFs characterizing the presence of
resonance can be generated by the frequency domain multiplication of LPFs and HPFs. These filters
have been identified in simple neuronal systems (e.g., systems that can be described by RLC circuits),
but it is not a-priori clear whether and how neuronal BPFs in general can be decomposed into LPFs
and HPFs. Under rather general circumstances, for nonlinear subthreshold resonance one can extend
the linear approach (in the time domain) and obtain a description of the LPF by disrupting the negative
feedback from the recovery variable, and the HPF by neglecting the capacitive current. In contrast,
the short-term plasticity-mediated synaptic BPFs that compose the synaptic resonance model are, by
construction, the product of a depression LPF and a facilitation HPF in the time domain (not in the
frequency domain), and are thus not amenable to linear decomposition.

In general, there are at least two possible ways to generate a resonant response at a given level of
organization: by using an LPF and a HPF at the same level of organization, or at different levels (Fig. 9,
center). In the case of resonance of membrane potential fluctuations, we used a subthreshold LPF
(passive membrane) and a subthreshold HPF (/; Fig. 2; Hutcheon and Yarom, 2000). Similarly, for

synaptic resonance both the LPF (synaptic depression) and the HPF (facilitation) belonged to the same
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level of organization (Fig. 5; Izhikevich et al., 2003). However, for the generation of spiking resonance
independently of resonance at any other level, we identified a mixed approach (Fig. 3). While the HPF
was spike-dependent (due to spike discretization or calcium dynamics), the LPF was inherited from
the subthreshold domain (passive membrane). This provides a mechanistic explanation of the classical
results of spiking resonance in LIF neurons (Knight, 1972; Gerstner, 2000), beyond the limit of weak
inputs (Brunel et al.,, 2001). A mixed approach was also used for generating intrinsic network
resonance (Fig. 6): synaptic depression (LPF) was combined with spike discretization (HPF) to generate

resonance in a postsynaptic target.

Experimental and functional implications

Network resonance has been described theoretically (Akam and Kullman, 2010; Vierling-Claassen et
al., 2010; Ledoux and Brunel, 2011; Veltz and Sejnowski, 2015; Sherfey et al., 2018) and observed
experimentally (Stark et al., 2013; Schmidt et al., 2017; Lewis et al., 2021) in several model systems.
Here, we distinguished between two types of network resonance: “inherited” network resonance, and
“intrinsic” network resonance. In inherited network resonance, frequency-dependent mechanisms
(LPF and HPF) occur at a level of organization other than the network. Resonance can be observed at
that level of organization, and may be inherited to the network level under specific conditions (e.g.,
Fig. 2). Network-level processes may modulate (e.g., amplify or attenuate) the inherited resonance,
but their absence does not disrupt the inherited resonance. In contrast, LPFs and HPFs that occur at
possibly distinct non-network levels of organization can generate intrinsic network resonance (e.g.,
Fig. 6), in the lack of resonance observable at any other level of organization. To the best of our
knowledge, intrinsic network resonance has yet to be demonstrated experimentally.

Inhibition-induced network resonance required that I--mediated rebound spiking in pyramidal cells
(Cobb et al., 1995) interacts with some form of HPF. Previously, depression of the inhibitory synapses
(on the PYR) and interaction with a third type of cell (an oriens-lacunosum moleculare [OLM] cell)

were suggested as HPFs (Stark et al., 2013). Here, we considered two other mechanisms. First, we
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found that the PYR h-current itself yields a sufficient HPF for generating resonance in the IPSP-driven
PYR. Thus, inhibition-induced network resonance can be inherited. Second, we found that the addition
of a second HPF, in the form of gamma resonance in the presynaptic INT (Rotstein, Ito and Stark, 2017,
SFN Abstract), sharpens the IPSP-induced PYR spiking resonance. Gamma resonance has been
observed in computational models (Akam and Kullman, 2010; Sherfey et al., 2018), in INT in vitro (Pike
et al., 2000), and in multi-unit activity in vivo (Lewis et al., 2021). However, whether gamma resonance
in INT actually occurs in vivo and sharpens theta-band resonance in PYR in vivo remains to be
determined. Together, the present results suggest that although not necessary, frequency-modulating
mechanisms at multiple levels of organization can contribute to the emergence of inhibition-induced
network resonance.

Network resonance can be both intrinsic and inherited, and inherited network resonance can be
derived from different levels of organization. By measuring only firing rate resonance, it is impossible
to determine the specific phase of the spiking response relative to a periodic input. However, using
spike timing resonance and the fingerprint map of resonant neurons, different LPF and HPF modules
that may underlie the resonance mechanism can be contrasted. One experimentally-testable
prediction is that in recurrent excitatory networks, spiking resonance of directly-activated PYR will
exhibit an earlier phase fingerprint, compared to the fingerprint of spikes generated via postsynaptic
potentials which may be delayed in phase (Fig. 4BC; Fig. 6C). Another experimentally-testable
prediction is that in inhibition-induced resonance, PYR phase mediated by yINT would be later (Fig.
8C), compared to PYR phase without the involvement of yINT (Fig. 7B). Thus, in real neuronal networks
driven by periodic inputs, spike timing resonance, quantified by spike phase and fingerprinting, may
be used to dissect the frequency-dependent mechanisms underlying resonance.

Previous work suggested that resonance can optimize learning (Roach et al., 2018) and favor inter-
neuronal communication (Sherfey et al., 2018). We found that multiple routes can lead to network

resonance. Thus, a single network could multiplex information from multiple sources. Multiplexing
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can occur at different resonant frequencies. Furthermore, since different types of network resonance

exhibit different phases, multiplexing can also occur at different phases of the same frequency band.

Related phenomena and future directions

We focused on resonance, defined as the maximal response of a system to periodic input in a limited
frequency band, and left out the investigation of the related phenomenon of phasonance, defined as
a zero-phase response to periodic inputs. Indeed, previous work has shown that frequency
modaulation of spike phase is possible using a LIF model with spike frequency adaptation provided by
slower feedback, e.g., an outward calcium-activated potassium current (Fuhrmann et al., 2002).
Notably the calcium current used in the previous work (to show phasonance) provides subthreshold
negative feedback, while the calcium current used in the calcium-LIF model (to show resonance; Fig.
3F-H) provides a suprathreshold positive feedback. For linear systems, phasonance (measured using
the impedance phase) and resonance (measured using the impedance amplitude) can co-occur
(Richardson et al.,, 2003; Rotstein and Nadim, 2014). However, phasonance does not have to
accompany resonance (e.g., Fig. 5E, Fig. 8C), and when the two phenomena do co-occur, the resonant
and phasonant frequencies do not necessarily coincide (they do for the case of the harmonic oscillator;
Rotstein and Nadim, 2014). As our results show, spiking resonance may be accompanied by spiking
phasonance (Fig. 3BC). In fact, spiking resonance and phasonance may be inherited from the
subthreshold regime (Fig. 2BC) or be generated at the spiking level (e.g., in LIF; Fig. 3BC).

To address the main question of the paper we relied on a number of case studies. Further work is
required to research general conditions under which resonance may be communicated from one level
of organization to another, or generated independently at each level of organization. Future work
should also consider the effects of multiple ionic currents in single neurons with possible
heterogeneous spatial or compartmental distributions, the effects of interacting synaptic currents

with different functions (excitation, inhibition), the effects of separate timescales and of short-term
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dynamic properties, and network topology effects. Additionally, future studies should consider

scenarios in which multiple resonances interact within and across levels of organization.

Conclusion

We have presented several novel computational models of representative scenarios, and have
rejected the hypothesis that network resonance requires resonance at another level. While doing so,
we set the infrastructure for a theoretical framework for investigating the mechanisms underlying the
generation of neuronal network resonance, taking into account the interplay of the constitutive
nonlinear properties of the participating neurons, synaptic connectivity, and network topology. This
framework will enable studies of neuronal networks where the interactions between periodic inputs,
currents, and network effects are important (Lisman, 2005; laccarino et al., 2016; Helfrich et al., 2019),
different networks entrain each other (Sirota et al., 2008; Fries, 2015), and/or the precise coordination
between periodic input and spiking output are enhanced or disrupted (Bi and Poo, 2001; Lakatos et

al., 2008; Vierling-Claassen et al. 2008).
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Materials and Methods

Models and numerical methods

We used biophysical (conductance-based) models, following the Hodgkin-Huxley formalism
(Hodgkin and Huxley, 1952; Ermentrout and Terman, 2010). Models consisted of a set of coupled
ordinary differential equations. A detailed description of the different models used is provided below.
All numerical simulations were carried out using custom code written in MATLAB (The Mathworks,
Natick, MA). Numerical integration was done using the explicit second-order Runge-Kutta endpoint
(modified Euler) method (Burden and Faires, 1980) with integration time step dt = 0.1 ms (Figs. 1-6)
or dt = 0.025 ms (Figs. 7-8) and simulation duration of T s. As current input, we used sinusoids of a

single frequency, of the form
Iin(t) = Ipias + Ain sin(2mft) (1)

or a chirp (Puil et al., 1986) linear in f of the form

[in(t) = Ipias + Ain COS (n + 2nfot + n(fy — fo)g) (2)

Where Ipis is a time-independent (DC) bias current and Aj, is the amplitude of the time-dependent
(AC) periodic input. In the case of sinusoids of a single frequency f, input frequency f was typically
varied from 1 Hz to 40 Hz at 1 Hz increments, and T = 3 s. For linear chirps, we typically used fo, = 0 Hz

and f; =40 Hz with T= 20 s.

Model for subthreshold resonance

To model resonance originating at the level of membrane potential fluctuations (Fig. 2A-E), we used

a two-dimensional conductance-based model. Thus, the only ionic currents were persistent sodium
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with instantaneous activation (/ng), and h-current (/5) with voltage-dependent dynamics. In this
model, low-pass filtering is induced by the membrane time constant (C/g:), high-pass filtering is

induced by Iy and leak current, and amplification is provided by /. The model equations were:

CZ_Z = Iin(t) - gL(V - EL) - gppoo(V)(V - ENa) - ghr(V - Eh) + gNn(t) (3)

dr _ 1o (V)-r
dat Tr

Membrane potential variability, which may stem from many unknown sources, was modeled by an
additive white noise term, generated by random sampling from a zero-mean Gaussian distribution
n(t)~N(0, o), multiplied by a constant conductance, gn=1 mS/cm”. The I, time constant z; was assumed
to be voltage-independent. The voltage-dependent activation/inactivation curves of the Iy and Ingp

gating variables are given by:

1

P (V) = —wmg (5)
1+e 65
1
T (V) = —v753 (6)
1+e 978

To model a passive membrane (Fig. 2A, dotted line), we set the conductance of the persistent
sodium (gp) and the h- (g») currents to zero. To model a HPF (Fig. 2A, dashed line), we set g, to zero
and reduced Cto 0.1 uF/cm? In all other cases, the full model was used.

Spike waveforms were not modeled explicitly, but a spike was said to occur whenever the membrane

potential crossed a threshold value, Vi, Thus, the 2D model was augmented with threshold spiking:

if V>V thenV « Vipeor (7)
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Whenever a spike occurred, the membrane potential V was held constant at Vpeax for Tspie before
being reset to Vies:. Following Acker et al. (2003) and Rotstein and Nadim (2014), the specific
parameters values used were: C = 1 uF/cm? g, = 0.1 mS/cm?; E, = -65 mV; g, = 0.1 mS/cm?; Eno = 55
mV; gn =1 mS/cm?; En = -20 mV; 7. = 100 ms; Vin = -50 mV; Vieser = -70 mV; Vpeak = 50 mV; Topike = 1 Ms;
o=0mV (Fig. 2E: o= 0-2 mV); lpigs = -1.85 pA/cm?; and A = 0.15 pA/cm? (Fig. 2A: Aip = 0.05 tA/cm?;

Fig. 2D: Aj, = 0-1 uA/cm?).

Model of an excitatory-inhibitory network

To model inheritance of resonance generated at the level of membrane potential fluctuations by
Ina,p+In model neurons to postsynaptic targets (Fig. 2F-G), we generated a network of conductance-

based E- and I-cells with all-to-all connectivity. All cells followed

av
CE = Iin(t) - gL(V - EL) — lionic — Isynaptic + gNn(t) (8)
lf V> Vth thenV « Vreset (9)
The E-cells contained /vop and In, and thus lionic = GpPuo VIV — Eng) + gnr(V — Ep) with r
obeying Eq. 4. The I-cells were modeled as leaky integrate-and-fire (LIF) neurons, and thus /jonic = 0.

Synaptic connections were modeled as in Ermentrout and Kopell (1998) and Borgers et al. (2012). For

the e’th E-cell, the total synaptic current was

Ne Nj
Isynaptic,e = Zj=1 geeSej(Ve - Ese) + Zk=1 geisek(ve - Esi) (10)
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Where N. (N;) is the number of E-cells (I-cells). The notation g.; indicates the maximal synaptic
conductance from presynaptic E-cell j to postsynaptic E-cell e. All excitatory-to-excitatory synapses
had the same maximal conductance values ge. and reversal potentials Es., regardless of the
presynaptic neuron. All inhibitory-to-excitatory synapses had the same maximal conductance values
gei and reversal potentials Es;, regardless of the presynaptic neuron. All synaptic activation variables
corresponding to the same presynaptic neuron had the same dynamics, regardless of the postsynaptic

neuron (Sej = S;, Sek = S, Ve). For the i'th I-cell, the total synaptic current was modeled by

Ne N;
Isynaptic,i = Zj=1 gieSij (Vi — Ege) + Zk=1 9iiSik (Vi — Eg;) (11)

All excitatory-to-inhibitory synapses had the same maximal conductance values gi.. and reversal
potentials Es.. All inhibitory-to-inhibitory synapses had the same maximal conductance values g; and
reversal potentials Es.. All synaptic activation variables corresponding to the same presynaptic neuron
had the same dynamics (Sj = S}, Sik = S, Vi).

For an excitatory/inhibitory presynaptic neuron, the dynamics of the corresponding synaptic variable
(S¢/Si) depended on the presynaptic membrane potential (V./Vi) and the synaptic rise and decay time

constants, following:

dSe _ (1-Se) _ Se
dt - H(Ve) ‘L'$ Tz (12)
as; _ : (1-sp) _ ﬁ
E - H(Vz) ri Tcii (13)
H() = (1 + tanh(V/4))/2 (14)

Parameter values followed Borgers et al., 2012. All parameters values used are detailed in Table 1.
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865 Table 1. Parameters used for modeling inheritance of resonance generated at the level of

866  membrane potential fluctuations (Fig. 2F-H).

Parameter Value Units Notes
C 1 pF/cm?
gL 0.1 mS/cm?
Vin -50 mV
E.* -65 mV E-cells
gp 0.1 mS/cm? E-cells
Ena 55 mV E-cells
gh 1 mS/cm? E-cells
En -20 mV E-cells
Th 100 ms E-cells
Vreset® -70 mV E-cells
Tspike® 1 ms E-cells
E/ -60 mV I-cells
Vreset -60 mV I-cells
Tspike' 0.1 ms l-cells
T° 0.1 ms AMPA
¢ 3 ms AMPA
Ee 0 mV AMPA
7 0.3 ms GABAa
T4 9 ms GABAA
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Ei -80 mV GABAA
ie 0.05 mS/cm? E toI; Fig. 2F: 1
8ee 0 mS/cm? EtoE

8ei 0 mS/cm? lto E

gii 0.05 mS/cm? ltol

c® 0.0125 mV E-cells
Ibias® -1.85 uA/cm? E-cells
Ain® 0.14125 |,lA/cm2 Fig. 2H: 0
G 3 mvV I-cells
Ibias -1 uA/cm? I-cells
Al 0 HA/cm? Fig. 2H: 2.26

867
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Models for spiking resonance

To model spiking resonance generated by an isolated LIF (Fig. 3A-E), we used

av

€= Iin(£) — g, (V — E) + gyn(t) (15)

if V>V thenV « Vygger (16)

with the following parameter values: C = 1 uF/cm?; g, = 0.1 mS/cm?; E, = -60 mV; Vi = -50 MV; Vieset
=-60 mV; Vipeak = 50 mV; Topike = 1 ms; o= 0 mV (Fig. 3E: o= 0-0.3 mV); Ipias = 0.9 pA/cm?; and Ain = 0.05-
0.3 pA/cm?.

To model spiking resonance generated directly at the spiking level with a sharper HPF than the
isolated LIF (Eqs 15-16), we modified the LIF model to include a spike-dependent calcium current (Fig.

3F-H). The model equations were:

CZ_Z =Iin(t) = 9.(V = EL) — 9cK(V — E¢q) + gun(t) (17)
e Me_ (19)
if V> Vo then Tt (20)

The purpose of constructing this model was to generate a spike-dependent HPF, in a system that has

an underlying subthreshold LPF. The physiological rationale is that following a spike, there is increased
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calcium influx, further increasing depolarization; this effectively reduces the spiking threshold to
current input at the same level. Thus, at another cycle of input that occurs shortly after the first spike,
there will be another spike — even if the current is insufficient to generate a spike without the calcium
influx. However, if the next cycle occurs later, the intracellular calcium level will have already gone
back to steady-state level.

In the model, the calcium gating variable K'is limited to the [0,1] range and represents the probability
of the gate to be open. Once a spike occurs, N¢is instantaneously reset to a non-zero value (Nreset) and
then slowly decays (with 7zgeqct) towards zero. While Nc¢ is non-zero, the gate opens slowly (i.e., K is
activated towards 1 with z/Nc, and rapidly inactivates (decays to zero with zinet). When activation is
very fast or inactivation is very slow, the calcium conductance remains high long after a spike,
providing additional depolarization at multiple current input frequencies, generating spike bursts at
every input cycle. When the activation is slow and inactivation is fast, K remains relatively high only
for a short time after a spike. The parameters used favor the latter scenario. Specific parameter values
were: C = 1 uF/cm?; g, = 0.5 mS/cm?; E, = -60 mV; gc = 0.08 mS/cm? (Fig. 3H: gc = 0.04-0.12 mS/cm?);
Eco =100 mV; 7ot = 50 MS; Tinact = 5 MS; Tgeact = 70 MS; Vin = -50 mV; Vieser = -70 mV; Vpeak = 50 mV; Nieser
=0.1; 0= 0.001 mV; lpigs = -3 A/cm?; and Ai, = 8 tiA/cm?.

To model network resonance inherited from resonance generated at the spiking level (Fig. 4), we
combined a set of LIF model neurons (Eq 3 and Eq 4) using the network formalism described above

(Egs 8-14), with parameter values as detailed in Table 2.
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Table 2. Parameters used for modeling inheritance of spiking resonance generated by an isolated

LIF (Fig. 4).

Parameter Value Units Notes
C 1 1F/cm?
gL 0.1 mS/cm?
EL -60 mV
Vin -50 mV
Vreset -60 mV
Tspike 1 ms
©° 0.1 ms AMPA
(TH 3 ms AMPA
Ee 0 mV AMPA
T 0.3 ms GABAA
Td 9 ms GABAa
E;i -80 mV GABAA
8ie 0.01 mS/cm? Etol; Fig. 4A: 1
8ee 0 mS/cm? EtoE
Bei 0 mS/cm? Ito E
gi 0.05 mS/cm? ltol
c* 0.02 mV Fig. 4C: 0.08
Fig. 4DE: 0-0.3
Ibias® 0.9 uA/cm? E-cells
Ain® 0.115 uA/cm? E-cells
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o' mV -cells
Ibias' HA/cm? I-cells
Ay HA/cm? I-cells
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Models for synaptic plasticity and resonance

To model resonance generated at the level of postsynaptic potentials (Fig. 5), we used a LIF model

receiving a synaptic current with short term dynamics (synaptic facilitation and depression):

av

C— = lin(®) — 9.V — EL) — gsSDF(V — Es) (21)
s _ 1-s) s

@ = HVore) - (22)
ap _ D (1-D)

at H(%re) Treset(d) + Tdep (23)
U ()LD (24)
dt - pre

Treset(f) Tfac

The threshold spiking is defined by Eq 9 and the sigmoid activation function is as in Eq 14. In Egs 21-
24, V,. represents the membrane potential of the presynaptic neurons. To construct the input Vyre,
we generated a spike at each local maximum of a sinusoid function (Eq 1 or Eq 2). The presynaptic
voltage was then defined as V,r(t) = 50 mV if a spike occurred in the last 1 ms; otherwise, Vpr(t) = -60
mV. Other specific parameter values used in Fig. 5 were: C = 1 uF/cm? g, =0.1 mS/cm? E, =-65mV;
Vin = -50 mV (Fig. 5A: Vi, = 0 mV); Vieser = -70 mV; Topike = 0.1 ms; . = 0.1 ms; ;=3 ms; gs = 0.175
mS/cm?; Es = 0 mV; Treset(a) = 0.1 MS; Tgep = 100 MS; Tresers) = 0.2 mMs; Trac = 300 ms; o= 0.05 mV (Fig. 5A-
C: o0=0mV; Fig. 5F: o= 0-0.3 mV); lpigs = 1.3 p/A/cm?; and Ain = 0 pA/cm?.

To model synaptic depression, the synaptic variable S was multiplied by a factor D, limited to the
[0,1] range. After every spike, D slowly recovers towards its steady state value of 1, with time constant
T4ep, Which determines the time scale of depression (Eq 23). Since additional spikes may occur during

recovery, the process is history-dependent. To model synaptic facilitation, the synaptic variable S was
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multiplied by a factor F, also limited to the [0,1] range. The dynamics of F follow the same principle as
for depression (Eq 24), yet in an opposite direction: during every spike, F rapidly increases towards 1;
between spikes, F relaxes to zero with a slower time constant zx.. Note that in principle, the synaptic
variable Sin Eq 22 is also history-dependent, representing synaptic summation. However, the synaptic
decay time constant 7y for the AMPA-like synapses used in Eq 22 is much smaller than the time
constants used for modeling depression.

To model the combined effect of depression and facilitation, the synaptic variable was multiplied by
D and F. Together, the product DF represents the probability of presynaptic release. We note that the
depression model is similar to the one proposed by Manor and Nadim (2001). Previous models of
synaptic plasticity (Markram et al., 1998; Ermentrout and Terman, 2010, attributed to Dayan, Abbott,
and collaborators) included a discrete (delta-function) rise of the depression and facilitation variables
in response to each presynaptic spike. The present synaptic plasticity models replace the step increase
with a continuous sigmoid function, as previously used for synaptic transmission models (Ermentrout
and Kopell, 1998; Borgers et al., 2012).

To model short term synaptic dynamics in the lack of depression/facilitation (Fig. 5C), we set the
corresponding variable to a constant (only facilitation: D = 1; only depression: F = 1).

To model inheritance of resonance generated at the level of postsynaptic potentials to postsynaptic
targets (Fig. 5G-L), we constructed a 3-layer diverging/converging feedforward network. Synaptic
conductance between layer 1 and layer 2 was gs = 0.2 mS/cm?. Neurons in the second layer received
Ivias = 1.2 pA/cm? and independent noise (o = 0.25 mV in Fig. 5G-1). Synaptic conductance between
layer 2 and layer 3 was gs = 0.12 mS/cm?; the single layer 3 neuron received lpis = 0 t/A/cm? and no
additional noise.

To model EPSP-induced network resonance (Fig. 6), we used the LIF model supplemented with
synaptic plasticity (Eqs 9, 14, 21-24), without facilitation (i.e., F = 1). Other parameter values were the

same as for generating resonance at the level of PSP (Fig. 5), with /lpjas = 1.2 tiA/cm?.
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Models for inhibition-induced network resonance

To model IPSP-induced network resonance (Figs. 7-8), we used a minimal network of conductance-
based neurons of the Hodgkin-Huxley type with instantaneous activation of sodium channels,
consisting of an excitatory cell (a PYR) and an INT (Borgers et al., 2012). The PYR model included
dynamics on the membrane potential (V#), sodium inactivation (h), delayed-rectifier potassium (n),
and the h-current gating variable (r; Poolos et al., 2002; Zemankovics et al., 2010), yielding a 4D
system. In addition, the model included synaptic input and noise. Denoting the membrane potential

of the PYR by V© and the membrane potential of the INT by V/, the full model for the PYR reads

ave
C— =150 — gL (Ve — E}) — gRahme(VE)* (VE — ERo) — gin* (Ve — ER) — grr(Ve — Ef) —
GeeSc(VE)(Ve —E,) — geisi(Vi)(Ve —E) + gnn®(d) (25)

dh _ heo(VE)—h

dt = t(Ve) (26)
dn _ ne(Veé-n

E N T (VE) (27)
E _ Teo(VE)—T (28)

dt (Ve

The gating variables (x = h,m,n,r) had voltage-dependent time constants (z) and steady-state values

(x=) as follows:

-(V+50)
0.128e 18 1
ho (V) = ~W+50) A , (V) = ~V+50) . (29)
0.128e 18 +w 0.128e 18 +W
1+e 5 1+e 5
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0.032(V+52)
—(V+52)
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Ne (V) = G ,(V) =
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(30)

(31)

(32)

The PYR received excitatory input from itself, with maximal conductance g.., reversal potential E,

and synaptic variable Se; and inhibitory input from the INT, with maximal synaptic conductance g.;,

reversal potential E;, and synaptic variable S;. The synaptic variables were modeled as in Eqs 12-14.

For the basic component of the INT we used the Wang-Buzsaki model (Wang and Buzsaki, 1996)

describing the dynamics of the membrane potential (V/), sodium inactivation (h), and delayed-rectifier

potassium (n). To model gamma resonance in the INT (Fig. 8), the model was extended to include a

non-inactivating potassium current (g) with dynamics similar to but faster than an M-current (Brown

and Adams, 1980). The full model also included synaptic currents and noise, and reads

CdV :Il'

GieSe VOV = E.) — guSi (V) (VI — E;) + gun' ()

dh _ heo(Vi)-h
at (VY

dn _ Neo(VE)—n
at (Vi)

55
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dq _ qeo(VY)-q
1009 gl="= ol (36)

1010
1011 The gating variables for the INT (x = h,m,n,q) had voltage-dependent time constants (z) and steady-

1012  state values (x.) as follows

1013
—(V+58)
0.07¢~ 20 0.2
1014 ho (V) = —7T5e) - , To(V) = —7T5) - (37)
0.07e 20 +W 0.07e 20 +W
1+e 10 1+e 10
1015
0.2(V+35)
—(V+35)
— 1-e 10
1016 me(V) = 295 ) (38)
——ramTe 18
1-e 10
1017
0.01(V+34)
—(V+34) 0.2
— 1-e 10 _ .
1018 Tloo(V) = 001V +34) —(V+44) ’ Tn(V) 0.01(V+34) —(V+44) (39)
W+0.125e 80 w+0.1259 80
1-e 10 1-e 10
1019
_ 1 _ 40
1020 (V) = —gms: (V) = —vm o (40)
1+e 10 3.3e 20 +e 10
1021
1022 The INT received excitatory input from the PYR, with maximal synaptic conductance ge.; and

1023 inhibitory input from itself, with maximal synaptic conductance gi.

1024 For modeling the PYR in isolation (Fig. 7A) or the YINT in isolation (Fig. 8AB), all synaptic conductance
1025  values were set to zero. For modeling the INT-to-PYR network without gamma resonance on the INT
1026  (Fig. 7B), g»/ was set to zero. The full model was used for Fig. 8C. Specific parameter values followed

1027 Borgers et al., 2012, and are detailed in Table 3.
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Table 3. Parameters used for modeling IPSP-induced network resonance (Figs. 7-8).

Parameter Value Units Notes

ce 1 uF/cm?

8 0.1 mS/cm?

E° -67 mV
gNa 100 mS/cm?

Ena® 50 mV

g«° 80 mS/cm?

Ex® -100 mV

gn® 0.485 mS/cm?

En® -33 mV

C 1 uF/cm?

g 0.1 mS/cm?

E/ -65 mV
gna' 35 mS/cm?

Ena 55 mV

g« 9 mS/cm?

E -90 mV

gv 4 mS/cm? Fig.7: 0
T° 0.1 ms AMPA
Td° 3 ms AMPA
Ee 0 mV AMPA
7 03 ms GABA,
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T4 9 ms GABAA

Ei -80 mV GABAa

8ie 0 mS/cm? PYR to INT
8ee 0 mS/cm? PYR to PYR

8ei 0.4 mS/cm? INT to PYR

gii 0 mS/cm? INT to INT

lon 0.1 mV
lpias® 27 HA/cm?
Air® 0 HA/cm? Fig. 7A: 0.2

o' 0.1 mV Fig. 8A: 0
Ibias' -0.5 HA/cm? Fig. 8AB,C: 3.8, 3.7
A 0.5 HA/cm? Fig. 8B,C: 0.9, 2.1
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Data and Code Availability

There are no primary data in the ©paper; all materials are available at

https://github.com/EranStarkLab/NetworkResonance.
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Abstract

Resonance is defined as maximal response of a system to periodic inputs in a limited frequency band.
Resonance may serve to optimize inter-neuronal communication, and has been observed at multiple
levels of neuronal organization. However, it is unknown how neuronal resonance observed at the
network level is generated and how network resonance depends on the properties of the network
building blocks. Here, we first develop a metric for quantifying spike timing resonance in the presence
of background noise, extending the notion of spiking resonance for in vivo experiments. Using
conductance-based models, we find that network resonance can be inherited from resonances at
other levels of organization, or be intrinsically generated by combining mechanisms across distinct
levels. Resonance of membrane potential fluctuations, postsynaptic potentials, and single neuron
spiking can each be generated independently of resonance at any other level and be propagated to
the network level. At all levels of organization, interactions between processes that give rise to low-
and high-pass filters generate the observed resonance. Intrinsic network resonance can be generated
by the combination of filters belonging to different levels of organization. Inhibition-induced network
resonance can emerge by inheritance from resonance of membrane potential fluctuations, and be
sharpened by presynaptic high-pass filtering. Our results demonstrate a multiplicity of qualitatively
different mechanisms that can generate resonance in neuronal systems, and provide analysis tools
and a conceptual framework for the mechanistic investigation of network resonance in terms of circuit

components, across levels of neuronal organization.

Author summary

How one part of the brain responds to periodic input from another part depends on resonant circuit
properties. Resonance is a basic property of physical systems, and has been experimentally observed
at various levels of neuronal organization both in vitro and in vivo. Yet how resonance is generated in

neuronal networks is largely unknown. In particular, whether resonance can be generated directly at
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the level of a network of spiking neurons remains to be determined. Using detailed biophysical
modeling, we develop a conceptual framework according to which resonance at a given level of
organization is generated by the interplay of low- and high-pass filters, implemented at either the
same or across levels of neuronal organization. We tease apart representative, biophysically-plausible
generative mechanisms of resonance at four different levels of organization: membrane potential
fluctuations, single neuron spiking, synaptic transmission, and neuronal networks. We identify
conditions under which resonance at one level can be inherited to another level of organization,
provide conclusive evidence that resonance at each level can be generated without resonance at any
other level, and describe a number of representative routes to network resonance. The proposed

framework facilitates the investigation of resonance in neuronal systems.

Introduction

Resonance refers to the maximal response of a system to periodic input in a limited (finite non-zero;
“resonant”) frequency band. In neuronal systems, resonance has been observed at multiple levels of
organization and quantified using various metrics, in all cases capturing the notion of optimal gain. In
the simplest case, similarly to RLC circuits, the subthreshold response of an isolated neuron to
oscillatory inputs has been measured in terms of the impedance amplitude profile, quantifying the
amplitude response of the membrane potential fluctuations as a function of the input frequency
(Gutfreund et al., 1995; Hutcheon et al., 1996a; Hu et al., 2002, 2009; Hutcheon and Yarom, 2000; Puil
et al.,, 1986; Wang, 2010). A neuron exhibits cellular-level resonance of membrane potential
fluctuations if the impedance magnitude peaks at a non-zero frequency. Otherwise, individual
neurons may behave as low-pass filters (Puil et al., 1986; Pike et al., 2000; Zemankovics et al., 2010)
or may exhibit more complex behavior depending on the number and type of ionic currents and their
time scales (Pike et al., 2000; Izhikevich, 2001; Richardson et al., 2003; Rotstein and Nadim, 2014). In

addition to resonance of membrane potential fluctuations, cellular-level resonance may occur at the
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spiking level: spikes may preferentially occur at specific frequencies of an oscillatory input current
(Hutcheon et al., 1996a; Pike et al., 2000), yielding spiking resonance. Beyond the cellular level,
resonance may occur at the level of synaptic transmission: the amplitude of postsynaptic potentials
(PSPs) may peak at some instantaneous rate of the presynaptic spikes (Markram et al., 1998; Izhikevich
et al., 2003; Drover et al., 2007). Finally, computational modeling (Akam and Kullman, 2010; Kang et
al., 2010; Vierling-Claassen et al., 2010; Ledoux and Brunel, 2011; Veltz and Sejnowski, 2015; Sherfey
et al., 2018), in vitro (Schmidt et al., 2017), and in vivo experiments (Stark et al., 2013), showed that
resonance may occur at the network level.

Theoretical studies have shown that subthreshold resonance can be communicated to the spiking
regime (Richardson et al., 2003; Engel et al., 2008; Rotstein, 2017). A possible implication of this
observation is that resonance can be inherited over levels of neuronal organization, either directly or
indirectly. For instance, subthreshold resonance at theta frequencies may be expected to create
spiking resonance at theta frequencies, which may in turn generate network resonance at theta
frequencies when resonant spiking neurons interact with other neurons. Alternatively, the interplay
of the positive and slower negative feedback effects operating at interacting levels of organization
may communicate resonance across these levels. However, direct periodic activation of hippocampal
CA1 pyramidal cells that have been shown to exhibit subthreshold resonance in vitro (Leung and Yu,
1998; Hu et al.,, 2002) did not produce network resonance in vivo, whereas direct activation of
inhibitory neurons did (Stark et al., 2013). Thus, it is still unclear whether and under what conditions
resonance at one level of organization is causally related to (e.g., is inherited from) resonance at
another level. One obstacle to addressing these issues is the lack of a general framework for
investigating the mechanisms of generation of neuronal resonance in terms of the frequency-
preference properties of system components.

The specific question we address in this paper is whether resonance observed at one level of
organization is necessarily inherited from resonance at lower levels of organization (e.g., membrane

potential fluctuations, single neuron spiking, postsynaptic potentials). Previous work showed the
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presence of resonance in networks of rate models (Ledoux and Brunel, 2011; Veltz and Sejnowski,
2015) Other work demonstrated resonance in spiking neurons (Knight, 1972; Gerstner, 2000; Brunel
et al., 2001; Brunel et al., 2003; Engel et al., 2008). However, a direct link between resonance in a
single spiking neuron and a network of spiking neurons has not been shown (although see Ledoux and
Brunel, 2011, describing a comparative analysis between resonance in networks of spiking neurons
and rate mdoels). An alternative manner in which network resonance can be generated is by the
existence of independent processes that may share some building blocks, and act to generate
resonance at distinct levels. This alternative scenario does not preclude the existence of neuronal
systems in which resonances are communicated across levels of organization, particularly from the
subthreshold to the network levels.

To tackle this question, we carry out detailed conductance-based modeling of individual neurons
and neuronal networks. We identify and analyze a number of case studies at various levels of
organization and increasing levels of complexity, where the generation of resonance depends on
mechanisms confined to each level. Capturing the complexity of the problem, particularly the
interaction between levels of organization, requires going beyond the linear domain and weak signals
where the classical mathematical analysis of linear systems is possible and mean-field theory of
irregularly spiking neurons is applicable. Therefore we entirely rely on computer simulation of a
number of scenarios carefully designed to address a specific question or shed light on a specific issue.
We find that despite the nonlinearities and complexity of the neuronal systems examined, the
resonance-generating mechanisms can be described in terms of the interplay of low-pass filters (LPFs)
and high-pass filters (HPFs). The filtering building blocks (or modules) depend on the biophysical and
dynamic details and structure specific to each level. In contrast, network resonance can be generated
by combining low- and high-pass filtering mechanisms across levels of organization, in the lack of

resonance at any other level of organization.
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Results

Two distinct types of spiking resonance: cycle-averaged firing rate resonance

and spike timing resonance

In the context of rhythmic systems (Fig. 1A), one can differentiate between two types of responses:
an oscillator and a resonator. In an electric oscillator that receives as input a square pulse of current,
the output is an oscillatory voltage (Fig. 1B, left). The generation of oscillations in neuronal systems
has been studied extensively (Buzsaki, 2006; Wang, 2010). A second type of rhythmic system is a
resonator (Fig. 1B, right). Resonance is defined as a maximal response of the system to a periodic
input at a non-zero finite frequency or frequency band. In neuronal systems, resonance has often been
discussed in the context of current input to a single neuron (Hutcheon and Yarom, 2000). In a single
neuron, resonance at the subthreshold level occurs when the amplitude of the response variable (e.g.,
voltage: the membrane potential, V,,) peaks at a non-zero frequency of the input (e.g., current)
applied to the neuron (Fig. 1B, right). This can be quantified using the impedance amplitude profile,
capturing the ratio between the output and input amplitudes at every input frequency. Ultimately,
neurons transmit their output as spikes. A natural direct extension of the analog (subthreshold)
definition of resonance to the spiking domain is “cycle-averaged firing rate resonance” (Fig. 1C), which
can be fully quantified by the cycle-averaged firing rate metric. In cycle-averaged firing rate resonance,
the rate of spikes fired by the neuron is maximal when the frequency of the input (e.g., the presynaptic
spike train or the current applied to the neuron) is at a non-zero frequency band.

The usage of a discrete output (spikes) allows a second type of resonance to be considered, which
we denote as “spike timing resonance” (Fig. 1D). In spike timing resonance, the cycle-averaged firing
rate can be the same for all input frequencies (Fig. 1D, top left). However, spikes occur at a more
limited range of phases at some frequency (e.g., 10 Hz; Fig. 1D, bottom left) compared to other
frequencies (e.g., 5 or 15 Hz; Fig. 1D, bottom left). Hence the output, namely the instantaneous firing

rate, is maximal at a given phase of a non-zero finite frequency (the resonant frequency). Therefore,
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spike phase must be taken into account when quantifying the preferred frequency response
phenomenon. In this setting, the input (i.e., the oscillatory current) and the output (i.e., the spike
times) are more coherent at the resonant frequencies (Fig. 1D, bottom right). The spikes exhibit more
consistent phase locking at the resonant frequencies, which can be quantified using the spectral
coherence. For the remainder of this article, we refer to the magnitude of the complex spectral
coherence simply as “coherence”. Coherence ranges 0-1 and is maximal when spikes exhibit perfect
phase locking to the periodic input. Thus, in spike timing resonance, the coherence metric exhibits a
maximum at a finite, non-zero frequency.

In principle (and as illustrated in Fig. 1CD), cycle-averaged firing rate resonance and spike timing
resonance are independent phenomena, and one can occur without the other. Indeed, previous work
in freely-moving mice showed that pyramidal cells exhibit inhibition-induced spike-timing resonance,
without exhibiting cycle-averaged firing rate resonance (Stark et al., 2013). Spiking fingerprints, as the
ones presented by the 2D color images in Fig. 1CD, are useful tools to visualize the possible occurrence
of firing rate resonance. To generate a fingerprint, the number of spikes is counted at every relevant
frequency and phase (over all trials), and divided by the time spent in that bin, yielding instantaneous
rates.

Previously, spiking resonance generated in the noise-driven regime was quantified by computing the
modulation of the instantaneous firing rate averaged over many trials in response to sinusoidal input
(e.g., Richardson et al., 2003; Ledoux and Brunel, 2011). In the lack of noise, the modulation metric is
insensitive to the number of spikes in every cycle. In the presence of high noise, the metric loses
sensitivity to the precise phase. In contrast, the coherence metric is sensitive to both the number of
spikes and the spike phase, both in the presence and in the lack of noise.

Both cycle-averaged firing rate resonance and spike timing resonance pertain to maximizing the
output of the system at a non-zero input frequency. This is distinct from stochastic resonance
(Wiesenfeld and Moss, 1995; Mejias and Torres, 2011), where the input-output relations are

maximized at a non-zero level of noise (in the presence of an external input); and from coherence
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resonance (Pikovsky and Kurths, 1997; Lee et al., 1998; Linder et al., 2004), where the system exhibits
maximally-coherent oscillations at a non-zero level of noise (in the absence of a periodic input).

In summary, resonance in the spiking domain can be visualized using fingerprinting and quantified
using cycle-averaged firing rate, coherence, or both. From the perspective of a postsynaptic neuron,
cycle-averaged firing rate resonance and spike timing resonance capture the input for neurons
sensitive to firing rate and spike timing, respectively. When all (or at least most) spikes are generated
directly by the input, the two types of spiking domain resonance coincide. This can be achieved in
modeling studies and in controlled in vitro experiments in a relatively straightforward manner.
However, when there are additional spurious spikes not created by the input as typically observed in

vivo, resonance may appear and detected only as spike timing resonance.
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Figure 1. Cycle-averaged firing rate resonance and spike timing resonance

(A) To quantify the response, a system is given an input (e.g., current or spikes) and the output is measured.

(B) Left: Induced oscillations are defined are as a rhythmic output in response to a non-rhythmic (e.g., pulse or noise) input.
Right: Resonance is defined as a maximal response of the system to periodic input at a non-zero finite input frequency or
frequency band. In neuronal systems, this definition readily applies to analog quantities, e.g., the membrane potential
fluctuations.

(C) Cycle-averaged firing rate resonance is a direct extension of the analog quantity. A synthetic neuronal signal was
constructed in which firing rate at the 8-12 Hz range was twice the firing rate at other frequencies (top left). Actual spike
trains were realized by randomly drawing the number of spikes per cycle from a Poisson distribution. This corresponds to a
horizontal band in the fingerprint, a 2D frequency-phase map of instantaneous firing rates (second panel from right). Here

and in all fingerprints, blue corresponds to 0 spk/s, and red correspond to the instantaneous firing rate indicated in the title
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(here, 56 spk/s). The image is expanded to show 1% cycles in the phase axis (abscissa). In this configuration, resonance is
fully quantified by the cycle-averaged firing rate (top right).

(D) In spike timing resonance, the firing rate may be identical at all input frequencies (top left), but spikes occur at specific
phases in the resonant frequency band. A signal was constructed in which the phase of every spike was drawn randomly
from a von Mises distribution, for which the concentration parameter k was higher at the 8-12 Hz range (bottom left). This
corresponds to a high instantaneous firing rate at a specific combination of frequency and phase (red patch in the fingerprint;
second panel from right). In this configuration, the cycle-averaged firing rates are similar across frequencies (top right), and

resonance can be quantified using the input-output spectral coherence metric (bottom right).

10
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Building blocks necessary for generating network resonance in neuronal

systems

With the metrics for cycle-averaged firing rate and spiking timing resonance in hand, we examine
how resonance at one level of organization is related to frequency-dependent mechanisms at another
level of organization. From an electrical circuit perspective, at least two building blocks are required
for resonance to occur: (i) high-pass filtering, and (ii) low-pass filtering. Amplification within the band-
pass filter may further enhance resonance. The building blocks and their interactions may be highly
nonlinear. In neuronal systems, building blocks are realized by biophysical constructs which can have
the same or distinct origins (e.g., distinct combinations of currents). The building blocks producing a
given resonance may occur at the same or at distinct levels of organization (e.g., synaptic and spiking).
In general, the frequency-dependent building blocks remain to be identified, and their interaction

within and across levels of organization remains to be understood.

Resonance generated at the subthreshold level can be inherited to the

network level

We begin with the best studied type of neuronal resonance, of membrane potential fluctuations
(Fig. 2A; sometimes referred to as “subthreshold” resonance; Puil et al., 1986; Gutfreund et al., 1995;
Hutcheon et al., 1996ab). To determine whether subthreshold resonance can be inherited to the
network level via spiking resonance, we first examine the communication of subthreshold level to the
spiking level; and then study the communication from the spiking level to the network level. We
modeled membrane potential resonance using a conductance-based neuron with leak, persistent
sodium, and h-currents, augmented with threshold spiking and reset. In the Iygp+/s model, the
subthreshold impedance profile peaked at 7.5 Hz (Fig. 2A, top right). In this case, the LPF corresponds
to the membrane capacitance and leak current (“RC”); the HPF, to the regenerative (h-) and leak

currents; and the persistent sodium current acts primarily to amplify the band-pass response.

11
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Figure 2. Resonance generated at the level of membrane potential fluctuations can be inherited to the network level

(A) A model neuron, consisting of leak current, persistent sodium current (/na,p), h-current (/4), and threshold-based spiking

with voltage reset, was driven by periodic current at various frequencies. Here and in B-D, =0 mV. Left: Current input (dark

blue traces, arbitrarily scaled) and membrane potential output (black traces) at three selected frequencies. Top right:

Impedance profiles. A simplified model neuron with leak current and membrane capacitance shows only a low-pass filter

(LPF) response (“RC”; dotted line). A simplified model with reduced capacitance shows only a high-pass filter (HPF) response

12
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(“ly”; dashed line). The full model shows resonance around 7-8 Hz (“RC, Iy, Ina,”). Bottom right: phase of the membrane
potential fluctuations at every frequency of the input current.

(B) The model neuron of panel A was driven by higher-amplitude sinusoidal currents. Left: Spikes are produced specifically
at the input frequency that corresponds to the peak of the impedance profile (panel A, top left). Right: The Ingp+Is spiking
model neuron shows firing rate (top) and spike timing (bottom) resonance.

(C) Spiking fingerprint (firing rate as a function of frequency and phase) for the same data as in panel B. Spikes occur at a
specific frequency and near zero phase, corresponding to the co-occurrence of both firing rate and spike timing resonance.

(D) The model neuron was driven by input currents of various amplitudes (Ai,) while holding noise at zero (c=0 mV).
Horizontal dashed line indicates the Ai, value used in panels B and C. At higher A, values the coherence becomes multi-
modal.

(E) The model neuron was driven by a fixed-amplitude input current (Aj, = 0.15 ©/A/cm?) while varying membrane potential
variability o. Coherence (left) and firing rate (right) are shown as a function of noise magnitude. At higher noise magnitudes,
spikes occur at all frequencies and spiking resonance is lost.

(F) Top left: An E-cell, modeled by a Insp+/n spiking neuron as in panel A, was connected via an excitatory (AMPA-like)
synapse to a target I-cell, modeled as a non-resonant leaky integrate and fire (nrLIF) neuron. Bottom left: Constant-amplitude
periodic current in the form of a linear chirp (0-40 Hz, 20 s) was applied to the E-cell (purple trace), that also received low-
magnitude noise (0=0.0125 mV). The target cell received higher noise (0=3 mV). Top right: The target cell exhibits both
background and transmitted spikes. Bottom right: Spiking resonance is observed for both model neurons.

(G) Top: Voltage traces of four target I-cells (nrLIF; green) that received feedforward connections from 16 E-cells (/ng,p+/n
spiking; purple). All E-cells received exactly the same periodic input current; each cell received independent noise. Bottom:
Coherence for every individual model cell (light traces), and averaged coherence for the target cells (heavy green trace).
Spiking resonance is exhibited for the indirectly-activated target cells. Inset: spiking fingerprint for an I-cell.

(H) The periodic input current was applied only to the I-cells; current amplitude was increased 16-fold; same network as in

panel G. No spiking resonance is generated in the I-cells.
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To understand whether and under what conditions resonance at the level of membrane potential
fluctuations can be inherited to the network level, we increased the amplitude of the current input to
the Ingp+lh model neuron. At the minimal input amplitude required to generate spikes (0.15 pA/cm?),
the spikes occurred specifically around 7-8 Hz (Fig. 2B, left), the same frequency at which the
impedance profile peaked (Fig. 2A). Spikes occurred near the zero phase of the input, so both cycle-
averaged firing rate resonance and spike timing resonance were observed (Fig. 2B, right; fingerprint
at Fig. 2C). To understand the conditions under which resonance is inherited to the spiking domain in
the Ingptlh model, we first modified input amplitude. We found that at higher amplitudes, spikes
occurred coherently not only around 8 Hz but also at multiple other frequencies (Fig. 2D). Second, we
modified the amount of background inputs (noise; modeled by membrane potential variability, c) in
the model, while holding the input amplitude fixed at 0.15 uA/cm?. We used a range of noise levels
between 0-2 mV, which is higher than observed during intracellular recordings using sharp electrodes
from freely-moving mice (English et al., 2014). Under high noise circumstances, spikes occurred at all
frequencies and spiking resonance was lost (Fig. 2E). Nevertheless, for a certain range of input
amplitudes and noise levels, resonance at the level of membrane potential fluctuations is readily
inherited to the spiking domain.

Next, we connected a resonant excitatory cell (E-cell; modeled as an Inqp+/» spiking neuron) via an
excitatory (AMPA-like) synapse to a target cell, modeled as a leaky integrate and fire (LIF) neuron that
did not exhibit subthreshold resonance (Fig. 2F). The postsynaptic target LIF received relatively high
background input (=3 mV), and exhibited spontaneous spiking (Fig. 2F, top right). When oscillatory
chirp current was applied to the presynaptic neuron, the E-cell spikes induced additional spikes in the
target cell, which displayed spiking resonance at the same frequency range as the presynaptic E-cell
(Fig. 2F, bottom right). We denote this phenomenon as “inherited network resonance”: resonance
observed at the network level, which is inherited from frequency-dependent mechanisms at another
level of organization. A similar pattern was observed in a larger network, consisting of 16 resonant E-

cells that made feedforward excitatory connections on four non-resonant target cells (Fig. 2G).
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Notably, in the same network, applying the oscillatory current directly to the target cells did not induce
resonance in the target cells, even when current amplitude was increased (Fig. 2H). In summary,
resonance generated at the level of membrane potential fluctuations (Fig. 2A) can be inherited to the
spiking domain at low and intermediate noise levels (Fig. 2B-E). This extends previous modeling results
linking subthreshold and spiking resonance (Hutcheon et al.,, 1996b; Richardson et al., 2003) by
showing that when input is very strong (Fig. 2D) or when noise is very high (Fig. 2E), subthreshold
resonance is no longer communicated to the spiking level. Furthermore, subthreshold resonance can

be inherited, via spiking resonance, to the network level (Fig. 2F-G).

Resonance can be generated directly at the spiking level

Conceptually, a subthreshold LPF generated by the passive (RC) properties of the membrane could
interact with a spiking-domain HPF to generate spiking domain resonance. We therefore examined
the HPF mechanism that underlies the generation of spiking resonance in the lack of resonance at the
level of membrane potential fluctuations. First, we applied low-current input (0.05 uA/cm?) to a LIF
model neuron without noise, which yielded an impedance profile corresponding to an LPF (Fig. 3A).
When current amplitude was increased (to 0.115 uA/cm?), spikes started to occur at the peaks of the
oscillatory input cycles. Once a first spike is generated, the after-spike reset of the LIF prevents another
spike from occurring until the membrane is recharged. If the cycle is sufficiently short, this results in
only one spike per cycle, for a range of frequencies (Fig. 3B, left). Since there are more cycles per unit
time (e.g., second) at higher frequencies, the generation of a single spike per cycle automatically
corresponds to high pass filtering. We identify the “spike discretization” effect as an HPF. Together
with the subthreshold LPF (Fig. 3A), the net outcome is spiking resonance (Fig. 3B, right; Fig. 3C). Thus,
consistent with earlier work (Knight, 1972; Gerstner, 2000; Brunel et al., 2001), an isolated LIF model
neuron can generate spiking resonance in the lack of noise. However, the band-pass (resonant) spiking
response is generated by frequency-dependent mechanisms at two distinct levels of organization.

Specifically, the subthreshold LPF interacts with a spiking HPF based on the discretization effect.
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Figure 3. Resonance can be generated directly at the spiking level

(A) A leaky integrate and fire (LIF) model neuron was driven by periodic current at various frequencies. Left: Current input
(blue, arbitrarily scaled) and membrane potential (black) at three selected frequencies. Top right: Impedance profile shows
an LPF response.

(B) The model neuron of panel A was driven by higher-amplitude periodic currents. Left: Spikes are produced at the peaks
of the input cycles. At higher frequencies (e.g., 12 Hz), more cycles occur per unit time than at lower frequencies (4 Hz),
corresponding to an HPF (discretization effect). Right: Combined with the subthreshold LPF (panel A), the “resonant LIF”
(rLIF) exhibits spiking resonance.

(C) Spiking fingerprint of the rLIF model; conventions are the same as in Fig. 2C. Spikes are generated at a specific range of
frequencies and phases, corresponding to spiking resonance.

(D) Coherence as a function of input amplitude for the rLIF model; conventions are the same as in Fig. 2D. At higher
amplitudes, spikes occur at all input frequencies and the narrow-band resonance disappears.

(E) Coherence (left) and firing rate (right) as a function of noise level, holding input amplitude fixed (Aj, = 0.115 pA/cm?)
for the rLIF model. When membrane potential variability increases, spikes occur at all input frequencies and the narrow-
band resonance disappears.

(F) A modified LIF neuron was constructed with spike dependent calcium dynamics (“calcium LIF”). The calcium-LIF model
neuron has an LPF impedance profile (bottom right, inset). However, when driven by periodic current sufficient to generate
spikes, the spikes appear at a specific frequency band (around 8 Hz; black traces). Without the calcium conductance, only a
low-pass spiking filter remains (red traces).

(G) Spiking fingerprint of the calcium-LIF model; conventions are the same as in Fig. 2C.

(H) Sensitivity analysis of the calcium-LIF to the calcium conductance G.. The width of the resonant frequency band

increases with G..
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To determine the conditions under which spiking resonance can be generated in a LIF model neuron,
we first modified the input current amplitude. We found that narrow-band resonance occurred only
at a small range of input amplitudes (Fig. 3D). Furthermore, when background noise was increased,
spikes occurred at all input frequencies, and the narrow-band spiking resonance disappeared (Fig. 3E;
Knight, 1972; Brunel et al., 2001). Thus, band-limited spiking resonance in an isolated LIF that lacks
resonance of membrane potential fluctuations occurs only at a limited range of parameters.

The spiking resonance in the LIF model neuron involved a spiking-domain HPF based on the
discretization effect, but spikes were consistently generated below the resonant frequency. Following
a sodium spike, neurons exhibit a calcium transient: a rapid increase and slower decrease of calcium,
which is the basis of calcium imaging (Grienberger and Konnerth, 2012). We used the calcium
transients to design a modified version of a LIF model neuron that includes spike-dependent calcium
dynamics (Fig. 3F). By construction, the calcium current activates only in the presence of spikes.
Without the calcium current, the model exhibited only a LPF response in the subthreshold domain
(Fig. 3F, bottom right inset), and the spiking response exhibited a similar profile (Fig. 3F, red lines).
Adding the spike-dependent calcium dynamics did not change the subthreshold response, but a
spiking band-pass filter emerged (Fig. 3F-G). During the calcium transient, the membrane potential
was more depolarized, allowing the generation of a spike in response to a lower current input,
effectively reducing spiking threshold. Thus, the occurrence of one spike favored the occurrence of
another spike during a specific time window dictated mainly by the calcium activation and
deactivation time constants. Thus, we identify the calcium transients as a second spiking-domain HPF.
Combined with the subthreshold LPF, spiking resonance emerged (Fig. 3F-G). Increasing the calcium
conductance widened the resonant band (Fig. 3H). Together with spike discretization in the isolated
LIF, the two case studies identify spiking HPFs. In particular, these cases demonstrate that spiking
resonance can be generated directly at the spiking level, without resonance at the level of membrane

potential fluctuations.
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Resonance generated directly at the spiking level can be inherited to the

network level

To determine whether and how spiking resonance generated by a single LIF can propagate to other
cells, we first connected the resonant LIF (“rLIF”; Fig. 3B) as an E-cell to a postsynaptic target cell in a
feedforward manner (Fig. 4A, top left). The E-cell received a low level of membrane potential noise,
keeping spiking within the resonant range (see Fig. 3E). In contrast, the target cell was modeled as a
non-resonant LIF (“nrLIF”) by increasing the membrane potential noise, and exhibited spontaneous
spiking. When an oscillatory current input was applied to the E-cell, both the E-cell and the target cell
displayed resonance (Fig. 4A, right). The same phenomenon was observed in a larger network with
feedforward excitatory connections: when current input was applied only to the E-cells, both the E-
cells and the target cells exhibited resonance (Fig. 4B; target cell fingerprint in Fig. 4B inset). Thus, in
a feedforward network of LIF neurons, network resonance emerges by inheritance from the spiking
domain, without feedback or any additional frequency-dependent mechanisms at the synaptic or
network levels. In previous work, spiking resonance was observed in recurrent LIF networks, in which
E- and I-cells were connected with negative feedback (Ledoux and Brunel, 2011). The present
observations show that network resonance can emerge in LIF networks without any recurrency or
negative feedback, but rather by inheritance from resonance generated at the single neuron spiking

level.
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Figure 4. Resonance generated at the spiking level can be inherited to the network level

(A) Top left: An E-cell, modeled by an rLIF as in Fig. 3B, was connected via an excitatory (AMPA-like) synapse to an I-cell,

modeled by an nrLIF. Bottom left: Constant-amplitude periodic current in the form of a linear chirp was applied only to the

E-cell (purple trace), that also received low-magnitude noise (0=0.02 mV). Here and in B-E, Aj,¢ = 0.115 pA/cm?. Top right:

The I-cell, that received higher magnitude noise (0=2 mV), exhibits both background and transmitted spikes. Bottom right:

Spiking resonance is observed for both model neurons. Inset: Spiking fingerprints for an E-cell and for an I-cell.

(B) Top: Voltage traces of four target I-cells (nrLIF; green) that received feedforward connections from 16 E-cells (rLIF;

purple). All E-cells received exactly the same periodic input current; each cell received independent noise. Bottom:

Coherence for every individual model cell (light traces), and averaged coherence for the E-cells (heavy purple traces) and the

I-cells (heavy green traces). The indirectly-activated I-cells exhibit spiking resonance. Inset: Spiking fingerprints for an E-cell

and for an I-cell.

(C) The noise level to the E-cells was quadrupled (same network as in panel B). Spiking resonance of the I-cells is

maintained, at a shifted (increased) resonant frequency. Inset: Spiking fingerprints for an E-cell and for an I-cell.
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(D) Coherence of the directly-activated E-cells (/eft) and the indirectly-activated I-cells (right), as the magnitude of the noise
applied to the E-cell was varied systematically. Horizontal dashed lines indicate the E-cell noise levels used in panels B and
C. Each row shows the average coherence (color coded) across 16 E-cells (left) or four I-cells (right).

(E) Quantification of the maximal coherence magnitude (/eft) and the peak (“resonant”) frequency (right) for the dataset

of panel D. Bands show SEM across cells. At low noise levels, E-cell and I-cell exhibit similar resonant frequencies.
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When the noise applied to the E-cells was quadrupled, coherence magnitude for both the E-cells and
the target cells was reduced (Fig. 4C), although spiking in the target cells was still limited to specific
phases (Fig. 4C, inset). With gradually increased noise, E-cell coherence gradually diminished (Fig. 4D-
E, left), whereas the resonant frequency in the target cells gradually shifted to higher values (Fig. 4D-
E, right). These results emphasize that even if resonance in a (LIF) network is entirely inherited from
the single neuron spiking level, the properties of the single cell spiking resonance and network

resonance may differ.

Resonance generated at the synaptic level can be inherited to the network

level

In addition to the level of membrane potential fluctuations (Fig. 2) and the spiking level (Fig. 3),
resonance may be generated directly at the level of postsynaptic potentials (PSPs; Thomson et al.,
1993; Markram et al., 1998; Izhikevich et al., 2003; Drover et al., 2007). Following the previous work,
we modeled resonance at the PSP level using short-term synaptic dynamics (Fig. 5). The model neuron
was a LIF with a very high spiking threshold (leaky integrator), and input was given as periodic spike
trains (without oscillatory current injection; Fig. 5A). At the level of membrane potential fluctuations,
the LIF exhibited only a low pass response (same as the LIF in Fig. 3A). When short-term synaptic
dynamics included both synaptic depression and facilitation, the excitatory PSP (EPSP) magnitude was
highest around 8 Hz (Fig. 5A-B). This phenomenon is referred to as synaptic, or PSP, resonance
(Markram et al., 1998; Izhikevich et al., 2003; Drover et al., 2007). In the depression/facilitation model
of synaptic resonance, the LPF corresponds to synaptic depression (Fig. 5C, dotted line) and the HPF
corresponds to synaptic facilitation (Fig. 5C, dashed line). Notably, when no synaptic plasticity was
modeled, we identified an intrinsic synaptic HPF (Fig. 5C, grey), consistent with temporal summation

of multiple spikes by the membrane time constant. Thus, consistent with previous results (Markram
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413  etal., 1998; Izhikevich et al., 2003), resonance at the level of postsynaptic potentials can be generated

414  without resonance at the level of membrane potential fluctuations.
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Figure 5. Resonance generated at the level of postsynaptic potentials can be inherited to the network level

(A) A LIF model neuron was driven by periodic spike trains at various rates via an excitatory (AMPA-like) synapse that

exhibited synaptic depression and facilitation. Threshold was set to a high value (Vi = 0 mV) to prevent spiking. Here and in

B-C, o= 0 mV. Left: After several spikes, the excitatory postsynaptic potentials (EPSPs) stabilize. Right: Traces shown at an

expanded time scale. The magnitude of the EPSPs is maximal at intermediate rates.
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(B) EPSP magnitude for the LIF with synaptic depression and facilitation, measured over a wide range of presynaptic spike
rates. Magnitude peaks at an intermediate frequency, corresponding to synaptic resonance.

(C) Scaled EPSP magnitude as a function of presynaptic spike rate for the LIF with synaptic depression and facilitation (black;
same as in B). Scaled EPSP magnitudes for a synaptic plasticity model only with depression (dotted line) correspond to an
LPF. Scaled EPSP magnitudes for a model only with facilitation (dashed line) or a model without synaptic plasticity (passive
membrane; grey line) correspond to HPFs.

(D) The LIF with synaptic resonance model neuron of panel A was modified to allow spiking (Vi = -50 mV). Here and in E,
o= 0.05 mV; Ij, = 1.3 uA/cm?. Left: Spikes are generated predominantly at intermediate frequencies. Right: The model
exhibits spiking resonance.

(E) Spiking fingerprint of the LIF with synaptic resonance model; conventions are the same as in Fig. 2C. Spikes are
generated at a specific range of frequencies and phases, corresponding to spiking resonance.

(F) Coherence as a function of noise level. Dashed line indicates noise level of 0.05 mV, used in D-E. The resonant frequency
(and coherence magnitude) shifts with increased noise. Spiking resonance is exhibited for a wide range of noise levels.

(G) A diverging-converging feedforward network of LIF neurons was constructed. The first layer included a single point
process neuron which fired a single spike at the peak of every cycle of a linear chirp (0-40 Hz over 20 s). The second layer
included 50 identical LIF with synaptic depression and facilitation (as in D); all neurons received excitatory (AMPA-like)
connections from the layer 1 neuron, and every neuron received independent membrane potential noise. All layer 2 neurons
received bias current of /i, = 1.2 uA/cm?. The third layer included a single LIF without short term synaptic dynamics.

(H) Neurons in the second layer spike at a wide range of input presynaptic spike rates, whereas the third layer (output)
neuron spikes at a narrower range of presynaptic spike rates.

(1) Second layer spike trains exhibit spiking resonance (thick black trace, averaged coherence over all inner-layer trains),
consistent with noisy inheritance from the PSP level (as in F). The output spike train exhibits narrow-band network resonance
(red trace).

(J) The feedforward network was constructed and stimulated as in G, with different noise levels (o= 0-2 mV at 0.025 mV
increments) received by layer 2 LIF neurons while keeping the noise received by the output (layer 3) neuron zero. The black
curve shows the meanzSEM firing rate of the 50 layer 2 neurons. The vertical dashed line corresponds to the frequency for
which layer 2 coherence peaks (K, left).

(K) Peak coherence is observed for intermediate noise levels. Coherence between the input spike train (blue train in H)
and the spike train of every layer 2 neuron was estimated and averaged over all 50 layer 2 neurons. The process was repeated
for every noise level, and the coherence are shown as rows in the left matrix (blue/red colors correspond to 0/0.26
coherence). The same process was carried out for the layer 3 neuron (right matrix; blue/red colors corresponding to 0/0.74

coherence). The white dashed lines correspond to the noise level and frequency for which layer 2 coherence peaks (0.3).
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(L) For every noise level, the peak layer 2 coherence magnitude (/eft) and the frequency for which the coherence peaks
(right) are plotted. Layer 3 coherence magnitude is higher than layer 2 coherence for all noise levels. Layer 2 and layer 3
coherence peak at intermediate noise levels, exhibiting stochastic resonance. The resonant frequency of layer 3 is lower than

the resonant frequency of layer 2 at every noise level, including at the stochastic resonant frequency (25 Hz for layer 2).
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To determine whether PSP resonance can be inherited to the spiking level, we set the spiking
threshold in the model LIF to a “standard” value (-50 mV). Under these conditions, the model neuron
exhibited spiking resonance, at frequencies similar to those exhibited by the PSPs (Fig. 5D). As for
spiking resonance inherited from the subthreshold level (Fig. 2C) and resonance generated directly at
the spiking level (Fig. 3C, Fig. 3G), the spiking resonance inherited from the PSP level occurred around
zero phase (i.e., the input spikes; Fig. 5E). In this case, a short phase lag occurred, consistent with
synaptic delay (i.e., the rise time of the EPSP; Fig. 5A). When the level of noise was increased,
coherence magnitude was reduced, and the resonant frequency shifted to higher frequencies (Fig.
5F). Thus, resonance generated at the level of postsynaptic potentials can be inherited to the spiking
level.

Noisy LIF with synaptic resonance exhibit spiking resonance at a frequency higher than the PSP
resonant frequency (Fig. 5F). To examine the effect of PSP resonance on spiking resonance in a
network of neurons, we constructed a diverging/converging feedforward network consisting of
multiple noisy LIF with synaptic resonance that received the exact same input spike train (Fig. 5G).
Indeed, the cells exhibited spiking resonance at a frequency higher than the PSP resonant frequency
(Fig. 5HI). When these LIF converged on a common target, the target neuron exhibited resonance (Fig.
5HI), at a frequency shifted back to the PSP resonant frequency. Thus, resonance generated at the
level of postsynaptic potentials can be inherited to the network level.

In the model of network level synaptic resonance (Fig. 5G-lI), the resonance of the output (layer 3)
neuron is at a lower frequency and has lower coherence with the input, compared to the intermediate
(layer 2) LIFs. To understand what the resonant peak of the layer 3 neuron depends on, we repeated
the simulation while varying layer 2 noise levels (independent noise for every LIF). Increasing the noise
of the layer 2 neurons (while keeping the noise of the output neuron zero) yielded monotonically
increasing firing rates of both layers (Fig. 5J). However, the coherence of both layers did not increase
monotonically but rather peaked at an intermediate noise level (Fig. 5K), exhibiting stochastic

resonance (Wiesenfeld and Moss, 1995; Linder et al., 2004; Mejias and Torres, 2011). Specifically, the
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maximal layer 2 coherence was obtained at a noise level of 6 =0.48 mV (¢ = 0.25 mV was used in Fig.
5G-l). At that noise level, layer 2 coherence peaked (0.3) at a resonant frequency of 25 Hz, whereas
layer 3 exhibited higher magnitude coherence (0.72) at a frequency of 17 Hz (Fig. R5L). Thus, stochastic
resonance, defined as an optimal response to an input at an intermediate noise level, can be observed

in parallel to resonance, defined as a peak of the response at an intermediate frequency.

Resonance can be generated intrinsically at the network level via excitatory

inputs

In principle, the frequency-dependent mechanisms (low- and high-pass filters) do not have to occur
at the same level of organization. One example is spiking resonance in LIF, in which we identified the
LPF as the membrane capacitance and leak current, and the HPF as spike discretization (Fig. 3B-E). To
determine if frequency-dependent mechanisms across levels of organization can yield network
resonance, we combined low-pass filtering at the PSP level and HPF at the spiking level. The PSP-level
LPF was realized as synaptic depression (Fig. 6A; cf. Fig. 5C, dotted line). The HPF at the spiking level
was manifested as spike discretization (grey curves in Fig. 6B, right). When driven with presynaptic
spike trains of various rates, the LIF with synaptic depression model exhibited spiking resonance (Fig.
6B, black lines), with a resonant frequency around 7-8 Hz (Fig. 6B-C). Resonance was maintained in
this model over a range of noise values, with a relatively small frequency shift (Fig. 6D). We denote
this phenomenon as “intrinsic network resonance”: resonance exhibited at the network level, in the
lack of resonance observable at any other level of organization (around the frequency of interest). As
in the previous three cases of network resonance (Fig. 2F-H, Fig. 4, and Fig. 5G-l), resonance is
observed at the spiking level, in postsynaptic neurons. Yet in contrast to the cases of inherited network
resonance, in the present case, no other level of organization exhibits resonance around the frequency

of interest.
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Figure 6. Intrinsic network resonance can be generated by combining frequency-dependent mechanisms at the level of

postsynaptic potentials and at the spiking level

(A) EPSP magnitude for a LIF with synaptic depression (high threshold, Vi, = 0 mV) as a function of presynaptic spike rates.

Here and in B-C, o= 0.05 mV. Without synaptic facilitation, EPSP magnitude is highest at the lowest rates, corresponding to

a synaptic LPF.

(B) The LIF with synaptic depression of panel A was modified to allow spiking (Vi = -50 mV). Left: Spike rate is highest at

intermediate frequencies (e.g., 10 Hz). At higher frequencies (e.g., 20 Hz), spikes following the first spike are depressed.

Right: In the LIF with synaptic depression model, the combination of the synaptic LPF (panel A) and the spike discretization

HPF (grey line) yields spiking resonance (black line). Without synaptic depression, resonance disappears (grey line).

(C) Spiking fingerprint of the LIF with synaptic depression model; conventions are the same as in Fig. 2C. Spikes are

generated at a specific range of frequencies and phases, corresponding to network resonance.
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519 (D) Coherence as a function of noise level. Dashed line indicates noise level of 0.05 mV, used in B-C. With increased noise,
520 the resonant frequency shifts and coherence magnitude decreases. Spiking resonance is exhibited for a wide range of noise
521 levels.
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Resonance inherited to the network level can be uncovered via inhibitory

inputs

Previous work showed that resonance can be observed in the spiking of postsynaptic neurons, i.e.,
at the network level, even when the synaptic connections are inhibitory (Stark et al., 2013). When an
isolated (subthreshold resonant) pyramidal cell (PYR), modeled with h-current and full spiking
dynamics, was driven directly by a periodic input current, spiking resonance was generated (around
10 Hz; Fig. 7A). This corresponds to resonance inherited from the level of membrane potential
fluctuations, as observed in a simpler model neuron (Fig. 2). We connected an I-cell, modeled with full
spiking dynamics, to a resonant PYR (modeled as in Fig. 7A) via an inhibitory (GABAa-like) synapse,
without feedback. When only the I-cell in the two-cell model was driven, the PYR exhibited spiking
resonance (around 8 Hz; Fig. 7B). This network resonance is inherited from the PYR spiking resonance
(Fig. 7A), which was in turn inherited from resonance of the membrane potential fluctuations. Indeed,
spike generation in the PYR required /4. However, the IPSP-induced PYR spikes occurred at the troughs
of the input given to the I-cell (Fig. 7B, bottom right), at an opposite phase compared to direct
activation (Fig. 7A, bottom right). This is consistent with in vivo observations (Stark et al., 2013) and
contrasts with all other cases studied so far (membrane potential: Fig. 2C; spiking: Fig. 3C, 3G; PSP:
Fig. 5E; EPSP network: Fig. 6C), in which the resonant spikes occurred around the peak of the input
cycle. Thus, network resonance can also be inherited from the single neuron level using synaptic

inhibition.
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Figure 7. Inhibition-induced network resonance can be inherited from the level of membrane potential fluctuations

(A) A PYR model neuron, with h-current and full spiking dynamics, was driven by a constant-amplitude periodic current in

the form of a linear chirp (0-40 Hz, 20 s; Ajx® = 0.2 uA/cm?). Top: Membrane potential response during a single trial. Center:

Raster plots from 20 independent trials. Bottom: Quantification of spiking resonance. As in the simpler model (Fig. 2), the

LPF and HPF correspond to RC (membrane capacitance and leak current) and the h-current, respectively. PYR spikes are

generated around the peak of the input cycles in a narrow frequency band around 10 Hz, exhibiting spiking resonance.

(B) The PYR model neuron of panel A was connected via an inhibitory (GABAx-like) synapse to a presynaptic I-cell (INT).

Only the INT was driven by a constant amplitude periodic current (Aj,’ = 0.5 uA/cm?). Other possible synaptic connections

were kept at zero (light grey lines in the cartoon, top right), isolating the contribution of feedforward inhibition. The PYR

spikes after a series of INT spikes, around the trough of the input cycles given to the INT. The narrow-band PYR spiking

exhibits IPSP-induced (network) resonance. All conventions are the same as in panel A.
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In the model of inhibition-induced network resonance (Fig. 7B), the frequency-dependent
mechanisms were inherited from the single-cell properties. Specifically, the PYR h-current acted as a
HPF. Although the model exhibited resonance, spikes were also generated below and above the
resonant frequency (Fig. 7B). To construct a model of inhibition-induced network resonance that does
not generate PYR spiking at low frequencies, we added a HPF at the level of the I-cell (Fig. 8). This was
done by modeling gamma-band resonance (previously observed in vitro; Pike et al., 2000) at the level
of membrane potential fluctuations, by adding a resonant (M-) current to the I-cell. When driven with
a periodic input current of low amplitude, the impedance profile of an isolated gamma-resonant
interneuron (YINT) exhibited a peak (around 40 Hz; Fig. 8A, right panels). When input amplitude was
increased, the resonance generated at the level of membrane potential fluctuations was inherited to
the spiking level. The peak coherence occurred at similar frequencies as resonance of membrane
potential fluctuations (around 40 Hz), and the YINT spikes occurred around the input peak (zero phase;
Fig. 8B). Furthermore, when the YINT was connected to the PYR (modeled as in Fig. 7A) via a single
inhibitory synapse (as in Fig. 7B), the PYR exhibited spiking resonance (around 10 Hz; Fig. 8C).
However, the phase of the PYR spikes (relative to the current input applied to the I-cell) differed in the
two models of inhibition-induced network resonance (compare fingerprints in Fig. 7B and Fig. 8C).
Furthermore, in the YINT network model, the produced PYR spikes were confined to the resonant

frequency.
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Figure 8. Inhibition-induced network resonance is sharpened by presynaptic high-pass filtering

(A) A gamma-interneuron (yINT) model neuron, with M-current and full spiking dynamics, was driven by constant
amplitude periodic current in the form of a linear chirp (0-80 Hz, 10 s; Ai' = 0.5 pA/cm?). The impedance profile (second
subpanel from left) shows a wide peak centered around 40 Hz, exhibiting resonance of the membrane potential fluctuations.

(B) The YINT model neuron of panel A was driven by a higher-amplitude periodic current (0-80 Hz, 10 s; Ajy' = 0.9 pA/cm?).
Spikes are generated at the peaks of the input cycles, at a frequency band centered around 40 Hz (30-50 Hz). Thus, the yINT
model neuron exhibits spiking resonance, inherited from the level of membrane potential fluctuations. Far right: Coherence
as a function of input amplitude; horizontal dashed line indicates A/’ = 0.9 p/A/cm?. At higher amplitudes, the spiking
bandwidth increases.

(C) The YINT model of panel A was connected, via an inhibitory (GABAx-like) synapse, to a PYR (as in Fig. 7B), and driven by
a constant amplitude linear chirp (0-40 Hz, 20 s; Ajy = 2.1 pA/cm?). Top: Membrane potentials during a single trial. As in Fig.
7B, PYR spikes are generated after yINT spikes. However, the yINT spikes occur at higher input frequencies than the INT
spikes, sharpening the PYR spiking resonance. Center: Raster plots of the PYR spikes from 20 independent trials. Right:

Quantification of the IPSP-induced network resonance.
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Discussion

Routes to network resonance

In this work, we tested the hypothesis that resonance in networks of spiking neurons is necessarily
inherited from resonance at lower levels of organization. From electric circuit theory it is clear that
one can construct a macro-circuit consisting of multiple embedded subcircuits, each being able to
produce resonance on its own. However, neuronal networks are naturally evolved, highly nonlinear
electric circuits which may not have an intrinsic resonance-generating property. This is primarily
because the neuronal building blocks that determine the frequency-dependent properties (e.g.,
positive and negative feedback effects, history-dependent processes) rely on different biological
substrates at different levels of organization (e.g., resonant and amplifying ionic currents, excitation
and inhibition, synaptic depression and facilitation).

Examining four levels of neuronal organization and a number of representative case studies, we
found that resonance can either be inherited from one level to another, or be generated
independently at each and every level. In networks of spiking neurons, resonance can be generated
directly at the network level. We showed that it is possible for a given system to display resonance at
one level of organization — membrane potential fluctuations, postsynaptic potentials, single neuron
spiking, or network — but not in others. Spiking resonance and resonance of postsynaptic potentials
are not necessarily accompanied by resonance of membrane potential fluctuations, and network
resonance can be generated without resonance at any other level of organization. Thus, the
mechanisms that can generate neuronal resonance at different levels of organization are distinct (Fig.
9, center). A direct implication of these observations is that when a system presents resonance at
multiple levels of organization, these can be derived from either similar (inherited) or independent
mechanisms. A second direct implication is that neuronal networks in different brain structures may

exhibit qualitatively similar resonant properties by disparate mechanisms.
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Figure 9. Network resonance can be generated by interacting low- and high-pass filters across levels of neuronal
organization

(A) Frequency-dependent building blocks include high-pass filters (HPF, top) and low-pass filters (LPF, bottom). HPFs
include inductive/resonant ionic currents (/n, Figs. 2, 7, 8; , lv, Fig. 8), acting at the level of membrane potential fluctuations;
spike discretization and calcium-dependent spiking (Figs. 3, 4, 6); and synaptic facilitation and temporal summation (Fig. 5).
LPFs include membrane capacitance and leak current (Figs. 2-4, 7, 8), and synaptic depression (Figs. 5, 6).

(B) The frequency-dependent building blocks (filters) can interact either within the same level of organization (e.g., top
row: membrane potential fluctuations; third row: postsynaptic potentials) or across levels of organization (e.g., second and
fourth rows).

(C) Interaction of HPF and LPF (within or across levels of organization) can generate resonance. If the interaction is within
the same level of organization (e.g., membrane potential fluctuations), resonance can be generated at that level, and may
(under certain conditions) be inherited to the network level (top pathway). Alternatively, network resonance may be

generated intrinsically, by HPF and LPF across levels of organization (bottom pathway).
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General framework for nonlinear decomposition of resonance

Mechanistic studies aim to provide explanations of a given phenomenon in terms of a number of
constituent building blocks whose choice depends on both the phenomenon and the desired level of
explanation. For neuronal systems, there are a number of available sets of building blocks, but not all
of them are appropriate for the investigation of resonance across levels of neuronal organization. The
biophysical explanation, in terms of the ionic currents of the participating neurons, synaptic currents,
short-term plasticity and other biological components, becomes extremely complex for larger
networks. The same occurs for the dynamical systems explanation in terms of nonlinearities, time
scales, and vector fields. Circuit building blocks such as positive and negative feedback loops are
applicable to some, but not all levels of neuronal organization. For example, while subthreshold
resonance results from negative feedback interactions between the membrane potential and
restorative ionic currents, synaptic resonance results from history-dependent mechanisms.

Our results support the hypothesis that the set of LPFs and HPFs are appropriate building blocks to
explain the generation of resonance (BPFs) and that this approach can be used irrespective of the level
of organization, and across levels of organization. We further hypothesize that this approach is
universal. In other words, to understand the generation of resonance at a given level of organization,
one must identify the constituent LPFs and HPFs. From this perspective, the decomposition of BPFs
into LPFs and HPFs is not a mere description of resonance, but rather an explanatory theoretical tool
to understand resonance in terms of structural and functional building blocks. A deeper understanding
might be achieved by linking filters with specific sets of building blocks (Fig. 9). Provided that the
technology exists, the filters may be experimentally identified by making the necessary perturbations.
Therefore, understanding the generation of LPFs and HPFs in terms of the neuronal substrates
contributes to the understanding of the biophysical and dynamic mechanisms underlying the
generation of resonance.

The proposed LPF-HPF framework has the advantage of incorporating, within a single conceptual

umbrella, disparate processes such as negative feedback processes (capacitive, leak, resonant, and
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amplifying currents), history-dependent processes (synaptic depression and facilitation), and spike
discretization. It is not conceived as an analysis tool, but rather serves as a conceptual tool in which
mechanistic models can be designed and their predictions tested by comparing modeling results to
data. Further research is needed to explicitly integrate amplification in this framework, to establish a
general LPF-HPF amplification framework for neuronal systems, and to identify the appropriate filters
and amplification processes. Additional research is also needed to investigate the consequences of
the interplay of multiple filters (e.g., two LPFs and one HPF) and across levels of organization, and to
establish whether multiplicities produce degeneracies or richer patterns (e.g., anti-resonances).

The identification of the LPF and HPF constituting a given BPF is not a straightforward process,
primarily due to two factors: the nonlinearities involved, which are typically strong; and the
qualitatively different biophysical components operating at different levels of organization. In linear
systems, for which analytical calculations are possible, the BPFs characterizing the presence of
resonance can be generated by the frequency domain multiplication of LPFs and HPFs. These filters
have been identified in simple neuronal systems (e.g., systems that can be described by RLC circuits),
but it is not a-priori clear whether and how neuronal BPFs in general can be decomposed into LPFs
and HPFs. Under rather general circumstances, for nonlinear subthreshold resonance one can extend
the linear approach (in the time domain) and obtain a description of the LPF by disrupting the negative
feedback from the recovery variable, and the HPF by neglecting the capacitive current. In contrast,
the short-term plasticity-mediated synaptic BPFs that compose the synaptic resonance model are, by
construction, the product of a depression LPF and a facilitation HPF in the time domain (not in the
frequency domain), and are thus not amenable to linear decomposition.

In general, there are at least two possible ways to generate a resonant response at a given level of
organization: by using an LPF and a HPF at the same level of organization, or at different levels (Fig. 9,
center). In the case of resonance of membrane potential fluctuations, we used a subthreshold LPF
(passive membrane) and a subthreshold HPF (/; Fig. 2; Hutcheon and Yarom, 2000). Similarly, for

synaptic resonance both the LPF (synaptic depression) and the HPF (facilitation) belonged to the same
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level of organization (Fig. 5; Izhikevich et al., 2003). However, for the generation of spiking resonance
independently of resonance at any other level, we identified a mixed approach (Fig. 3). While the HPF
was spike-dependent (due to spike discretization or calcium dynamics), the LPF was inherited from
the subthreshold domain (passive membrane). This provides a mechanistic explanation of the classical
results of spiking resonance in LIF neurons (Knight, 1972; Gerstner, 2000), beyond the limit of weak
inputs (Brunel et al.,, 2001). A mixed approach was also used for generating intrinsic network
resonance (Fig. 6): synaptic depression (LPF) was combined with spike discretization (HPF) to generate

resonance in a postsynaptic target.

Experimental and functional implications

Network resonance has been described theoretically (Akam and Kullman, 2010; Vierling-Claassen et
al., 2010; Ledoux and Brunel, 2011; Veltz and Sejnowski, 2015; Sherfey et al., 2018) and observed
experimentally (Stark et al., 2013; Schmidt et al., 2017; Lewis et al., 2021) in several model systems.
Here, we distinguished between two types of network resonance: “inherited” network resonance, and
“intrinsic” network resonance. In inherited network resonance, frequency-dependent mechanisms
(LPF and HPF) occur at a level of organization other than the network. Resonance can be observed at
that level of organization, and may be inherited to the network level under specific conditions (e.g.,
Fig. 2). Network-level processes may modulate (e.g., amplify or attenuate) the inherited resonance,
but their absence does not disrupt the inherited resonance. In contrast, LPFs and HPFs that occur at
possibly distinct non-network levels of organization can generate intrinsic network resonance (e.g.,
Fig. 6), in the lack of resonance observable at any other level of organization. To the best of our
knowledge, intrinsic network resonance has yet to be demonstrated experimentally.

Inhibition-induced network resonance required that I--mediated rebound spiking in pyramidal cells
(Cobb et al., 1995) interacts with some form of HPF. Previously, depression of the inhibitory synapses
(on the PYR) and interaction with a third type of cell (an oriens-lacunosum moleculare [OLM] cell)

were suggested as HPFs (Stark et al., 2013). Here, we considered two other mechanisms. First, we
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found that the PYR h-current itself yields a sufficient HPF for generating resonance in the IPSP-driven
PYR. Thus, inhibition-induced network resonance can be inherited. Second, we found that the addition
of a second HPF, in the form of gamma resonance in the presynaptic INT (Rotstein, Ito and Stark, 2017,
SFN Abstract), sharpens the IPSP-induced PYR spiking resonance. Gamma resonance has been
observed in computational models (Akam and Kullman, 2010; Sherfey et al., 2018), in INT in vitro (Pike
et al., 2000), and in multi-unit activity in vivo (Lewis et al., 2021). However, whether gamma resonance
in INT actually occurs in vivo and sharpens theta-band resonance in PYR in vivo remains to be
determined. Together, the present results suggest that although not necessary, frequency-modulating
mechanisms at multiple levels of organization can contribute to the emergence of inhibition-induced
network resonance.

Network resonance can be both intrinsic and inherited, and inherited network resonance can be
derived from different levels of organization. By measuring only firing rate resonance, it is impossible
to determine the specific phase of the spiking response relative to a periodic input. However, using
spike timing resonance and the fingerprint map of resonant neurons, different LPF and HPF modules
that may underlie the resonance mechanism can be contrasted. One experimentally-testable
prediction is that in recurrent excitatory networks, spiking resonance of directly-activated PYR will
exhibit an earlier phase fingerprint, compared to the fingerprint of spikes generated via postsynaptic
potentials which may be delayed in phase (Fig. 4BC; Fig. 6C). Another experimentally-testable
prediction is that in inhibition-induced resonance, PYR phase mediated by yINT would be later (Fig.
8C), compared to PYR phase without the involvement of yINT (Fig. 7B). Thus, in real neuronal networks
driven by periodic inputs, spike timing resonance, quantified by spike phase and fingerprinting, may
be used to dissect the frequency-dependent mechanisms underlying resonance.

Previous work suggested that resonance can optimize learning (Roach et al., 2018) and favor inter-
neuronal communication (Sherfey et al., 2018). We found that multiple routes can lead to network

resonance. Thus, a single network could multiplex information from multiple sources. Multiplexing
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can occur at different resonant frequencies. Furthermore, since different types of network resonance

exhibit different phases, multiplexing can also occur at different phases of the same frequency band.

Related phenomena and future directions

We focused on resonance, defined as the maximal response of a system to periodic input in a limited
frequency band, and left out the investigation of the related phenomenon of phasonance, defined as
a zero-phase response to periodic inputs. Indeed, previous work has shown that frequency
modaulation of spike phase is possible using a LIF model with spike frequency adaptation provided by
slower feedback, e.g., an outward calcium-activated potassium current (Fuhrmann et al., 2002).
Notably the calcium current used in the previous work (to show phasonance) provides subthreshold
negative feedback, while the calcium current used in the calcium-LIF model (to show resonance; Fig.
3F-H) provides a suprathreshold positive feedback. For linear systems, phasonance (measured using
the impedance phase) and resonance (measured using the impedance amplitude) can co-occur
(Richardson et al.,, 2003; Rotstein and Nadim, 2014). However, phasonance does not have to
accompany resonance (e.g., Fig. 5E, Fig. 8C), and when the two phenomena do co-occur, the resonant
and phasonant frequencies do not necessarily coincide (they do for the case of the harmonic oscillator;
Rotstein and Nadim, 2014). As our results show, spiking resonance may be accompanied by spiking
phasonance (Fig. 3BC). In fact, spiking resonance and phasonance may be inherited from the
subthreshold regime (Fig. 2BC) or be generated at the spiking level (e.g., in LIF; Fig. 3BC).

To address the main question of the paper we relied on a number of case studies. Further work is
required to research general conditions under which resonance may be communicated from one level
of organization to another, or generated independently at each level of organization. Future work
should also consider the effects of multiple ionic currents in single neurons with possible
heterogeneous spatial or compartmental distributions, the effects of interacting synaptic currents

with different functions (excitation, inhibition), the effects of separate timescales and of short-term
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dynamic properties, and network topology effects. Additionally, future studies should consider

scenarios in which multiple resonances interact within and across levels of organization.

Conclusion

We have presented several novel computational models of representative scenarios, and have
rejected the hypothesis that network resonance requires resonance at another level. While doing so,
we set the infrastructure for a theoretical framework for investigating the mechanisms underlying the
generation of neuronal network resonance, taking into account the interplay of the constitutive
nonlinear properties of the participating neurons, synaptic connectivity, and network topology. This
framework will enable studies of neuronal networks where the interactions between periodic inputs,
currents, and network effects are important (Lisman, 2005; laccarino et al., 2016; Helfrich et al., 2019),
different networks entrain each other (Sirota et al., 2008; Fries, 2015), and/or the precise coordination
between periodic input and spiking output are enhanced or disrupted (Bi and Poo, 2001; Lakatos et

al., 2008; Vierling-Claassen et al. 2008).
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Materials and Methods

Models and numerical methods

We used biophysical (conductance-based) models, following the Hodgkin-Huxley formalism
(Hodgkin and Huxley, 1952; Ermentrout and Terman, 2010). Models consisted of a set of coupled
ordinary differential equations. A detailed description of the different models used is provided below.
All numerical simulations were carried out using custom code written in MATLAB (The Mathworks,
Natick, MA). Numerical integration was done using the explicit second-order Runge-Kutta endpoint
(modified Euler) method (Burden and Faires, 1980) with integration time step dt = 0.1 ms (Figs. 1-6)
or dt = 0.025 ms (Figs. 7-8) and simulation duration of T s. As current input, we used sinusoids of a

single frequency, of the form
Iin(t) = Ipias + Ain sin(2mft) (1)

or a chirp (Puil et al., 1986) linear in f of the form

[in(t) = Ipias + Ain COS (n + 2nfot + n(fy — fo)g) (2)

Where Ipis is a time-independent (DC) bias current and Aj, is the amplitude of the time-dependent
(AC) periodic input. In the case of sinusoids of a single frequency f, input frequency f was typically
varied from 1 Hz to 40 Hz at 1 Hz increments, and T = 3 s. For linear chirps, we typically used fo, = 0 Hz

and f; =40 Hz with T= 20 s.

Model for subthreshold resonance

To model resonance originating at the level of membrane potential fluctuations (Fig. 2A-E), we used

a two-dimensional conductance-based model. Thus, the only ionic currents were persistent sodium
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with instantaneous activation (/ng), and h-current (/5) with voltage-dependent dynamics. In this
model, low-pass filtering is induced by the membrane time constant (C/g:), high-pass filtering is

induced by Iy and leak current, and amplification is provided by /. The model equations were:

CZ_Z = Iin(t) - gL(V - EL) - gppoo(V)(V - ENa) - ghr(V - Eh) + gNn(t) (3)

dr _ 1o (V)-r
dat Tr

Membrane potential variability, which may stem from many unknown sources, was modeled by an
additive white noise term, generated by random sampling from a zero-mean Gaussian distribution
n(t)~N(0, o), multiplied by a constant conductance, gn=1 mS/cm”. The I, time constant z; was assumed
to be voltage-independent. The voltage-dependent activation/inactivation curves of the Iy and Ingp

gating variables are given by:

1

P (V) = —wmg (5)
1+e 65
1
T (V) = —v753 (6)
1+e 978

To model a passive membrane (Fig. 2A, dotted line), we set the conductance of the persistent
sodium (gp) and the h- (g») currents to zero. To model a HPF (Fig. 2A, dashed line), we set g, to zero
and reduced Cto 0.1 uF/cm? In all other cases, the full model was used.

Spike waveforms were not modeled explicitly, but a spike was said to occur whenever the membrane

potential crossed a threshold value, Vi, Thus, the 2D model was augmented with threshold spiking:

if V>V thenV « Vipeor (7)
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Whenever a spike occurred, the membrane potential V was held constant at Vpeax for Tspie before
being reset to Vies:. Following Acker et al. (2003) and Rotstein and Nadim (2014), the specific
parameters values used were: C = 1 uF/cm? g, = 0.1 mS/cm?; E, = -65 mV; g, = 0.1 mS/cm?; Eno = 55
mV; gn =1 mS/cm?; En = -20 mV; 7. = 100 ms; Vin = -50 mV; Vieser = -70 mV; Vpeak = 50 mV; Topike = 1 Ms;
o=0mV (Fig. 2E: o= 0-2 mV); lpigs = -1.85 pA/cm?; and A = 0.15 pA/cm? (Fig. 2A: Aip = 0.05 tA/cm?;

Fig. 2D: Aj, = 0-1 uA/cm?).

Model of an excitatory-inhibitory network

To model inheritance of resonance generated at the level of membrane potential fluctuations by
Ina,p+In model neurons to postsynaptic targets (Fig. 2F-G), we generated a network of conductance-

based E- and I-cells with all-to-all connectivity. All cells followed

av
CE = Iin(t) - gL(V - EL) — lionic — Isynaptic + gNn(t) (8)
lf V> Vth thenV « Vreset (9)
The E-cells contained /vop and In, and thus lionic = GpPuo VIV — Eng) + gnr(V — Ep) with r
obeying Eq. 4. The I-cells were modeled as leaky integrate-and-fire (LIF) neurons, and thus /jonic = 0.

Synaptic connections were modeled as in Ermentrout and Kopell (1998) and Borgers et al. (2012). For

the e’th E-cell, the total synaptic current was

Ne Nj
Isynaptic,e = Zj=1 geeSej(Ve - Ese) + Zk=1 geisek(ve - Esi) (10)
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Where N. (N;) is the number of E-cells (I-cells). The notation g.; indicates the maximal synaptic
conductance from presynaptic E-cell j to postsynaptic E-cell e. All excitatory-to-excitatory synapses
had the same maximal conductance values ge. and reversal potentials Es., regardless of the
presynaptic neuron. All inhibitory-to-excitatory synapses had the same maximal conductance values
gei and reversal potentials Es;, regardless of the presynaptic neuron. All synaptic activation variables
corresponding to the same presynaptic neuron had the same dynamics, regardless of the postsynaptic

neuron (Sej = S;, Sek = S, Ve). For the i'th I-cell, the total synaptic current was modeled by

Ne N;
Isynaptic,i = Zj=1 gieSij (Vi — Ege) + Zk=1 9iiSik (Vi — Eg;) (11)

All excitatory-to-inhibitory synapses had the same maximal conductance values gi.. and reversal
potentials Es.. All inhibitory-to-inhibitory synapses had the same maximal conductance values g; and
reversal potentials Es.. All synaptic activation variables corresponding to the same presynaptic neuron
had the same dynamics (Sj = S}, Sik = S, Vi).

For an excitatory/inhibitory presynaptic neuron, the dynamics of the corresponding synaptic variable
(S¢/Si) depended on the presynaptic membrane potential (V./Vi) and the synaptic rise and decay time

constants, following:

dSe _ (1-Se) _ Se
dt - H(Ve) ‘L'$ Tz (12)
as; _ : (1-sp) _ ﬁ
E - H(Vz) ri Tcii (13)
H() = (1 + tanh(V/4))/2 (14)

Parameter values followed Borgers et al., 2012. All parameters values used are detailed in Table 1.
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865 Table 1. Parameters used for modeling inheritance of resonance generated at the level of

866  membrane potential fluctuations (Fig. 2F-H).

Parameter Value Units Notes
C 1 pF/cm?
gL 0.1 mS/cm?
Vin -50 mV
E.* -65 mV E-cells
gp 0.1 mS/cm? E-cells
Ena 55 mV E-cells
gh 1 mS/cm? E-cells
En -20 mV E-cells
Th 100 ms E-cells
Vreset® -70 mV E-cells
Tspike® 1 ms E-cells
E/ -60 mV I-cells
Vreset -60 mV I-cells
Tspike' 0.1 ms l-cells
T° 0.1 ms AMPA
¢ 3 ms AMPA
Ee 0 mV AMPA
7 0.3 ms GABAa
T4 9 ms GABAA
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Ei -80 mV GABAA
ie 0.05 mS/cm? E toI; Fig. 2F: 1
8ee 0 mS/cm? EtoE

8ei 0 mS/cm? lto E

gii 0.05 mS/cm? ltol

c® 0.0125 mV E-cells
Ibias® -1.85 uA/cm? E-cells
Ain® 0.14125 |,lA/cm2 Fig. 2H: 0
G 3 mvV I-cells
Ibias -1 uA/cm? I-cells
Al 0 HA/cm? Fig. 2H: 2.26

867
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Models for spiking resonance

To model spiking resonance generated by an isolated LIF (Fig. 3A-E), we used

av

€= Iin(£) — g, (V — E) + gyn(t) (15)

if V>V thenV « Vygger (16)

with the following parameter values: C = 1 uF/cm?; g, = 0.1 mS/cm?; E, = -60 mV; Vi = -50 MV; Vieset
=-60 mV; Vipeak = 50 mV; Topike = 1 ms; o= 0 mV (Fig. 3E: o= 0-0.3 mV); Ipias = 0.9 pA/cm?; and Ain = 0.05-
0.3 pA/cm?.

To model spiking resonance generated directly at the spiking level with a sharper HPF than the
isolated LIF (Eqs 15-16), we modified the LIF model to include a spike-dependent calcium current (Fig.

3F-H). The model equations were:

CZ_Z =Iin(t) = 9.(V = EL) — 9cK(V — E¢q) + gun(t) (17)
e Me_ (19)
if V> Vo then Tt (20)

The purpose of constructing this model was to generate a spike-dependent HPF, in a system that has

an underlying subthreshold LPF. The physiological rationale is that following a spike, there is increased
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calcium influx, further increasing depolarization; this effectively reduces the spiking threshold to
current input at the same level. Thus, at another cycle of input that occurs shortly after the first spike,
there will be another spike — even if the current is insufficient to generate a spike without the calcium
influx. However, if the next cycle occurs later, the intracellular calcium level will have already gone
back to steady-state level.

In the model, the calcium gating variable K'is limited to the [0,1] range and represents the probability
of the gate to be open. Once a spike occurs, N¢is instantaneously reset to a non-zero value (Nreset) and
then slowly decays (with 7zgeqct) towards zero. While Nc¢ is non-zero, the gate opens slowly (i.e., K is
activated towards 1 with z/Nc, and rapidly inactivates (decays to zero with zinet). When activation is
very fast or inactivation is very slow, the calcium conductance remains high long after a spike,
providing additional depolarization at multiple current input frequencies, generating spike bursts at
every input cycle. When the activation is slow and inactivation is fast, K remains relatively high only
for a short time after a spike. The parameters used favor the latter scenario. Specific parameter values
were: C = 1 uF/cm?; g, = 0.5 mS/cm?; E, = -60 mV; gc = 0.08 mS/cm? (Fig. 3H: gc = 0.04-0.12 mS/cm?);
Eco =100 mV; 7ot = 50 MS; Tinact = 5 MS; Tgeact = 70 MS; Vin = -50 mV; Vieser = -70 mV; Vpeak = 50 mV; Nieser
=0.1; 0= 0.001 mV; lpigs = -3 A/cm?; and Ai, = 8 tiA/cm?.

To model network resonance inherited from resonance generated at the spiking level (Fig. 4), we
combined a set of LIF model neurons (Eq 3 and Eq 4) using the network formalism described above

(Egs 8-14), with parameter values as detailed in Table 2.
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Table 2. Parameters used for modeling inheritance of spiking resonance generated by an isolated

LIF (Fig. 4).

Parameter Value Units Notes
C 1 1F/cm?
gL 0.1 mS/cm?
EL -60 mV
Vin -50 mV
Vreset -60 mV
Tspike 1 ms
©° 0.1 ms AMPA
(TH 3 ms AMPA
Ee 0 mV AMPA
T 0.3 ms GABAA
Td 9 ms GABAa
E;i -80 mV GABAA
8ie 0.01 mS/cm? Etol; Fig. 4A: 1
8ee 0 mS/cm? EtoE
Bei 0 mS/cm? Ito E
gi 0.05 mS/cm? ltol
c* 0.02 mV Fig. 4C: 0.08
Fig. 4DE: 0-0.3
Ibias® 0.9 uA/cm? E-cells
Ain® 0.115 uA/cm? E-cells
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o' mV -cells
Ibias' HA/cm? I-cells
Ay HA/cm? I-cells

51



914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

Network resonance Stark et al., 2022

Models for synaptic plasticity and resonance

To model resonance generated at the level of postsynaptic potentials (Fig. 5), we used a LIF model

receiving a synaptic current with short term dynamics (synaptic facilitation and depression):

av

C— = lin(®) — 9.V — EL) — gsSDF(V — Es) (21)
s _ 1-s) s

@ = HVore) - (22)
ap _ D (1-D)

at H(%re) Treset(d) + Tdep (23)
U ()LD (24)
dt - pre

Treset(f) Tfac

The threshold spiking is defined by Eq 9 and the sigmoid activation function is as in Eq 14. In Egs 21-
24, V,. represents the membrane potential of the presynaptic neurons. To construct the input Vyre,
we generated a spike at each local maximum of a sinusoid function (Eq 1 or Eq 2). The presynaptic
voltage was then defined as V,r(t) = 50 mV if a spike occurred in the last 1 ms; otherwise, Vpr(t) = -60
mV. Other specific parameter values used in Fig. 5 were: C = 1 uF/cm? g, =0.1 mS/cm? E, =-65mV;
Vin = -50 mV (Fig. 5A: Vi, = 0 mV); Vieser = -70 mV; Topike = 0.1 ms; . = 0.1 ms; ;=3 ms; gs = 0.175
mS/cm?; Es = 0 mV; Treset(a) = 0.1 MS; Tgep = 100 MS; Tresers) = 0.2 mMs; Trac = 300 ms; o= 0.05 mV (Fig. 5A-
C: o0=0mV; Fig. 5F: o= 0-0.3 mV); lpigs = 1.3 p/A/cm?; and Ain = 0 pA/cm?.

To model synaptic depression, the synaptic variable S was multiplied by a factor D, limited to the
[0,1] range. After every spike, D slowly recovers towards its steady state value of 1, with time constant
T4ep, Which determines the time scale of depression (Eq 23). Since additional spikes may occur during

recovery, the process is history-dependent. To model synaptic facilitation, the synaptic variable S was
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multiplied by a factor F, also limited to the [0,1] range. The dynamics of F follow the same principle as
for depression (Eq 24), yet in an opposite direction: during every spike, F rapidly increases towards 1;
between spikes, F relaxes to zero with a slower time constant zx.. Note that in principle, the synaptic
variable Sin Eq 22 is also history-dependent, representing synaptic summation. However, the synaptic
decay time constant 7y for the AMPA-like synapses used in Eq 22 is much smaller than the time
constants used for modeling depression.

To model the combined effect of depression and facilitation, the synaptic variable was multiplied by
D and F. Together, the product DF represents the probability of presynaptic release. We note that the
depression model is similar to the one proposed by Manor and Nadim (2001). Previous models of
synaptic plasticity (Markram et al., 1998; Ermentrout and Terman, 2010, attributed to Dayan, Abbott,
and collaborators) included a discrete (delta-function) rise of the depression and facilitation variables
in response to each presynaptic spike. The present synaptic plasticity models replace the step increase
with a continuous sigmoid function, as previously used for synaptic transmission models (Ermentrout
and Kopell, 1998; Borgers et al., 2012).

To model short term synaptic dynamics in the lack of depression/facilitation (Fig. 5C), we set the
corresponding variable to a constant (only facilitation: D = 1; only depression: F = 1).

To model inheritance of resonance generated at the level of postsynaptic potentials to postsynaptic
targets (Fig. 5G-L), we constructed a 3-layer diverging/converging feedforward network. Synaptic
conductance between layer 1 and layer 2 was gs = 0.2 mS/cm?. Neurons in the second layer received
Ivias = 1.2 pA/cm? and independent noise (o = 0.25 mV in Fig. 5G-1). Synaptic conductance between
layer 2 and layer 3 was gs = 0.12 mS/cm?; the single layer 3 neuron received lpis = 0 t/A/cm? and no
additional noise.

To model EPSP-induced network resonance (Fig. 6), we used the LIF model supplemented with
synaptic plasticity (Eqs 9, 14, 21-24), without facilitation (i.e., F = 1). Other parameter values were the

same as for generating resonance at the level of PSP (Fig. 5), with /lpjas = 1.2 tiA/cm?.
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Models for inhibition-induced network resonance

To model IPSP-induced network resonance (Figs. 7-8), we used a minimal network of conductance-
based neurons of the Hodgkin-Huxley type with instantaneous activation of sodium channels,
consisting of an excitatory cell (a PYR) and an INT (Borgers et al., 2012). The PYR model included
dynamics on the membrane potential (V#), sodium inactivation (h), delayed-rectifier potassium (n),
and the h-current gating variable (r; Poolos et al., 2002; Zemankovics et al., 2010), yielding a 4D
system. In addition, the model included synaptic input and noise. Denoting the membrane potential

of the PYR by V© and the membrane potential of the INT by V/, the full model for the PYR reads

ave
C— =150 — gL (Ve — E}) — gRahme(VE)* (VE — ERo) — gin* (Ve — ER) — grr(Ve — Ef) —
GeeSc(VE)(Ve —E,) — geisi(Vi)(Ve —E) + gnn®(d) (25)

dh _ heo(VE)—h

dt = t(Ve) (26)
dn _ ne(Veé-n

E N T (VE) (27)
E _ Teo(VE)—T (28)

dt (Ve

The gating variables (x = h,m,n,r) had voltage-dependent time constants (z) and steady-state values

(x=) as follows:

-(V+50)
0.128e 18 1
ho (V) = ~W+50) A , (V) = ~V+50) . (29)
0.128e 18 +w 0.128e 18 +W
1+e 5 1+e 5
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0.032(V+52)
—(V+52)

1
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(30)

(31)

(32)

The PYR received excitatory input from itself, with maximal conductance g.., reversal potential E,

and synaptic variable Se; and inhibitory input from the INT, with maximal synaptic conductance g.;,

reversal potential E;, and synaptic variable S;. The synaptic variables were modeled as in Eqs 12-14.

For the basic component of the INT we used the Wang-Buzsaki model (Wang and Buzsaki, 1996)

describing the dynamics of the membrane potential (V/), sodium inactivation (h), and delayed-rectifier

potassium (n). To model gamma resonance in the INT (Fig. 8), the model was extended to include a

non-inactivating potassium current (g) with dynamics similar to but faster than an M-current (Brown

and Adams, 1980). The full model also included synaptic currents and noise, and reads

CdV :Il'

GieSe VOV = E.) — guSi (V) (VI — E;) + gun' ()

dh _ heo(Vi)-h
at (VY

dn _ Neo(VE)—n
at (Vi)

55

= 1n(®) = gLV — Bf) — ghiahme (V) (Vi — Ef) — gin* (Vi — BL) — giya(vi - Ef) -

(33)

(34)
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dq _ qeo(VY)-q
1009 gl="= ol (36)

1010
1011 The gating variables for the INT (x = h,m,n,q) had voltage-dependent time constants (z) and steady-

1012  state values (x.) as follows

1013
—(V+58)
0.07¢~ 20 0.2
1014 ho (V) = —7T5e) - , To(V) = —7T5) - (37)
0.07e 20 +W 0.07e 20 +W
1+e 10 1+e 10
1015
0.2(V+35)
—(V+35)
— 1-e 10
1016 me(V) = 295 ) (38)
——ramTe 18
1-e 10
1017
0.01(V+34)
—(V+34) 0.2
— 1-e 10 _ .
1018 Tloo(V) = 001V +34) —(V+44) ’ Tn(V) 0.01(V+34) —(V+44) (39)
W+0.125e 80 w+0.1259 80
1-e 10 1-e 10
1019
_ 1 _ 40
1020 (V) = —gms: (V) = —vm o (40)
1+e 10 3.3e 20 +e 10
1021
1022 The INT received excitatory input from the PYR, with maximal synaptic conductance ge.; and

1023 inhibitory input from itself, with maximal synaptic conductance gi.

1024 For modeling the PYR in isolation (Fig. 7A) or the YINT in isolation (Fig. 8AB), all synaptic conductance
1025  values were set to zero. For modeling the INT-to-PYR network without gamma resonance on the INT
1026  (Fig. 7B), g»/ was set to zero. The full model was used for Fig. 8C. Specific parameter values followed

1027 Borgers et al., 2012, and are detailed in Table 3.
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Table 3. Parameters used for modeling IPSP-induced network resonance (Figs. 7-8).

Parameter Value Units Notes

ce 1 uF/cm?

8 0.1 mS/cm?

E° -67 mV
gNa 100 mS/cm?

Ena® 50 mV

g«° 80 mS/cm?

Ex® -100 mV

gn® 0.485 mS/cm?

En® -33 mV

C 1 uF/cm?

g 0.1 mS/cm?

E/ -65 mV
gna' 35 mS/cm?

Ena 55 mV

g« 9 mS/cm?

E -90 mV

gv 4 mS/cm? Fig.7: 0
T° 0.1 ms AMPA
Td° 3 ms AMPA
Ee 0 mV AMPA
7 03 ms GABA,
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T4 9 ms GABAA

Ei -80 mV GABAa

8ie 0 mS/cm? PYR to INT
8ee 0 mS/cm? PYR to PYR

8ei 0.4 mS/cm? INT to PYR

gii 0 mS/cm? INT to INT

lon 0.1 mV
lpias® 27 HA/cm?
Air® 0 HA/cm? Fig. 7A: 0.2

o' 0.1 mV Fig. 8A: 0
Ibias' -0.5 HA/cm? Fig. 8AB,C: 3.8, 3.7
A 0.5 HA/cm? Fig. 8B,C: 0.9, 2.1
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Data and Code Availability

There are no primary data in the paper; all materials are available at

https://github.com/EranStarkLab/NetworkResonance.
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