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Abstract 14 

Resonance is defined as maximal response of a system to periodic inputs in a limited frequency band. 15 

Resonance may serve to optimize inter-neuronal communication, and has been observed at multiple 16 

levels of neuronal organization. However, it is unknown how neuronal resonance observed at the 17 

network level is generated and how network resonance depends on the properties of the network 18 

building blocks. Here, we first develop a metric for quantifying spike timing resonance in the presence 19 

of background noise, extending the notion of spiking resonance for in vivo experiments. Using 20 

conductance-based models, we find that network resonance can be inherited from resonances at 21 

other levels of organization, or be intrinsically generated by combining mechanisms across distinct 22 

levels. Resonance of membrane potential fluctuations, postsynaptic potentials, and single neuron 23 

spiking can each be generated independently of resonance at any other level and be propagated to 24 

the network level. At all levels of organization, interactions between processes that give rise to low- 25 

and high-pass filters generate the observed resonance. Intrinsic network resonance can be generated 26 

by the combination of filters belonging to different levels of organization. Inhibition-induced network 27 

resonance can emerge by inheritance from resonance of membrane potential fluctuations, and be 28 

sharpened by presynaptic high-pass filtering. Our results demonstrate a multiplicity of qualitatively 29 

different mechanisms that can generate resonance in neuronal systems, and provide analysis tools 30 

and a conceptual framework for the mechanistic investigation of network resonance in terms of circuit 31 

components, across levels of neuronal organization. 32 

 33 

Author summary 34 

How one part of the brain responds to periodic input from another part depends on resonant circuit 35 

properties. Resonance is a basic property of physical systems, and has been experimentally observed 36 

at various levels of neuronal organization both in vitro and in vivo. Yet how resonance is generated in 37 

neuronal networks is largely unknown. In particular, whether resonance can be generated directly at 38 
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the level of a network of spiking neurons remains to be determined. Using detailed biophysical 39 

modeling, we develop a conceptual framework according to which resonance at a given level of 40 

organization is generated by the interplay of low- and high-pass filters, implemented at either the 41 

same or across levels of neuronal organization. We tease apart representative, biophysically-plausible 42 

generative mechanisms of resonance at four different levels of organization: membrane potential 43 

fluctuations, single neuron spiking, synaptic transmission, and neuronal networks. We identify 44 

conditions under which resonance at one level can be inherited to another level of organization, 45 

provide conclusive evidence that resonance at each level can be generated without resonance at any 46 

other level, and describe a number of representative routes to network resonance. The proposed 47 

framework facilitates the investigation of resonance in neuronal systems. 48 

 49 

Introduction 50 

Resonance refers to the maximal response of a system to periodic input in a limited (finite non-zero; 51 

“resonant”) frequency band. In neuronal systems, resonance has been observed at multiple levels of 52 

organization and quantified using various metrics, in all cases capturing the notion of optimal gain. In 53 

the simplest case, similarly to RLC circuits, the subthreshold response of an isolated neuron to 54 

oscillatory inputs has been measured in terms of the impedance amplitude profile, quantifying the 55 

amplitude response of the membrane potential fluctuations as a function of the input frequency 56 

(Gutfreund et al., 1995; Hutcheon et al., 1996a; Hu et al., 2002, 2009; Hutcheon and Yarom, 2000; Puil 57 

et al., 1986; Wang, 2010). A neuron exhibits cellular-level resonance of membrane potential 58 

fluctuations if the impedance magnitude peaks at a non-zero frequency. Otherwise, individual 59 

neurons may behave as low-pass filters (Puil et al., 1986; Pike et al., 2000; Zemankovics et al., 2010) 60 

or may exhibit more complex behavior depending on the number and type of ionic currents and their 61 

time scales (Pike et al., 2000; Izhikevich, 2001; Richardson et al., 2003; Rotstein and Nadim, 2014). In 62 

addition to resonance of membrane potential fluctuations, cellular-level resonance may occur at the 63 
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spiking level: spikes may preferentially occur at specific frequencies of an oscillatory input current 64 

(Hutcheon et al., 1996a; Pike et al., 2000), yielding spiking resonance. Beyond the cellular level, 65 

resonance may occur at the level of synaptic transmission: the amplitude of postsynaptic potentials 66 

(PSPs) may peak at some instantaneous rate of the presynaptic spikes (Markram et al., 1998; Izhikevich 67 

et al., 2003; Drover et al., 2007). Finally, computational modeling (Akam and Kullman, 2010; Kang et 68 

al., 2010; Vierling-Claassen et al., 2010; Ledoux and Brunel, 2011; Veltz and Sejnowski, 2015; Sherfey 69 

et al., 2018), in vitro (Schmidt et al., 2017), and in vivo experiments (Stark et al., 2013), showed that 70 

resonance may occur at the network level. 71 

Theoretical studies have shown that subthreshold resonance can be communicated to the spiking 72 

regime (Richardson et al., 2003; Engel et al., 2008; Rotstein, 2017). A possible implication of this 73 

observation is that resonance can be inherited over levels of neuronal organization, either directly or 74 

indirectly. For instance, subthreshold resonance at theta frequencies may be expected to create 75 

spiking resonance at theta frequencies, which may in turn generate network resonance at theta 76 

frequencies when resonant spiking neurons interact with other neurons. Alternatively, the interplay 77 

of the positive and slower negative feedback effects operating at interacting levels of organization 78 

may communicate resonance across these levels. However, direct periodic activation of hippocampal 79 

CA1 pyramidal cells that have been shown to exhibit subthreshold resonance in vitro (Leung and Yu, 80 

1998; Hu et al., 2002) did not produce network resonance in vivo, whereas direct activation of 81 

inhibitory neurons did (Stark et al., 2013). Thus, it is still unclear whether and under what conditions 82 

resonance at one level of organization is causally related to (e.g., is inherited from) resonance at 83 

another level. One obstacle to addressing these issues is the lack of a general framework for 84 

investigating the mechanisms of generation of neuronal resonance in terms of the frequency-85 

preference properties of system components.  86 

The specific question we address in this paper is whether resonance observed at one level of 87 

organization is necessarily inherited from resonance at lower levels of organization (e.g., membrane 88 

potential fluctuations, single neuron spiking, postsynaptic potentials). Previous work showed the 89 
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presence of resonance in networks of rate models (Ledoux and Brunel, 2011; Veltz and Sejnowski, 90 

2015) Other work demonstrated resonance in spiking neurons (Knight, 1972; Gerstner, 2000; Brunel 91 

et al., 2001; Brunel et al., 2003; Engel et al., 2008). However, a direct link between resonance in a 92 

single spiking neuron and a network of spiking neurons has not been shown (although see Ledoux and 93 

Brunel, 2011, describing a comparative analysis between resonance in networks of spiking neurons 94 

and rate mdoels). An alternative manner in which network resonance can be generated is by the 95 

existence of independent processes that may share some building blocks, and act to generate 96 

resonance at distinct levels. This alternative scenario does not preclude the existence of neuronal 97 

systems in which resonances are communicated across levels of organization, particularly from the 98 

subthreshold to the network levels.  99 

To tackle this question, we carry out detailed conductance-based modeling of individual neurons 100 

and neuronal networks. We identify and analyze a number of case studies at various levels of 101 

organization and increasing levels of complexity, where the generation of resonance depends on 102 

mechanisms confined to each level. Capturing the complexity of the problem, particularly the 103 

interaction between levels of organization, requires going beyond the linear domain and weak signals 104 

where the classical mathematical analysis of linear systems is possible and mean-field theory of 105 

irregularly spiking neurons is applicable. Therefore we entirely rely on computer simulation of a 106 

number of scenarios carefully designed to address a specific question or shed light on a specific issue. 107 

We find that despite the nonlinearities and complexity of the neuronal systems examined, the 108 

resonance-generating mechanisms can be described in terms of the interplay of low-pass filters (LPFs) 109 

and high-pass filters (HPFs). The filtering building blocks (or modules) depend on the biophysical and 110 

dynamic details and structure specific to each level. In contrast, network resonance can be generated 111 

by combining low- and high-pass filtering mechanisms across levels of organization, in the lack of 112 

resonance at any other level of organization.   113 
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Results 114 

Two distinct types of spiking resonance: cycle-averaged firing rate resonance 115 

and spike timing resonance 116 

In the context of rhythmic systems (Fig. 1A), one can differentiate between two types of responses: 117 

an oscillator and a resonator. In an electric oscillator that receives as input a square pulse of current, 118 

the output is an oscillatory voltage (Fig. 1B, left). The generation of oscillations in neuronal systems 119 

has been studied extensively (Buzsaki, 2006; Wang, 2010). A second type of rhythmic system is a 120 

resonator (Fig. 1B, right). Resonance is defined as a maximal response of the system to a periodic 121 

input at a non-zero finite frequency or frequency band. In neuronal systems, resonance has often been 122 

discussed in the context of current input to a single neuron (Hutcheon and Yarom, 2000). In a single 123 

neuron, resonance at the subthreshold level occurs when the amplitude of the response variable (e.g., 124 

voltage: the membrane potential, Vm) peaks at a non-zero frequency of the input (e.g., current) 125 

applied to the neuron (Fig. 1B, right). This can be quantified using the impedance amplitude profile, 126 

capturing the ratio between the output and input amplitudes at every input frequency. Ultimately, 127 

neurons transmit their output as spikes. A natural direct extension of the analog (subthreshold) 128 

definition of resonance to the spiking domain is “cycle-averaged firing rate resonance” (Fig. 1C), which 129 

can be fully quantified by the cycle-averaged firing rate metric. In cycle-averaged firing rate resonance, 130 

the rate of spikes fired by the neuron is maximal when the frequency of the input (e.g., the presynaptic 131 

spike train or the current applied to the neuron) is at a non-zero frequency band.  132 

The usage of a discrete output (spikes) allows a second type of resonance to be considered, which 133 

we denote as “spike timing resonance” (Fig. 1D). In spike timing resonance, the cycle-averaged firing 134 

rate can be the same for all input frequencies (Fig. 1D, top left). However, spikes occur at a more 135 

limited range of phases at some frequency (e.g., 10 Hz; Fig. 1D, bottom left) compared to other 136 

frequencies (e.g., 5 or 15 Hz; Fig. 1D, bottom left). Hence the output, namely the instantaneous firing 137 

rate, is maximal at a given phase of a non-zero finite frequency (the resonant frequency). Therefore, 138 
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spike phase must be taken into account when quantifying the preferred frequency response 139 

phenomenon. In this setting, the input (i.e., the oscillatory current) and the output (i.e., the spike 140 

times) are more coherent at the resonant frequencies (Fig. 1D, bottom right). The spikes exhibit more 141 

consistent phase locking at the resonant frequencies, which can be quantified using the spectral 142 

coherence. For the remainder of this article, we refer to the magnitude of the complex spectral 143 

coherence simply as “coherence”. Coherence ranges 0-1 and is maximal when spikes exhibit perfect 144 

phase locking to the periodic input. Thus, in spike timing resonance, the coherence metric exhibits a 145 

maximum at a finite, non-zero frequency.  146 

In principle (and as illustrated in Fig. 1CD), cycle-averaged firing rate resonance and spike timing 147 

resonance are independent phenomena, and one can occur without the other. Indeed, previous work 148 

in freely-moving mice showed that pyramidal cells exhibit inhibition-induced spike-timing resonance, 149 

without exhibiting cycle-averaged firing rate resonance (Stark et al., 2013). Spiking fingerprints, as the 150 

ones presented by the 2D color images in Fig. 1CD, are useful tools to visualize the possible occurrence 151 

of firing rate resonance. To generate a fingerprint, the number of spikes is counted at every relevant 152 

frequency and phase (over all trials), and divided by the time spent in that bin, yielding instantaneous 153 

rates. 154 

Previously, spiking resonance generated in the noise-driven regime was quantified by computing the 155 

modulation of the instantaneous firing rate averaged over many trials in response to sinusoidal input 156 

(e.g., Richardson et al., 2003; Ledoux and Brunel, 2011). In the lack of noise, the modulation metric is 157 

insensitive to the number of spikes in every cycle. In the presence of high noise, the metric loses 158 

sensitivity to the precise phase. In contrast, the coherence metric is sensitive to both the number of 159 

spikes and the spike phase, both in the presence and in the lack of noise.  160 

Both cycle-averaged firing rate resonance and spike timing resonance pertain to maximizing the 161 

output of the system at a non-zero input frequency. This is distinct from stochastic resonance 162 

(Wiesenfeld and Moss, 1995; Mejias and Torres, 2011), where the input-output relations are 163 

maximized at a non-zero level of noise (in the presence of an external input); and from coherence 164 
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resonance (Pikovsky and Kurths, 1997; Lee et al., 1998; Linder et al., 2004), where the system exhibits 165 

maximally-coherent oscillations at a non-zero level of noise (in the absence of a periodic input).  166 

In summary, resonance in the spiking domain can be visualized using fingerprinting and quantified 167 

using cycle-averaged firing rate, coherence, or both. From the perspective of a postsynaptic neuron, 168 

cycle-averaged firing rate resonance and spike timing resonance capture the input for neurons 169 

sensitive to firing rate and spike timing, respectively. When all (or at least most) spikes are generated 170 

directly by the input, the two types of spiking domain resonance coincide. This can be achieved in 171 

modeling studies and in controlled in vitro experiments in a relatively straightforward manner. 172 

However, when there are additional spurious spikes not created by the input as typically observed in 173 

vivo, resonance may appear and detected only as spike timing resonance.  174 
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 175 

Figure 1. Cycle-averaged firing rate resonance and spike timing resonance 176 

(A) To quantify the response, a system is given an input (e.g., current or spikes) and the output is measured. 177 

(B) Left: Induced oscillations are defined are as a rhythmic output in response to a non-rhythmic (e.g., pulse or noise) input. 178 

Right: Resonance is defined as a maximal response of the system to periodic input at a non-zero finite input frequency or 179 

frequency band. In neuronal systems, this definition readily applies to analog quantities, e.g., the membrane potential 180 

fluctuations. 181 

(C) Cycle-averaged firing rate resonance is a direct extension of the analog quantity. A synthetic neuronal signal was 182 

constructed in which firing rate at the 8-12 Hz range was twice the firing rate at other frequencies (top left). Actual spike 183 

trains were realized by randomly drawing the number of spikes per cycle from a Poisson distribution. This corresponds to a 184 

horizontal band in the fingerprint, a 2D frequency-phase map of instantaneous firing rates (second panel from right). Here 185 

and in all fingerprints, blue corresponds to 0 spk/s, and red correspond to the instantaneous firing rate indicated in the title 186 
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(here, 56 spk/s). The image is expanded to show 1½ cycles in the phase axis (abscissa). In this configuration, resonance is 187 

fully quantified by the cycle-averaged firing rate (top right).  188 

(D) In spike timing resonance, the firing rate may be identical at all input frequencies (top left), but spikes occur at specific 189 

phases in the resonant frequency band. A signal was constructed in which the phase of every spike was drawn randomly 190 

from a von Mises distribution, for which the concentration parameter  was higher at the 8-12 Hz range (bottom left). This 191 

corresponds to a high instantaneous firing rate at a specific combination of frequency and phase (red patch in the fingerprint; 192 

second panel from right). In this configuration, the cycle-averaged firing rates are similar across frequencies (top right), and 193 

resonance can be quantified using the input-output spectral coherence metric (bottom right).  194 
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Building blocks necessary for generating network resonance in neuronal 195 

systems 196 

With the metrics for cycle-averaged firing rate and spiking timing resonance in hand, we examine 197 

how resonance at one level of organization is related to frequency-dependent mechanisms at another 198 

level of organization. From an electrical circuit perspective, at least two building blocks are required 199 

for resonance to occur: (i) high-pass filtering, and (ii) low-pass filtering. Amplification within the band-200 

pass filter may further enhance resonance. The building blocks and their interactions may be highly 201 

nonlinear. In neuronal systems, building blocks are realized by biophysical constructs which can have 202 

the same or distinct origins (e.g., distinct combinations of currents). The building blocks producing a 203 

given resonance may occur at the same or at distinct levels of organization (e.g., synaptic and spiking). 204 

In general, the frequency-dependent building blocks remain to be identified, and their interaction 205 

within and across levels of organization remains to be understood.  206 

 207 

Resonance generated at the subthreshold level can be inherited to the 208 

network level 209 

We begin with the best studied type of neuronal resonance, of membrane potential fluctuations 210 

(Fig. 2A; sometimes referred to as “subthreshold” resonance; Puil et al., 1986; Gutfreund et al., 1995; 211 

Hutcheon et al., 1996ab). To determine whether subthreshold resonance can be inherited to the 212 

network level via spiking resonance, we first examine the communication of subthreshold level to the 213 

spiking level; and then study the communication from the spiking level to the network level. We 214 

modeled membrane potential resonance using a conductance-based neuron with leak, persistent 215 

sodium, and h-currents, augmented with threshold spiking and reset. In the INa,p+Ih model, the 216 

subthreshold impedance profile peaked at 7.5 Hz (Fig. 2A, top right). In this case, the LPF corresponds 217 

to the membrane capacitance and leak current (“RC”); the HPF, to the regenerative (h-) and leak 218 

currents; and the persistent sodium current acts primarily to amplify the band-pass response.  219 
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 220 

Figure 2. Resonance generated at the level of membrane potential fluctuations can be inherited to the network level 221 

(A) A model neuron, consisting of leak current, persistent sodium current (INa,p), h-current (Ih), and threshold-based spiking 222 

with voltage reset, was driven by periodic current at various frequencies. Here and in B-D,  = 0 mV. Left: Current input (dark 223 

blue traces, arbitrarily scaled) and membrane potential output (black traces) at three selected frequencies. Top right: 224 

Impedance profiles. A simplified model neuron with leak current and membrane capacitance shows only a low-pass filter 225 

(LPF) response (“RC”; dotted line). A simplified model with reduced capacitance shows only a high-pass filter (HPF) response 226 
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(“Ih”; dashed line). The full model shows resonance around 7-8 Hz (“RC, Ih, INa,p”). Bottom right: phase of the membrane 227 

potential fluctuations at every frequency of the input current. 228 

(B) The model neuron of panel A was driven by higher-amplitude sinusoidal currents. Left: Spikes are produced specifically 229 

at the input frequency that corresponds to the peak of the impedance profile (panel A, top left). Right: The INa,p+Ih spiking 230 

model neuron shows firing rate (top) and spike timing (bottom) resonance. 231 

(C) Spiking fingerprint (firing rate as a function of frequency and phase) for the same data as in panel B. Spikes occur at a 232 

specific frequency and near zero phase, corresponding to the co-occurrence of both firing rate and spike timing resonance. 233 

(D) The model neuron was driven by input currents of various amplitudes (Ain) while holding noise at zero (=0 mV). 234 

Horizontal dashed line indicates the Ain value used in panels B and C. At higher Ain values the coherence becomes multi-235 

modal. 236 

(E) The model neuron was driven by a fixed-amplitude input current (Ain = 0.15 A/cm2) while varying membrane potential 237 

variability . Coherence (left) and firing rate (right) are shown as a function of noise magnitude. At higher noise magnitudes, 238 

spikes occur at all frequencies and spiking resonance is lost.  239 

(F) Top left: An E-cell, modeled by a INa,p+Ih spiking neuron as in panel A, was connected via an excitatory (AMPA-like) 240 

synapse to a target I-cell, modeled as a non-resonant leaky integrate and fire (nrLIF) neuron. Bottom left: Constant-amplitude 241 

periodic current in the form of a linear chirp (0-40 Hz, 20 s) was applied to the E-cell (purple trace), that also received low-242 

magnitude noise (=0.0125 mV). The target cell received higher noise (=3 mV). Top right: The target cell exhibits both 243 

background and transmitted spikes. Bottom right: Spiking resonance is observed for both model neurons.  244 

(G) Top: Voltage traces of four target I-cells (nrLIF; green) that received feedforward connections from 16 E-cells (INa,p+Ih 245 

spiking; purple). All E-cells received exactly the same periodic input current; each cell received independent noise. Bottom: 246 

Coherence for every individual model cell (light traces), and averaged coherence for the target cells (heavy green trace). 247 

Spiking resonance is exhibited for the indirectly-activated target cells. Inset: spiking fingerprint for an I-cell.  248 

(H) The periodic input current was applied only to the I-cells; current amplitude was increased 16-fold; same network as in 249 

panel G. No spiking resonance is generated in the I-cells.   250 
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To understand whether and under what conditions resonance at the level of membrane potential 251 

fluctuations can be inherited to the network level, we increased the amplitude of the current input to 252 

the INa,p+Ih model neuron. At the minimal input amplitude required to generate spikes (0.15 A/cm2), 253 

the spikes occurred specifically around 7-8 Hz (Fig. 2B, left), the same frequency at which the 254 

impedance profile peaked (Fig. 2A). Spikes occurred near the zero phase of the input, so both cycle-255 

averaged firing rate resonance and spike timing resonance were observed (Fig. 2B, right; fingerprint 256 

at Fig. 2C). To understand the conditions under which resonance is inherited to the spiking domain in 257 

the INa,p+Ih model, we first modified input amplitude. We found that at higher amplitudes, spikes 258 

occurred coherently not only around 8 Hz but also at multiple other frequencies (Fig. 2D). Second, we 259 

modified the amount of background inputs (noise; modeled by membrane potential variability, ) in 260 

the model, while holding the input amplitude fixed at 0.15 A/cm2. We used a range of noise levels 261 

between 0-2 mV, which is higher than observed during intracellular recordings using sharp electrodes 262 

from freely-moving mice (English et al., 2014). Under high noise circumstances, spikes occurred at all 263 

frequencies and spiking resonance was lost (Fig. 2E). Nevertheless, for a certain range of input 264 

amplitudes and noise levels, resonance at the level of membrane potential fluctuations is readily 265 

inherited to the spiking domain. 266 

Next, we connected a resonant excitatory cell (E-cell; modeled as an INa,p+Ih spiking neuron) via an 267 

excitatory (AMPA-like) synapse to a target cell, modeled as a leaky integrate and fire (LIF) neuron that 268 

did not exhibit subthreshold resonance (Fig. 2F). The postsynaptic target LIF received relatively high 269 

background input (=3 mV), and exhibited spontaneous spiking (Fig. 2F, top right). When oscillatory 270 

chirp current was applied to the presynaptic neuron, the E-cell spikes induced additional spikes in the 271 

target cell, which displayed spiking resonance at the same frequency range as the presynaptic E-cell 272 

(Fig. 2F, bottom right). We denote this phenomenon as “inherited network resonance”: resonance 273 

observed at the network level, which is inherited from frequency-dependent mechanisms at another 274 

level of organization. A similar pattern was observed in a larger network, consisting of 16 resonant E-275 

cells that made feedforward excitatory connections on four non-resonant target cells (Fig. 2G). 276 
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Notably, in the same network, applying the oscillatory current directly to the target cells did not induce 277 

resonance in the target cells, even when current amplitude was increased (Fig. 2H). In summary, 278 

resonance generated at the level of membrane potential fluctuations (Fig. 2A) can be inherited to the 279 

spiking domain at low and intermediate noise levels (Fig. 2B-E). This extends previous modeling results 280 

linking subthreshold and spiking resonance (Hutcheon et al., 1996b; Richardson et al., 2003) by 281 

showing that when input is very strong (Fig. 2D) or when noise is very high (Fig. 2E), subthreshold 282 

resonance is no longer communicated to the spiking level. Furthermore, subthreshold resonance can 283 

be inherited, via spiking resonance, to the network level (Fig. 2F-G).  284 

 285 

Resonance can be generated directly at the spiking level 286 

Conceptually, a subthreshold LPF generated by the passive (RC) properties of the membrane could 287 

interact with a spiking-domain HPF to generate spiking domain resonance. We therefore examined 288 

the HPF mechanism that underlies the generation of spiking resonance in the lack of resonance at the 289 

level of membrane potential fluctuations. First, we applied low-current input (0.05 A/cm2) to a LIF 290 

model neuron without noise, which yielded an impedance profile corresponding to an LPF (Fig. 3A). 291 

When current amplitude was increased (to 0.115 A/cm2), spikes started to occur at the peaks of the 292 

oscillatory input cycles. Once a first spike is generated, the after-spike reset of the LIF prevents another 293 

spike from occurring until the membrane is recharged. If the cycle is sufficiently short, this results in 294 

only one spike per cycle, for a range of frequencies (Fig. 3B, left). Since there are more cycles per unit 295 

time (e.g., second) at higher frequencies, the generation of a single spike per cycle automatically 296 

corresponds to high pass filtering. We identify the “spike discretization” effect as an HPF. Together 297 

with the subthreshold LPF (Fig. 3A), the net outcome is spiking resonance (Fig. 3B, right; Fig. 3C). Thus, 298 

consistent with earlier work (Knight, 1972; Gerstner, 2000; Brunel et al., 2001), an isolated LIF model 299 

neuron can generate spiking resonance in the lack of noise. However, the band-pass (resonant) spiking 300 

response is generated by frequency-dependent mechanisms at two distinct levels of organization. 301 

Specifically, the subthreshold LPF interacts with a spiking HPF based on the discretization effect.   302 
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 303 

Figure 3. Resonance can be generated directly at the spiking level 304 

(A) A leaky integrate and fire (LIF) model neuron was driven by periodic current at various frequencies. Left: Current input 305 

(blue, arbitrarily scaled) and membrane potential (black) at three selected frequencies. Top right: Impedance profile shows 306 

an LPF response.  307 

(B) The model neuron of panel A was driven by higher-amplitude periodic currents. Left: Spikes are produced at the peaks 308 

of the input cycles. At higher frequencies (e.g., 12 Hz), more cycles occur per unit time than at lower frequencies (4 Hz), 309 

corresponding to an HPF (discretization effect). Right: Combined with the subthreshold LPF (panel A), the “resonant LIF” 310 

(rLIF) exhibits spiking resonance.  311 

(C) Spiking fingerprint of the rLIF model; conventions are the same as in Fig. 2C. Spikes are generated at a specific range of 312 

frequencies and phases, corresponding to spiking resonance.  313 

(D) Coherence as a function of input amplitude for the rLIF model; conventions are the same as in Fig. 2D. At higher 314 

amplitudes, spikes occur at all input frequencies and the narrow-band resonance disappears.  315 

(E) Coherence (left) and firing rate (right) as a function of noise level, holding input amplitude fixed (Ain = 0.115 A/cm2) 316 

for the rLIF model. When membrane potential variability increases, spikes occur at all input frequencies and the narrow-317 

band resonance disappears. 318 

(F) A modified LIF neuron was constructed with spike dependent calcium dynamics (“calcium LIF”). The calcium-LIF model 319 

neuron has an LPF impedance profile (bottom right, inset). However, when driven by periodic current sufficient to generate 320 

spikes, the spikes appear at a specific frequency band (around 8 Hz; black traces). Without the calcium conductance, only a 321 

low-pass spiking filter remains (red traces). 322 

(G) Spiking fingerprint of the calcium-LIF model; conventions are the same as in Fig. 2C.  323 

(H) Sensitivity analysis of the calcium-LIF to the calcium conductance Gc. The width of the resonant frequency band 324 

increases with Gc.  325 
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To determine the conditions under which spiking resonance can be generated in a LIF model neuron, 326 

we first modified the input current amplitude. We found that narrow-band resonance occurred only 327 

at a small range of input amplitudes (Fig. 3D). Furthermore, when background noise was increased, 328 

spikes occurred at all input frequencies, and the narrow-band spiking resonance disappeared (Fig. 3E; 329 

Knight, 1972; Brunel et al., 2001). Thus, band-limited spiking resonance in an isolated LIF that lacks 330 

resonance of membrane potential fluctuations occurs only at a limited range of parameters.  331 

The spiking resonance in the LIF model neuron involved a spiking-domain HPF based on the 332 

discretization effect, but spikes were consistently generated below the resonant frequency. Following 333 

a sodium spike, neurons exhibit a calcium transient: a rapid increase and slower decrease of calcium, 334 

which is the basis of calcium imaging (Grienberger and Konnerth, 2012). We used the calcium 335 

transients to design a modified version of a LIF model neuron that includes spike-dependent calcium 336 

dynamics (Fig. 3F). By construction, the calcium current activates only in the presence of spikes. 337 

Without the calcium current, the model exhibited only a LPF response in the subthreshold domain 338 

(Fig. 3F, bottom right inset), and the spiking response exhibited a similar profile (Fig. 3F, red lines). 339 

Adding the spike-dependent calcium dynamics did not change the subthreshold response, but a 340 

spiking band-pass filter emerged (Fig. 3F-G). During the calcium transient, the membrane potential 341 

was more depolarized, allowing the generation of a spike in response to a lower current input, 342 

effectively reducing spiking threshold. Thus, the occurrence of one spike favored the occurrence of 343 

another spike during a specific time window dictated mainly by the calcium activation and 344 

deactivation time constants. Thus, we identify the calcium transients as a second spiking-domain HPF. 345 

Combined with the subthreshold LPF, spiking resonance emerged (Fig. 3F-G). Increasing the calcium 346 

conductance widened the resonant band (Fig. 3H). Together with spike discretization in the isolated 347 

LIF, the two case studies identify spiking HPFs. In particular, these cases demonstrate that spiking 348 

resonance can be generated directly at the spiking level, without resonance at the level of membrane 349 

potential fluctuations. 350 

 351 
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Resonance generated directly at the spiking level can be inherited to the 352 

network level 353 

To determine whether and how spiking resonance generated by a single LIF can propagate to other 354 

cells, we first connected the resonant LIF (“rLIF”; Fig. 3B) as an E-cell to a postsynaptic target cell in a 355 

feedforward manner (Fig. 4A, top left). The E-cell received a low level of membrane potential noise, 356 

keeping spiking within the resonant range (see Fig. 3E). In contrast, the target cell was modeled as a 357 

non-resonant LIF (“nrLIF”) by increasing the membrane potential noise, and exhibited spontaneous 358 

spiking. When an oscillatory current input was applied to the E-cell, both the E-cell and the target cell 359 

displayed resonance (Fig. 4A, right). The same phenomenon was observed in a larger network with 360 

feedforward excitatory connections: when current input was applied only to the E-cells, both the E-361 

cells and the target cells exhibited resonance (Fig. 4B; target cell fingerprint in Fig. 4B inset). Thus, in 362 

a feedforward network of LIF neurons, network resonance emerges by inheritance from the spiking 363 

domain, without feedback or any additional frequency-dependent mechanisms at the synaptic or 364 

network levels. In previous work, spiking resonance was observed in recurrent LIF networks, in which 365 

E- and I-cells were connected with negative feedback (Ledoux and Brunel, 2011). The present 366 

observations show that network resonance can emerge in LIF networks without any recurrency or 367 

negative feedback, but rather by inheritance from resonance generated at the single neuron spiking 368 

level.  369 
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 370 

Figure 4. Resonance generated at the spiking level can be inherited to the network level 371 

(A) Top left: An E-cell, modeled by an rLIF as in Fig. 3B, was connected via an excitatory (AMPA-like) synapse to an I-cell, 372 

modeled by an nrLIF. Bottom left: Constant-amplitude periodic current in the form of a linear chirp was applied only to the 373 

E-cell (purple trace), that also received low-magnitude noise (=0.02 mV). Here and in B-E, Ain
e = 0.115A/cm2. Top right: 374 

The I-cell, that received higher magnitude noise (=2 mV), exhibits both background and transmitted spikes. Bottom right: 375 

Spiking resonance is observed for both model neurons. Inset: Spiking fingerprints for an E-cell and for an I-cell. 376 

(B) Top: Voltage traces of four target I-cells (nrLIF; green) that received feedforward connections from 16 E-cells (rLIF; 377 

purple). All E-cells received exactly the same periodic input current; each cell received independent noise. Bottom: 378 

Coherence for every individual model cell (light traces), and averaged coherence for the E-cells (heavy purple traces) and the 379 

I-cells (heavy green traces). The indirectly-activated I-cells exhibit spiking resonance. Inset: Spiking fingerprints for an E-cell 380 

and for an I-cell. 381 

(C) The noise level to the E-cells was quadrupled (same network as in panel B). Spiking resonance of the I-cells is 382 

maintained, at a shifted (increased) resonant frequency. Inset: Spiking fingerprints for an E-cell and for an I-cell.  383 
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(D) Coherence of the directly-activated E-cells (left) and the indirectly-activated I-cells (right), as the magnitude of the noise 384 

applied to the E-cell was varied systematically. Horizontal dashed lines indicate the E-cell noise levels used in panels B and 385 

C. Each row shows the average coherence (color coded) across 16 E-cells (left) or four I-cells (right).  386 

(E) Quantification of the maximal coherence magnitude (left) and the peak (“resonant”) frequency (right) for the dataset 387 

of panel D. Bands show SEM across cells. At low noise levels, E-cell and I-cell exhibit similar resonant frequencies.  388 
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When the noise applied to the E-cells was quadrupled, coherence magnitude for both the E-cells and 389 

the target cells was reduced (Fig. 4C), although spiking in the target cells was still limited to specific 390 

phases (Fig. 4C, inset). With gradually increased noise, E-cell coherence gradually diminished (Fig. 4D-391 

E, left), whereas the resonant frequency in the target cells gradually shifted to higher values (Fig. 4D-392 

E, right). These results emphasize that even if resonance in a (LIF) network is entirely inherited from 393 

the single neuron spiking level, the properties of the single cell spiking resonance and network 394 

resonance may differ. 395 

 396 

Resonance generated at the synaptic level can be inherited to the network 397 

level 398 

In addition to the level of membrane potential fluctuations (Fig. 2) and the spiking level (Fig. 3), 399 

resonance may be generated directly at the level of postsynaptic potentials (PSPs; Thomson et al., 400 

1993; Markram et al., 1998; Izhikevich et al., 2003; Drover et al., 2007). Following the previous work, 401 

we modeled resonance at the PSP level using short-term synaptic dynamics (Fig. 5). The model neuron 402 

was a LIF with a very high spiking threshold (leaky integrator), and input was given as periodic spike 403 

trains (without oscillatory current injection; Fig. 5A). At the level of membrane potential fluctuations, 404 

the LIF exhibited only a low pass response (same as the LIF in Fig. 3A). When short-term synaptic 405 

dynamics included both synaptic depression and facilitation, the excitatory PSP (EPSP) magnitude was 406 

highest around 8 Hz (Fig. 5A-B). This phenomenon is referred to as synaptic, or PSP, resonance 407 

(Markram et al., 1998; Izhikevich et al., 2003; Drover et al., 2007). In the depression/facilitation model 408 

of synaptic resonance, the LPF corresponds to synaptic depression (Fig. 5C, dotted line) and the HPF 409 

corresponds to synaptic facilitation (Fig. 5C, dashed line). Notably, when no synaptic plasticity was 410 

modeled, we identified an intrinsic synaptic HPF (Fig. 5C, grey), consistent with temporal summation 411 

of multiple spikes by the membrane time constant. Thus, consistent with previous results (Markram 412 
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et al., 1998; Izhikevich et al., 2003), resonance at the level of postsynaptic potentials can be generated 413 

without resonance at the level of membrane potential fluctuations.  414 
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 415 

Figure 5. Resonance generated at the level of postsynaptic potentials can be inherited to the network level 416 

(A) A LIF model neuron was driven by periodic spike trains at various rates via an excitatory (AMPA-like) synapse that 417 

exhibited synaptic depression and facilitation. Threshold was set to a high value (Vth = 0 mV) to prevent spiking. Here and in 418 

B-C,  = 0 mV. Left: After several spikes, the excitatory postsynaptic potentials (EPSPs) stabilize. Right: Traces shown at an 419 

expanded time scale. The magnitude of the EPSPs is maximal at intermediate rates.  420 
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(B) EPSP magnitude for the LIF with synaptic depression and facilitation, measured over a wide range of presynaptic spike 421 

rates. Magnitude peaks at an intermediate frequency, corresponding to synaptic resonance. 422 

(C) Scaled EPSP magnitude as a function of presynaptic spike rate for the LIF with synaptic depression and facilitation (black; 423 

same as in B). Scaled EPSP magnitudes for a synaptic plasticity model only with depression (dotted line) correspond to an 424 

LPF. Scaled EPSP magnitudes for a model only with facilitation (dashed line) or a model without synaptic plasticity (passive 425 

membrane; grey line) correspond to HPFs. 426 

(D) The LIF with synaptic resonance model neuron of panel A was modified to allow spiking (Vth = -50 mV). Here and in E, 427 

 = 0.05 mV; Iin = 1.3A/cm2. Left: Spikes are generated predominantly at intermediate frequencies. Right: The model 428 

exhibits spiking resonance.  429 

(E) Spiking fingerprint of the LIF with synaptic resonance model; conventions are the same as in Fig. 2C. Spikes are 430 

generated at a specific range of frequencies and phases, corresponding to spiking resonance.  431 

(F) Coherence as a function of noise level. Dashed line indicates noise level of 0.05 mV, used in D-E. The resonant frequency 432 

(and coherence magnitude) shifts with increased noise. Spiking resonance is exhibited for a wide range of noise levels. 433 

(G) A diverging-converging feedforward network of LIF neurons was constructed. The first layer included a single point 434 

process neuron which fired a single spike at the peak of every cycle of a linear chirp (0-40 Hz over 20 s). The second layer 435 

included 50 identical LIF with synaptic depression and facilitation (as in D); all neurons received excitatory (AMPA-like) 436 

connections from the layer 1 neuron, and every neuron received independent membrane potential noise. All layer 2 neurons 437 

received bias current of Iin = 1.2A/cm2. The third layer included a single LIF without short term synaptic dynamics.  438 

(H) Neurons in the second layer spike at a wide range of input presynaptic spike rates, whereas the third layer (output) 439 

neuron spikes at a narrower range of presynaptic spike rates.  440 

(I) Second layer spike trains exhibit spiking resonance (thick black trace, averaged coherence over all inner-layer trains), 441 

consistent with noisy inheritance from the PSP level (as in F). The output spike train exhibits narrow-band network resonance 442 

(red trace). 443 

(J) The feedforward network was constructed and stimulated as in G, with different noise levels ( = 0-2 mV at 0.025 mV 444 

increments) received by layer 2 LIF neurons while keeping the noise received by the output (layer 3) neuron zero. The black 445 

curve shows the meanSEM firing rate of the 50 layer 2 neurons. The vertical dashed line corresponds to the frequency for 446 

which layer 2 coherence peaks (K, left). 447 

(K) Peak coherence is observed for intermediate noise levels. Coherence between the input spike train (blue train in H) 448 

and the spike train of every layer 2 neuron was estimated and averaged over all 50 layer 2 neurons. The process was repeated 449 

for every noise level, and the coherence are shown as rows in the left matrix (blue/red colors correspond to 0/0.26 450 

coherence). The same process was carried out for the layer 3 neuron (right matrix; blue/red colors corresponding to 0/0.74 451 

coherence). The white dashed lines correspond to the noise level and frequency for which layer 2 coherence peaks (0.3). 452 
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(L) For every noise level, the peak layer 2 coherence magnitude (left) and the frequency for which the coherence peaks 453 

(right) are plotted. Layer 3 coherence magnitude is higher than layer 2 coherence for all noise levels. Layer 2 and layer 3 454 

coherence peak at intermediate noise levels, exhibiting stochastic resonance. The resonant frequency of layer 3 is lower than 455 

the resonant frequency of layer 2 at every noise level, including at the stochastic resonant frequency (25 Hz for layer 2).  456 
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To determine whether PSP resonance can be inherited to the spiking level, we set the spiking 457 

threshold in the model LIF to a “standard” value (-50 mV). Under these conditions, the model neuron 458 

exhibited spiking resonance, at frequencies similar to those exhibited by the PSPs (Fig. 5D). As for 459 

spiking resonance inherited from the subthreshold level (Fig. 2C) and resonance generated directly at 460 

the spiking level (Fig. 3C, Fig. 3G), the spiking resonance inherited from the PSP level occurred around 461 

zero phase (i.e., the input spikes; Fig. 5E). In this case, a short phase lag occurred, consistent with 462 

synaptic delay (i.e., the rise time of the EPSP; Fig. 5A). When the level of noise was increased, 463 

coherence magnitude was reduced, and the resonant frequency shifted to higher frequencies (Fig. 464 

5F). Thus, resonance generated at the level of postsynaptic potentials can be inherited to the spiking 465 

level.  466 

Noisy LIF with synaptic resonance exhibit spiking resonance at a frequency higher than the PSP 467 

resonant frequency (Fig. 5F). To examine the effect of PSP resonance on spiking resonance in a 468 

network of neurons, we constructed a diverging/converging feedforward network consisting of 469 

multiple noisy LIF with synaptic resonance that received the exact same input spike train (Fig. 5G). 470 

Indeed, the cells exhibited spiking resonance at a frequency higher than the PSP resonant frequency 471 

(Fig. 5HI). When these LIF converged on a common target, the target neuron exhibited resonance (Fig. 472 

5HI), at a frequency shifted back to the PSP resonant frequency. Thus, resonance generated at the 473 

level of postsynaptic potentials can be inherited to the network level.  474 

In the model of network level synaptic resonance (Fig. 5G-I), the resonance of the output (layer 3) 475 

neuron is at a lower frequency and has lower coherence with the input, compared to the intermediate 476 

(layer 2) LIFs. To understand what the resonant peak of the layer 3 neuron depends on, we repeated 477 

the simulation while varying layer 2 noise levels (independent noise for every LIF). Increasing the noise 478 

of the layer 2 neurons (while keeping the noise of the output neuron zero) yielded monotonically 479 

increasing firing rates of both layers (Fig. 5J). However, the coherence of both layers did not increase 480 

monotonically but rather peaked at an intermediate noise level (Fig. 5K), exhibiting stochastic 481 

resonance (Wiesenfeld and Moss, 1995; Linder et al., 2004; Mejias and Torres, 2011). Specifically, the 482 
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maximal layer 2 coherence was obtained at a noise level of  = 0.48 mV ( = 0.25 mV was used in Fig. 483 

5G-I). At that noise level, layer 2 coherence peaked (0.3) at a resonant frequency of 25 Hz, whereas 484 

layer 3 exhibited higher magnitude coherence (0.72) at a frequency of 17 Hz (Fig. R5L). Thus, stochastic 485 

resonance, defined as an optimal response to an input at an intermediate noise level, can be observed 486 

in parallel to resonance, defined as a peak of the response at an intermediate frequency. 487 

 488 

Resonance can be generated intrinsically at the network level via excitatory 489 

inputs 490 

In principle, the frequency-dependent mechanisms (low- and high-pass filters) do not have to occur 491 

at the same level of organization. One example is spiking resonance in LIF, in which we identified the 492 

LPF as the membrane capacitance and leak current, and the HPF as spike discretization (Fig. 3B-E). To 493 

determine if frequency-dependent mechanisms across levels of organization can yield network 494 

resonance, we combined low-pass filtering at the PSP level and HPF at the spiking level. The PSP-level 495 

LPF was realized as synaptic depression (Fig. 6A; cf. Fig. 5C, dotted line). The HPF at the spiking level 496 

was manifested as spike discretization (grey curves in Fig. 6B, right). When driven with presynaptic 497 

spike trains of various rates, the LIF with synaptic depression model exhibited spiking resonance (Fig. 498 

6B, black lines), with a resonant frequency around 7-8 Hz (Fig. 6B-C). Resonance was maintained in 499 

this model over a range of noise values, with a relatively small frequency shift (Fig. 6D). We denote 500 

this phenomenon as “intrinsic network resonance”: resonance exhibited at the network level, in the 501 

lack of resonance observable at any other level of organization (around the frequency of interest). As 502 

in the previous three cases of network resonance (Fig. 2F-H, Fig. 4, and Fig. 5G-I), resonance is 503 

observed at the spiking level, in postsynaptic neurons. Yet in contrast to the cases of inherited network 504 

resonance, in the present case, no other level of organization exhibits resonance around the frequency 505 

of interest.  506 
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 507 

Figure 6. Intrinsic network resonance can be generated by combining frequency-dependent mechanisms at the level of 508 

postsynaptic potentials and at the spiking level 509 

(A) EPSP magnitude for a LIF with synaptic depression (high threshold, Vth = 0 mV) as a function of presynaptic spike rates. 510 

Here and in B-C,  = 0.05 mV. Without synaptic facilitation, EPSP magnitude is highest at the lowest rates, corresponding to 511 

a synaptic LPF.  512 

(B) The LIF with synaptic depression of panel A was modified to allow spiking (Vth = -50 mV). Left: Spike rate is highest at 513 

intermediate frequencies (e.g., 10 Hz). At higher frequencies (e.g., 20 Hz), spikes following the first spike are depressed. 514 

Right: In the LIF with synaptic depression model, the combination of the synaptic LPF (panel A) and the spike discretization 515 

HPF (grey line) yields spiking resonance (black line). Without synaptic depression, resonance disappears (grey line).  516 

(C) Spiking fingerprint of the LIF with synaptic depression model; conventions are the same as in Fig. 2C. Spikes are 517 

generated at a specific range of frequencies and phases, corresponding to network resonance.  518 
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(D) Coherence as a function of noise level. Dashed line indicates noise level of 0.05 mV, used in B-C. With increased noise, 519 

the resonant frequency shifts and coherence magnitude decreases. Spiking resonance is exhibited for a wide range of noise 520 

levels.  521 
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Resonance inherited to the network level can be uncovered via inhibitory 522 

inputs 523 

Previous work showed that resonance can be observed in the spiking of postsynaptic neurons, i.e., 524 

at the network level, even when the synaptic connections are inhibitory (Stark et al., 2013). When an 525 

isolated (subthreshold resonant) pyramidal cell (PYR), modeled with h-current and full spiking 526 

dynamics, was driven directly by a periodic input current, spiking resonance was generated (around 527 

10 Hz; Fig. 7A). This corresponds to resonance inherited from the level of membrane potential 528 

fluctuations, as observed in a simpler model neuron (Fig. 2). We connected an I-cell, modeled with full 529 

spiking dynamics, to a resonant PYR (modeled as in Fig. 7A) via an inhibitory (GABAA-like) synapse, 530 

without feedback. When only the I-cell in the two-cell model was driven, the PYR exhibited spiking 531 

resonance (around 8 Hz; Fig. 7B). This network resonance is inherited from the PYR spiking resonance 532 

(Fig. 7A), which was in turn inherited from resonance of the membrane potential fluctuations. Indeed, 533 

spike generation in the PYR required Ih. However, the IPSP-induced PYR spikes occurred at the troughs 534 

of the input given to the I-cell (Fig. 7B, bottom right), at an opposite phase compared to direct 535 

activation (Fig. 7A, bottom right). This is consistent with in vivo observations (Stark et al., 2013) and 536 

contrasts with all other cases studied so far (membrane potential: Fig. 2C; spiking: Fig. 3C, 3G; PSP: 537 

Fig. 5E; EPSP network: Fig. 6C), in which the resonant spikes occurred around the peak of the input 538 

cycle. Thus, network resonance can also be inherited from the single neuron level using synaptic 539 

inhibition.  540 
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 541 

Figure 7. Inhibition-induced network resonance can be inherited from the level of membrane potential fluctuations  542 

(A) A PYR model neuron, with h-current and full spiking dynamics, was driven by a constant-amplitude periodic current in 543 

the form of a linear chirp (0-40 Hz, 20 s; Ain
e = 0.2A/cm2). Top: Membrane potential response during a single trial. Center: 544 

Raster plots from 20 independent trials. Bottom: Quantification of spiking resonance. As in the simpler model (Fig. 2), the 545 

LPF and HPF correspond to RC (membrane capacitance and leak current) and the h-current, respectively. PYR spikes are 546 

generated around the peak of the input cycles in a narrow frequency band around 10 Hz, exhibiting spiking resonance.  547 

(B) The PYR model neuron of panel A was connected via an inhibitory (GABAA-like) synapse to a presynaptic I-cell (INT). 548 

Only the INT was driven by a constant amplitude periodic current (Ain
i = 0.5A/cm2). Other possible synaptic connections 549 

were kept at zero (light grey lines in the cartoon, top right), isolating the contribution of feedforward inhibition. The PYR 550 

spikes after a series of INT spikes, around the trough of the input cycles given to the INT. The narrow-band PYR spiking 551 

exhibits IPSP-induced (network) resonance. All conventions are the same as in panel A.   552 



Network resonance   Stark et al., 2022 

 32 

In the model of inhibition-induced network resonance (Fig. 7B), the frequency-dependent 553 

mechanisms were inherited from the single-cell properties. Specifically, the PYR h-current acted as a 554 

HPF. Although the model exhibited resonance, spikes were also generated below and above the 555 

resonant frequency (Fig. 7B). To construct a model of inhibition-induced network resonance that does 556 

not generate PYR spiking at low frequencies, we added a HPF at the level of the I-cell (Fig. 8). This was 557 

done by modeling gamma-band resonance (previously observed in vitro; Pike et al., 2000) at the level 558 

of membrane potential fluctuations, by adding a resonant (M-) current to the I-cell. When driven with 559 

a periodic input current of low amplitude, the impedance profile of an isolated gamma-resonant 560 

interneuron (INT) exhibited a peak (around 40 Hz; Fig. 8A, right panels). When input amplitude was 561 

increased, the resonance generated at the level of membrane potential fluctuations was inherited to 562 

the spiking level. The peak coherence occurred at similar frequencies as resonance of membrane 563 

potential fluctuations (around 40 Hz), and the INT spikes occurred around the input peak (zero phase; 564 

Fig. 8B). Furthermore, when the INT was connected to the PYR (modeled as in Fig. 7A) via a single 565 

inhibitory synapse (as in Fig. 7B), the PYR exhibited spiking resonance (around 10 Hz; Fig. 8C). 566 

However, the phase of the PYR spikes (relative to the current input applied to the I-cell) differed in the 567 

two models of inhibition-induced network resonance (compare fingerprints in Fig. 7B and Fig. 8C). 568 

Furthermore, in the INT network model, the produced PYR spikes were confined to the resonant 569 

frequency.  570 
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 571 

Figure 8. Inhibition-induced network resonance is sharpened by presynaptic high-pass filtering 572 

(A) A gamma-interneuron (INT) model neuron, with M-current and full spiking dynamics, was driven by constant 573 

amplitude periodic current in the form of a linear chirp (0-80 Hz, 10 s; Ain
i = 0.5A/cm2). The impedance profile (second 574 

subpanel from left) shows a wide peak centered around 40 Hz, exhibiting resonance of the membrane potential fluctuations.  575 

(B) The INT model neuron of panel A was driven by a higher-amplitude periodic current (0-80 Hz, 10 s; Ain
i = 0.9 A/cm2). 576 

Spikes are generated at the peaks of the input cycles, at a frequency band centered around 40 Hz (30-50 Hz). Thus, the INT 577 

model neuron exhibits spiking resonance, inherited from the level of membrane potential fluctuations. Far right: Coherence 578 

as a function of input amplitude; horizontal dashed line indicates Ain
i = 0.9A/cm2. At higher amplitudes, the spiking 579 

bandwidth increases.  580 

(C) The INT model of panel A was connected, via an inhibitory (GABAA-like) synapse, to a PYR (as in Fig. 7B), and driven by 581 

a constant amplitude linear chirp (0-40 Hz, 20 s; Ain
i = 2.1 A/cm2). Top: Membrane potentials during a single trial. As in Fig. 582 

7B, PYR spikes are generated after INT spikes. However, the INT spikes occur at higher input frequencies than the INT 583 

spikes, sharpening the PYR spiking resonance. Center: Raster plots of the PYR spikes from 20 independent trials. Right: 584 

Quantification of the IPSP-induced network resonance.  585 
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Discussion 586 

Routes to network resonance 587 

In this work, we tested the hypothesis that resonance in networks of spiking neurons is necessarily 588 

inherited from resonance at lower levels of organization. From electric circuit theory it is clear that 589 

one can construct a macro-circuit consisting of multiple embedded subcircuits, each being able to 590 

produce resonance on its own. However, neuronal networks are naturally evolved, highly nonlinear 591 

electric circuits which may not have an intrinsic resonance-generating property. This is primarily 592 

because the neuronal building blocks that determine the frequency-dependent properties (e.g., 593 

positive and negative feedback effects, history-dependent processes) rely on different biological 594 

substrates at different levels of organization (e.g., resonant and amplifying ionic currents, excitation 595 

and inhibition, synaptic depression and facilitation).  596 

Examining four levels of neuronal organization and a number of representative case studies, we 597 

found that resonance can either be inherited from one level to another, or be generated 598 

independently at each and every level. In networks of spiking neurons, resonance can be generated 599 

directly at the network level. We showed that it is possible for a given system to display resonance at 600 

one level of organization – membrane potential fluctuations, postsynaptic potentials, single neuron 601 

spiking, or network – but not in others. Spiking resonance and resonance of postsynaptic potentials 602 

are not necessarily accompanied by resonance of membrane potential fluctuations, and network 603 

resonance can be generated without resonance at any other level of organization. Thus, the 604 

mechanisms that can generate neuronal resonance at different levels of organization are distinct (Fig. 605 

9, center). A direct implication of these observations is that when a system presents resonance at 606 

multiple levels of organization, these can be derived from either similar (inherited) or independent 607 

mechanisms. A second direct implication is that neuronal networks in different brain structures may 608 

exhibit qualitatively similar resonant properties by disparate mechanisms.   609 



Network resonance   Stark et al., 2022 

 35 

 610 

Figure 9. Network resonance can be generated by interacting low- and high-pass filters across levels of neuronal 611 

organization 612 

(A) Frequency-dependent building blocks include high-pass filters (HPF, top) and low-pass filters (LPF, bottom). HPFs 613 

include inductive/resonant ionic currents (Ih, Figs. 2, 7, 8; , IM, Fig. 8), acting at the level of membrane potential fluctuations; 614 

spike discretization and calcium-dependent spiking (Figs. 3, 4, 6); and synaptic facilitation and temporal summation (Fig. 5). 615 

LPFs include membrane capacitance and leak current (Figs. 2-4, 7, 8), and synaptic depression (Figs. 5, 6).  616 

(B) The frequency-dependent building blocks (filters) can interact either within the same level of organization (e.g., top 617 

row: membrane potential fluctuations; third row: postsynaptic potentials) or across levels of organization (e.g., second and 618 

fourth rows).  619 

(C) Interaction of HPF and LPF (within or across levels of organization) can generate resonance. If the interaction is within 620 

the same level of organization (e.g., membrane potential fluctuations), resonance can be generated at that level, and may 621 

(under certain conditions) be inherited to the network level (top pathway). Alternatively, network resonance may be 622 

generated intrinsically, by HPF and LPF across levels of organization (bottom pathway).   623 
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General framework for nonlinear decomposition of resonance 624 

Mechanistic studies aim to provide explanations of a given phenomenon in terms of a number of 625 

constituent building blocks whose choice depends on both the phenomenon and the desired level of 626 

explanation. For neuronal systems, there are a number of available sets of building blocks, but not all 627 

of them are appropriate for the investigation of resonance across levels of neuronal organization. The 628 

biophysical explanation, in terms of the ionic currents of the participating neurons, synaptic currents, 629 

short-term plasticity and other biological components, becomes extremely complex for larger 630 

networks. The same occurs for the dynamical systems explanation in terms of nonlinearities, time 631 

scales, and vector fields. Circuit building blocks such as positive and negative feedback loops are 632 

applicable to some, but not all levels of neuronal organization. For example, while subthreshold 633 

resonance results from negative feedback interactions between the membrane potential and 634 

restorative ionic currents, synaptic resonance results from history-dependent mechanisms.  635 

Our results support the hypothesis that the set of LPFs and HPFs are appropriate building blocks to 636 

explain the generation of resonance (BPFs) and that this approach can be used irrespective of the level 637 

of organization, and across levels of organization. We further hypothesize that this approach is 638 

universal. In other words, to understand the generation of resonance at a given level of organization, 639 

one must identify the constituent LPFs and HPFs. From this perspective, the decomposition of BPFs 640 

into LPFs and HPFs is not a mere description of resonance, but rather an explanatory theoretical tool 641 

to understand resonance in terms of structural and functional building blocks. A deeper understanding 642 

might be achieved by linking filters with specific sets of building blocks (Fig. 9). Provided that the 643 

technology exists, the filters may be experimentally identified by making the necessary perturbations. 644 

Therefore, understanding the generation of LPFs and HPFs in terms of the neuronal substrates 645 

contributes to the understanding of the biophysical and dynamic mechanisms underlying the 646 

generation of resonance. 647 

The proposed LPF-HPF framework has the advantage of incorporating, within a single conceptual 648 

umbrella, disparate processes such as negative feedback processes (capacitive, leak, resonant, and 649 
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amplifying currents), history-dependent processes (synaptic depression and facilitation), and spike 650 

discretization. It is not conceived as an analysis tool, but rather serves as a conceptual tool in which 651 

mechanistic models can be designed and their predictions tested by comparing modeling results to 652 

data. Further research is needed to explicitly integrate amplification in this framework, to establish a 653 

general LPF-HPF amplification framework for neuronal systems, and to identify the appropriate filters 654 

and amplification processes. Additional research is also needed to investigate the consequences of 655 

the interplay of multiple filters (e.g., two LPFs and one HPF) and across levels of organization, and to 656 

establish whether multiplicities produce degeneracies or richer patterns (e.g., anti-resonances). 657 

The identification of the LPF and HPF constituting a given BPF is not a straightforward process, 658 

primarily due to two factors: the nonlinearities involved, which are typically strong; and the 659 

qualitatively different biophysical components operating at different levels of organization. In linear 660 

systems, for which analytical calculations are possible, the BPFs characterizing the presence of 661 

resonance can be generated by the frequency domain multiplication of LPFs and HPFs. These filters 662 

have been identified in simple neuronal systems (e.g., systems that can be described by RLC circuits), 663 

but it is not a-priori clear whether and how neuronal BPFs in general can be decomposed into LPFs 664 

and HPFs. Under rather general circumstances, for nonlinear subthreshold resonance one can extend 665 

the linear approach (in the time domain) and obtain a description of the LPF by disrupting the negative 666 

feedback from the recovery variable, and the HPF by neglecting the capacitive current. In contrast, 667 

the short-term plasticity-mediated synaptic BPFs that compose the synaptic resonance model are, by 668 

construction, the product of a depression LPF and a facilitation HPF in the time domain (not in the 669 

frequency domain), and are thus not amenable to linear decomposition.  670 

In general, there are at least two possible ways to generate a resonant response at a given level of 671 

organization: by using an LPF and a HPF at the same level of organization, or at different levels (Fig. 9, 672 

center). In the case of resonance of membrane potential fluctuations, we used a subthreshold LPF 673 

(passive membrane) and a subthreshold HPF (Ih; Fig. 2; Hutcheon and Yarom, 2000). Similarly, for 674 

synaptic resonance both the LPF (synaptic depression) and the HPF (facilitation) belonged to the same 675 
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level of organization (Fig. 5; Izhikevich et al., 2003). However, for the generation of spiking resonance 676 

independently of resonance at any other level, we identified a mixed approach (Fig. 3). While the HPF 677 

was spike-dependent (due to spike discretization or calcium dynamics), the LPF was inherited from 678 

the subthreshold domain (passive membrane). This provides a mechanistic explanation of the classical 679 

results of spiking resonance in LIF neurons (Knight, 1972; Gerstner, 2000), beyond the limit of weak 680 

inputs (Brunel et al., 2001). A mixed approach was also used for generating intrinsic network 681 

resonance (Fig. 6): synaptic depression (LPF) was combined with spike discretization (HPF) to generate 682 

resonance in a postsynaptic target.  683 

 684 

Experimental and functional implications 685 

Network resonance has been described theoretically (Akam and Kullman, 2010; Vierling-Claassen et 686 

al., 2010; Ledoux and Brunel, 2011; Veltz and Sejnowski, 2015; Sherfey et al., 2018) and observed 687 

experimentally (Stark et al., 2013; Schmidt et al., 2017; Lewis et al., 2021) in several model systems. 688 

Here, we distinguished between two types of network resonance: “inherited” network resonance, and 689 

“intrinsic” network resonance. In inherited network resonance, frequency-dependent mechanisms 690 

(LPF and HPF) occur at a level of organization other than the network. Resonance can be observed at 691 

that level of organization, and may be inherited to the network level under specific conditions (e.g., 692 

Fig. 2). Network-level processes may modulate (e.g., amplify or attenuate) the inherited resonance, 693 

but their absence does not disrupt the inherited resonance. In contrast, LPFs and HPFs that occur at 694 

possibly distinct non-network levels of organization can generate intrinsic network resonance (e.g., 695 

Fig. 6), in the lack of resonance observable at any other level of organization. To the best of our 696 

knowledge, intrinsic network resonance has yet to be demonstrated experimentally. 697 

Inhibition-induced network resonance required that Ih-mediated rebound spiking in pyramidal cells 698 

(Cobb et al., 1995) interacts with some form of HPF. Previously, depression of the inhibitory synapses 699 

(on the PYR) and interaction with a third type of cell (an oriens-lacunosum moleculare [OLM] cell) 700 

were suggested as HPFs (Stark et al., 2013). Here, we considered two other mechanisms. First, we 701 
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found that the PYR h-current itself yields a sufficient HPF for generating resonance in the IPSP-driven 702 

PYR. Thus, inhibition-induced network resonance can be inherited. Second, we found that the addition 703 

of a second HPF, in the form of gamma resonance in the presynaptic INT (Rotstein, Ito and Stark, 2017, 704 

SFN Abstract), sharpens the IPSP-induced PYR spiking resonance. Gamma resonance has been 705 

observed in computational models (Akam and Kullman, 2010; Sherfey et al., 2018), in INT in vitro (Pike 706 

et al., 2000), and in multi-unit activity in vivo (Lewis et al., 2021). However, whether gamma resonance 707 

in INT actually occurs in vivo and sharpens theta-band resonance in PYR in vivo remains to be 708 

determined. Together, the present results suggest that although not necessary, frequency-modulating 709 

mechanisms at multiple levels of organization can contribute to the emergence of inhibition-induced 710 

network resonance. 711 

Network resonance can be both intrinsic and inherited, and inherited network resonance can be 712 

derived from different levels of organization. By measuring only firing rate resonance, it is impossible 713 

to determine the specific phase of the spiking response relative to a periodic input. However, using 714 

spike timing resonance and the fingerprint map of resonant neurons, different LPF and HPF modules 715 

that may underlie the resonance mechanism can be contrasted. One experimentally-testable 716 

prediction is that in recurrent excitatory networks, spiking resonance of directly-activated PYR will 717 

exhibit an earlier phase fingerprint, compared to the fingerprint of spikes generated via postsynaptic 718 

potentials which may be delayed in phase (Fig. 4BC; Fig. 6C). Another experimentally-testable 719 

prediction is that in inhibition-induced resonance, PYR phase mediated by INT would be later (Fig. 720 

8C), compared to PYR phase without the involvement of INT (Fig. 7B). Thus, in real neuronal networks 721 

driven by periodic inputs, spike timing resonance, quantified by spike phase and fingerprinting, may 722 

be used to dissect the frequency-dependent mechanisms underlying resonance. 723 

Previous work suggested that resonance can optimize learning (Roach et al., 2018) and favor inter-724 

neuronal communication (Sherfey et al., 2018). We found that multiple routes can lead to network 725 

resonance. Thus, a single network could multiplex information from multiple sources. Multiplexing 726 
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can occur at different resonant frequencies. Furthermore, since different types of network resonance 727 

exhibit different phases, multiplexing can also occur at different phases of the same frequency band. 728 

 729 

Related phenomena and future directions 730 

We focused on resonance, defined as the maximal response of a system to periodic input in a limited 731 

frequency band, and left out the investigation of the related phenomenon of phasonance, defined as 732 

a zero-phase response to periodic inputs. Indeed, previous work has shown that frequency 733 

modulation of spike phase is possible using a LIF model with spike frequency adaptation provided by 734 

slower feedback, e.g., an outward calcium-activated potassium current (Fuhrmann et al., 2002). 735 

Notably the calcium current used in the previous work (to show phasonance) provides subthreshold 736 

negative feedback, while the calcium current used in the calcium-LIF model (to show resonance; Fig. 737 

3F-H) provides a suprathreshold positive feedback. For linear systems, phasonance (measured using 738 

the impedance phase) and resonance (measured using the impedance amplitude) can co-occur 739 

(Richardson et al., 2003; Rotstein and Nadim, 2014). However, phasonance does not have to 740 

accompany resonance (e.g., Fig. 5E, Fig. 8C), and when the two phenomena do co-occur, the resonant 741 

and phasonant frequencies do not necessarily coincide (they do for the case of the harmonic oscillator; 742 

Rotstein and Nadim, 2014). As our results show, spiking resonance may be accompanied by spiking 743 

phasonance (Fig. 3BC). In fact, spiking resonance and phasonance may be inherited from the 744 

subthreshold regime (Fig. 2BC) or be generated at the spiking level (e.g., in LIF; Fig. 3BC). 745 

To address the main question of the paper we relied on a number of case studies. Further work is 746 

required to research general conditions under which resonance  may be communicated from one level 747 

of organization to another, or generated independently at each level of organization. Future work 748 

should also consider the effects of multiple ionic currents in single neurons with possible 749 

heterogeneous spatial or compartmental distributions, the effects of interacting synaptic currents 750 

with different functions (excitation, inhibition), the effects of separate timescales and of short-term 751 
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dynamic properties, and network topology effects. Additionally, future studies should consider 752 

scenarios in which multiple resonances interact within and across levels of organization. 753 

 754 

Conclusion 755 

We have presented several novel computational models of representative scenarios, and have 756 

rejected the hypothesis that network resonance requires resonance at another level. While doing so, 757 

we set the infrastructure for a theoretical framework for investigating the mechanisms underlying the 758 

generation of neuronal network resonance, taking into account the interplay of the constitutive 759 

nonlinear properties of the participating neurons, synaptic connectivity, and network topology. This 760 

framework will enable studies of neuronal networks where the interactions between periodic inputs, 761 

currents, and network effects are important (Lisman, 2005; Iaccarino et al., 2016; Helfrich et al., 2019), 762 

different networks entrain each other (Sirota et al., 2008; Fries, 2015), and/or the precise coordination 763 

between periodic input and spiking output are enhanced or disrupted (Bi and Poo, 2001; Lakatos et 764 

al., 2008; Vierling-Claassen et al. 2008).  765 
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Materials and Methods 766 

Models and numerical methods 767 

We used biophysical (conductance-based) models, following the Hodgkin-Huxley formalism 768 

(Hodgkin and Huxley, 1952; Ermentrout and Terman, 2010). Models consisted of a set of coupled 769 

ordinary differential equations. A detailed description of the different models used is provided below. 770 

All numerical simulations were carried out using custom code written in MATLAB (The Mathworks, 771 

Natick, MA). Numerical integration was done using the explicit second-order Runge-Kutta endpoint 772 

(modified Euler) method (Burden and Faires, 1980) with integration time step dt = 0.1 ms (Figs. 1-6) 773 

or dt = 0.025 ms (Figs. 7-8) and simulation duration of T s. As current input, we used sinusoids of a 774 

single frequency, of the form  775 

 776 

𝐼𝑖𝑛(𝑡) = 𝐼𝑏𝑖𝑎𝑠 + 𝐴𝑖𝑛 sin(2𝜋𝑓𝑡)       (1) 777 

 778 

or a chirp (Puil et al., 1986) linear in f of the form 779 

 780 

𝐼𝑖𝑛(𝑡) = 𝐼𝑏𝑖𝑎𝑠 + 𝐴𝑖𝑛 cos (𝜋 + 2𝜋𝑓0𝑡 + 𝜋(𝑓1 − 𝑓0)
𝑡2

𝑇
)     (2) 781 

 782 

Where Ibias is a time-independent (DC) bias current and Ain is the amplitude of the time-dependent 783 

(AC) periodic input. In the case of sinusoids of a single frequency f , input frequency f  was typically 784 

varied from 1 Hz to 40 Hz at 1 Hz increments, and T = 3 s. For linear chirps, we typically used f0 = 0 Hz 785 

and f1 = 40 Hz with T = 20 s.  786 

 787 

Model for subthreshold resonance 788 

To model resonance originating at the level of membrane potential fluctuations (Fig. 2A-E), we used 789 

a two-dimensional conductance-based model. Thus, the only ionic currents were persistent sodium 790 
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with instantaneous activation (INa,p), and h-current (Ih) with voltage-dependent dynamics. In this 791 

model, low-pass filtering is induced by the membrane time constant (C/gL), high-pass filtering is 792 

induced by Ih and leak current, and amplification is provided by INa,p. The model equations were: 793 

 794 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛(𝑡) − 𝑔𝐿(𝑉 − 𝐸𝐿) − 𝑔𝑝𝑝∞(𝑉)(𝑉 − 𝐸𝑁𝑎) − 𝑔ℎ𝑟(𝑉 − 𝐸ℎ) + 𝑔𝑁𝜂(𝑡)  (3) 795 

 796 

𝑑𝑟

𝑑𝑡
=

𝑟∞(𝑉)−𝑟

𝜏𝑟
          (4) 797 

 798 

Membrane potential variability, which may stem from many unknown sources, was modeled by an 799 

additive white noise term, generated by random sampling from a zero-mean Gaussian distribution 800 

(t)N(0,), multiplied by a constant conductance, gN=1 mS/cm2. The Ih time constant r was assumed 801 

to be voltage-independent. The voltage-dependent activation/inactivation curves of the Ih and INap 802 

gating variables are given by: 803 

 804 

𝑝∞(𝑉) =
1

1+e
−(𝑉+38)

6.5

         (5) 805 

 806 

𝑟∞(𝑉) =
1

1+e
𝑉+79.2

9.78

         (6) 807 

 808 

To model a passive membrane (Fig. 2A, dotted line), we set the conductance of the persistent 809 

sodium (gp) and the h- (gh) currents to zero. To model a HPF (Fig. 2A, dashed line), we set gp to zero 810 

and reduced C to 0.1 F/cm2. In all other cases, the full model was used.  811 

Spike waveforms were not modeled explicitly, but a spike was said to occur whenever the membrane 812 

potential crossed a threshold value, Vth. Thus, the 2D model was augmented with threshold spiking: 813 

 814 

𝑖𝑓 𝑉 > 𝑉𝑡ℎ  𝑡ℎ𝑒𝑛 𝑉 ← 𝑉𝑟𝑒𝑠𝑒𝑡        (7)  815 



Network resonance   Stark et al., 2022 

 44 

 816 

Whenever a spike occurred, the membrane potential V was held constant at Vpeak for Tspike before 817 

being reset to Vreset. Following Acker et al. (2003) and Rotstein and Nadim (2014), the specific 818 

parameters values used were: C = 1 F/cm2;  gL = 0.1 mS/cm2; EL = -65 mV; gp = 0.1 mS/cm2; ENa = 55 819 

mV; gh = 1 mS/cm2; Eh = -20 mV; r = 100 ms; Vth = -50 mV; Vreset = -70 mV; Vpeak = 50 mV; Tspike = 1 ms; 820 

 = 0 mV (Fig. 2E:  = 0-2 mV); Ibias = -1.85 A/cm2; and Ain = 0.15 A/cm2 (Fig. 2A: Ain = 0.05 A/cm2; 821 

Fig. 2D: Ain = 0-1 A/cm2). 822 

 823 

Model of an excitatory-inhibitory network 824 

To model inheritance of resonance generated at the level of membrane potential fluctuations by 825 

INa,p+Ih model neurons to postsynaptic targets (Fig. 2F-G), we generated a network of conductance-826 

based E- and I-cells with all-to-all connectivity. All cells followed 827 

 828 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛(𝑡) − 𝑔𝐿(𝑉 − 𝐸𝐿) − 𝐼𝑖𝑜𝑛𝑖𝑐 − 𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 + 𝑔𝑁𝜂(𝑡)    (8) 829 

 830 

𝑖𝑓 𝑉 > 𝑉𝑡ℎ  𝑡ℎ𝑒𝑛 𝑉 ← 𝑉𝑟𝑒𝑠𝑒𝑡        (9) 831 

 832 

The E-cells contained INa,p and Ih, and thus 𝐼𝑖𝑜𝑛𝑖𝑐 = 𝑔𝑝𝑝∞(𝑉)(𝑉 − 𝐸𝑁𝑎) + 𝑔ℎ𝑟(𝑉 − 𝐸ℎ) with r 833 

obeying Eq. 4. The I-cells were modeled as leaky integrate-and-fire (LIF) neurons, and thus Iionic = 0.  834 

Synaptic connections were modeled as in Ermentrout and Kopell (1998) and Borgers et al. (2012). For 835 

the e’th E-cell, the total synaptic current was 836 

 837 

𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐,𝑒 = ∑ 𝑔𝑒𝑒𝑆𝑒𝑗(𝑉𝑒 − 𝐸𝑠𝑒)𝑁𝑒
𝑗=1 + ∑ 𝑔𝑒𝑖𝑆𝑒𝑘(𝑉𝑒 − 𝐸𝑠𝑖)𝑁𝑖

𝑘=1     (10) 838 

 839 
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Where Ne (Ni) is the number of E-cells (I-cells). The notation gej indicates the maximal synaptic 840 

conductance from presynaptic E-cell j to postsynaptic E-cell e. All excitatory-to-excitatory synapses 841 

had the same maximal conductance values gee and reversal potentials Ese, regardless of the 842 

presynaptic neuron. All inhibitory-to-excitatory synapses had the same maximal conductance values 843 

gei and reversal potentials Esi, regardless of the presynaptic neuron. All synaptic activation variables 844 

corresponding to the same presynaptic neuron had the same dynamics, regardless of the postsynaptic 845 

neuron (Sej = Sj, Sek = Sk, e). For the i’th I-cell, the total synaptic current was modeled by 846 

 847 

𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐,𝑖 = ∑ 𝑔𝑖𝑒𝑆𝑖𝑗(𝑉𝑖 − 𝐸𝑠𝑒)𝑁𝑒
𝑗=1 + ∑ 𝑔𝑖𝑖𝑆𝑖𝑘(𝑉𝑖 − 𝐸𝑠𝑖)𝑁𝑖

𝑘=1     (11) 848 

 849 

All excitatory-to-inhibitory synapses had the same maximal conductance values gie and reversal 850 

potentials Ese. All inhibitory-to-inhibitory synapses had the same maximal conductance values gii and 851 

reversal potentials Esi. All synaptic activation variables corresponding to the same presynaptic neuron 852 

had the same dynamics (Sij = Sj, Sik = Sk, i). 853 

For an excitatory/inhibitory presynaptic neuron, the dynamics of the corresponding synaptic variable 854 

(Se/Si) depended on the presynaptic membrane potential (Ve/Vi) and the synaptic rise and decay time 855 

constants, following: 856 

 857 

𝑑𝑆𝑒

𝑑𝑡
= 𝐻(𝑉𝑒)

(1−𝑆𝑒)

𝜏𝑟
𝑒 −

𝑆𝑒

𝜏𝑑
𝑒         (12) 858 

 859 

𝑑𝑆𝑖

𝑑𝑡
= 𝐻(𝑉𝑖)

(1−𝑆𝑖)

𝜏𝑟
𝑖 −

𝑆𝑖

𝜏𝑑
𝑖         (13) 860 

 861 

𝐻(𝑉) = (1 + 𝑡𝑎𝑛ℎ(𝑉 4⁄ )) 2⁄         (14) 862 

 863 

Parameter values followed Borgers et al., 2012. All parameters values used are detailed in Table 1.  864 
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Table 1. Parameters used for modeling inheritance of resonance generated at the level of 865 

membrane potential fluctuations (Fig. 2F-H). 866 

Parameter Value Units Notes 

C 1 F/cm2  

gL 0.1 mS/cm2  

Vth -50 mV  

    

EL
e -65 mV E-cells 

gp 0.1 mS/cm2 E-cells 

ENa 55 mV E-cells 

gh 1 mS/cm2 E-cells 

Eh -20 mV E-cells 

h 100 ms E-cells 

Vreset
e -70 mV E-cells 

Tspike
e 1 ms E-cells 

    

EL
i -60 mV I-cells 

Vreset
i -60 mV I-cells 

Tspike
i 0.1 ms I-cells 

    

r
e 0.1 ms AMPA 

d
e 3 ms AMPA 

Ee 0 mV AMPA 

r
i 0.3 ms GABAA 

d
i 9 ms GABAA 
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Ei -80 mV GABAA 

gie 0.05 mS/cm2 E to I; Fig. 2F: 1 

gee 0 mS/cm2 E to E 

gei 0 mS/cm2 I to E 

gii 0.05 mS/cm2 I to I 

    

e 0.0125 mV E-cells 

Ibias
e -1.85 A/cm2 E-cells 

Ain
e 0.14125 A/cm2 Fig. 2H: 0 

i 3 mV I-cells 

Ibias
i -1 A/cm2 I-cells 

Ain
i 0 A/cm2 Fig. 2H: 2.26 

  867 
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Models for spiking resonance 868 

To model spiking resonance generated by an isolated LIF (Fig. 3A-E), we used 869 

 870 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛(𝑡) − 𝑔𝐿(𝑉 − 𝐸𝐿) + 𝑔𝑁𝜂(𝑡)       (15) 871 

 872 

𝑖𝑓 𝑉 > 𝑉𝑡ℎ  𝑡ℎ𝑒𝑛 𝑉 ← 𝑉𝑟𝑒𝑠𝑒𝑡        (16) 873 

 874 

with the following parameter values: C = 1 F/cm2;  gL = 0.1 mS/cm2; EL = -60 mV; Vth = -50 mV; Vreset 875 

= -60 mV; Vpeak = 50 mV; Tspike = 1 ms;  = 0 mV (Fig. 3E:  = 0-0.3 mV); Ibias = 0.9 A/cm2; and Ain = 0.05-876 

0.3 A/cm2. 877 

To model spiking resonance generated directly at the spiking level with a sharper HPF than the 878 

isolated LIF (Eqs 15-16), we modified the LIF model to include a spike-dependent calcium current (Fig. 879 

3F-H). The model equations were: 880 

 881 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛(𝑡) − 𝑔𝐿(𝑉 − 𝐸𝐿) − 𝑔𝐶𝐾(𝑉 − 𝐸𝐶𝑎) + 𝑔𝑁𝜂(𝑡)    (17) 882 

 883 

𝑑𝐾

𝑑𝑡
=

𝑁𝐶(1−𝐾)

𝜏𝑎𝑐𝑡
−

𝐾

𝜏𝑖𝑛𝑎𝑐𝑡
         (18) 884 

 885 

𝑑𝑁𝐶

𝑑𝑡
= −

𝑁𝐶

𝜏𝑑𝑒𝑎𝑐𝑡
          (19) 886 

 887 

𝑖𝑓 𝑉 > 𝑉𝑡ℎ  𝑡ℎ𝑒𝑛   {
𝑉 ← 𝑉𝑟𝑒𝑠𝑒𝑡

𝑁𝐶 ← 𝑁𝑟𝑒𝑠𝑒𝑡
        (20) 888 

 889 

The purpose of constructing this model was to generate a spike-dependent HPF, in a system that has 890 

an underlying subthreshold LPF. The physiological rationale is that following a spike, there is increased 891 
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calcium influx, further increasing depolarization; this effectively reduces the spiking threshold to 892 

current input at the same level. Thus, at another cycle of input that occurs shortly after the first spike, 893 

there will be another spike – even if the current is insufficient to generate a spike without the calcium 894 

influx. However, if the next cycle occurs later, the intracellular calcium level will have already gone 895 

back to steady-state level. 896 

In the model, the calcium gating variable K is limited to the [0,1] range and represents the probability 897 

of the gate to be open. Once a spike occurs, NC is instantaneously reset to a non-zero value (Nreset) and 898 

then slowly decays (with deact) towards zero. While NC is non-zero, the gate opens slowly (i.e., K is 899 

activated towards 1 with act/NC, and rapidly inactivates (decays to zero with inact). When activation is 900 

very fast or inactivation is very slow, the calcium conductance remains high long after a spike, 901 

providing additional depolarization at multiple current input frequencies, generating spike bursts at 902 

every input cycle. When the activation is slow and inactivation is fast, K remains relatively high only 903 

for a short time after a spike. The parameters used favor the latter scenario. Specific parameter values 904 

were: C = 1 F/cm2; gL = 0.5 mS/cm2; EL = -60 mV; gC = 0.08 mS/cm2 (Fig. 3H: gC = 0.04-0.12 mS/cm2); 905 

ECa = 100 mV; act = 50 ms; inact = 5 ms; deact = 70 ms; Vth = -50 mV; Vreset = -70 mV; Vpeak = 50 mV; Nreset 906 

= 0.1;  = 0.001 mV; Ibias = -3 A/cm2; and Ain = 8 A/cm2. 907 

To model network resonance inherited from resonance generated at the spiking level (Fig. 4), we 908 

combined a set of LIF model neurons (Eq 3 and Eq 4) using the network formalism described above 909 

(Eqs 8-14), with parameter values as detailed in Table 2.  910 
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Table 2. Parameters used for modeling inheritance of spiking resonance generated by an isolated 911 

LIF (Fig. 4). 912 

Parameter Value Units Notes 

C 1 F/cm2  

gL 0.1 mS/cm2  

EL -60 mV  

Vth -50 mV  

Vreset -60 mV  

Tspike 1 ms  

    

r
e 0.1 ms AMPA 

d
e 3 ms AMPA 

Ee 0 mV AMPA 

r
i 0.3 ms GABAA 

d
i 9 ms GABAA 

Ei -80 mV GABAA 

gie 0.01 mS/cm2 E to I; Fig. 4A: 1 

gee 0 mS/cm2 E to E 

gei 0 mS/cm2 I to E 

gii 0.05 mS/cm2 I to I 

    

e 0.02 mV Fig. 4C: 0.08 

Fig. 4DE: 0-0.3 

Ibias
e 0.9 A/cm2 E-cells 

Ain
e 0.115 A/cm2 E-cells 
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i 2 mV I-cells 

Ibias
i 0 A/cm2 I-cells 

Ain
i 0 A/cm2 I-cells 

  913 
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Models for synaptic plasticity and resonance 914 

To model resonance generated at the level of postsynaptic potentials (Fig. 5), we used a LIF model 915 

receiving a synaptic current with short term dynamics (synaptic facilitation and depression): 916 

 917 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛(𝑡) − 𝑔𝐿(𝑉 − 𝐸𝐿) − 𝑔𝑆𝑆𝐷𝐹(𝑉 − 𝐸𝑆)     (21) 918 

 919 

𝑑𝑆

𝑑𝑡
= 𝐻(𝑉𝑝𝑟𝑒)

(1−𝑆)

𝜏𝑟
−

𝑆

𝜏𝑑
        (22) 920 

 921 

𝑑𝐷

𝑑𝑡
= −𝐻(𝑉𝑝𝑟𝑒)

𝐷

𝜏𝑟𝑒𝑠𝑒𝑡(𝑑)
+

(1−𝐷)

𝜏𝑑𝑒𝑝
       (23) 922 

 923 

𝑑𝐹

𝑑𝑡
= 𝐻(𝑉𝑝𝑟𝑒)

(1−𝐹)

𝜏𝑟𝑒𝑠𝑒𝑡(𝑓)
−

𝐹

𝜏𝑓𝑎𝑐
        (24) 924 

 925 

The threshold spiking is defined by Eq 9 and the sigmoid activation function is as in Eq 14. In Eqs 21-926 

24, Vpre represents the membrane potential of the presynaptic neurons. To construct the input Vpre, 927 

we generated a spike at each local maximum of a sinusoid function (Eq 1 or Eq 2). The presynaptic 928 

voltage was then defined as Vpre(t) = 50 mV if a spike occurred in the last 1 ms; otherwise, Vpre(t) = -60 929 

mV. Other specific parameter values used in Fig. 5 were: C = 1 F/cm2;  gL = 0.1 mS/cm2; EL = -65 mV; 930 

Vth = -50 mV (Fig. 5A: Vth = 0 mV); Vreset = -70 mV; Tspike = 0.1 ms; r = 0.1 ms; d = 3 ms; gS = 0.175 931 

mS/cm2; ES = 0 mV; reset(d) = 0.1 ms; dep = 100 ms; reset(f) = 0.2 ms; fac = 300 ms;  = 0.05 mV (Fig. 5A-932 

C:  = 0 mV; Fig. 5F:  = 0-0.3 mV); Ibias = 1.3 A/cm2; and Ain = 0 A/cm2. 933 

To model synaptic depression, the synaptic variable S was multiplied by a factor D, limited to the 934 

[0,1] range. After every spike, D slowly recovers towards its steady state value of 1, with time constant 935 

dep, which determines the time scale of depression (Eq 23). Since additional spikes may occur during 936 

recovery, the process is history-dependent. To model synaptic facilitation, the synaptic variable S was 937 
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multiplied by a factor F, also limited to the [0,1] range. The dynamics of F follow the same principle as 938 

for depression (Eq 24), yet in an opposite direction: during every spike, 𝐹 rapidly increases towards 1; 939 

between spikes, F relaxes to zero with a slower time constant fac. Note that in principle, the synaptic 940 

variable S in Eq 22 is also history-dependent, representing synaptic summation. However, the synaptic 941 

decay time constant d for the AMPA-like synapses used in Eq 22 is much smaller than the time 942 

constants used for modeling depression. 943 

To model the combined effect of depression and facilitation, the synaptic variable was multiplied by 944 

D and F. Together, the product DF represents the probability of presynaptic release. We note that the 945 

depression model is similar to the one proposed by Manor and Nadim (2001). Previous models of 946 

synaptic plasticity (Markram et al., 1998; Ermentrout and Terman, 2010, attributed to Dayan, Abbott, 947 

and collaborators) included a discrete (delta-function) rise of the depression and facilitation variables 948 

in response to each presynaptic spike. The present synaptic plasticity models replace the step increase 949 

with a continuous sigmoid function, as previously used for synaptic transmission models (Ermentrout 950 

and Kopell, 1998; Borgers et al., 2012).  951 

To model short term synaptic dynamics in the lack of depression/facilitation (Fig. 5C), we set the 952 

corresponding variable to a constant (only facilitation: D = 1; only depression: F = 1).  953 

To model inheritance of resonance generated at the level of postsynaptic potentials to postsynaptic 954 

targets (Fig. 5G-L), we constructed a 3-layer diverging/converging feedforward network. Synaptic 955 

conductance between layer 1 and layer 2 was gS = 0.2 mS/cm2. Neurons in the second layer received 956 

Ibias = 1.2 A/cm2 and independent noise (𝜎 = 0.25 𝑚𝑉 in Fig. 5G-I). Synaptic conductance between 957 

layer 2 and layer 3 was gS = 0.12 mS/cm2; the single layer 3 neuron received Ibias = 0 A/cm2 and no 958 

additional noise.  959 

To model EPSP-induced network resonance (Fig. 6), we used the LIF model supplemented with 960 

synaptic plasticity (Eqs 9, 14, 21-24), without facilitation (i.e., F = 1). Other parameter values were the 961 

same as for generating resonance at the level of PSP (Fig. 5), with Ibias = 1.2 A/cm2. 962 

 963 
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Models for inhibition-induced network resonance 964 

To model IPSP-induced network resonance (Figs. 7-8), we used a minimal network of conductance-965 

based neurons of the Hodgkin-Huxley type with instantaneous activation of sodium channels, 966 

consisting of an excitatory cell (a PYR) and an INT (Borgers et al., 2012). The PYR model included 967 

dynamics on the membrane potential (Ve), sodium inactivation (h), delayed-rectifier potassium (n), 968 

and the h-current gating variable (r; Poolos et al., 2002; Zemankovics et al., 2010), yielding a 4D 969 

system. In addition, the model included synaptic input and noise. Denoting the membrane potential 970 

of the PYR by Ve and the membrane potential of the INT by Vi, the full model for the PYR reads 971 

 972 

𝐶
𝑑𝑉𝑒

𝑑𝑡
= 𝐼𝑖𝑛

𝑒 (𝑡) − 𝑔𝐿
𝑒(𝑉𝑒 − 𝐸𝐿

𝑒) − 𝑔𝑁𝑎
𝑒 ℎ𝑚∞(𝑉𝑒)3(𝑉𝑒 − 𝐸𝑁𝑎

𝑒 ) − 𝑔𝐾
𝑒 𝑛4(𝑉𝑒 − 𝐸𝐾

𝑒) − 𝑔ℎ
𝑒𝑟(𝑉𝑒 − 𝐸ℎ

𝑒) −973 

𝑔𝑒𝑒𝑆𝑒(𝑉𝑒)(𝑉𝑒 − 𝐸𝑒) − 𝑔𝑒𝑖𝑆𝑖(𝑉𝑖)(𝑉𝑒 − 𝐸𝑖) + 𝑔𝑁𝜂𝑒(𝑡)     (25) 974 

 975 

𝑑ℎ

𝑑𝑡
=

ℎ∞(𝑉𝑒)−ℎ

𝜏ℎ(𝑉𝑒)
          (26) 976 

 977 

𝑑𝑛

𝑑𝑡
=

𝑛∞(𝑉𝑒)−𝑛

𝜏𝑛(𝑉𝑒)
          (27) 978 

 979 

𝑑𝑟

𝑑𝑡
=

𝑟∞(𝑉𝑒)−𝑟

𝜏𝑟(𝑉𝑒)
          (28) 980 

 981 

The gating variables (x = h,m,n,r) had voltage-dependent time constants (x) and steady-state values 982 

(x) as follows: 983 

 984 

ℎ∞(𝑉) =
0.128e

−(𝑉+50)
18

0.128e
−(𝑉+50)

18 +
4

1+e
−(𝑉+27)

5

, 𝜏ℎ(𝑉) =
1

0.128e
−(𝑉+50)

18 +
4

1+e
−(𝑉+27)

5

   (29) 985 

 986 
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𝑚∞(𝑉) =

0.32(𝑉+54)

1−e
−(𝑉+54)

4
0.32(𝑉+54)

1−e
−(𝑉+54)

4

−
0.28(𝑉+27)

1−e

(𝑉+27)
5

        (30) 987 

 988 

𝑛∞(𝑉) =

0.032(𝑉+52)

1−e
−(𝑉+52)

5

0.032(𝑉+52)

1−e
−(𝑉+52)

5

+0.5e
−(𝑉+57)

40

, 𝜏𝑛(𝑉) =
1

0.032(𝑉+52)

1−e
−(𝑉+52)

5

+0.5e
−(𝑉+57)

40

    (31) 989 

 990 

𝑟∞(𝑉) =
1

1+e
𝑉+82.9

12.4

, 𝜏𝑟(𝑉) =
136.36𝑒0.033(𝑉+75)

1+𝑒0.083(𝑉+75)       (32) 991 

 992 

The PYR received excitatory input from itself, with maximal conductance gee, reversal potential Ee, 993 

and synaptic variable Se; and inhibitory input from the INT, with maximal synaptic conductance gei, 994 

reversal potential Ei, and synaptic variable Si. The synaptic variables were modeled as in Eqs 12-14. 995 

For the basic component of the INT we used the Wang-Buzsáki model (Wang and Buzsáki, 1996) 996 

describing the dynamics of the membrane potential (Vi) , sodium inactivation (h), and delayed-rectifier 997 

potassium (n). To model gamma resonance in the INT (Fig. 8), the model was extended to include a 998 

non-inactivating potassium current (q) with dynamics similar to but faster than an M-current (Brown 999 

and Adams, 1980). The full model also included synaptic currents and noise, and reads 1000 

 1001 

𝐶
𝑑𝑉𝑖

𝑑𝑡
= 𝐼𝑖𝑛

𝑖 (𝑡) − 𝑔𝐿
𝑖 (𝑉𝑖 − 𝐸𝐿

𝑖 ) − 𝑔𝑁𝑎
𝑖 ℎ𝑚∞(𝑉𝑖)

3
(𝑉𝑖 − 𝐸𝑁𝑎

𝑖 ) − 𝑔𝐾
𝑖 𝑛4(𝑉𝑖 − 𝐸𝐾

𝑖 ) − 𝑔𝑀
𝑖 𝑞(𝑉𝑖 − 𝐸𝐾

𝑖 ) −1002 

𝑔𝑖𝑒𝑆𝑒(𝑉𝑒)(𝑉𝑖 − 𝐸𝑒) − 𝑔𝑖𝑖𝑆𝑖(𝑉𝑖)(𝑉𝑖 − 𝐸𝑖) + 𝑔𝑁𝜂𝑖(𝑡)     (33) 1003 

 1004 

𝑑ℎ

𝑑𝑡
=

ℎ∞(𝑉𝑖)−ℎ

𝜏ℎ(𝑉𝑖)
          (34) 1005 

 1006 

𝑑𝑛

𝑑𝑡
=

𝑛∞(𝑉𝑖)−𝑛

𝜏𝑛(𝑉𝑖)
          (35) 1007 

 1008 
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𝑑𝑞

𝑑𝑡
=

𝑞∞(𝑉𝑖)−𝑞

𝜏𝑞(𝑉𝑖)
          (36) 1009 

 1010 

The gating variables for the INT (x = h,m,n,q) had voltage-dependent time constants (x) and steady-1011 

state values (x) as follows 1012 

 1013 

ℎ∞(𝑉) =
0.07e

−(𝑉+58)
20

0.07e
−(𝑉+58)

20 +
1

1+e
−(𝑉+28)

10

, 𝜏ℎ(𝑉) =
0.2

0.07e
−(𝑉+58)

20 +
1

1+e
−(𝑉+28)

10

   (37) 1014 

 1015 

𝑚∞(𝑉) =

0.2(𝑉+35)

1−e
−(𝑉+35)

10

0.2(𝑉+35)

1−e
−(𝑉+35)

10

+4e
−(𝑉+60)

18

        (38) 1016 

 1017 

𝑛∞(𝑉) =

0.01(𝑉+34)

1−e
−(𝑉+34)

10

0.01(𝑉+34)

1−e
−(𝑉+34)

10

+0.125e
−(𝑉+44)

80

, 𝜏𝑛(𝑉) =
0.2

0.01(𝑉+34)

1−e
−(𝑉+34)

10

+0.125e
−(𝑉+44)

80

   (39) 1018 

 1019 

𝑞∞(𝑉) =
1

1+e
−(𝑉+35)

10

, 𝑞𝑟(𝑉) =
40

3.3e
𝑉+35

20 +e
−(𝑉+35)

10

     (40) 1020 

 1021 

The INT received excitatory input from the PYR, with maximal synaptic conductance gie; and 1022 

inhibitory input from itself, with maximal synaptic conductance gii.  1023 

For modeling the PYR in isolation (Fig. 7A) or the INT in isolation (Fig. 8AB), all synaptic conductance 1024 

values were set to zero. For modeling the INT-to-PYR network without gamma resonance on the INT 1025 

(Fig. 7B), gM
i was set to zero. The full model was used for Fig. 8C. Specific parameter values followed 1026 

Borgers et al., 2012, and are detailed in Table 3.  1027 
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Table 3. Parameters used for modeling IPSP-induced network resonance (Figs. 7-8). 1028 

Parameter Value Units Notes 

Ce 1 F/cm2  

gL
e 0.1 mS/cm2  

EL
e -67 mV  

gNa
e 100 mS/cm2  

ENa
e 50 mV  

gK
e 80 mS/cm2  

EK
e -100 mV  

gh
e 0.485 mS/cm2  

Eh
e -33 mV  

    

Ci 1 F/cm2  

gL
i 0.1 mS/cm2  

EL
i -65 mV  

gNa
i 35 mS/cm2  

ENa
i 55 mV  

gK
i 9 mS/cm2  

EK
i -90 mV  

gM
i 4 mS/cm2 Fig. 7: 0 

    

r
e 0.1 ms AMPA 

d
e 3 ms AMPA 

Ee 0 mV AMPA 

r
i 0.3 ms GABAA 
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d
i 9 ms GABAA 

Ei -80 mV GABAA 

gie 0 mS/cm2 PYR to INT 

gee 0 mS/cm2 PYR to PYR 

gei 0.4 mS/cm2 INT to PYR 

gii 0 mS/cm2 INT to INT 

    

e 0.1 mV  

Ibias
e -2.7 A/cm2  

Ain
e 0 A/cm2 Fig. 7A: 0.2 

i 0.1 mV Fig. 8A: 0 

Ibias
i -0.5 A/cm2 Fig. 8AB,C: 3.8, 3.7 

Ain
i 0.5 A/cm2 Fig. 8B,C: 0.9, 2.1 

  1029 
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There are no primary data in the paper; all materials are available at 1031 
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Abstract 14 

Resonance is defined as maximal response of a system to periodic inputs in a limited frequency band. 15 

Resonance may serve to optimize inter-neuronal communication, and has been observed at multiple 16 

levels of neuronal organization. However, it is unknown how neuronal resonance observed at the 17 

network level is generated and how network resonance depends on the properties of the network 18 

building blocks. Here, we first develop a metric for quantifying spike timing resonance in the presence 19 

of background noise, extending the notion of spiking resonance for in vivo experiments. Using 20 

conductance-based models, we find that network resonance can be inherited from resonances at 21 

other levels of organization, or be intrinsically generated by combining mechanisms across distinct 22 

levels. Resonance of membrane potential fluctuations, postsynaptic potentials, and single neuron 23 

spiking can each be generated independently of resonance at any other level and be propagated to 24 

the network level. At all levels of organization, interactions between processes that give rise to low- 25 

and high-pass filters generate the observed resonance. Intrinsic network resonance can be generated 26 

by the combination of filters belonging to different levels of organization. Inhibition-induced network 27 

resonance can emerge by inheritance from resonance of membrane potential fluctuations, and be 28 

sharpened by presynaptic high-pass filtering. Our results demonstrate a multiplicity of qualitatively 29 

different mechanisms that can generate resonance in neuronal systems, and provide analysis tools 30 

and a conceptual framework for the mechanistic investigation of network resonance in terms of circuit 31 

components, across levels of neuronal organization. 32 

 33 

Author summary 34 

How one part of the brain responds to periodic input from another part depends on resonant circuit 35 

properties. Resonance is a basic property of physical systems, and has been experimentally observed 36 

at various levels of neuronal organization both in vitro and in vivo. Yet how resonance is generated in 37 

neuronal networks is largely unknown. In particular, whether resonance can be generated directly at 38 
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the level of a network of spiking neurons remains to be determined. Using detailed biophysical 39 

modeling, we develop a conceptual framework according to which resonance at a given level of 40 

organization is generated by the interplay of low- and high-pass filters, implemented at either the 41 

same or across levels of neuronal organization. We tease apart representative, biophysically-plausible 42 

generative mechanisms of resonance at four different levels of organization: membrane potential 43 

fluctuations, single neuron spiking, synaptic transmission, and neuronal networks. We identify 44 

conditions under which resonance at one level can be inherited to another level of organization, 45 

provide conclusive evidence that resonance at each level can be generated without resonance at any 46 

other level, and describe a number of representative routes to network resonance. The proposed 47 

framework facilitates the investigation of resonance in neuronal systems. 48 

 49 

Introduction 50 

Resonance refers to the maximal response of a system to periodic input in a limited (finite non-zero; 51 

“resonant”) frequency band. In neuronal systems, resonance has been observed at multiple levels of 52 

organization and quantified using various metrics, in all cases capturing the notion of optimal gain. In 53 

the simplest case, similarly to RLC circuits, the subthreshold response of an isolated neuron to 54 

oscillatory inputs has been measured in terms of the impedance amplitude profile, quantifying the 55 

amplitude response of the membrane potential fluctuations as a function of the input frequency 56 

(Gutfreund et al., 1995; Hutcheon et al., 1996a; Hu et al., 2002, 2009; Hutcheon and Yarom, 2000; Puil 57 

et al., 1986; Wang, 2010). A neuron exhibits cellular-level resonance of membrane potential 58 

fluctuations if the impedance magnitude peaks at a non-zero frequency. Otherwise, individual 59 

neurons may behave as low-pass filters (Puil et al., 1986; Pike et al., 2000; Zemankovics et al., 2010) 60 

or may exhibit more complex behavior depending on the number and type of ionic currents and their 61 

time scales (Pike et al., 2000; Izhikevich, 2001; Richardson et al., 2003; Rotstein and Nadim, 2014). In 62 

addition to resonance of membrane potential fluctuations, cellular-level resonance may occur at the 63 
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spiking level: spikes may preferentially occur at specific frequencies of an oscillatory input current 64 

(Hutcheon et al., 1996a; Pike et al., 2000), yielding spiking resonance. Beyond the cellular level, 65 

resonance may occur at the level of synaptic transmission: the amplitude of postsynaptic potentials 66 

(PSPs) may peak at some instantaneous rate of the presynaptic spikes (Markram et al., 1998; Izhikevich 67 

et al., 2003; Drover et al., 2007). Finally, computational modeling (Akam and Kullman, 2010; Kang et 68 

al., 2010; Vierling-Claassen et al., 2010; Ledoux and Brunel, 2011; Veltz and Sejnowski, 2015; Sherfey 69 

et al., 2018), in vitro (Schmidt et al., 2017), and in vivo experiments (Stark et al., 2013), showed that 70 

resonance may occur at the network level. 71 

Theoretical studies have shown that subthreshold resonance can be communicated to the spiking 72 

regime (Richardson et al., 2003; Engel et al., 2008; Rotstein, 2017). A possible implication of this 73 

observation is that resonance can be inherited over levels of neuronal organization, either directly or 74 

indirectly. For instance, subthreshold resonance at theta frequencies may be expected to create 75 

spiking resonance at theta frequencies, which may in turn generate network resonance at theta 76 

frequencies when resonant spiking neurons interact with other neurons. Alternatively, the interplay 77 

of the positive and slower negative feedback effects operating at interacting levels of organization 78 

may communicate resonance across these levels. However, direct periodic activation of hippocampal 79 

CA1 pyramidal cells that have been shown to exhibit subthreshold resonance in vitro (Leung and Yu, 80 

1998; Hu et al., 2002) did not produce network resonance in vivo, whereas direct activation of 81 

inhibitory neurons did (Stark et al., 2013). Thus, it is still unclear whether and under what conditions 82 

resonance at one level of organization is causally related to (e.g., is inherited from) resonance at 83 

another level. One obstacle to addressing these issues is the lack of a general framework for 84 

investigating the mechanisms of generation of neuronal resonance in terms of the frequency-85 

preference properties of system components.  86 

The specific question we address in this paper is whether resonance observed at one level of 87 

organization is necessarily inherited from resonance at lower levels of organization (e.g., membrane 88 

potential fluctuations, single neuron spiking, postsynaptic potentials). Previous work showed the 89 
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presence of resonance in networks of rate models (Ledoux and Brunel, 2011; Veltz and Sejnowski, 90 

2015) Other work demonstrated resonance in spiking neurons (Knight, 1972; Gerstner, 2000; Brunel 91 

et al., 2001; Brunel et al., 2003; Engel et al., 2008). However, a direct link between resonance in a 92 

single spiking neuron and a network of spiking neurons has not been shown (although see Ledoux and 93 

Brunel, 2011, describing a comparative analysis between resonance in networks of spiking neurons 94 

and rate mdoels). An alternative manner in which network resonance can be generated is by the 95 

existence of independent processes that may share some building blocks, and act to generate 96 

resonance at distinct levels. This alternative scenario does not preclude the existence of neuronal 97 

systems in which resonances are communicated across levels of organization, particularly from the 98 

subthreshold to the network levels.  99 

To tackle this question, we carry out detailed conductance-based modeling of individual neurons 100 

and neuronal networks. We identify and analyze a number of case studies at various levels of 101 

organization and increasing levels of complexity, where the generation of resonance depends on 102 

mechanisms confined to each level. Capturing the complexity of the problem, particularly the 103 

interaction between levels of organization, requires going beyond the linear domain and weak signals 104 

where the classical mathematical analysis of linear systems is possible and mean-field theory of 105 

irregularly spiking neurons is applicable. Therefore we entirely rely on computer simulation of a 106 

number of scenarios carefully designed to address a specific question or shed light on a specific issue. 107 

We find that despite the nonlinearities and complexity of the neuronal systems examined, the 108 

resonance-generating mechanisms can be described in terms of the interplay of low-pass filters (LPFs) 109 

and high-pass filters (HPFs). The filtering building blocks (or modules) depend on the biophysical and 110 

dynamic details and structure specific to each level. In contrast, network resonance can be generated 111 

by combining low- and high-pass filtering mechanisms across levels of organization, in the lack of 112 

resonance at any other level of organization.   113 
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Results 114 

Two distinct types of spiking resonance: cycle-averaged firing rate resonance 115 

and spike timing resonance 116 

In the context of rhythmic systems (Fig. 1A), one can differentiate between two types of responses: 117 

an oscillator and a resonator. In an electric oscillator that receives as input a square pulse of current, 118 

the output is an oscillatory voltage (Fig. 1B, left). The generation of oscillations in neuronal systems 119 

has been studied extensively (Buzsaki, 2006; Wang, 2010). A second type of rhythmic system is a 120 

resonator (Fig. 1B, right). Resonance is defined as a maximal response of the system to a periodic 121 

input at a non-zero finite frequency or frequency band. In neuronal systems, resonance has often been 122 

discussed in the context of current input to a single neuron (Hutcheon and Yarom, 2000). In a single 123 

neuron, resonance at the subthreshold level occurs when the amplitude of the response variable (e.g., 124 

voltage: the membrane potential, Vm) peaks at a non-zero frequency of the input (e.g., current) 125 

applied to the neuron (Fig. 1B, right). This can be quantified using the impedance amplitude profile, 126 

capturing the ratio between the output and input amplitudes at every input frequency. Ultimately, 127 

neurons transmit their output as spikes. A natural direct extension of the analog (subthreshold) 128 

definition of resonance to the spiking domain is “cycle-averaged firing rate resonance” (Fig. 1C), which 129 

can be fully quantified by the cycle-averaged firing rate metric. In cycle-averaged firing rate resonance, 130 

the rate of spikes fired by the neuron is maximal when the frequency of the input (e.g., the presynaptic 131 

spike train or the current applied to the neuron) is at a non-zero frequency band.  132 

The usage of a discrete output (spikes) allows a second type of resonance to be considered, which 133 

we denote as “spike timing resonance” (Fig. 1D). In spike timing resonance, the cycle-averaged firing 134 

rate can be the same for all input frequencies (Fig. 1D, top left). However, spikes occur at a more 135 

limited range of phases at some frequency (e.g., 10 Hz; Fig. 1D, bottom left) compared to other 136 

frequencies (e.g., 5 or 15 Hz; Fig. 1D, bottom left). Hence the output, namely the instantaneous firing 137 

rate, is maximal at a given phase of a non-zero finite frequency (the resonant frequency). Therefore, 138 
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spike phase must be taken into account when quantifying the preferred frequency response 139 

phenomenon. In this setting, the input (i.e., the oscillatory current) and the output (i.e., the spike 140 

times) are more coherent at the resonant frequencies (Fig. 1D, bottom right). The spikes exhibit more 141 

consistent phase locking at the resonant frequencies, which can be quantified using the spectral 142 

coherence. For the remainder of this article, we refer to the magnitude of the complex spectral 143 

coherence simply as “coherence”. Coherence ranges 0-1 and is maximal when spikes exhibit perfect 144 

phase locking to the periodic input. Thus, in spike timing resonance, the coherence metric exhibits a 145 

maximum at a finite, non-zero frequency.  146 

In principle (and as illustrated in Fig. 1CD), cycle-averaged firing rate resonance and spike timing 147 

resonance are independent phenomena, and one can occur without the other. Indeed, previous work 148 

in freely-moving mice showed that pyramidal cells exhibit inhibition-induced spike-timing resonance, 149 

without exhibiting cycle-averaged firing rate resonance (Stark et al., 2013). Spiking fingerprints, as the 150 

ones presented by the 2D color images in Fig. 1CD, are useful tools to visualize the possible occurrence 151 

of firing rate resonance. To generate a fingerprint, the number of spikes is counted at every relevant 152 

frequency and phase (over all trials), and divided by the time spent in that bin, yielding instantaneous 153 

rates. 154 

Previously, spiking resonance generated in the noise-driven regime was quantified by computing the 155 

modulation of the instantaneous firing rate averaged over many trials in response to sinusoidal input 156 

(e.g., Richardson et al., 2003; Ledoux and Brunel, 2011). In the lack of noise, the modulation metric is 157 

insensitive to the number of spikes in every cycle. In the presence of high noise, the metric loses 158 

sensitivity to the precise phase. In contrast, the coherence metric is sensitive to both the number of 159 

spikes and the spike phase, both in the presence and in the lack of noise.  160 

Both cycle-averaged firing rate resonance and spike timing resonance pertain to maximizing the 161 

output of the system at a non-zero input frequency. This is distinct from stochastic resonance 162 

(Wiesenfeld and Moss, 1995; Mejias and Torres, 2011), where the input-output relations are 163 

maximized at a non-zero level of noise (in the presence of an external input); and from coherence 164 
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resonance (Pikovsky and Kurths, 1997; Lee et al., 1998; Linder et al., 2004), where the system exhibits 165 

maximally-coherent oscillations at a non-zero level of noise (in the absence of a periodic input).  166 

In summary, resonance in the spiking domain can be visualized using fingerprinting and quantified 167 

using cycle-averaged firing rate, coherence, or both. From the perspective of a postsynaptic neuron, 168 

cycle-averaged firing rate resonance and spike timing resonance capture the input for neurons 169 

sensitive to firing rate and spike timing, respectively. When all (or at least most) spikes are generated 170 

directly by the input, the two types of spiking domain resonance coincide. This can be achieved in 171 

modeling studies and in controlled in vitro experiments in a relatively straightforward manner. 172 

However, when there are additional spurious spikes not created by the input as typically observed in 173 

vivo, resonance may appear and detected only as spike timing resonance.  174 
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 175 

Figure 1. Cycle-averaged firing rate resonance and spike timing resonance 176 

(A) To quantify the response, a system is given an input (e.g., current or spikes) and the output is measured. 177 

(B) Left: Induced oscillations are defined are as a rhythmic output in response to a non-rhythmic (e.g., pulse or noise) input. 178 

Right: Resonance is defined as a maximal response of the system to periodic input at a non-zero finite input frequency or 179 

frequency band. In neuronal systems, this definition readily applies to analog quantities, e.g., the membrane potential 180 

fluctuations. 181 

(C) Cycle-averaged firing rate resonance is a direct extension of the analog quantity. A synthetic neuronal signal was 182 

constructed in which firing rate at the 8-12 Hz range was twice the firing rate at other frequencies (top left). Actual spike 183 

trains were realized by randomly drawing the number of spikes per cycle from a Poisson distribution. This corresponds to a 184 

horizontal band in the fingerprint, a 2D frequency-phase map of instantaneous firing rates (second panel from right). Here 185 

and in all fingerprints, blue corresponds to 0 spk/s, and red correspond to the instantaneous firing rate indicated in the title 186 
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(here, 56 spk/s). The image is expanded to show 1½ cycles in the phase axis (abscissa). In this configuration, resonance is 187 

fully quantified by the cycle-averaged firing rate (top right).  188 

(D) In spike timing resonance, the firing rate may be identical at all input frequencies (top left), but spikes occur at specific 189 

phases in the resonant frequency band. A signal was constructed in which the phase of every spike was drawn randomly 190 

from a von Mises distribution, for which the concentration parameter  was higher at the 8-12 Hz range (bottom left). This 191 

corresponds to a high instantaneous firing rate at a specific combination of frequency and phase (red patch in the fingerprint; 192 

second panel from right). In this configuration, the cycle-averaged firing rates are similar across frequencies (top right), and 193 

resonance can be quantified using the input-output spectral coherence metric (bottom right).  194 



Network resonance   Stark et al., 2022 

 11 

Building blocks necessary for generating network resonance in neuronal 195 

systems 196 

With the metrics for cycle-averaged firing rate and spiking timing resonance in hand, we examine 197 

how resonance at one level of organization is related to frequency-dependent mechanisms at another 198 

level of organization. From an electrical circuit perspective, at least two building blocks are required 199 

for resonance to occur: (i) high-pass filtering, and (ii) low-pass filtering. Amplification within the band-200 

pass filter may further enhance resonance. The building blocks and their interactions may be highly 201 

nonlinear. In neuronal systems, building blocks are realized by biophysical constructs which can have 202 

the same or distinct origins (e.g., distinct combinations of currents). The building blocks producing a 203 

given resonance may occur at the same or at distinct levels of organization (e.g., synaptic and spiking). 204 

In general, the frequency-dependent building blocks remain to be identified, and their interaction 205 

within and across levels of organization remains to be understood.  206 

 207 

Resonance generated at the subthreshold level can be inherited to the 208 

network level 209 

We begin with the best studied type of neuronal resonance, of membrane potential fluctuations 210 

(Fig. 2A; sometimes referred to as “subthreshold” resonance; Puil et al., 1986; Gutfreund et al., 1995; 211 

Hutcheon et al., 1996ab). To determine whether subthreshold resonance can be inherited to the 212 

network level via spiking resonance, we first examine the communication of subthreshold level to the 213 

spiking level; and then study the communication from the spiking level to the network level. We 214 

modeled membrane potential resonance using a conductance-based neuron with leak, persistent 215 

sodium, and h-currents, augmented with threshold spiking and reset. In the INa,p+Ih model, the 216 

subthreshold impedance profile peaked at 7.5 Hz (Fig. 2A, top right). In this case, the LPF corresponds 217 

to the membrane capacitance and leak current (“RC”); the HPF, to the regenerative (h-) and leak 218 

currents; and the persistent sodium current acts primarily to amplify the band-pass response.  219 
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 220 

Figure 2. Resonance generated at the level of membrane potential fluctuations can be inherited to the network level 221 

(A) A model neuron, consisting of leak current, persistent sodium current (INa,p), h-current (Ih), and threshold-based spiking 222 

with voltage reset, was driven by periodic current at various frequencies. Here and in B-D,  = 0 mV. Left: Current input (dark 223 

blue traces, arbitrarily scaled) and membrane potential output (black traces) at three selected frequencies. Top right: 224 

Impedance profiles. A simplified model neuron with leak current and membrane capacitance shows only a low-pass filter 225 

(LPF) response (“RC”; dotted line). A simplified model with reduced capacitance shows only a high-pass filter (HPF) response 226 
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(“Ih”; dashed line). The full model shows resonance around 7-8 Hz (“RC, Ih, INa,p”). Bottom right: phase of the membrane 227 

potential fluctuations at every frequency of the input current. 228 

(B) The model neuron of panel A was driven by higher-amplitude sinusoidal currents. Left: Spikes are produced specifically 229 

at the input frequency that corresponds to the peak of the impedance profile (panel A, top left). Right: The INa,p+Ih spiking 230 

model neuron shows firing rate (top) and spike timing (bottom) resonance. 231 

(C) Spiking fingerprint (firing rate as a function of frequency and phase) for the same data as in panel B. Spikes occur at a 232 

specific frequency and near zero phase, corresponding to the co-occurrence of both firing rate and spike timing resonance. 233 

(D) The model neuron was driven by input currents of various amplitudes (Ain) while holding noise at zero (=0 mV). 234 

Horizontal dashed line indicates the Ain value used in panels B and C. At higher Ain values the coherence becomes multi-235 

modal. 236 

(E) The model neuron was driven by a fixed-amplitude input current (Ain = 0.15 A/cm2) while varying membrane potential 237 

variability . Coherence (left) and firing rate (right) are shown as a function of noise magnitude. At higher noise magnitudes, 238 

spikes occur at all frequencies and spiking resonance is lost.  239 

(F) Top left: An E-cell, modeled by a INa,p+Ih spiking neuron as in panel A, was connected via an excitatory (AMPA-like) 240 

synapse to a target I-cell, modeled as a non-resonant leaky integrate and fire (nrLIF) neuron. Bottom left: Constant-amplitude 241 

periodic current in the form of a linear chirp (0-40 Hz, 20 s) was applied to the E-cell (purple trace), that also received low-242 

magnitude noise (=0.0125 mV). The target cell received higher noise (=3 mV). Top right: The target cell exhibits both 243 

background and transmitted spikes. Bottom right: Spiking resonance is observed for both model neurons.  244 

(G) Top: Voltage traces of four target I-cells (nrLIF; green) that received feedforward connections from 16 E-cells (INa,p+Ih 245 

spiking; purple). All E-cells received exactly the same periodic input current; each cell received independent noise. Bottom: 246 

Coherence for every individual model cell (light traces), and averaged coherence for the target cells (heavy green trace). 247 

Spiking resonance is exhibited for the indirectly-activated target cells. Inset: spiking fingerprint for an I-cell.  248 

(H) The periodic input current was applied only to the I-cells; current amplitude was increased 16-fold; same network as in 249 

panel G. No spiking resonance is generated in the I-cells.   250 
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To understand whether and under what conditions resonance at the level of membrane potential 251 

fluctuations can be inherited to the network level, we increased the amplitude of the current input to 252 

the INa,p+Ih model neuron. At the minimal input amplitude required to generate spikes (0.15 A/cm2), 253 

the spikes occurred specifically around 7-8 Hz (Fig. 2B, left), the same frequency at which the 254 

impedance profile peaked (Fig. 2A). Spikes occurred near the zero phase of the input, so both cycle-255 

averaged firing rate resonance and spike timing resonance were observed (Fig. 2B, right; fingerprint 256 

at Fig. 2C). To understand the conditions under which resonance is inherited to the spiking domain in 257 

the INa,p+Ih model, we first modified input amplitude. We found that at higher amplitudes, spikes 258 

occurred coherently not only around 8 Hz but also at multiple other frequencies (Fig. 2D). Second, we 259 

modified the amount of background inputs (noise; modeled by membrane potential variability, ) in 260 

the model, while holding the input amplitude fixed at 0.15 A/cm2. We used a range of noise levels 261 

between 0-2 mV, which is higher than observed during intracellular recordings using sharp electrodes 262 

from freely-moving mice (English et al., 2014). Under high noise circumstances, spikes occurred at all 263 

frequencies and spiking resonance was lost (Fig. 2E). Nevertheless, for a certain range of input 264 

amplitudes and noise levels, resonance at the level of membrane potential fluctuations is readily 265 

inherited to the spiking domain. 266 

Next, we connected a resonant excitatory cell (E-cell; modeled as an INa,p+Ih spiking neuron) via an 267 

excitatory (AMPA-like) synapse to a target cell, modeled as a leaky integrate and fire (LIF) neuron that 268 

did not exhibit subthreshold resonance (Fig. 2F). The postsynaptic target LIF received relatively high 269 

background input (=3 mV), and exhibited spontaneous spiking (Fig. 2F, top right). When oscillatory 270 

chirp current was applied to the presynaptic neuron, the E-cell spikes induced additional spikes in the 271 

target cell, which displayed spiking resonance at the same frequency range as the presynaptic E-cell 272 

(Fig. 2F, bottom right). We denote this phenomenon as “inherited network resonance”: resonance 273 

observed at the network level, which is inherited from frequency-dependent mechanisms at another 274 

level of organization. A similar pattern was observed in a larger network, consisting of 16 resonant E-275 

cells that made feedforward excitatory connections on four non-resonant target cells (Fig. 2G). 276 
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Notably, in the same network, applying the oscillatory current directly to the target cells did not induce 277 

resonance in the target cells, even when current amplitude was increased (Fig. 2H). In summary, 278 

resonance generated at the level of membrane potential fluctuations (Fig. 2A) can be inherited to the 279 

spiking domain at low and intermediate noise levels (Fig. 2B-E). This extends previous modeling results 280 

linking subthreshold and spiking resonance (Hutcheon et al., 1996b; Richardson et al., 2003) by 281 

showing that when input is very strong (Fig. 2D) or when noise is very high (Fig. 2E), subthreshold 282 

resonance is no longer communicated to the spiking level. Furthermore, subthreshold resonance can 283 

be inherited, via spiking resonance, to the network level (Fig. 2F-G).  284 

 285 

Resonance can be generated directly at the spiking level 286 

Conceptually, a subthreshold LPF generated by the passive (RC) properties of the membrane could 287 

interact with a spiking-domain HPF to generate spiking domain resonance. We therefore examined 288 

the HPF mechanism that underlies the generation of spiking resonance in the lack of resonance at the 289 

level of membrane potential fluctuations. First, we applied low-current input (0.05 A/cm2) to a LIF 290 

model neuron without noise, which yielded an impedance profile corresponding to an LPF (Fig. 3A). 291 

When current amplitude was increased (to 0.115 A/cm2), spikes started to occur at the peaks of the 292 

oscillatory input cycles. Once a first spike is generated, the after-spike reset of the LIF prevents another 293 

spike from occurring until the membrane is recharged. If the cycle is sufficiently short, this results in 294 

only one spike per cycle, for a range of frequencies (Fig. 3B, left). Since there are more cycles per unit 295 

time (e.g., second) at higher frequencies, the generation of a single spike per cycle automatically 296 

corresponds to high pass filtering. We identify the “spike discretization” effect as an HPF. Together 297 

with the subthreshold LPF (Fig. 3A), the net outcome is spiking resonance (Fig. 3B, right; Fig. 3C). Thus, 298 

consistent with earlier work (Knight, 1972; Gerstner, 2000; Brunel et al., 2001), an isolated LIF model 299 

neuron can generate spiking resonance in the lack of noise. However, the band-pass (resonant) spiking 300 

response is generated by frequency-dependent mechanisms at two distinct levels of organization. 301 

Specifically, the subthreshold LPF interacts with a spiking HPF based on the discretization effect.   302 
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 303 

Figure 3. Resonance can be generated directly at the spiking level 304 

(A) A leaky integrate and fire (LIF) model neuron was driven by periodic current at various frequencies. Left: Current input 305 

(blue, arbitrarily scaled) and membrane potential (black) at three selected frequencies. Top right: Impedance profile shows 306 

an LPF response.  307 

(B) The model neuron of panel A was driven by higher-amplitude periodic currents. Left: Spikes are produced at the peaks 308 

of the input cycles. At higher frequencies (e.g., 12 Hz), more cycles occur per unit time than at lower frequencies (4 Hz), 309 

corresponding to an HPF (discretization effect). Right: Combined with the subthreshold LPF (panel A), the “resonant LIF” 310 

(rLIF) exhibits spiking resonance.  311 

(C) Spiking fingerprint of the rLIF model; conventions are the same as in Fig. 2C. Spikes are generated at a specific range of 312 

frequencies and phases, corresponding to spiking resonance.  313 

(D) Coherence as a function of input amplitude for the rLIF model; conventions are the same as in Fig. 2D. At higher 314 

amplitudes, spikes occur at all input frequencies and the narrow-band resonance disappears.  315 

(E) Coherence (left) and firing rate (right) as a function of noise level, holding input amplitude fixed (Ain = 0.115 A/cm2) 316 

for the rLIF model. When membrane potential variability increases, spikes occur at all input frequencies and the narrow-317 

band resonance disappears. 318 

(F) A modified LIF neuron was constructed with spike dependent calcium dynamics (“calcium LIF”). The calcium-LIF model 319 

neuron has an LPF impedance profile (bottom right, inset). However, when driven by periodic current sufficient to generate 320 

spikes, the spikes appear at a specific frequency band (around 8 Hz; black traces). Without the calcium conductance, only a 321 

low-pass spiking filter remains (red traces). 322 

(G) Spiking fingerprint of the calcium-LIF model; conventions are the same as in Fig. 2C.  323 

(H) Sensitivity analysis of the calcium-LIF to the calcium conductance Gc. The width of the resonant frequency band 324 

increases with Gc.  325 



Network resonance   Stark et al., 2022 

 17 

To determine the conditions under which spiking resonance can be generated in a LIF model neuron, 326 

we first modified the input current amplitude. We found that narrow-band resonance occurred only 327 

at a small range of input amplitudes (Fig. 3D). Furthermore, when background noise was increased, 328 

spikes occurred at all input frequencies, and the narrow-band spiking resonance disappeared (Fig. 3E; 329 

Knight, 1972; Brunel et al., 2001). Thus, band-limited spiking resonance in an isolated LIF that lacks 330 

resonance of membrane potential fluctuations occurs only at a limited range of parameters.  331 

The spiking resonance in the LIF model neuron involved a spiking-domain HPF based on the 332 

discretization effect, but spikes were consistently generated below the resonant frequency. Following 333 

a sodium spike, neurons exhibit a calcium transient: a rapid increase and slower decrease of calcium, 334 

which is the basis of calcium imaging (Grienberger and Konnerth, 2012). We used the calcium 335 

transients to design a modified version of a LIF model neuron that includes spike-dependent calcium 336 

dynamics (Fig. 3F). By construction, the calcium current activates only in the presence of spikes. 337 

Without the calcium current, the model exhibited only a LPF response in the subthreshold domain 338 

(Fig. 3F, bottom right inset), and the spiking response exhibited a similar profile (Fig. 3F, red lines). 339 

Adding the spike-dependent calcium dynamics did not change the subthreshold response, but a 340 

spiking band-pass filter emerged (Fig. 3F-G). During the calcium transient, the membrane potential 341 

was more depolarized, allowing the generation of a spike in response to a lower current input, 342 

effectively reducing spiking threshold. Thus, the occurrence of one spike favored the occurrence of 343 

another spike during a specific time window dictated mainly by the calcium activation and 344 

deactivation time constants. Thus, we identify the calcium transients as a second spiking-domain HPF. 345 

Combined with the subthreshold LPF, spiking resonance emerged (Fig. 3F-G). Increasing the calcium 346 

conductance widened the resonant band (Fig. 3H). Together with spike discretization in the isolated 347 

LIF, the two case studies identify spiking HPFs. In particular, these cases demonstrate that spiking 348 

resonance can be generated directly at the spiking level, without resonance at the level of membrane 349 

potential fluctuations. 350 

 351 
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Resonance generated directly at the spiking level can be inherited to the 352 

network level 353 

To determine whether and how spiking resonance generated by a single LIF can propagate to other 354 

cells, we first connected the resonant LIF (“rLIF”; Fig. 3B) as an E-cell to a postsynaptic target cell in a 355 

feedforward manner (Fig. 4A, top left). The E-cell received a low level of membrane potential noise, 356 

keeping spiking within the resonant range (see Fig. 3E). In contrast, the target cell was modeled as a 357 

non-resonant LIF (“nrLIF”) by increasing the membrane potential noise, and exhibited spontaneous 358 

spiking. When an oscillatory current input was applied to the E-cell, both the E-cell and the target cell 359 

displayed resonance (Fig. 4A, right). The same phenomenon was observed in a larger network with 360 

feedforward excitatory connections: when current input was applied only to the E-cells, both the E-361 

cells and the target cells exhibited resonance (Fig. 4B; target cell fingerprint in Fig. 4B inset). Thus, in 362 

a feedforward network of LIF neurons, network resonance emerges by inheritance from the spiking 363 

domain, without feedback or any additional frequency-dependent mechanisms at the synaptic or 364 

network levels. In previous work, spiking resonance was observed in recurrent LIF networks, in which 365 

E- and I-cells were connected with negative feedback (Ledoux and Brunel, 2011). The present 366 

observations show that network resonance can emerge in LIF networks without any recurrency or 367 

negative feedback, but rather by inheritance from resonance generated at the single neuron spiking 368 

level.  369 
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 370 

Figure 4. Resonance generated at the spiking level can be inherited to the network level 371 

(A) Top left: An E-cell, modeled by an rLIF as in Fig. 3B, was connected via an excitatory (AMPA-like) synapse to an I-cell, 372 

modeled by an nrLIF. Bottom left: Constant-amplitude periodic current in the form of a linear chirp was applied only to the 373 

E-cell (purple trace), that also received low-magnitude noise (=0.02 mV). Here and in B-E, Ain
e = 0.115A/cm2. Top right: 374 

The I-cell, that received higher magnitude noise (=2 mV), exhibits both background and transmitted spikes. Bottom right: 375 

Spiking resonance is observed for both model neurons. Inset: Spiking fingerprints for an E-cell and for an I-cell. 376 

(B) Top: Voltage traces of four target I-cells (nrLIF; green) that received feedforward connections from 16 E-cells (rLIF; 377 

purple). All E-cells received exactly the same periodic input current; each cell received independent noise. Bottom: 378 

Coherence for every individual model cell (light traces), and averaged coherence for the E-cells (heavy purple traces) and the 379 

I-cells (heavy green traces). The indirectly-activated I-cells exhibit spiking resonance. Inset: Spiking fingerprints for an E-cell 380 

and for an I-cell. 381 

(C) The noise level to the E-cells was quadrupled (same network as in panel B). Spiking resonance of the I-cells is 382 

maintained, at a shifted (increased) resonant frequency. Inset: Spiking fingerprints for an E-cell and for an I-cell.  383 
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(D) Coherence of the directly-activated E-cells (left) and the indirectly-activated I-cells (right), as the magnitude of the noise 384 

applied to the E-cell was varied systematically. Horizontal dashed lines indicate the E-cell noise levels used in panels B and 385 

C. Each row shows the average coherence (color coded) across 16 E-cells (left) or four I-cells (right).  386 

(E) Quantification of the maximal coherence magnitude (left) and the peak (“resonant”) frequency (right) for the dataset 387 

of panel D. Bands show SEM across cells. At low noise levels, E-cell and I-cell exhibit similar resonant frequencies.  388 
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When the noise applied to the E-cells was quadrupled, coherence magnitude for both the E-cells and 389 

the target cells was reduced (Fig. 4C), although spiking in the target cells was still limited to specific 390 

phases (Fig. 4C, inset). With gradually increased noise, E-cell coherence gradually diminished (Fig. 4D-391 

E, left), whereas the resonant frequency in the target cells gradually shifted to higher values (Fig. 4D-392 

E, right). These results emphasize that even if resonance in a (LIF) network is entirely inherited from 393 

the single neuron spiking level, the properties of the single cell spiking resonance and network 394 

resonance may differ. 395 

 396 

Resonance generated at the synaptic level can be inherited to the network 397 

level 398 

In addition to the level of membrane potential fluctuations (Fig. 2) and the spiking level (Fig. 3), 399 

resonance may be generated directly at the level of postsynaptic potentials (PSPs; Thomson et al., 400 

1993; Markram et al., 1998; Izhikevich et al., 2003; Drover et al., 2007). Following the previous work, 401 

we modeled resonance at the PSP level using short-term synaptic dynamics (Fig. 5). The model neuron 402 

was a LIF with a very high spiking threshold (leaky integrator), and input was given as periodic spike 403 

trains (without oscillatory current injection; Fig. 5A). At the level of membrane potential fluctuations, 404 

the LIF exhibited only a low pass response (same as the LIF in Fig. 3A). When short-term synaptic 405 

dynamics included both synaptic depression and facilitation, the excitatory PSP (EPSP) magnitude was 406 

highest around 8 Hz (Fig. 5A-B). This phenomenon is referred to as synaptic, or PSP, resonance 407 

(Markram et al., 1998; Izhikevich et al., 2003; Drover et al., 2007). In the depression/facilitation model 408 

of synaptic resonance, the LPF corresponds to synaptic depression (Fig. 5C, dotted line) and the HPF 409 

corresponds to synaptic facilitation (Fig. 5C, dashed line). Notably, when no synaptic plasticity was 410 

modeled, we identified an intrinsic synaptic HPF (Fig. 5C, grey), consistent with temporal summation 411 

of multiple spikes by the membrane time constant. Thus, consistent with previous results (Markram 412 
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et al., 1998; Izhikevich et al., 2003), resonance at the level of postsynaptic potentials can be generated 413 

without resonance at the level of membrane potential fluctuations.  414 
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 415 

Figure 5. Resonance generated at the level of postsynaptic potentials can be inherited to the network level 416 

(A) A LIF model neuron was driven by periodic spike trains at various rates via an excitatory (AMPA-like) synapse that 417 

exhibited synaptic depression and facilitation. Threshold was set to a high value (Vth = 0 mV) to prevent spiking. Here and in 418 

B-C,  = 0 mV. Left: After several spikes, the excitatory postsynaptic potentials (EPSPs) stabilize. Right: Traces shown at an 419 

expanded time scale. The magnitude of the EPSPs is maximal at intermediate rates.  420 
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(B) EPSP magnitude for the LIF with synaptic depression and facilitation, measured over a wide range of presynaptic spike 421 

rates. Magnitude peaks at an intermediate frequency, corresponding to synaptic resonance. 422 

(C) Scaled EPSP magnitude as a function of presynaptic spike rate for the LIF with synaptic depression and facilitation (black; 423 

same as in B). Scaled EPSP magnitudes for a synaptic plasticity model only with depression (dotted line) correspond to an 424 

LPF. Scaled EPSP magnitudes for a model only with facilitation (dashed line) or a model without synaptic plasticity (passive 425 

membrane; grey line) correspond to HPFs. 426 

(D) The LIF with synaptic resonance model neuron of panel A was modified to allow spiking (Vth = -50 mV). Here and in E, 427 

 = 0.05 mV; Iin = 1.3A/cm2. Left: Spikes are generated predominantly at intermediate frequencies. Right: The model 428 

exhibits spiking resonance.  429 

(E) Spiking fingerprint of the LIF with synaptic resonance model; conventions are the same as in Fig. 2C. Spikes are 430 

generated at a specific range of frequencies and phases, corresponding to spiking resonance.  431 

(F) Coherence as a function of noise level. Dashed line indicates noise level of 0.05 mV, used in D-E. The resonant frequency 432 

(and coherence magnitude) shifts with increased noise. Spiking resonance is exhibited for a wide range of noise levels. 433 

(G) A diverging-converging feedforward network of LIF neurons was constructed. The first layer included a single point 434 

process neuron which fired a single spike at the peak of every cycle of a linear chirp (0-40 Hz over 20 s). The second layer 435 

included 50 identical LIF with synaptic depression and facilitation (as in D); all neurons received excitatory (AMPA-like) 436 

connections from the layer 1 neuron, and every neuron received independent membrane potential noise. All layer 2 neurons 437 

received bias current of Iin = 1.2A/cm2. The third layer included a single LIF without short term synaptic dynamics.  438 

(H) Neurons in the second layer spike at a wide range of input presynaptic spike rates, whereas the third layer (output) 439 

neuron spikes at a narrower range of presynaptic spike rates.  440 

(I) Second layer spike trains exhibit spiking resonance (thick black trace, averaged coherence over all inner-layer trains), 441 

consistent with noisy inheritance from the PSP level (as in F). The output spike train exhibits narrow-band network resonance 442 

(red trace). 443 

(J) The feedforward network was constructed and stimulated as in G, with different noise levels ( = 0-2 mV at 0.025 mV 444 

increments) received by layer 2 LIF neurons while keeping the noise received by the output (layer 3) neuron zero. The black 445 

curve shows the meanSEM firing rate of the 50 layer 2 neurons. The vertical dashed line corresponds to the frequency for 446 

which layer 2 coherence peaks (K, left). 447 

(K) Peak coherence is observed for intermediate noise levels. Coherence between the input spike train (blue train in H) 448 

and the spike train of every layer 2 neuron was estimated and averaged over all 50 layer 2 neurons. The process was repeated 449 

for every noise level, and the coherence are shown as rows in the left matrix (blue/red colors correspond to 0/0.26 450 

coherence). The same process was carried out for the layer 3 neuron (right matrix; blue/red colors corresponding to 0/0.74 451 

coherence). The white dashed lines correspond to the noise level and frequency for which layer 2 coherence peaks (0.3). 452 
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(L) For every noise level, the peak layer 2 coherence magnitude (left) and the frequency for which the coherence peaks 453 

(right) are plotted. Layer 3 coherence magnitude is higher than layer 2 coherence for all noise levels. Layer 2 and layer 3 454 

coherence peak at intermediate noise levels, exhibiting stochastic resonance. The resonant frequency of layer 3 is lower than 455 

the resonant frequency of layer 2 at every noise level, including at the stochastic resonant frequency (25 Hz for layer 2).  456 
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To determine whether PSP resonance can be inherited to the spiking level, we set the spiking 457 

threshold in the model LIF to a “standard” value (-50 mV). Under these conditions, the model neuron 458 

exhibited spiking resonance, at frequencies similar to those exhibited by the PSPs (Fig. 5D). As for 459 

spiking resonance inherited from the subthreshold level (Fig. 2C) and resonance generated directly at 460 

the spiking level (Fig. 3C, Fig. 3G), the spiking resonance inherited from the PSP level occurred around 461 

zero phase (i.e., the input spikes; Fig. 5E). In this case, a short phase lag occurred, consistent with 462 

synaptic delay (i.e., the rise time of the EPSP; Fig. 5A). When the level of noise was increased, 463 

coherence magnitude was reduced, and the resonant frequency shifted to higher frequencies (Fig. 464 

5F). Thus, resonance generated at the level of postsynaptic potentials can be inherited to the spiking 465 

level.  466 

Noisy LIF with synaptic resonance exhibit spiking resonance at a frequency higher than the PSP 467 

resonant frequency (Fig. 5F). To examine the effect of PSP resonance on spiking resonance in a 468 

network of neurons, we constructed a diverging/converging feedforward network consisting of 469 

multiple noisy LIF with synaptic resonance that received the exact same input spike train (Fig. 5G). 470 

Indeed, the cells exhibited spiking resonance at a frequency higher than the PSP resonant frequency 471 

(Fig. 5HI). When these LIF converged on a common target, the target neuron exhibited resonance (Fig. 472 

5HI), at a frequency shifted back to the PSP resonant frequency. Thus, resonance generated at the 473 

level of postsynaptic potentials can be inherited to the network level.  474 

In the model of network level synaptic resonance (Fig. 5G-I), the resonance of the output (layer 3) 475 

neuron is at a lower frequency and has lower coherence with the input, compared to the intermediate 476 

(layer 2) LIFs. To understand what the resonant peak of the layer 3 neuron depends on, we repeated 477 

the simulation while varying layer 2 noise levels (independent noise for every LIF). Increasing the noise 478 

of the layer 2 neurons (while keeping the noise of the output neuron zero) yielded monotonically 479 

increasing firing rates of both layers (Fig. 5J). However, the coherence of both layers did not increase 480 

monotonically but rather peaked at an intermediate noise level (Fig. 5K), exhibiting stochastic 481 

resonance (Wiesenfeld and Moss, 1995; Linder et al., 2004; Mejias and Torres, 2011). Specifically, the 482 
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maximal layer 2 coherence was obtained at a noise level of  = 0.48 mV ( = 0.25 mV was used in Fig. 483 

5G-I). At that noise level, layer 2 coherence peaked (0.3) at a resonant frequency of 25 Hz, whereas 484 

layer 3 exhibited higher magnitude coherence (0.72) at a frequency of 17 Hz (Fig. R5L). Thus, stochastic 485 

resonance, defined as an optimal response to an input at an intermediate noise level, can be observed 486 

in parallel to resonance, defined as a peak of the response at an intermediate frequency. 487 

 488 

Resonance can be generated intrinsically at the network level via excitatory 489 

inputs 490 

In principle, the frequency-dependent mechanisms (low- and high-pass filters) do not have to occur 491 

at the same level of organization. One example is spiking resonance in LIF, in which we identified the 492 

LPF as the membrane capacitance and leak current, and the HPF as spike discretization (Fig. 3B-E). To 493 

determine if frequency-dependent mechanisms across levels of organization can yield network 494 

resonance, we combined low-pass filtering at the PSP level and HPF at the spiking level. The PSP-level 495 

LPF was realized as synaptic depression (Fig. 6A; cf. Fig. 5C, dotted line). The HPF at the spiking level 496 

was manifested as spike discretization (grey curves in Fig. 6B, right). When driven with presynaptic 497 

spike trains of various rates, the LIF with synaptic depression model exhibited spiking resonance (Fig. 498 

6B, black lines), with a resonant frequency around 7-8 Hz (Fig. 6B-C). Resonance was maintained in 499 

this model over a range of noise values, with a relatively small frequency shift (Fig. 6D). We denote 500 

this phenomenon as “intrinsic network resonance”: resonance exhibited at the network level, in the 501 

lack of resonance observable at any other level of organization (around the frequency of interest). As 502 

in the previous three cases of network resonance (Fig. 2F-H, Fig. 4, and Fig. 5G-I), resonance is 503 

observed at the spiking level, in postsynaptic neurons. Yet in contrast to the cases of inherited network 504 

resonance, in the present case, no other level of organization exhibits resonance around the frequency 505 

of interest.  506 



Network resonance   Stark et al., 2022 

 28 

 507 

Figure 6. Intrinsic network resonance can be generated by combining frequency-dependent mechanisms at the level of 508 

postsynaptic potentials and at the spiking level 509 

(A) EPSP magnitude for a LIF with synaptic depression (high threshold, Vth = 0 mV) as a function of presynaptic spike rates. 510 

Here and in B-C,  = 0.05 mV. Without synaptic facilitation, EPSP magnitude is highest at the lowest rates, corresponding to 511 

a synaptic LPF.  512 

(B) The LIF with synaptic depression of panel A was modified to allow spiking (Vth = -50 mV). Left: Spike rate is highest at 513 

intermediate frequencies (e.g., 10 Hz). At higher frequencies (e.g., 20 Hz), spikes following the first spike are depressed. 514 

Right: In the LIF with synaptic depression model, the combination of the synaptic LPF (panel A) and the spike discretization 515 

HPF (grey line) yields spiking resonance (black line). Without synaptic depression, resonance disappears (grey line).  516 

(C) Spiking fingerprint of the LIF with synaptic depression model; conventions are the same as in Fig. 2C. Spikes are 517 

generated at a specific range of frequencies and phases, corresponding to network resonance.  518 
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(D) Coherence as a function of noise level. Dashed line indicates noise level of 0.05 mV, used in B-C. With increased noise, 519 

the resonant frequency shifts and coherence magnitude decreases. Spiking resonance is exhibited for a wide range of noise 520 

levels.  521 
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Resonance inherited to the network level can be uncovered via inhibitory 522 

inputs 523 

Previous work showed that resonance can be observed in the spiking of postsynaptic neurons, i.e., 524 

at the network level, even when the synaptic connections are inhibitory (Stark et al., 2013). When an 525 

isolated (subthreshold resonant) pyramidal cell (PYR), modeled with h-current and full spiking 526 

dynamics, was driven directly by a periodic input current, spiking resonance was generated (around 527 

10 Hz; Fig. 7A). This corresponds to resonance inherited from the level of membrane potential 528 

fluctuations, as observed in a simpler model neuron (Fig. 2). We connected an I-cell, modeled with full 529 

spiking dynamics, to a resonant PYR (modeled as in Fig. 7A) via an inhibitory (GABAA-like) synapse, 530 

without feedback. When only the I-cell in the two-cell model was driven, the PYR exhibited spiking 531 

resonance (around 8 Hz; Fig. 7B). This network resonance is inherited from the PYR spiking resonance 532 

(Fig. 7A), which was in turn inherited from resonance of the membrane potential fluctuations. Indeed, 533 

spike generation in the PYR required Ih. However, the IPSP-induced PYR spikes occurred at the troughs 534 

of the input given to the I-cell (Fig. 7B, bottom right), at an opposite phase compared to direct 535 

activation (Fig. 7A, bottom right). This is consistent with in vivo observations (Stark et al., 2013) and 536 

contrasts with all other cases studied so far (membrane potential: Fig. 2C; spiking: Fig. 3C, 3G; PSP: 537 

Fig. 5E; EPSP network: Fig. 6C), in which the resonant spikes occurred around the peak of the input 538 

cycle. Thus, network resonance can also be inherited from the single neuron level using synaptic 539 

inhibition.  540 



Network resonance   Stark et al., 2022 

 31 

 541 

Figure 7. Inhibition-induced network resonance can be inherited from the level of membrane potential fluctuations  542 

(A) A PYR model neuron, with h-current and full spiking dynamics, was driven by a constant-amplitude periodic current in 543 

the form of a linear chirp (0-40 Hz, 20 s; Ain
e = 0.2A/cm2). Top: Membrane potential response during a single trial. Center: 544 

Raster plots from 20 independent trials. Bottom: Quantification of spiking resonance. As in the simpler model (Fig. 2), the 545 

LPF and HPF correspond to RC (membrane capacitance and leak current) and the h-current, respectively. PYR spikes are 546 

generated around the peak of the input cycles in a narrow frequency band around 10 Hz, exhibiting spiking resonance.  547 

(B) The PYR model neuron of panel A was connected via an inhibitory (GABAA-like) synapse to a presynaptic I-cell (INT). 548 

Only the INT was driven by a constant amplitude periodic current (Ain
i = 0.5A/cm2). Other possible synaptic connections 549 

were kept at zero (light grey lines in the cartoon, top right), isolating the contribution of feedforward inhibition. The PYR 550 

spikes after a series of INT spikes, around the trough of the input cycles given to the INT. The narrow-band PYR spiking 551 

exhibits IPSP-induced (network) resonance. All conventions are the same as in panel A.   552 
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In the model of inhibition-induced network resonance (Fig. 7B), the frequency-dependent 553 

mechanisms were inherited from the single-cell properties. Specifically, the PYR h-current acted as a 554 

HPF. Although the model exhibited resonance, spikes were also generated below and above the 555 

resonant frequency (Fig. 7B). To construct a model of inhibition-induced network resonance that does 556 

not generate PYR spiking at low frequencies, we added a HPF at the level of the I-cell (Fig. 8). This was 557 

done by modeling gamma-band resonance (previously observed in vitro; Pike et al., 2000) at the level 558 

of membrane potential fluctuations, by adding a resonant (M-) current to the I-cell. When driven with 559 

a periodic input current of low amplitude, the impedance profile of an isolated gamma-resonant 560 

interneuron (INT) exhibited a peak (around 40 Hz; Fig. 8A, right panels). When input amplitude was 561 

increased, the resonance generated at the level of membrane potential fluctuations was inherited to 562 

the spiking level. The peak coherence occurred at similar frequencies as resonance of membrane 563 

potential fluctuations (around 40 Hz), and the INT spikes occurred around the input peak (zero phase; 564 

Fig. 8B). Furthermore, when the INT was connected to the PYR (modeled as in Fig. 7A) via a single 565 

inhibitory synapse (as in Fig. 7B), the PYR exhibited spiking resonance (around 10 Hz; Fig. 8C). 566 

However, the phase of the PYR spikes (relative to the current input applied to the I-cell) differed in the 567 

two models of inhibition-induced network resonance (compare fingerprints in Fig. 7B and Fig. 8C). 568 

Furthermore, in the INT network model, the produced PYR spikes were confined to the resonant 569 

frequency.  570 
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 571 

Figure 8. Inhibition-induced network resonance is sharpened by presynaptic high-pass filtering 572 

(A) A gamma-interneuron (INT) model neuron, with M-current and full spiking dynamics, was driven by constant 573 

amplitude periodic current in the form of a linear chirp (0-80 Hz, 10 s; Ain
i = 0.5A/cm2). The impedance profile (second 574 

subpanel from left) shows a wide peak centered around 40 Hz, exhibiting resonance of the membrane potential fluctuations.  575 

(B) The INT model neuron of panel A was driven by a higher-amplitude periodic current (0-80 Hz, 10 s; Ain
i = 0.9 A/cm2). 576 

Spikes are generated at the peaks of the input cycles, at a frequency band centered around 40 Hz (30-50 Hz). Thus, the INT 577 

model neuron exhibits spiking resonance, inherited from the level of membrane potential fluctuations. Far right: Coherence 578 

as a function of input amplitude; horizontal dashed line indicates Ain
i = 0.9A/cm2. At higher amplitudes, the spiking 579 

bandwidth increases.  580 

(C) The INT model of panel A was connected, via an inhibitory (GABAA-like) synapse, to a PYR (as in Fig. 7B), and driven by 581 

a constant amplitude linear chirp (0-40 Hz, 20 s; Ain
i = 2.1 A/cm2). Top: Membrane potentials during a single trial. As in Fig. 582 

7B, PYR spikes are generated after INT spikes. However, the INT spikes occur at higher input frequencies than the INT 583 

spikes, sharpening the PYR spiking resonance. Center: Raster plots of the PYR spikes from 20 independent trials. Right: 584 

Quantification of the IPSP-induced network resonance.  585 
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Discussion 586 

Routes to network resonance 587 

In this work, we tested the hypothesis that resonance in networks of spiking neurons is necessarily 588 

inherited from resonance at lower levels of organization. From electric circuit theory it is clear that 589 

one can construct a macro-circuit consisting of multiple embedded subcircuits, each being able to 590 

produce resonance on its own. However, neuronal networks are naturally evolved, highly nonlinear 591 

electric circuits which may not have an intrinsic resonance-generating property. This is primarily 592 

because the neuronal building blocks that determine the frequency-dependent properties (e.g., 593 

positive and negative feedback effects, history-dependent processes) rely on different biological 594 

substrates at different levels of organization (e.g., resonant and amplifying ionic currents, excitation 595 

and inhibition, synaptic depression and facilitation).  596 

Examining four levels of neuronal organization and a number of representative case studies, we 597 

found that resonance can either be inherited from one level to another, or be generated 598 

independently at each and every level. In networks of spiking neurons, resonance can be generated 599 

directly at the network level. We showed that it is possible for a given system to display resonance at 600 

one level of organization – membrane potential fluctuations, postsynaptic potentials, single neuron 601 

spiking, or network – but not in others. Spiking resonance and resonance of postsynaptic potentials 602 

are not necessarily accompanied by resonance of membrane potential fluctuations, and network 603 

resonance can be generated without resonance at any other level of organization. Thus, the 604 

mechanisms that can generate neuronal resonance at different levels of organization are distinct (Fig. 605 

9, center). A direct implication of these observations is that when a system presents resonance at 606 

multiple levels of organization, these can be derived from either similar (inherited) or independent 607 

mechanisms. A second direct implication is that neuronal networks in different brain structures may 608 

exhibit qualitatively similar resonant properties by disparate mechanisms.   609 
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 610 

Figure 9. Network resonance can be generated by interacting low- and high-pass filters across levels of neuronal 611 

organization 612 

(A) Frequency-dependent building blocks include high-pass filters (HPF, top) and low-pass filters (LPF, bottom). HPFs 613 

include inductive/resonant ionic currents (Ih, Figs. 2, 7, 8; , IM, Fig. 8), acting at the level of membrane potential fluctuations; 614 

spike discretization and calcium-dependent spiking (Figs. 3, 4, 6); and synaptic facilitation and temporal summation (Fig. 5). 615 

LPFs include membrane capacitance and leak current (Figs. 2-4, 7, 8), and synaptic depression (Figs. 5, 6).  616 

(B) The frequency-dependent building blocks (filters) can interact either within the same level of organization (e.g., top 617 

row: membrane potential fluctuations; third row: postsynaptic potentials) or across levels of organization (e.g., second and 618 

fourth rows).  619 

(C) Interaction of HPF and LPF (within or across levels of organization) can generate resonance. If the interaction is within 620 

the same level of organization (e.g., membrane potential fluctuations), resonance can be generated at that level, and may 621 

(under certain conditions) be inherited to the network level (top pathway). Alternatively, network resonance may be 622 

generated intrinsically, by HPF and LPF across levels of organization (bottom pathway).   623 



Network resonance   Stark et al., 2022 

 36 

General framework for nonlinear decomposition of resonance 624 

Mechanistic studies aim to provide explanations of a given phenomenon in terms of a number of 625 

constituent building blocks whose choice depends on both the phenomenon and the desired level of 626 

explanation. For neuronal systems, there are a number of available sets of building blocks, but not all 627 

of them are appropriate for the investigation of resonance across levels of neuronal organization. The 628 

biophysical explanation, in terms of the ionic currents of the participating neurons, synaptic currents, 629 

short-term plasticity and other biological components, becomes extremely complex for larger 630 

networks. The same occurs for the dynamical systems explanation in terms of nonlinearities, time 631 

scales, and vector fields. Circuit building blocks such as positive and negative feedback loops are 632 

applicable to some, but not all levels of neuronal organization. For example, while subthreshold 633 

resonance results from negative feedback interactions between the membrane potential and 634 

restorative ionic currents, synaptic resonance results from history-dependent mechanisms.  635 

Our results support the hypothesis that the set of LPFs and HPFs are appropriate building blocks to 636 

explain the generation of resonance (BPFs) and that this approach can be used irrespective of the level 637 

of organization, and across levels of organization. We further hypothesize that this approach is 638 

universal. In other words, to understand the generation of resonance at a given level of organization, 639 

one must identify the constituent LPFs and HPFs. From this perspective, the decomposition of BPFs 640 

into LPFs and HPFs is not a mere description of resonance, but rather an explanatory theoretical tool 641 

to understand resonance in terms of structural and functional building blocks. A deeper understanding 642 

might be achieved by linking filters with specific sets of building blocks (Fig. 9). Provided that the 643 

technology exists, the filters may be experimentally identified by making the necessary perturbations. 644 

Therefore, understanding the generation of LPFs and HPFs in terms of the neuronal substrates 645 

contributes to the understanding of the biophysical and dynamic mechanisms underlying the 646 

generation of resonance. 647 

The proposed LPF-HPF framework has the advantage of incorporating, within a single conceptual 648 

umbrella, disparate processes such as negative feedback processes (capacitive, leak, resonant, and 649 
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amplifying currents), history-dependent processes (synaptic depression and facilitation), and spike 650 

discretization. It is not conceived as an analysis tool, but rather serves as a conceptual tool in which 651 

mechanistic models can be designed and their predictions tested by comparing modeling results to 652 

data. Further research is needed to explicitly integrate amplification in this framework, to establish a 653 

general LPF-HPF amplification framework for neuronal systems, and to identify the appropriate filters 654 

and amplification processes. Additional research is also needed to investigate the consequences of 655 

the interplay of multiple filters (e.g., two LPFs and one HPF) and across levels of organization, and to 656 

establish whether multiplicities produce degeneracies or richer patterns (e.g., anti-resonances). 657 

The identification of the LPF and HPF constituting a given BPF is not a straightforward process, 658 

primarily due to two factors: the nonlinearities involved, which are typically strong; and the 659 

qualitatively different biophysical components operating at different levels of organization. In linear 660 

systems, for which analytical calculations are possible, the BPFs characterizing the presence of 661 

resonance can be generated by the frequency domain multiplication of LPFs and HPFs. These filters 662 

have been identified in simple neuronal systems (e.g., systems that can be described by RLC circuits), 663 

but it is not a-priori clear whether and how neuronal BPFs in general can be decomposed into LPFs 664 

and HPFs. Under rather general circumstances, for nonlinear subthreshold resonance one can extend 665 

the linear approach (in the time domain) and obtain a description of the LPF by disrupting the negative 666 

feedback from the recovery variable, and the HPF by neglecting the capacitive current. In contrast, 667 

the short-term plasticity-mediated synaptic BPFs that compose the synaptic resonance model are, by 668 

construction, the product of a depression LPF and a facilitation HPF in the time domain (not in the 669 

frequency domain), and are thus not amenable to linear decomposition.  670 

In general, there are at least two possible ways to generate a resonant response at a given level of 671 

organization: by using an LPF and a HPF at the same level of organization, or at different levels (Fig. 9, 672 

center). In the case of resonance of membrane potential fluctuations, we used a subthreshold LPF 673 

(passive membrane) and a subthreshold HPF (Ih; Fig. 2; Hutcheon and Yarom, 2000). Similarly, for 674 

synaptic resonance both the LPF (synaptic depression) and the HPF (facilitation) belonged to the same 675 
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level of organization (Fig. 5; Izhikevich et al., 2003). However, for the generation of spiking resonance 676 

independently of resonance at any other level, we identified a mixed approach (Fig. 3). While the HPF 677 

was spike-dependent (due to spike discretization or calcium dynamics), the LPF was inherited from 678 

the subthreshold domain (passive membrane). This provides a mechanistic explanation of the classical 679 

results of spiking resonance in LIF neurons (Knight, 1972; Gerstner, 2000), beyond the limit of weak 680 

inputs (Brunel et al., 2001). A mixed approach was also used for generating intrinsic network 681 

resonance (Fig. 6): synaptic depression (LPF) was combined with spike discretization (HPF) to generate 682 

resonance in a postsynaptic target.  683 

 684 

Experimental and functional implications 685 

Network resonance has been described theoretically (Akam and Kullman, 2010; Vierling-Claassen et 686 

al., 2010; Ledoux and Brunel, 2011; Veltz and Sejnowski, 2015; Sherfey et al., 2018) and observed 687 

experimentally (Stark et al., 2013; Schmidt et al., 2017; Lewis et al., 2021) in several model systems. 688 

Here, we distinguished between two types of network resonance: “inherited” network resonance, and 689 

“intrinsic” network resonance. In inherited network resonance, frequency-dependent mechanisms 690 

(LPF and HPF) occur at a level of organization other than the network. Resonance can be observed at 691 

that level of organization, and may be inherited to the network level under specific conditions (e.g., 692 

Fig. 2). Network-level processes may modulate (e.g., amplify or attenuate) the inherited resonance, 693 

but their absence does not disrupt the inherited resonance. In contrast, LPFs and HPFs that occur at 694 

possibly distinct non-network levels of organization can generate intrinsic network resonance (e.g., 695 

Fig. 6), in the lack of resonance observable at any other level of organization. To the best of our 696 

knowledge, intrinsic network resonance has yet to be demonstrated experimentally. 697 

Inhibition-induced network resonance required that Ih-mediated rebound spiking in pyramidal cells 698 

(Cobb et al., 1995) interacts with some form of HPF. Previously, depression of the inhibitory synapses 699 

(on the PYR) and interaction with a third type of cell (an oriens-lacunosum moleculare [OLM] cell) 700 

were suggested as HPFs (Stark et al., 2013). Here, we considered two other mechanisms. First, we 701 
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found that the PYR h-current itself yields a sufficient HPF for generating resonance in the IPSP-driven 702 

PYR. Thus, inhibition-induced network resonance can be inherited. Second, we found that the addition 703 

of a second HPF, in the form of gamma resonance in the presynaptic INT (Rotstein, Ito and Stark, 2017, 704 

SFN Abstract), sharpens the IPSP-induced PYR spiking resonance. Gamma resonance has been 705 

observed in computational models (Akam and Kullman, 2010; Sherfey et al., 2018), in INT in vitro (Pike 706 

et al., 2000), and in multi-unit activity in vivo (Lewis et al., 2021). However, whether gamma resonance 707 

in INT actually occurs in vivo and sharpens theta-band resonance in PYR in vivo remains to be 708 

determined. Together, the present results suggest that although not necessary, frequency-modulating 709 

mechanisms at multiple levels of organization can contribute to the emergence of inhibition-induced 710 

network resonance. 711 

Network resonance can be both intrinsic and inherited, and inherited network resonance can be 712 

derived from different levels of organization. By measuring only firing rate resonance, it is impossible 713 

to determine the specific phase of the spiking response relative to a periodic input. However, using 714 

spike timing resonance and the fingerprint map of resonant neurons, different LPF and HPF modules 715 

that may underlie the resonance mechanism can be contrasted. One experimentally-testable 716 

prediction is that in recurrent excitatory networks, spiking resonance of directly-activated PYR will 717 

exhibit an earlier phase fingerprint, compared to the fingerprint of spikes generated via postsynaptic 718 

potentials which may be delayed in phase (Fig. 4BC; Fig. 6C). Another experimentally-testable 719 

prediction is that in inhibition-induced resonance, PYR phase mediated by INT would be later (Fig. 720 

8C), compared to PYR phase without the involvement of INT (Fig. 7B). Thus, in real neuronal networks 721 

driven by periodic inputs, spike timing resonance, quantified by spike phase and fingerprinting, may 722 

be used to dissect the frequency-dependent mechanisms underlying resonance. 723 

Previous work suggested that resonance can optimize learning (Roach et al., 2018) and favor inter-724 

neuronal communication (Sherfey et al., 2018). We found that multiple routes can lead to network 725 

resonance. Thus, a single network could multiplex information from multiple sources. Multiplexing 726 
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can occur at different resonant frequencies. Furthermore, since different types of network resonance 727 

exhibit different phases, multiplexing can also occur at different phases of the same frequency band. 728 

 729 

Related phenomena and future directions 730 

We focused on resonance, defined as the maximal response of a system to periodic input in a limited 731 

frequency band, and left out the investigation of the related phenomenon of phasonance, defined as 732 

a zero-phase response to periodic inputs. Indeed, previous work has shown that frequency 733 

modulation of spike phase is possible using a LIF model with spike frequency adaptation provided by 734 

slower feedback, e.g., an outward calcium-activated potassium current (Fuhrmann et al., 2002). 735 

Notably the calcium current used in the previous work (to show phasonance) provides subthreshold 736 

negative feedback, while the calcium current used in the calcium-LIF model (to show resonance; Fig. 737 

3F-H) provides a suprathreshold positive feedback. For linear systems, phasonance (measured using 738 

the impedance phase) and resonance (measured using the impedance amplitude) can co-occur 739 

(Richardson et al., 2003; Rotstein and Nadim, 2014). However, phasonance does not have to 740 

accompany resonance (e.g., Fig. 5E, Fig. 8C), and when the two phenomena do co-occur, the resonant 741 

and phasonant frequencies do not necessarily coincide (they do for the case of the harmonic oscillator; 742 

Rotstein and Nadim, 2014). As our results show, spiking resonance may be accompanied by spiking 743 

phasonance (Fig. 3BC). In fact, spiking resonance and phasonance may be inherited from the 744 

subthreshold regime (Fig. 2BC) or be generated at the spiking level (e.g., in LIF; Fig. 3BC). 745 

To address the main question of the paper we relied on a number of case studies. Further work is 746 

required to research general conditions under which resonance  may be communicated from one level 747 

of organization to another, or generated independently at each level of organization. Future work 748 

should also consider the effects of multiple ionic currents in single neurons with possible 749 

heterogeneous spatial or compartmental distributions, the effects of interacting synaptic currents 750 

with different functions (excitation, inhibition), the effects of separate timescales and of short-term 751 
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dynamic properties, and network topology effects. Additionally, future studies should consider 752 

scenarios in which multiple resonances interact within and across levels of organization. 753 

 754 

Conclusion 755 

We have presented several novel computational models of representative scenarios, and have 756 

rejected the hypothesis that network resonance requires resonance at another level. While doing so, 757 

we set the infrastructure for a theoretical framework for investigating the mechanisms underlying the 758 

generation of neuronal network resonance, taking into account the interplay of the constitutive 759 

nonlinear properties of the participating neurons, synaptic connectivity, and network topology. This 760 

framework will enable studies of neuronal networks where the interactions between periodic inputs, 761 

currents, and network effects are important (Lisman, 2005; Iaccarino et al., 2016; Helfrich et al., 2019), 762 

different networks entrain each other (Sirota et al., 2008; Fries, 2015), and/or the precise coordination 763 

between periodic input and spiking output are enhanced or disrupted (Bi and Poo, 2001; Lakatos et 764 

al., 2008; Vierling-Claassen et al. 2008).  765 
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Materials and Methods 766 

Models and numerical methods 767 

We used biophysical (conductance-based) models, following the Hodgkin-Huxley formalism 768 

(Hodgkin and Huxley, 1952; Ermentrout and Terman, 2010). Models consisted of a set of coupled 769 

ordinary differential equations. A detailed description of the different models used is provided below. 770 

All numerical simulations were carried out using custom code written in MATLAB (The Mathworks, 771 

Natick, MA). Numerical integration was done using the explicit second-order Runge-Kutta endpoint 772 

(modified Euler) method (Burden and Faires, 1980) with integration time step dt = 0.1 ms (Figs. 1-6) 773 

or dt = 0.025 ms (Figs. 7-8) and simulation duration of T s. As current input, we used sinusoids of a 774 

single frequency, of the form  775 

 776 

𝐼𝑖𝑛(𝑡) = 𝐼𝑏𝑖𝑎𝑠 + 𝐴𝑖𝑛 sin(2𝜋𝑓𝑡)       (1) 777 

 778 

or a chirp (Puil et al., 1986) linear in f of the form 779 

 780 

𝐼𝑖𝑛(𝑡) = 𝐼𝑏𝑖𝑎𝑠 + 𝐴𝑖𝑛 cos (𝜋 + 2𝜋𝑓0𝑡 + 𝜋(𝑓1 − 𝑓0)
𝑡2

𝑇
)     (2) 781 

 782 

Where Ibias is a time-independent (DC) bias current and Ain is the amplitude of the time-dependent 783 

(AC) periodic input. In the case of sinusoids of a single frequency f , input frequency f  was typically 784 

varied from 1 Hz to 40 Hz at 1 Hz increments, and T = 3 s. For linear chirps, we typically used f0 = 0 Hz 785 

and f1 = 40 Hz with T = 20 s.  786 

 787 

Model for subthreshold resonance 788 

To model resonance originating at the level of membrane potential fluctuations (Fig. 2A-E), we used 789 

a two-dimensional conductance-based model. Thus, the only ionic currents were persistent sodium 790 
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with instantaneous activation (INa,p), and h-current (Ih) with voltage-dependent dynamics. In this 791 

model, low-pass filtering is induced by the membrane time constant (C/gL), high-pass filtering is 792 

induced by Ih and leak current, and amplification is provided by INa,p. The model equations were: 793 

 794 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛(𝑡) − 𝑔𝐿(𝑉 − 𝐸𝐿) − 𝑔𝑝𝑝∞(𝑉)(𝑉 − 𝐸𝑁𝑎) − 𝑔ℎ𝑟(𝑉 − 𝐸ℎ) + 𝑔𝑁𝜂(𝑡)  (3) 795 

 796 

𝑑𝑟

𝑑𝑡
=

𝑟∞(𝑉)−𝑟

𝜏𝑟
          (4) 797 

 798 

Membrane potential variability, which may stem from many unknown sources, was modeled by an 799 

additive white noise term, generated by random sampling from a zero-mean Gaussian distribution 800 

(t)N(0,), multiplied by a constant conductance, gN=1 mS/cm2. The Ih time constant r was assumed 801 

to be voltage-independent. The voltage-dependent activation/inactivation curves of the Ih and INap 802 

gating variables are given by: 803 

 804 

𝑝∞(𝑉) =
1

1+e
−(𝑉+38)

6.5

         (5) 805 

 806 

𝑟∞(𝑉) =
1

1+e
𝑉+79.2

9.78

         (6) 807 

 808 

To model a passive membrane (Fig. 2A, dotted line), we set the conductance of the persistent 809 

sodium (gp) and the h- (gh) currents to zero. To model a HPF (Fig. 2A, dashed line), we set gp to zero 810 

and reduced C to 0.1 F/cm2. In all other cases, the full model was used.  811 

Spike waveforms were not modeled explicitly, but a spike was said to occur whenever the membrane 812 

potential crossed a threshold value, Vth. Thus, the 2D model was augmented with threshold spiking: 813 

 814 

𝑖𝑓 𝑉 > 𝑉𝑡ℎ  𝑡ℎ𝑒𝑛 𝑉 ← 𝑉𝑟𝑒𝑠𝑒𝑡        (7)  815 
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 816 

Whenever a spike occurred, the membrane potential V was held constant at Vpeak for Tspike before 817 

being reset to Vreset. Following Acker et al. (2003) and Rotstein and Nadim (2014), the specific 818 

parameters values used were: C = 1 F/cm2;  gL = 0.1 mS/cm2; EL = -65 mV; gp = 0.1 mS/cm2; ENa = 55 819 

mV; gh = 1 mS/cm2; Eh = -20 mV; r = 100 ms; Vth = -50 mV; Vreset = -70 mV; Vpeak = 50 mV; Tspike = 1 ms; 820 

 = 0 mV (Fig. 2E:  = 0-2 mV); Ibias = -1.85 A/cm2; and Ain = 0.15 A/cm2 (Fig. 2A: Ain = 0.05 A/cm2; 821 

Fig. 2D: Ain = 0-1 A/cm2). 822 

 823 

Model of an excitatory-inhibitory network 824 

To model inheritance of resonance generated at the level of membrane potential fluctuations by 825 

INa,p+Ih model neurons to postsynaptic targets (Fig. 2F-G), we generated a network of conductance-826 

based E- and I-cells with all-to-all connectivity. All cells followed 827 

 828 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛(𝑡) − 𝑔𝐿(𝑉 − 𝐸𝐿) − 𝐼𝑖𝑜𝑛𝑖𝑐 − 𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 + 𝑔𝑁𝜂(𝑡)    (8) 829 

 830 

𝑖𝑓 𝑉 > 𝑉𝑡ℎ  𝑡ℎ𝑒𝑛 𝑉 ← 𝑉𝑟𝑒𝑠𝑒𝑡        (9) 831 

 832 

The E-cells contained INa,p and Ih, and thus 𝐼𝑖𝑜𝑛𝑖𝑐 = 𝑔𝑝𝑝∞(𝑉)(𝑉 − 𝐸𝑁𝑎) + 𝑔ℎ𝑟(𝑉 − 𝐸ℎ) with r 833 

obeying Eq. 4. The I-cells were modeled as leaky integrate-and-fire (LIF) neurons, and thus Iionic = 0.  834 

Synaptic connections were modeled as in Ermentrout and Kopell (1998) and Borgers et al. (2012). For 835 

the e’th E-cell, the total synaptic current was 836 

 837 

𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐,𝑒 = ∑ 𝑔𝑒𝑒𝑆𝑒𝑗(𝑉𝑒 − 𝐸𝑠𝑒)𝑁𝑒
𝑗=1 + ∑ 𝑔𝑒𝑖𝑆𝑒𝑘(𝑉𝑒 − 𝐸𝑠𝑖)𝑁𝑖

𝑘=1     (10) 838 

 839 
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Where Ne (Ni) is the number of E-cells (I-cells). The notation gej indicates the maximal synaptic 840 

conductance from presynaptic E-cell j to postsynaptic E-cell e. All excitatory-to-excitatory synapses 841 

had the same maximal conductance values gee and reversal potentials Ese, regardless of the 842 

presynaptic neuron. All inhibitory-to-excitatory synapses had the same maximal conductance values 843 

gei and reversal potentials Esi, regardless of the presynaptic neuron. All synaptic activation variables 844 

corresponding to the same presynaptic neuron had the same dynamics, regardless of the postsynaptic 845 

neuron (Sej = Sj, Sek = Sk, e). For the i’th I-cell, the total synaptic current was modeled by 846 

 847 

𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐,𝑖 = ∑ 𝑔𝑖𝑒𝑆𝑖𝑗(𝑉𝑖 − 𝐸𝑠𝑒)𝑁𝑒
𝑗=1 + ∑ 𝑔𝑖𝑖𝑆𝑖𝑘(𝑉𝑖 − 𝐸𝑠𝑖)𝑁𝑖

𝑘=1     (11) 848 

 849 

All excitatory-to-inhibitory synapses had the same maximal conductance values gie and reversal 850 

potentials Ese. All inhibitory-to-inhibitory synapses had the same maximal conductance values gii and 851 

reversal potentials Esi. All synaptic activation variables corresponding to the same presynaptic neuron 852 

had the same dynamics (Sij = Sj, Sik = Sk, i). 853 

For an excitatory/inhibitory presynaptic neuron, the dynamics of the corresponding synaptic variable 854 

(Se/Si) depended on the presynaptic membrane potential (Ve/Vi) and the synaptic rise and decay time 855 

constants, following: 856 

 857 

𝑑𝑆𝑒

𝑑𝑡
= 𝐻(𝑉𝑒)

(1−𝑆𝑒)

𝜏𝑟
𝑒 −

𝑆𝑒

𝜏𝑑
𝑒         (12) 858 

 859 

𝑑𝑆𝑖

𝑑𝑡
= 𝐻(𝑉𝑖)

(1−𝑆𝑖)

𝜏𝑟
𝑖 −

𝑆𝑖

𝜏𝑑
𝑖         (13) 860 

 861 

𝐻(𝑉) = (1 + 𝑡𝑎𝑛ℎ(𝑉 4⁄ )) 2⁄         (14) 862 

 863 

Parameter values followed Borgers et al., 2012. All parameters values used are detailed in Table 1.  864 
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Table 1. Parameters used for modeling inheritance of resonance generated at the level of 865 

membrane potential fluctuations (Fig. 2F-H). 866 

Parameter Value Units Notes 

C 1 F/cm2  

gL 0.1 mS/cm2  

Vth -50 mV  

    

EL
e -65 mV E-cells 

gp 0.1 mS/cm2 E-cells 

ENa 55 mV E-cells 

gh 1 mS/cm2 E-cells 

Eh -20 mV E-cells 

h 100 ms E-cells 

Vreset
e -70 mV E-cells 

Tspike
e 1 ms E-cells 

    

EL
i -60 mV I-cells 

Vreset
i -60 mV I-cells 

Tspike
i 0.1 ms I-cells 

    

r
e 0.1 ms AMPA 

d
e 3 ms AMPA 

Ee 0 mV AMPA 

r
i 0.3 ms GABAA 

d
i 9 ms GABAA 
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Ei -80 mV GABAA 

gie 0.05 mS/cm2 E to I; Fig. 2F: 1 

gee 0 mS/cm2 E to E 

gei 0 mS/cm2 I to E 

gii 0.05 mS/cm2 I to I 

    

e 0.0125 mV E-cells 

Ibias
e -1.85 A/cm2 E-cells 

Ain
e 0.14125 A/cm2 Fig. 2H: 0 

i 3 mV I-cells 

Ibias
i -1 A/cm2 I-cells 

Ain
i 0 A/cm2 Fig. 2H: 2.26 

  867 
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Models for spiking resonance 868 

To model spiking resonance generated by an isolated LIF (Fig. 3A-E), we used 869 

 870 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛(𝑡) − 𝑔𝐿(𝑉 − 𝐸𝐿) + 𝑔𝑁𝜂(𝑡)       (15) 871 

 872 

𝑖𝑓 𝑉 > 𝑉𝑡ℎ  𝑡ℎ𝑒𝑛 𝑉 ← 𝑉𝑟𝑒𝑠𝑒𝑡        (16) 873 

 874 

with the following parameter values: C = 1 F/cm2;  gL = 0.1 mS/cm2; EL = -60 mV; Vth = -50 mV; Vreset 875 

= -60 mV; Vpeak = 50 mV; Tspike = 1 ms;  = 0 mV (Fig. 3E:  = 0-0.3 mV); Ibias = 0.9 A/cm2; and Ain = 0.05-876 

0.3 A/cm2. 877 

To model spiking resonance generated directly at the spiking level with a sharper HPF than the 878 

isolated LIF (Eqs 15-16), we modified the LIF model to include a spike-dependent calcium current (Fig. 879 

3F-H). The model equations were: 880 

 881 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛(𝑡) − 𝑔𝐿(𝑉 − 𝐸𝐿) − 𝑔𝐶𝐾(𝑉 − 𝐸𝐶𝑎) + 𝑔𝑁𝜂(𝑡)    (17) 882 

 883 

𝑑𝐾

𝑑𝑡
=

𝑁𝐶(1−𝐾)

𝜏𝑎𝑐𝑡
−

𝐾

𝜏𝑖𝑛𝑎𝑐𝑡
         (18) 884 

 885 

𝑑𝑁𝐶

𝑑𝑡
= −

𝑁𝐶

𝜏𝑑𝑒𝑎𝑐𝑡
          (19) 886 

 887 

𝑖𝑓 𝑉 > 𝑉𝑡ℎ  𝑡ℎ𝑒𝑛   {
𝑉 ← 𝑉𝑟𝑒𝑠𝑒𝑡

𝑁𝐶 ← 𝑁𝑟𝑒𝑠𝑒𝑡
        (20) 888 

 889 

The purpose of constructing this model was to generate a spike-dependent HPF, in a system that has 890 

an underlying subthreshold LPF. The physiological rationale is that following a spike, there is increased 891 
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calcium influx, further increasing depolarization; this effectively reduces the spiking threshold to 892 

current input at the same level. Thus, at another cycle of input that occurs shortly after the first spike, 893 

there will be another spike – even if the current is insufficient to generate a spike without the calcium 894 

influx. However, if the next cycle occurs later, the intracellular calcium level will have already gone 895 

back to steady-state level. 896 

In the model, the calcium gating variable K is limited to the [0,1] range and represents the probability 897 

of the gate to be open. Once a spike occurs, NC is instantaneously reset to a non-zero value (Nreset) and 898 

then slowly decays (with deact) towards zero. While NC is non-zero, the gate opens slowly (i.e., K is 899 

activated towards 1 with act/NC, and rapidly inactivates (decays to zero with inact). When activation is 900 

very fast or inactivation is very slow, the calcium conductance remains high long after a spike, 901 

providing additional depolarization at multiple current input frequencies, generating spike bursts at 902 

every input cycle. When the activation is slow and inactivation is fast, K remains relatively high only 903 

for a short time after a spike. The parameters used favor the latter scenario. Specific parameter values 904 

were: C = 1 F/cm2; gL = 0.5 mS/cm2; EL = -60 mV; gC = 0.08 mS/cm2 (Fig. 3H: gC = 0.04-0.12 mS/cm2); 905 

ECa = 100 mV; act = 50 ms; inact = 5 ms; deact = 70 ms; Vth = -50 mV; Vreset = -70 mV; Vpeak = 50 mV; Nreset 906 

= 0.1;  = 0.001 mV; Ibias = -3 A/cm2; and Ain = 8 A/cm2. 907 

To model network resonance inherited from resonance generated at the spiking level (Fig. 4), we 908 

combined a set of LIF model neurons (Eq 3 and Eq 4) using the network formalism described above 909 

(Eqs 8-14), with parameter values as detailed in Table 2.  910 
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Table 2. Parameters used for modeling inheritance of spiking resonance generated by an isolated 911 

LIF (Fig. 4). 912 

Parameter Value Units Notes 

C 1 F/cm2  

gL 0.1 mS/cm2  

EL -60 mV  

Vth -50 mV  

Vreset -60 mV  

Tspike 1 ms  

    

r
e 0.1 ms AMPA 

d
e 3 ms AMPA 

Ee 0 mV AMPA 

r
i 0.3 ms GABAA 

d
i 9 ms GABAA 

Ei -80 mV GABAA 

gie 0.01 mS/cm2 E to I; Fig. 4A: 1 

gee 0 mS/cm2 E to E 

gei 0 mS/cm2 I to E 

gii 0.05 mS/cm2 I to I 

    

e 0.02 mV Fig. 4C: 0.08 

Fig. 4DE: 0-0.3 

Ibias
e 0.9 A/cm2 E-cells 

Ain
e 0.115 A/cm2 E-cells 
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i 2 mV I-cells 

Ibias
i 0 A/cm2 I-cells 

Ain
i 0 A/cm2 I-cells 

  913 
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Models for synaptic plasticity and resonance 914 

To model resonance generated at the level of postsynaptic potentials (Fig. 5), we used a LIF model 915 

receiving a synaptic current with short term dynamics (synaptic facilitation and depression): 916 

 917 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛(𝑡) − 𝑔𝐿(𝑉 − 𝐸𝐿) − 𝑔𝑆𝑆𝐷𝐹(𝑉 − 𝐸𝑆)     (21) 918 

 919 

𝑑𝑆

𝑑𝑡
= 𝐻(𝑉𝑝𝑟𝑒)

(1−𝑆)

𝜏𝑟
−

𝑆

𝜏𝑑
        (22) 920 

 921 

𝑑𝐷

𝑑𝑡
= −𝐻(𝑉𝑝𝑟𝑒)

𝐷

𝜏𝑟𝑒𝑠𝑒𝑡(𝑑)
+

(1−𝐷)

𝜏𝑑𝑒𝑝
       (23) 922 

 923 

𝑑𝐹

𝑑𝑡
= 𝐻(𝑉𝑝𝑟𝑒)

(1−𝐹)

𝜏𝑟𝑒𝑠𝑒𝑡(𝑓)
−

𝐹

𝜏𝑓𝑎𝑐
        (24) 924 

 925 

The threshold spiking is defined by Eq 9 and the sigmoid activation function is as in Eq 14. In Eqs 21-926 

24, Vpre represents the membrane potential of the presynaptic neurons. To construct the input Vpre, 927 

we generated a spike at each local maximum of a sinusoid function (Eq 1 or Eq 2). The presynaptic 928 

voltage was then defined as Vpre(t) = 50 mV if a spike occurred in the last 1 ms; otherwise, Vpre(t) = -60 929 

mV. Other specific parameter values used in Fig. 5 were: C = 1 F/cm2;  gL = 0.1 mS/cm2; EL = -65 mV; 930 

Vth = -50 mV (Fig. 5A: Vth = 0 mV); Vreset = -70 mV; Tspike = 0.1 ms; r = 0.1 ms; d = 3 ms; gS = 0.175 931 

mS/cm2; ES = 0 mV; reset(d) = 0.1 ms; dep = 100 ms; reset(f) = 0.2 ms; fac = 300 ms;  = 0.05 mV (Fig. 5A-932 

C:  = 0 mV; Fig. 5F:  = 0-0.3 mV); Ibias = 1.3 A/cm2; and Ain = 0 A/cm2. 933 

To model synaptic depression, the synaptic variable S was multiplied by a factor D, limited to the 934 

[0,1] range. After every spike, D slowly recovers towards its steady state value of 1, with time constant 935 

dep, which determines the time scale of depression (Eq 23). Since additional spikes may occur during 936 

recovery, the process is history-dependent. To model synaptic facilitation, the synaptic variable S was 937 
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multiplied by a factor F, also limited to the [0,1] range. The dynamics of F follow the same principle as 938 

for depression (Eq 24), yet in an opposite direction: during every spike, 𝐹 rapidly increases towards 1; 939 

between spikes, F relaxes to zero with a slower time constant fac. Note that in principle, the synaptic 940 

variable S in Eq 22 is also history-dependent, representing synaptic summation. However, the synaptic 941 

decay time constant d for the AMPA-like synapses used in Eq 22 is much smaller than the time 942 

constants used for modeling depression. 943 

To model the combined effect of depression and facilitation, the synaptic variable was multiplied by 944 

D and F. Together, the product DF represents the probability of presynaptic release. We note that the 945 

depression model is similar to the one proposed by Manor and Nadim (2001). Previous models of 946 

synaptic plasticity (Markram et al., 1998; Ermentrout and Terman, 2010, attributed to Dayan, Abbott, 947 

and collaborators) included a discrete (delta-function) rise of the depression and facilitation variables 948 

in response to each presynaptic spike. The present synaptic plasticity models replace the step increase 949 

with a continuous sigmoid function, as previously used for synaptic transmission models (Ermentrout 950 

and Kopell, 1998; Borgers et al., 2012).  951 

To model short term synaptic dynamics in the lack of depression/facilitation (Fig. 5C), we set the 952 

corresponding variable to a constant (only facilitation: D = 1; only depression: F = 1).  953 

To model inheritance of resonance generated at the level of postsynaptic potentials to postsynaptic 954 

targets (Fig. 5G-L), we constructed a 3-layer diverging/converging feedforward network. Synaptic 955 

conductance between layer 1 and layer 2 was gS = 0.2 mS/cm2. Neurons in the second layer received 956 

Ibias = 1.2 A/cm2 and independent noise (𝜎 = 0.25 𝑚𝑉 in Fig. 5G-I). Synaptic conductance between 957 

layer 2 and layer 3 was gS = 0.12 mS/cm2; the single layer 3 neuron received Ibias = 0 A/cm2 and no 958 

additional noise.  959 

To model EPSP-induced network resonance (Fig. 6), we used the LIF model supplemented with 960 

synaptic plasticity (Eqs 9, 14, 21-24), without facilitation (i.e., F = 1). Other parameter values were the 961 

same as for generating resonance at the level of PSP (Fig. 5), with Ibias = 1.2 A/cm2. 962 

 963 
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Models for inhibition-induced network resonance 964 

To model IPSP-induced network resonance (Figs. 7-8), we used a minimal network of conductance-965 

based neurons of the Hodgkin-Huxley type with instantaneous activation of sodium channels, 966 

consisting of an excitatory cell (a PYR) and an INT (Borgers et al., 2012). The PYR model included 967 

dynamics on the membrane potential (Ve), sodium inactivation (h), delayed-rectifier potassium (n), 968 

and the h-current gating variable (r; Poolos et al., 2002; Zemankovics et al., 2010), yielding a 4D 969 

system. In addition, the model included synaptic input and noise. Denoting the membrane potential 970 

of the PYR by Ve and the membrane potential of the INT by Vi, the full model for the PYR reads 971 

 972 

𝐶
𝑑𝑉𝑒

𝑑𝑡
= 𝐼𝑖𝑛

𝑒 (𝑡) − 𝑔𝐿
𝑒(𝑉𝑒 − 𝐸𝐿

𝑒) − 𝑔𝑁𝑎
𝑒 ℎ𝑚∞(𝑉𝑒)3(𝑉𝑒 − 𝐸𝑁𝑎

𝑒 ) − 𝑔𝐾
𝑒 𝑛4(𝑉𝑒 − 𝐸𝐾

𝑒) − 𝑔ℎ
𝑒𝑟(𝑉𝑒 − 𝐸ℎ

𝑒) −973 

𝑔𝑒𝑒𝑆𝑒(𝑉𝑒)(𝑉𝑒 − 𝐸𝑒) − 𝑔𝑒𝑖𝑆𝑖(𝑉𝑖)(𝑉𝑒 − 𝐸𝑖) + 𝑔𝑁𝜂𝑒(𝑡)     (25) 974 

 975 

𝑑ℎ

𝑑𝑡
=

ℎ∞(𝑉𝑒)−ℎ

𝜏ℎ(𝑉𝑒)
          (26) 976 

 977 

𝑑𝑛

𝑑𝑡
=

𝑛∞(𝑉𝑒)−𝑛

𝜏𝑛(𝑉𝑒)
          (27) 978 

 979 

𝑑𝑟

𝑑𝑡
=

𝑟∞(𝑉𝑒)−𝑟

𝜏𝑟(𝑉𝑒)
          (28) 980 

 981 

The gating variables (x = h,m,n,r) had voltage-dependent time constants (x) and steady-state values 982 

(x) as follows: 983 

 984 

ℎ∞(𝑉) =
0.128e

−(𝑉+50)
18

0.128e
−(𝑉+50)

18 +
4

1+e
−(𝑉+27)

5

, 𝜏ℎ(𝑉) =
1

0.128e
−(𝑉+50)

18 +
4

1+e
−(𝑉+27)

5

   (29) 985 

 986 
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𝑚∞(𝑉) =

0.32(𝑉+54)

1−e
−(𝑉+54)

4
0.32(𝑉+54)

1−e
−(𝑉+54)

4

−
0.28(𝑉+27)

1−e

(𝑉+27)
5

        (30) 987 

 988 

𝑛∞(𝑉) =

0.032(𝑉+52)

1−e
−(𝑉+52)

5

0.032(𝑉+52)

1−e
−(𝑉+52)

5

+0.5e
−(𝑉+57)

40

, 𝜏𝑛(𝑉) =
1

0.032(𝑉+52)

1−e
−(𝑉+52)

5

+0.5e
−(𝑉+57)

40

    (31) 989 

 990 

𝑟∞(𝑉) =
1

1+e
𝑉+82.9

12.4

, 𝜏𝑟(𝑉) =
136.36𝑒0.033(𝑉+75)

1+𝑒0.083(𝑉+75)       (32) 991 

 992 

The PYR received excitatory input from itself, with maximal conductance gee, reversal potential Ee, 993 

and synaptic variable Se; and inhibitory input from the INT, with maximal synaptic conductance gei, 994 

reversal potential Ei, and synaptic variable Si. The synaptic variables were modeled as in Eqs 12-14. 995 

For the basic component of the INT we used the Wang-Buzsáki model (Wang and Buzsáki, 1996) 996 

describing the dynamics of the membrane potential (Vi) , sodium inactivation (h), and delayed-rectifier 997 

potassium (n). To model gamma resonance in the INT (Fig. 8), the model was extended to include a 998 

non-inactivating potassium current (q) with dynamics similar to but faster than an M-current (Brown 999 

and Adams, 1980). The full model also included synaptic currents and noise, and reads 1000 

 1001 

𝐶
𝑑𝑉𝑖

𝑑𝑡
= 𝐼𝑖𝑛

𝑖 (𝑡) − 𝑔𝐿
𝑖 (𝑉𝑖 − 𝐸𝐿

𝑖 ) − 𝑔𝑁𝑎
𝑖 ℎ𝑚∞(𝑉𝑖)

3
(𝑉𝑖 − 𝐸𝑁𝑎

𝑖 ) − 𝑔𝐾
𝑖 𝑛4(𝑉𝑖 − 𝐸𝐾

𝑖 ) − 𝑔𝑀
𝑖 𝑞(𝑉𝑖 − 𝐸𝐾

𝑖 ) −1002 

𝑔𝑖𝑒𝑆𝑒(𝑉𝑒)(𝑉𝑖 − 𝐸𝑒) − 𝑔𝑖𝑖𝑆𝑖(𝑉𝑖)(𝑉𝑖 − 𝐸𝑖) + 𝑔𝑁𝜂𝑖(𝑡)     (33) 1003 

 1004 

𝑑ℎ

𝑑𝑡
=

ℎ∞(𝑉𝑖)−ℎ

𝜏ℎ(𝑉𝑖)
          (34) 1005 

 1006 

𝑑𝑛

𝑑𝑡
=

𝑛∞(𝑉𝑖)−𝑛

𝜏𝑛(𝑉𝑖)
          (35) 1007 

 1008 
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𝑑𝑞

𝑑𝑡
=

𝑞∞(𝑉𝑖)−𝑞

𝜏𝑞(𝑉𝑖)
          (36) 1009 

 1010 

The gating variables for the INT (x = h,m,n,q) had voltage-dependent time constants (x) and steady-1011 

state values (x) as follows 1012 

 1013 

ℎ∞(𝑉) =
0.07e

−(𝑉+58)
20

0.07e
−(𝑉+58)

20 +
1

1+e
−(𝑉+28)

10

, 𝜏ℎ(𝑉) =
0.2

0.07e
−(𝑉+58)

20 +
1

1+e
−(𝑉+28)

10

   (37) 1014 

 1015 

𝑚∞(𝑉) =

0.2(𝑉+35)

1−e
−(𝑉+35)

10

0.2(𝑉+35)

1−e
−(𝑉+35)

10

+4e
−(𝑉+60)

18

        (38) 1016 

 1017 

𝑛∞(𝑉) =

0.01(𝑉+34)

1−e
−(𝑉+34)

10

0.01(𝑉+34)

1−e
−(𝑉+34)

10

+0.125e
−(𝑉+44)

80

, 𝜏𝑛(𝑉) =
0.2

0.01(𝑉+34)

1−e
−(𝑉+34)

10

+0.125e
−(𝑉+44)

80

   (39) 1018 

 1019 

𝑞∞(𝑉) =
1

1+e
−(𝑉+35)

10

, 𝑞𝑟(𝑉) =
40

3.3e
𝑉+35

20 +e
−(𝑉+35)

10

     (40) 1020 

 1021 

The INT received excitatory input from the PYR, with maximal synaptic conductance gie; and 1022 

inhibitory input from itself, with maximal synaptic conductance gii.  1023 

For modeling the PYR in isolation (Fig. 7A) or the INT in isolation (Fig. 8AB), all synaptic conductance 1024 

values were set to zero. For modeling the INT-to-PYR network without gamma resonance on the INT 1025 

(Fig. 7B), gM
i was set to zero. The full model was used for Fig. 8C. Specific parameter values followed 1026 

Borgers et al., 2012, and are detailed in Table 3.  1027 
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Table 3. Parameters used for modeling IPSP-induced network resonance (Figs. 7-8). 1028 

Parameter Value Units Notes 

Ce 1 F/cm2  

gL
e 0.1 mS/cm2  

EL
e -67 mV  

gNa
e 100 mS/cm2  

ENa
e 50 mV  

gK
e 80 mS/cm2  

EK
e -100 mV  

gh
e 0.485 mS/cm2  

Eh
e -33 mV  

    

Ci 1 F/cm2  

gL
i 0.1 mS/cm2  

EL
i -65 mV  

gNa
i 35 mS/cm2  

ENa
i 55 mV  

gK
i 9 mS/cm2  

EK
i -90 mV  

gM
i 4 mS/cm2 Fig. 7: 0 

    

r
e 0.1 ms AMPA 

d
e 3 ms AMPA 

Ee 0 mV AMPA 

r
i 0.3 ms GABAA 
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d
i 9 ms GABAA 

Ei -80 mV GABAA 

gie 0 mS/cm2 PYR to INT 

gee 0 mS/cm2 PYR to PYR 

gei 0.4 mS/cm2 INT to PYR 

gii 0 mS/cm2 INT to INT 

    

e 0.1 mV  

Ibias
e -2.7 A/cm2  

Ain
e 0 A/cm2 Fig. 7A: 0.2 

i 0.1 mV Fig. 8A: 0 

Ibias
i -0.5 A/cm2 Fig. 8AB,C: 3.8, 3.7 

Ain
i 0.5 A/cm2 Fig. 8B,C: 0.9, 2.1 

  1029 
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