
Algorithmica (2022) 84:784–814
https://doi.org/10.1007/s00453-021-00917-5

On the Complexity of RecognizingWheeler Graphs

Daniel Gibney1 · Sharma V. Thankachan2

Received: 1 September 2020 / Accepted: 16 December 2021 / Published online: 10 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In recent years, several compressed indexes based on variants of the Burrows–Wheeler
transform have been introduced. Some of these are used to index structures far more
complex than a single string, as was originally done with the FM-index (Ferragina
and Manzini in J. ACM 52(4):552–581, https://doi.org/10.1145/1082036.1082039,
2005). As such, there has been an increasing effort to better understand under
which conditions such an indexing scheme is possible. This has led to the
introduction of Wheeler graphs (Gagie et al. in Theor Comput Sci 698:67–78,
https://doi.org/10.1016/j.tcs.2017.06.016, 2017). Gagie et al. showed that de Bruijn
graphs, generalized compressed suffix arrays, and several other BWT related struc-
tures can be represented as Wheeler graphs, and that Wheeler graphs can be indexed
in a space-efficient way. Hence, being able to recognize whether a given graph is a
Wheeler graph, or being able to approximate a given graph by aWheeler graph, could
have numerous applications in indexing. Here we resolve the open question of whether
there exists an efficient algorithm for recognizing if a given graph is a Wheeler graph.
We show:

– The problem of recognizingwhether a given graphG = (V , E) is aWheeler graph
is NP-complete for any edge label alphabet of size σ ≥ 2, even when G is a DAG.
This holds even on a restricted subset of graphs called d-NFAs for d ≥ 5. This is in
contrast to recent results demonstrating the problem can be solved in polynomial
time for d-NFAs where d ≤ 2. We also show that the recognition problem can be
solved in linear time for σ = 1 on graphs without self-loops;

– There exists an 2e log σ+O(n+e) time exact algorithm where n = |V | and e = |E |.
This algorithm relies on graph isomorphism being computable in strictly sub-
exponential time;

– We define an optimization variant of the problem calledWheeler Graph Violation,
abbreviated WGV, where the aim is to identify the smallest set of edges that have
to be removed from a graph to obtain a Wheeler graph. We show WGV is APX-

This research is supported in part by the U.S. National Science Foundation under the Grants CCF-1703489
and CCF-2112643. The first author has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 690941.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00917-5&domain=pdf
http://orcid.org/0000-0003-1493-5432
http://orcid.org/0000-0002-6852-1035

Algorithmica (2022) 84:784–814 785

hard, even when G is a DAG, implying there exists a constant C > 1 for which
there is no C-approximation algorithm (unless P = NP). Also, conditioned on the
Unique Games Conjecture, for all C > 1, it is NP-hard to find aC-approximation,
implying WGV is not in APX;

– We define the Wheeler Subgraph problem, abbreviated WS, where the aim is to
find the largest subgraph which is aWheeler Graph (the dual ofWGV). In contrast
toWGV,we give an O(σ)-approximation algorithm for theWS problem, implying
it is in APX for σ = O(1).

The above findings suggest that most problems under this theme are computationally
difficult. However, we identify a class of graphs for which the recognition problem
is polynomial-time solvable, raising the question of which properties determine this
problem’s difficulty.

Keywords Wheeler graphs · FM-index · Burrows–Wheeler transform

1 Introduction

Within the last two decades, there has been the development of Burrows–Wheeler
Transform (BWT) [9] based indices for compressing a diverse collection of data struc-
tures. This list includes labeled trees [38], certain classes of graphs [17,36], and sets
of multiple strings [19,33]. These new techniques have motivated the search for a set
of general conditions under which a structure can be indexed by a BWT based index,
which led to the recent introduction of Wheeler graphs by Gagie et al. [20] (also see
[4]). A Wheeler graph is a directed graph that has edge labels and satisfies two simple
properties related to the ordering of its vertices.Althoughnot general enough to encom-
pass all BWT-based structures (e.g., [21]), Gagie et al. demonstrated that Wheeler
graphs offer a unified way of modeling several BWT based data structures such as
representations of de Bruijn graphs [8,14], generalized compressed suffix arrays [38],
multi-string BWTs [34], XBWTs [17], wavelet matrices [12], and certain types of
finite automata [1,6,29]. They also showed that there exists an encoding of a Wheeler
graph G = (V , E) which requires only 2(e+ n) + e log σ + σ log e+ o(n + e log σ)

bits where σ is the size of the edge label alphabet, e = |E |, and n = |V |. This encod-
ing allows for the efficient traversal of multiple edges while processing characters
in a string, using an algorithm similar to the backward search in the FM-index [18].
Since their introduction, Wheeler graphs have been the subject of significant study.
This includes the study of the languages that are accepted by automata that are also
Wheeler graphs [3], as well as the extension of a technique for compression known as
tunneling to the BWTs of Wheeler graphs [4]. Additionally, Wheeler graphs give us
insight into the more general problem of exact pattern matching on arbitrary labeled
graphs, the computational complexity of which has been studied in several recent
works [13,16,22]. It is clear that not all directed edge labeled graphs are Wheeler
graphs, but despite being the subject of an increasing amount of research, it remained
unknown how to recognize whether a given graph is a Wheeler graph. This made the

123

786 Algorithmica (2022) 84:784–814

authors of [20] explicitly pose the question of how to efficiently recognize whether a
graph is a Wheeler graph.

The question is of both theoretical and practical value, as it might be the first step
before attempting to apply some compression scheme to a given graph. For example,
one could use the existence of a Wheeler subgraph to encode a graph. To do so,
one maintains an encoding of the subgraph using the framework presented in [20] in
addition to an adjacency list of the edges not included in the encoding. Depending on
the size of the subgraph, such an encoding might provide large space savings at the
cost of a modest time trade-off while traversing the graph. This concept also motivates
the portion of the paper where we look at two optimization versions of this problem
that seek subgraphs of the given graph which are Wheeler graphs. These problems
turn out to be computationally difficult as well. As a positive result, we show that, for a
constant sized alphabet, the problem of finding a maximumWheeler subgraph admits
a polynomial-time algorithm that outputs a solution with size within some constant
factor of optimal. We also show that the problem of recognizing Wheeler graphs is
related to that of identifying the queue number of a graph. This suggests a class of
graphs where the problem becomes computationally tractable, a topic investigated in
the last section of this work.

1.1 Wheeler Graphs

The notation (u, v, a) is used for the directed edge from u to v with label a. We
will assume the usual ordering on the edge labels, which come from the alphabet
{1, 2, . . . , σ }.
Definition 1 AWheeler graph is a directed graph with edge labels where there exists
an ordering <π on the vertices such that for any two edges (u, v, a) and (u′, v′, a′)
the following properties hold:

Property 1 a < a′ implies v <π v′ and vertices with in-degree zero are placed first in
the ordering;

Property 2 a = a′ and u <π u′ implies v ≤π v′.
We consider an ordering of the vertices of the graph a proper ordering if it satisfies

the properties of the Wheeler graph definition. See Fig. 1 for an illustration.
The following list of additional properties of Wheeler graphs can be deduced from

Definition 1.

Property 3 All edges inbound to a vertex v have the same edge label.

Property 4 In a proper ordering, all vertices with the same inbound edge label are
ordered consecutively.

Property 5 A vertex can have multiple outbound edges with the same label. It is also
possible for a vertex to have more than σ inbound or outbound edges.

Property 6 For a vertex ordering π , two edges with the same label, (u, v, a) and
(u′, v′, a), where u <π u′ and v′ <π v are called a monochromatic rainbow. No
monochromatic rainbows can exist in a proper ordering (see Fig. 2).

123

Algorithmica (2022) 84:784–814 787

Fig. 1 A Wheeler graph with σ = 3. Ordering on edge labels: red (solid) < blue (long-dash) < green
(short-dash) (Color figure online)

Fig. 2 In a proper ordering the above configurations cannot occur with edges that have the same label

1.2 Problem Definitions

The first question we wish to answer is: given a directed graph with edge labels, does
there exist a proper ordering <π for its vertices? We define this problem formally as
the following.

Problem 1 (Wheeler Graph Recognition) Given a directed edge labeled graph G =
(V , E), answer ‘YES’ if G is a Wheeler graph and ‘NO’ otherwise.

Although we do not demand it here, ideally, a solution to the above problem would
also return a proper ordering.

Next, we define two optimization versions of Problem 1 where we seek to find
Wheeler subgraphs.

Problem 2 (Wheeler Graph Violation (WGV)) Given a directed edge labeled graph
G = (V , E), identify the smallest E ′ ⊆ E such that G ′ = (V , E\E ′) is a Wheeler
graph.

We also consider the dual of this problem.

Problem 3 (Wheeler Subgraph (WS)) Given a directed edge labeled graph G =
(V , E), identify the largest E ′′ ⊆ E such that G ′′ = (V , E ′′) is a Wheeler graph.

1.3 Our Contribution

– In Sect. 2 we show that the problem of recognizing whether a given graph is a
Wheeler graph is NP-complete, even for an edge alphabet of size σ = 2. This
result holds even when the input is a directed acyclic graph (DAG) and when the
number of edges leaving a vertex with the same label is at most five.

123

788 Algorithmica (2022) 84:784–814

– In Sect. 3 we relate the notion of queue number to Wheeler graphs, allowing us to
place a bound on the number of edges of any Wheeler graph.

– In Sect. 4 we provide an exponential time algorithm which solves the recognition
problem on a graph G = (V , E) in time 2O(n+e log σ) where n = |V | and e = |E |.
It uses the idea of enumerating through all possible encodings of Wheeler graphs
(of bounded size), and the fact that we can test whether there exists an isomorphism
between two undirected graphs in sub-exponential time. This technique also gives
us exact algorithms with the same time complexity for the optimization variants
introduced in this work.

– In Sect. 5 we examine the optimization variants of this problem called Wheeler
Graph Violation (WGV) and Wheeler Subgraph (WS). We show via a reduction
of the Minimum Feedback Arc Set problem that the Wheeler Graph Violation
problem is APX-hard, and assuming the Unique Games Conjecture, cannot be
approximated within a constant factor. This holds even when the graph is a DAG.
On theother hand,we show that theWheeler Subgraphproblem is in the complexity
class APX for σ = O(1). We do so by providing a polynomial-time algorithm
whose solution size is �(1/σ) times the optimal value.

– In Sect. 6, by using PQ-trees and ideas similar to those used to detect whether a
DAG is leveled-planar, we demonstrate a class of graphs where Wheeler graph
recognition can be done in linear time.

2 NP-Completeness of Wheeler Graph Recognition

Theorem 1 The Wheeler Graph Recognition Problem is NP-complete for any σ ≥ 2.

We first show a simple reduction from the Betweenness problem to Wheeler Graph
Recognition. Although straightforward, it requires graphs with either �(n) sources,
or �(n) edges with the same label leaving a single vertex. In Sect. 2.3, by expanding
on the techniques used in the first reduction, we show that even if these quantities are
limited to at most five, the recognition problem remains NP-complete.

2.1 The Betweenness Problem

The Betweenness problem was established as NP-complete by Opatrný in 1979 [37].
Like our problem, it deals with finding a total ordering on a set of elements. The input
to the Betweenness problem is a set of elements T = {t1, . . . , tn} and a collection
of ordered triples C ⊆ T 3 called constraints. For a total ordering <φ on T , we say

a constraint (t j1 , t j2 , t j3) ∈ C is satisfied if t j1 <φ t j2 <φ t j3 or t j3 <φ t j2 <φ t j1 . The
decision problem is to determine whether such a total ordering <φ exists.

As an example, consider the input T = {1, 2, 3, 4, 5, 6}, and constraints C =
{(5, 2, 3), (1, 5, 2), (4, 5, 6), (4, 6, 2)}. An ordering that satisfies the given constraints
is 1, 4, 5, 6, 2, 3. An ordering that does not satisfy the given constraints is 1, 2, 3, 4,
5, 6 since it violates the constraints (5, 2, 3), (1, 5, 2), and (4, 6, 2).

123

Algorithmica (2022) 84:784–814 789

2.2 Reduction from Betweenness toWheeler Graph Recognition

Suppose we are given as input to the Betweenness problem the set T = {t1, t2, . . . , tn},
and constraints C = {(t j1 , t j2 , t j3) | 1 ≤ j ≤ k}. Construct a DAG G of size O(nk) as
follows:

1. Create a source vertex v0.
2. For 1 ≤ j ≤ k, 1 ≤ i ≤ n, create vertex v

j
i .

3. For each constraint (t j1 , t j2 , t j3) ∈ C , create a vertex for each element, we call them

w
j
1 , w

j
2 , and w

j
3 respectively.

4. For 1 ≤ i ≤ n, create the edge (v0, v
1
i , 1).

5. For 1 ≤ j ≤ k − 1, 1 ≤ i ≤ n, create the edge (v
j
i , v

j+1
i , 1).

6. For 1 ≤ j ≤ k, 1 ≤ i ≤ n, create the edge(s):

– (v
j
i , w

j
1 , 2) and (v

j
i , w

j
2 , 2) if ti = t j1 ;

– (v
j
i , w

j
2 , 2) if ti = t j2 ;

– (v
j
i , w

j
3 , 2) and (v

j
i , w

j
2 , 2) if ti = t j3 .

Figure 3 provides an illustration. The intuition is that the vertices with inbound red
(solid) edges labeled 1 represent the permutation of the elements in T repeated k times.
The vertices with the inbound blue (dashed) edges labeled 2 represent the elements
in the constraints. An ordering can be obtained from a vertex arrangement like that
in Fig. 3 as follows: vertices with inbound red edges are ordered from bottom-to-top,
followed by the vertices with inbound blue edges, ordered from bottom-to-top. If the
ordering we obtain is a proper ordering, the arrangement in the figure will have no
edges of the same color crossing. The relation that this ordering has with constraints
being satisfied can be observed in Fig. 3. For example, with the top-most betweenness
constraint gadget for constraint (4, 5, 6), one can check that reversing the positions
of the vertices for 4 and 6 with inbound blue edges will still avoid dashed blue edges
crossing dashed blue edges as long as the same change happens for vertices with
inbound red edges. However, any order where 5 is not between 4 and 6 will not satisfy
this property. Hence, we can relate solutions to theWheeler graph recognition problem
to solutions to the Betweenness problem. We will formalize this argument next.

Lemma 1 first formalizes the way in which the vertices with inbound red edges
represent a permutation being repeated k times.

Lemma 1 Let G ′ = (V ′, E ′) be the subgraph of G consisting of the vertices v0 v11 ,
v12 ,…, v1n,…,v21 , v

2
2 ,…, v2n,…, vk1 , v

k
2 ,…, vkn and the edges (v0, v

1
i , 1) for 1 ≤ i ≤ n and

(v
j
i , v

j+1
i , 1) for 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1. Then the Wheeler graph properties are

satisfied on G ′ iff the ordering π on V ′ is of form

v0, v
1
φ(1), v

1
φ(2), . . . , v

1
φ(n), v

2
φ(1), v

2
φ(2), . . . , v

2
φ(n), . . . , v

k
φ(1), v

k
φ(2), . . . , v

k
φ(n)

where φ is a permutation of {1, 2, . . . , n}.
Proof First consider when the vertices are ordered in the form stated in the lemma.
Clearly, Property 1 is satisfied. Let (v j

i , v
j+1
i , 1) and (v

j ′
i ′ , v

j ′+1
i ′ , 1) be arbitrary edges.

123

790 Algorithmica (2022) 84:784–814

Fig. 3 An example of the reduction with input list 1, 2, 3, 4, 5, 6 and the constraints (5, 2, 3), (1, 5, 2),
(4, 5, 6)

If j < j ′, then v
j
i <π v

j ′
i ′ , and v

j+1
i <π v

j ′+1
i ′ . Thus the edges satisfy Property 2. The

case where j ′ < j is symmetric. Hence, we can assume j ′ = j . If we assume WLOG
that v j

i <π v
j
i ′ , then v

j+1
i <π v

j+1
i ′ and Property 2 is satisfied.

Conversely, assume the Wheeler graph properties are satisfied by an ordering <π ′ .
Then, by Property 1, v0 is ordered first. If all vertices in {v1i | 1 ≤ i ≤ n} do not

appear prior to all {v j
i | 1 ≤ i ≤ n} where j > 1, then there exists some leftmost

vertex v
j
i such that v j

i <π ′ v1i ′ for some 1 ≤ i, i ′ ≤ n. Then the edges (v0, v
1
i ′ , 1) and

(v
j−1
i , v

j
i , 1) contradict Property 2 since v0 <π ′ v

j−1
i but v1i ′ >π ′ v

j
i . This argument

can then be extended to show that the set {v2i | 1 ≤ i ≤ n} must immediately follow
{v1i | 1 ≤ i ≤ n}, and then repeated to prove the partial ordering

v0 <π ′ v11, . . . v
1
n <π ′ v21, v

2
2, . . . , v

2
n <π ′ . . . <π ′ vk1, v

k
2, . . . , v

k
n

must hold.
Let φ denote the permutation applied to the vertices in {v1i | 1 ≤ i ≤ n} by the

vertex ordering <π ′ . If φ is not applied to the vertices in {v2i | 1 ≤ i ≤ n} by <π ′ ,

123

Algorithmica (2022) 84:784–814 791

then there exists an i and an i ′ such that v1i <π ′ v1i ′ and v2i ′ <π ′ v2i , causing the edges
(v1i , v

2
i , 1) and (v1i ′ , v

2
i ′ , 1) to contradict Property 2. The same argument can then be

repeated to show the same permutation φ applied to {v2i | 1 ≤ i ≤ n} must be applied
to {v3i | 1 ≤ i ≤ n}. Continuing this argument to {vki | 1 ≤ i ≤ n} shows that <π ′
orders the vertices in the desired form. �� ��
Lemma 2 An instance of the Betweenness problem has an ordering satisfying all of
the constraints iff the graph G is a Wheeler graph.

Proof We first assume that there exists a solution to the instance of the Betweenness
problem. Let <φ be the ordering on the elements in T such that all constraints are
satisfied. We abuse notation and also use φ to denote the permutation where tφ(1) <φ

tφ(2) <φ . . . <φ tφ(n). For constraint (t j1 , t j2 , t j3) let f j be 0 if t j1 <φ t j2 <φ t j3 and 2

if t j3 <φ t j2 <φ t j1 .
Order the vertices as follows:

v0, v
1
φ(1), . . . , v

1
φ(n), v

2
φ(1), . . . , v

2
φ(n), . . . , v

k
φ(1), . . . , v

k
φ(n),

w1
1+ f1, w

1
2, w

1
3− f1 , w

2
1+ f2 , w

2
2, w

2
3− f2 , . . . , w

k
1+ fk , w

k
2, w

k
3− fk .

Let <π denote this vertex ordering. The first property of Wheeler graphs is satisfied
since v0 with in-degree zero is ordered first, all vertices with inbound edges having
label 1 are next, followed by all vertices having inbound edges with label 2. Violations
of Property 2 with edges having label 1 are avoided by Lemma 1. We show next that
violations of Property 2 with edges having label 2 are avoided as well. Consider the
constraint (t j1 , t j2 , t j3)where ti = t j1 , th = t j2 , and t� = t j3 . Either ti <φ th <φ t� and the

vertex order has v
j
i <π v

j
h <π v

j
� and w

j
1 <π w

j
2 <π w

j
3 ; or t� <φ th <φ ti and the

vertex order has v
j
� <π v

j
h <π v

j
i andw

j
3 <π w

j
2 <π w

j
1 . In both cases, for every pair

of edges in (v
j
i , w

j
1 , 2), (v

j
i , w

j
2 , 2), (v

j
h , w

j
2 , 2), (v

j
� , w

j
3 , 2), and (v

j
� , w

j
2 , 2) Property

2 is satisfied.
In the other direction, we assume that the graph constructed in the reduction is a

Wheeler graph. First, by Property 1, v0 must be ordered before all vertices in {v j
i |

1 ≤ j ≤ k, 1 ≤ i ≤ n}, followed by all vertices {w j
i | 1 ≤ j ≤ k, 1 ≤ i ≤ 3}. Again

by Lemma 1, to avoid violations of Property 2 for edges with label 1 there must be
some permutation φ such that v0 and the vertices in the first set are ordered

v0, v
1
φ(1), . . . , v

1
φ(n), v

2
φ(1), . . . , v

2
φ(n), . . . , v

k
φ(1), . . . , v

k
φ(n).

Since there are no violations of Property 2 for blue edges, for all 1 ≤ j ≤ k − 1 we
have that w j

1 , w
j
2 , and w

j
3 are all ordered before w

j+1
1 , w j+1

2 , w j+1
3 . Furthermore, for

a particular j where ti = t j1 , th = t j2 , and t� = t j3 , it must be that the partial order

induced on v
j
i , v

j
h , and v

j
� is also induced onw

j
1 ,w

j
2 , andw

j
3 . Additionally, for there to

be no violations of Property 2, v j
h (and hence w

j
2) must lie between v

j
i and v

j
� (w j

1 , w
j
3

resp.). This implies that the ordering φ satisfies the constraint (t j1 , t j2 , t j3) in C when

123

792 Algorithmica (2022) 84:784–814

φ is applied to T . Since this is true for all constraints in C , φ provides a solution to
the Betweenness problem. ��
Theorem 1 then follows directly from Lemma 2.

2.3 NP-Completeness ofWheeler Graph Recognition on d-NFAs

Now we restrict the number of edges with the same label that can leave a single
vertex. We adopt the terminology used by Alanko et al., and consider the problem
of recognizing whether a d-NFA is also a Wheeler graph [2]. A d-NFA is defined as
follows:

Definition 2 A d-NFAG is anNFAwhere the number of edgeswith the same character
leaving a vertex is at most d. We refer to the value d as the non-determinism of G.

Here an NFA contains a single start state, from which we assume each vertex is
reachable.

The results in this section are in contrast to the recent work of Alanko et al.,
who showed that it can be recognized in polynomial time whether a 2-NFA is a
Wheeler graph [2]. Their result, coupled with the observation that the reduction in
Sect. 2 requires a n�(1)-NFA, suggests an interesting question about what role non-
determinism plays in the tractability of Wheeler graph recognition. To this end, we
prove Theorem 2.

Theorem 2 The Wheeler Graph Recognition Problem is NP-complete for d-NFAs,
d ≥ 5.

The strategy of the proof will be to reduce the NP-complete problem 4-NAESAT to
Wheeler Graph Recognition. In 4-NAESAT each clause is of length 4, and an instance
is satisfiable iff there exists a truth assignment such that each clause contains both
a true literal and a false literal. We start with 4-NAESAT to obtain a 3-NAESAT
instance. The reduction is folklore knowledge, but we include it for completeness and
to highlight a desired property.

Lemma 3 An instance ψ of 4-NAESAT can be reduced in polynomial-time to an
instanceψ ′ of 3-NAESATwhere a variable occurring in themiddle of a clause appears
at most twice in ψ ′.

Proof Convert the 4-NAESAT instance ψ to a 3-NAESAT instance ψ ′ by converting
each clause (ak, bk, ck, dk) into the clauses (ak, wk, bk) and (ck, wk, dk) where wk is
a new variable. One can quickly check that it is always possible to find a satisfying
not-all-equal assignment for both clauses, unless ak = bk = ck = dk . We also note
that the variable used in the middle of the clauses, wk , is used only twice in all of
ψ ′. ��

For convenience, we define the set of 3-NAESAT instances where any variable
occurring in the middle of a clause occurs at most twice in the whole Boolean formula
as 3-NAESAT∗. We next describe the construction of a one source DAG from an
instance of 3-NAESAT∗.

123

Algorithmica (2022) 84:784–814 793

Fig. 4 Vertex Z1 and Z2 could be for clauses (x1, x2, x3), (x2, x3, x4). Each ‘betweenness’ constraint adds
a layer. Layer for constraint (x4, X , x4) is shown

Suppose we are given an instance ψ of 3-NAESAT∗ with variables x1, x2, . . . , xn
and the clauses (ak, bk, ck) where we assume ak , bk , ck can represent either a Boolean
variable or its negation. We create a single source DAG G based on ψ . The first step
creates a menorah like structure which allows for the vertices representing xi and xi
to swap places in G, but otherwise fixes the positions of the vertices. We begin by
adding the vertices which represent the literals, x1, . . . , xn, X , x1, . . . , xn (the role of
X will become clear). We will use the literals to refer to the vertices. Next, we add a
structure to constrain their possible positions (see Fig. 4 for an example).

To create this structure, do as follows:

– Create the vertices s01 , s
0
2 , . . . , s

0
n .

– Create the red (solid) edges (s01 , s
0
2 , 1), (s

0
2 , s

0
3 , 1), . . . (s0n , X , 1).

– For 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − i , create the vertices s ji and s ji .

– For 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − i , create the red (solid) edges (s j−1
i , s ji , 1) and

(s j−1
i , s ji , 1).

– For 1 ≤ i ≤ n, create the red (solid) edges (sn−i
i , xi , 1) and (sn−i

i , xi , 1).

For clause k, denoted as (ak, bk, ck), we add a vertex Zk . Suppose the middle
variable of the clause, bk , is xh (positive or negated), then we add the vertices z jk for
1 ≤ j ≤ n − h, and red edges (s0h , z

1
k , 1), (z

1
k , z

2
k , 1) . . . (zn−h

k , Zk, 1).
Now we wish to add a set of betweenness type constraints on any proper ordering

given of the vertices L0 = {x1, . . . , xn, X , xn, . . . , x1, Z1, Z2, . . .}. We first add a

layer of new vertices L1 = {x11 , . . . , x1n , X1, x1n , . . . , x
1
1 , Z

1
1, Z

1
2, . . .} and red (solid)

edges labeled 1 from each vertex in layerL0 to its corresponding vertex inL1. We will
utilize the same gadget that was used in Sect. 2.2. To add a betweenness constraint

123

794 Algorithmica (2022) 84:784–814

Table 1 Possible relative orderings of ak , bk , ck , Zk , X subject to constraints (ak , Zk , bk) and (ck , X , Zk)

Possible orderings (ak has variable x j and ck has variable xh)
akbkck j < h h < j

FFT ck . . . X . . . bk , Zk . . . ak ck . . . X . . . bk , Zk . . . ak
FT F bk , Zk . . . X . . . ck . . . ak bk , Zk . . . X . . . ak . . . ck

T FF ak . . . bk , Zk . . . X . . . bk . . . ck ak . . . bk , Zk . . . X . . . bk . . . ck

FT T ck . . . bk . . . X . . . bk , Zk . . . ak ck . . . bk . . . X . . . bk , Zk . . . ak
T FT ak . . . ck . . . X . . . Zk , bk ck . . . ak . . . X . . . Zk , bk
T T F ak . . . Zk , bk . . . X . . . ck ak . . . Zk , bk . . . X . . . ck

(y1, y2, y3) to arbitrary vertices y1, y2, y3 in L1, we add the vertices w1
1, w1

2, and
w1
3 and the blue (dashed) edges (y1, w1

1, 2), (y1, w
1
2, 2), (y2, w

1
2, 2), (y3, w

1
3, 2), and

(y3, w1
2, 2). Additional betweenness constraints can be similarly enforced by adding a

new layerL2 on top ofL1 with a newgadget.Using this technique of adding a new layer
for every new betweenness constraint, we next add the constraints (ak, Zk, bk) and
(ck, X , Zk) for every clause (ak, bk, ck) and the constraints (xi , X , xi) for 1 ≤ i ≤ n.

Before proving the correctness of the reduction, we make the observation that
because any variable occurring in the middle of a clause occurs at most twice in the
whole Boolean formula, the maximum number of edges leaving a vertex s0i is bounded
by 3 + 2 = 5. All of the other vertices have at most three edges with the same label
leaving them.

Lemma 4 The leveled graphG constructed as above froman instanceψ of 3-NAESAT∗
is a Wheeler graph iff ψ is satisfiable.

Proof Given a truth assignment that satisfies the 3-NAESAT∗ instance ψ , put the
vertices in L0 whose literals are assigned the value T (true) on the left side of X
(as in Fig. 4), and the vertices whose literals are assigned F (false) on the right side
of X . For example, if x1 = T and x2 = F , the two left-most vertices on level L0

would be x1 followed by x2. For all of the possible not-all-equal arrangements of
the literals for ak , bk , and ck , relative to X , we will always be able to find a place
in the ordering for Zk that respects the betweenness constraints. For instance, if the
variable for bk is xh , this is possible because Zk is able to ‘freely pivot’ around the
vertex sh in the spine of the menorah structure and find the betweenness-constraint-
respecting position immediately to the left or right of xh or xh . This can be confirmed
by examining all possible cases, as is shown in Table 1. For clause (ak, bk, ck), Table
1 shows all possible not-all-equal truth assignments, and the corresponding relative
orderings of L0 we can apply to the vertices that satisfy the Wheeler graph properties.

In the other direction, assume G is a Wheeler graph so we have a proper ordering
on the vertices of G. The proper ordering of the menorah structure is fixed with
the exception of z ji vertices, the ordering duplicated across layers L0,L1, We
will show that in a proper ordering of the vertices, the ordering given to L0 must have
every clause inψ getting a not-all-equal assignmentwhenwe apply the followingmap:
vertices for a non-negated literal on the left of X inL0 map back to a T assignment for

123

Algorithmica (2022) 84:784–814 795

Table 2 Orderings implied by all-equal assignment

Impossible orderings (ak has variable x j and ck has variable xh)
akbkck j < h h < j

T T T ak . . . bk . . . ck . . . X ck . . . bk . . . ak . . . X

FFF X . . . ck . . . bk . . . ak X . . . ak . . . bk . . . ck

These make it impossible to satisfy all constraints

that variable, and vertices for a non-negated literal to the right of X in L0 map back
to an F assignment for that variable.

Suppose to the contrary that this mapping did not provide a valid not-all-equal
assignment. Then L0 was given an ordering where the vertices for ak, bk , and ck are
all either on the left or the right side of X . The possible arrangements for this are
presented in Table 2. In contrast to the cases listed in Table 1, for all cases listed in
Table 2, placing Zk between ak and bk violates the constraint (ck, X , Zk), which by
our reduction implies it violates Wheeler graph Property 2 as well. This contradicts
the assumption that we have a proper ordering on the vertices. We conclude that a
proper ordering of the vertices of G must map back to a truth assignment that gives
each clause in ψ a not-all-equal assignment. ��

This leaves open the complexity of the recognition problem for 3-NFAs and 4-
NFAs.

3 Wheeler Graphs and Queue Number

3.1 Queue Number

The concept of queue number and queue layout were introduced by Heath and Rosen-
berg, originally for undirected graphs in [28], and later expanded to DAGs in [27]. We
describe it first for DAGs. Let the vertices of a DAG G be given a total ordering that is
also a topological ordering. We will say the edges of G can be processed using a set of
queues if we can iterate through the vertices in the given ordering and every time the
tail of an edge is encountered that edge is enqueued in one of the queues, and when the
head of that same edge is encountered, that edge is then dequeued from its assigned
queue. If we assign every edge a color according to its queue, this is equivalent to
the ordering not creating any monochromatic rainbows like those in the left of Fig. 2.
Over all possible orderings of the vertices, there is some ordering which requires the
minimum number of queues to perform this processing. That minimum number of
queues is called the queue number of G. For undirected graphs, when processing the
edges we make an edge enqueued the first time either of the vertices it is incident to
is encountered, and dequeued when the other vertex it is incident to is encountered.
Again, the minimum number of queues required to do this over all possible vertex
orderings is the queue number of the graph. Figure5 provides an illustration of the
edges of an undirected graph being processed in this way. The problem of detecting
whether a graph is a one-queue DAGwas shown to be solvable in linear time by Heath

123

796 Algorithmica (2022) 84:784–814

Fig. 5 (Top)AWheeler graphwith an alphabet of size three. (Middle) The samegraphwith edge orientations
removed. (Bottom) Processing of edges with three queues. A Wheeler graph with an alphabet of size three
is guaranteed to have queue number at most three. Note the undirected graph actually has queue number
less than three, which can be seen by coloring the two green (dotted) edges red (solid) (Color figure online)

123

Algorithmica (2022) 84:784–814 797

and Pemmaraju [26–28]. Using a few additional steps, we can extend their techniques
to a specific subset of Wheeler graphs.

Theorem 3 The Wheeler graph recognition problem can be solved in linear time for
an edge alphabet of size σ = 1 on graphs without self-loops.

Proof When σ = 1 and the graph has no self-loops, any proper Wheeler order-
ing is a topological ordering. The problem of finding a one-queue ordering and a
properWheeler ordering are almost equivalent. The only difference is that for a proper
Wheeler ordering all of the vertices with in-degree zero must be placed first. To over-
come this, we first let V0 ⊆ V represent all vertices in V with in-degree zero. Create a
new vertex u with in-degree zero and add an edge from u to each vertex in V0. Since
a valid one-queue ordering is a topological ordering, v0 must be first in the one-queue
ordering. Moreover, any vertices in the set V − V0 must be in the one-queue ordering
after the last position given to a vertex in V0, otherwise a rainbow is created. Thus,
the above modification ensures that one-queue orderings on V place the vertices in V0
before any vertices in V − V0, so these orders are also proper Wheeler orderings. ��

We can use additional results on the queue number of undirected simple graphs to
obtain an upper bound on the number of edges that can be in a Wheeler graph. The
queue number of the underlying undirected graph of a Wheeler graph with alphabet
size σ , is at most σ . This is since, when edge orientations are removed, the absence
of monochromatic rainbows enforced by the properties of Wheeler graphs is exactly
what is required for processing edges having the same color using a single queue. See
Fig. 5. As a result, we get the bound presented in Theorem 4.

Theorem 4 The number of edges in aWheeler graph is at most (2σ +1)n−σ(2σ +1).

Proof The number of edges in a undirected graph with queue number at most q is
bound by 2qn−q(2q+1) [15]. By removing self edges and the edge orientations, the
Wheeler graph becomes an undirected graph with queue number at most σ . Finally,
there are at most n additional edges added due to self-loops. ��

4 An Exponential Time Algorithm

We can apply the encoding introduced by Gagie et al. [20] to develop exponential
time algorithms to solve all of the problems presented in this paper. The idea is to
enumerate over all possible encodings of Wheeler graphs with the proper number
of vertices, edges, and labels, checking whether the encoding is isomorphic with the
given graph. This idea exploits the fact that having such a space-efficient encoding also
implies having a limited search space of Wheeler graphs, and that graph isomorphism
can be checked in sub-exponential time. We have the following theorem.

Theorem 5 Recognizing whether G = (V , E) is a Wheeler graph can be done in time
2e log σ+O(n+e), where n = |V |, e = |E |, and σ is the size of the edge label alphabet.

Before describing the algorithm that proves Theorem 5, we need to describe the
encoding of a Wheeler graph given in [20]. A Wheeler graph can be completely

123

798 Algorithmica (2022) 84:784–814

specified by three bit vectors; two bit vectors O and I both of length e + n and a
bit vector L of length e log σ . We assume that the vertices of the Wheeler graph G
are listed in a proper ordering x1 <π x2 <π . . . <π xn . The array O is of the form
0�110�21 . . . 0�n1 and I is of the form 0k110k21 . . . 0kn1. Here �i is the out-degree of
xi , whereas ki is the in-degree of xi . The array L indicates which character symbol is
assigned to each edge. Specifically, the i th character in L gives us the label of the edge
corresponding to the i th zero in O . All of these arrays are equipped with additional
rank and select structures to allow for efficient traversal as is done in the FM-index
[18]. In [20] an additional array that stores character counts is added. For our purposes
however, the arrays O , I , and L are adequate.

Algorithm 1 IdentifyWheelerGraph(G)
for all (O, I , L) ∈ S do

if (O, I , L) defines a valid wheeler graph G′ then
convert G to undirected graph α(G)

convert G′ to undirected graph α(G′)
if α(G) and α(G′) are isomorphic then

return ‘YES’
end if

end if
end for
return ‘NO’

Psuedocode for our algorithm is given in Algorithm 1. It essentially enumerates
all bit vectors of a given length, checks whether or not the bit vector encodes a valid
Wheeler graph, and if so, then checks whether the encoding matches our given graph
G. Let S represent the set of all possible encodings we wish to check. Note that |S| ≤
2O(e+n)+e log σ . The Wheeler graph corresponding to an encoding can be extracted by
working from right to left reading the array I . For each zero in I , we know which
symbol should be on the inbound edge going into the corresponding vertex. We only
need to decide where the edge’s tail was. Let a be the edge label and j be the index of
the label a in L that is furthest to the right in L and yet to be used. If no such j exists
we reject the encoding. When assigning the tail for an edge, take as the tail the vertex
xi where i = rank1(O, select0(O, j))+ 1. We call the graph constructed in this way
G ′.

We nowwish to checkwhetherG ′ andG are the same graphs, onlywith a reordering
of the vertices, that is, G ′ is the result of applying an isomorphism to G. Unlike the
typical isomorphism for labeled graphs, where a bijection between the symbols on the
edge alphabet is all that is required, here we wish for the adjacency and the label on the
edge to be preserved in the mapping between G and G ′. Specifically, we wish to know
if there exists a bijective function f : V (G) → V (G ′), such that if u, v ∈ V (G) are
adjacent via an edge (u, v, a) with label a in G, then f (u) and f (v) are also adjacent
via an edge (f (u), f (v), a) with label a in G ′. Using ideas similar to those presented
byMiller in [35], this problem can be reduced in polynomial time to checking whether
two undirected graphs are isomorphic.

123

Algorithmica (2022) 84:784–814 799

Fig. 6 An a-gadget replacing
directed labeled edge (u, v, a)

Lemma 5 Theproblemof checkingwhether the directed edge labeled graphG ′ is edge-
label-preserving isomorphic to G can be reduced in polynomial time to checking if
two undirected graphs are isomorphic.

Proof Define the transformation α from the directed edge labeled graph G to an
undirected graph α(G) as follows: For every directed edge (u, v, a) replace it with
the a-gadget in Fig. 6. We will show that there exists an edge-label-preserving iso-
morphism from V (G) to V (G ′) if and only if there exists a (standard) isomorphism
between α(G) and α(G ′).

We first assume that there exists an edge-label-preserving isomorphism f from
V (G) to V (G ′). This implies that when α is applied to G ′ the same gadget is used
to replace the edge (f (u), f (v), a) as the gadget used to replace the edge (u, v, a) in
G. Therefore, the function f can be naturally extended to an isomorphism f̃ on the
vertices of α(G) providing an isomorphism between α(G) and α(G ′).

Now, consider the case where f̃ is an isomorphism between α(G) and α(G ′). We
wish to show thatG andG ′ must be related by an edge-label-preserving isomorphism.
Let n′ = |V (α(G))|. We define a n′-tuple of numbers for each vertex v ∈ V (α(G)) as
β(v) = (c1, c2, . . . , cn′)where ci is the number of vertices with graph distance i from
v, i.e., minimum path length measured in edges. In Fig. 6, β(x) = (1, 1, . . . , 1, 2, . . .)
where the leading 1’s are repeated a + 1 times. Also, β(y) = (1, 1, . . . , 1, 2, . . .)
where the leading 1’s are repeated σ + 1 times. For example, when σ = 1, we have
β(y) = (1, 1, 2, . . .). Notice first that β(v) = β(f̃ (v)), i.e., β(v) is invariant under
f̃ . Now observe that for any vertex u ∈ V (G) of degree d we have that β(α(u)) =
(d, 2d, . . .) (where α(u) denotes the vertex u is mapped onto when α is applied to G).
It follows that any vertex which is an x vertex of an a-gadget is mapped by f̃ onto an
x vertex of an a-gadget. Similarly, any vertex which is a y vertex of an a-gadget is
mapped by f̃ onto a y vertex of an a-gadget. Hence, a-gadgets are mapped by f̃ onto
a-gadgets. This also implies that vertices in V (α(G)) originally in G are mapped by
f̃ onto vertices in V (α(G ′)) that were originally in V (G ′). If we restrict f̃ to only
the vertices originally in V (G), then this restriction provides us with an edge-label-
preserving isomorphism between G and G ′. The reduction clearly takes polynomial
time. ��

The final step in this algorithm is to check whether α(G) and α(G ′) are isomorphic.

Using well established techniques, this can be done in time 2
√
n′+O(1) where n′ is the

123

800 Algorithmica (2022) 84:784–814

number of vertices inα(G) [5]. The total time complexity ofAlgorithm 1 is the number
of bit strings tested, multiplied by the time it takes to validate whether the bit string
encodes aWheeler graphG ′ and decode it, convertG andG ′ to undirected graphsα(G)

and α(G ′), and test whether α(G) and α(G ′) are isomorphic. This yields an overall
time complexity of |S|nO(1)2

√
n+2e(σ+1)+O(1), i.e., 2e log σ+O(n+e) for Algorithm 1.

5 Optimization Variants of Wheeler Graph Recognition

5.1 TheWheeler GraphViolation Problem is APX-Hard

In this section we show that obtaining an approximate solution to the WGV problem
whose objective value comes within some constant factor of the optimal solution’s
objective value is NP-hard. We do this through a reduction that shows that WGV is
at least as hard as solving the Minimum Feedback Arc Set problem (FAS). FAS in
its original formulation is phrased in terms of a directed graph where the objective
is to find the minimum number of edges that need to be removed in order to make
the directed graph a DAG. A slightly different formulation proves more useful for us.
Letting Fπ = {(vi , v j) ∈ E | v j <π vi }, we have the following:
Lemma 6 (Younger [39]) Determining a minimum feedback arc set for G = (V , E)

is equivalent to finding an ordering <π on V for which |Fπ | is minimized.
From this, we can present an equivalent formulation of FAS.

Definition 3 (MinimumFeedback Arc Set (FAS)) The input is a set T = {t1, t2, . . . , tn}
of n numbers and a set of k inequalities of the form ti < t j . This task is to compute
an ordering <π on T such that the number of inequalities violated is minimized.

Interestingly, we could not have used FAS for proving that the Wheeler graph
recognition problem is NP-complete, as FAS is fixed-parameter tractable in terms of
the size of the feedback arc set [10]. Indeed, setting the size of the feedback arc-set to
zero is equivalent to checking if the given graph is a DAG and the problem becomes
solvable in linear time.

On the other hand, it has been shown that FAS is APX-hard, meaning that every
problem in APX is reducible to it [31]. It also implies, assuming NP �= P, that there
is a constant C ≥ 1 such that there is no polynomial time algorithm which provides a
C-approximation. The reduction provided in this section implies:

Theorem 6 The WGV problem is APX-hard.

In addition, Guruswami et al. demonstrated that assuming the Unique Games Con-
jecture holds, and NP �= P, there is no constant C ≥ 1 such that a polynomial-time
algorithm’s approximate solution to FAS is always a factor C from the optimal solu-
tion. We state this as a lemma.

Lemma 7 (Guruswami et al. [24]) Conditioned on the Unique Games Conjecture, for
every C ≥ 1, it is NP-hard to find a C-approximation to FAS.

An approximation preserving reduction from FAS toWGV, combined with Lemma
7, proves the other main result of this section:

123

Algorithmica (2022) 84:784–814 801

Fig. 7 A heavy(bold) edge in Fig. 8 is actually k + 1 subdivided edges

Theorem 7 Conditioned on the Unique Games Conjecture, for every constant C ≥ 1,
it is NP-hard to find a C-approximation to WGV, implying WGV is not in APX.

5.2 The Reduction from FAS toWGV

Let T = {t1, t2, . . . , tn} and inequalities t11 < t12 , t21 < t22 , . . . , tk1 < tk2 be the input
to FAS. We define a heavy edge between the vertices u and v with label a as k + 1
subdivided edges between u and v each with label a. That is, a heavy edge between u
and v with label a consists of the edges (u, wi , a) and (wi , v, a) for 1 ≤ i ≤ k + 1.
See Fig. 7 for an illustration. Heavy edges are useful to us, as a violation of Property
2 involving two heavy edges will require k + 1 edges to be removed if the ordering is
to be maintained. We use the following steps to create a graph (which is a DAG):

– Create a vertex v0.
– For 1 ≤ j ≤ 2k − 1, 1 ≤ i ≤ n + 1, create vertex v

j
i .

– For each inequality t j1 < t j2 , create a vertex for both t
j
1 and t j2 , labeled w

j
1 and w

j
2 ,

respectively.
– For 1 ≤ i ≤ n + 1, create heavy edges (v0, v

1
i , 1).

– For 1 ≤ i ≤ n + 1, 1 ≤ j ≤ 2k − 2, create heavy edges (v
j
i , v

j+1
i , 1).

– Create heavy edge (v0, w
1
1, 2).

– For 1 ≤ j ≤ 2k − 1,

– if j is odd, create the heavy edge (v
j
n+1, w

j+1
2

2 , 2),

– if j is even, create the heavy edge (v
j
n+1, w

j
2+1
1 , 2).

– For 1 ≤ j ≤ 2k − 1, 1 ≤ i ≤ n,

– if j is odd, create the regular (not heavy) edge:

• (v
j
i , w

j+1
2

1 , 2) if ti = t
j+1
2

1 ,

• (v
j
i , w

j+1
2

2 , 2) if ti = t
j+1
2

2 .

123

802 Algorithmica (2022) 84:784–814

Fig. 8 Reduction from FAS to WGV where T = {1, 2, 3, 4, 5, 6} and the inequalities are 5 < 3, 1 < 5,
and 6 < 4

An example of the reduction is given in Fig. 8. The intuition is that the vertices with
an inbound heavy edge labeled 1 represent the permutation of the elements in T . The
heavy edges labeled 1 force the permutation to be duplicated k times, once for each
constraint. The vertices with the inbound edges labeled 2 represent the elements in
each inequality. We will show that this is an approximation preserving reduction.

Let E ′ be an optimal solution to WGV and G ′ = (V , E\E ′). Let <π represent a
proper ordering on the vertices of G ′. Lemma 8 indicates that, other than permuting

123

Algorithmica (2022) 84:784–814 803

the ordering found on the vertices v
j
i for 1 ≤ i ≤ n (with the ordering duplicated for

1 ≤ j ≤ 2k − 1), the ordering for the vertices in Fig. 8 is fixed.

Lemma 8 Let φ represent a permutation of the set {1, 2, . . . , n+1}. Any ordering<π

which provides a solution to the constructed instance of WGV with at most k edges
violating the Wheeler graph properties orders the vertices in the form

v0, v
1
φ(1), v

1
φ(2), . . . v

1
φ(n+1), . . . v

2k−1
φ(1) , v2k−1

φ(2) , . . . v2k−1
φ(n+1), w

1
1, w

1
2, w

2
1, w

2
2, . . . w

k
1, w

k
2 .

Proof The ordering given from the statement of the lemma would require at most k
edges to be removed to satisfy theWheeler graph properties, so we know that |E ′| ≤ k.
If any of the w vertices is placed before a v vertex, that would cause at least k + 1
edges to need to be removed, and is hence sub-optimal. Similarly, v0 must be placed
first in the ordering.

Again by Lemma 1, if the v vertices are not ordered in the form

v0, v
1
φ(1), v

1
φ(2), . . . , v

1
φ(n+1), . . . ,

v2k−1
φ(1) , v2k−1

φ(2) , . . . , v2k−1
φ(n+1),

this will cause a violation of Property 2. However, since these are now heavy edges,
this will require at least k + 1 edges to be removed in order to satisfy the Wheeler
graph properties.

For the w vertices, the vertex w1
1 must be ordered before w1

2, else the heavy edges
(v0, w

1
1, 2) and (v1n+1, w

1
2, 2) would cause the removal of at least k + 1 edges to be

necessary.Thevertexw1
2 must beorderedbeforew2

1, else the heavy edges (v
1
n+1, w

1
2, 2)

and (v2n+1, w
2
1, 2)would cause the removal of at least k+1 edges to be necessary. This

argument can be repeated until wk
1 and wk

2, proving that the ordering has the desired
form. ��

Let f (x) refer to the reduction described above applied to an instance x of FAS.
Hence, f (x) is an instance of WGV. We also refer to the optimal solution to either of
these problems as OPT(·), and the objective value (or cost) of a solution as val(·). For
FAS, val(·) is the number of violated inequalities. For WGV, val(·) is the minimum
number of edges that need to be removed to obtain aWheeler graph when the ordering
given by the solution is applied.

Lemma 9 Given an instance x of FAS, a solution y′ to the instance f (x) of WGV that
has val(y′) = � ≤ k yields a solution to x with � violated inequalities.

Proof By Lemma 8, we can assume the ordering of the vertices given by y′ is of
the form stated in Lemma 8, and is completely determined by the ordering given to
v11, v

1
2, . . . , v

1
n, v

1
n+1. Ignore the vertex v1n+1 and apply the remaining ordering to T .

Any edge that has to be removed is one of the two edges in a pair (v
j
i1
, w

j+1
2

1 , 2) and

(v
j
i2
, w

j+1
2

2 , 2), where ti1 = t j1 and ti2 = t j2 for a constraint (t j1 , t j2). Since w
j
1 <π w

j
2 ,

this removal is only necessary if v
j
i2

<π v
j
i1
. Hence, if one these edges must be

123

804 Algorithmica (2022) 84:784–814

removed, it implies that in our solution to x , ti2 < ti1 , and our solution does not

satisfy the inequality t j1 < t j2 . On the other hand, if Property 2 holds for the edges

(v
j
i1
, w

j+1
2

1 , 2) and (v
j
i2
, w

j+1
2

2 , 2), then in our solution for x , ti1 < ti2 , and the inequality

t j1 < t j2 is satisfied. ��
The next lemma is an immediate consequence of Lemma 9.

Lemma 10 Given an instance x of FAS, a C-approximation to the solution OPT(f (x))
yields a C-approximation to the solution OPT(x).

Theorem 6 follows from Lemma 10 and Theorem 7 follows from Lemmas 7 and10.

5.3 TheWheeler Subgraph Problem is in APX

The dual problem to WGV is the problem of finding the largest subgraph of G =
(V , E) which is a Wheeler graph. This problem (defined in Sect. 1.2) is called the
Wheeler Subgraph problem, abbreviated WS. Unlike WGV, this problem yields a
�(1)-approximate solution for constant σ .

We first prove the result for σ = 1.We then apply this result to get an approximation
for σ > 1. The proof for σ = 1 uses a branching of a directed graph. A branching is a
set of arborescences, where an arborescence is a directed, rooted tree with all maximal
paths starting at the root.

Lemma 11 There exists a linear time�(1)-approximation algorithm for WS when the
alphabet size is σ = 1.

Proof We consider G to be at least weakly connected. In the case where G is not
weakly connected, the approximate solutions can be combined to obtain a solution
for G with a �(1)-approximation factor. First, remove all singleton vertices (vertices
with in-degree and out-degree zero), and let n′ be the number of remaining vertices.
By doing this we know that the number of edges in the remaining graph is at least
n′ − 1. Next, remove any edges that are self-loops. Let G ′ denote the resulting graph
and V+ denote the set of vertices with out-degree greater than zero in G ′. There are
two cases:

Case: |V+| ≤ n′/2: In this case, take a branching F such that each vertex with
in-degree greater than zero is included in some arborescence whose root is in V+.
This is always possible, as can be shown using induction on the number of vertices
not in V+. In particular, if you take a vertex u not in V+, since there are no singleton
vertices, u has in-degree greater than zero. Applying the inductive hypothesis to the
graph G ′ − {u}, you get that u has some edge from a vertex in G ′ − {u}, which can be
used to add u to an arborescence whose root is in V+. Let |F | denote the total number
of arborescences in F . Since |V+| ≤ n′/2, it follows that |F | ≤ n′/2 as well.

We create a planar leveling (L0, L1, . . .) ofF by aligning all roots of the branching
on level L0 in an arbitrary order. Then set Li to be all of the vertices that are distance
i from some root in L0. Because these are trees, we can order the vertices within the
levels in such a way that the leveling is planar. For our purposes, we say the levels
increase from left to right. We claim that F is a Wheeler graph and that we can obtain

123

Algorithmica (2022) 84:784–814 805

a proper ordering <π for the vertices of F from this leveling. To obtain the proper
ordering, start with L0 and read the order of the vertices on each level from the bottom
to the top, then proceed right to the next level.

The number of edges inF , denoted e(F), is equal to n′−|F |. And since |F | ≤ n′/2,
we have that e(F) ≥ n′/2. At the same time, by Theorem 4, the optimal number of
edges, denoted |E∗| (including the O(n′) self-loops we removed earlier) is O(n′).
Hence, the ratio of the optimal solution value over the branching solution value is
bounded by a constant. In particular, |E∗|/e(F) ≤ O(n′)/(n′/2) = O(1). The con-
struction of the branching, the planar leveling, and the extraction of <π , can all be
done in linear time.

Case |V+| > n′/2: Here we first select a vertex u ∈ V+ and take an edge (u, v, 1)
in G ′ to be included in our solution. If u is no longer the tail of any unselected edges,
remove u from V+. If v ∈ V+, we remove from v from V+. We then continue
taking vertices from V+ until it is empty. This creates a graph which is a collection
of stars, and hence a Wheeler graph. Moreover, since every step adds an edge to
our solution and removes at most two vertices from V+, the resulting graph has at
least |V+|/2 > n′/4 edges. This gives us a solution with an approximation ratio of
|E∗|/|V+| < O(n′)/(n′/4) = O(1).

In both cases, we obtain an approximate solution with �(|E∗|) edges. ��
Next, we consider when σ > 1. Suppose G∗ = (V , E∗) is the optimal solution for

G. Then E∗ = E∗
1 ∪ E∗

2 ∪ . . . ∪ E∗
σ where E∗

a = {(u, v, a) ∈ E∗}. Let Ga = (V , Ea)

where Ea = {(u, v, a) ∈ E} and let G ′
a = (V , E ′

a) be the optimal solution for Ga .
Then, since |E∗

a | ≤ |E ′
a | we have

|E∗| =
σ∑

a=1

|E∗
a | ≤ σ · max

a
|E∗

a | ≤ σ · max
a

|E ′
a |.

Applying the result for σ = 1 (Lemma 11), we can approximate maxa |E ′
a | with a

solution having α · maxa |E ′
a | edges for some constant α ≤ 1. Since

α

σ
|E∗| ≤ αmax

a
|E ′

a | ≤ max
a

|E ′
a | ≤ |E∗|,

the solution provides a �(1/σ)-approximation.

Theorem 8 There exists a linear time �(1/σ)-approximation algorithm for WS.

We close this section by noting that the algorithm presented in Sect. 4 also provides
us with an exponential time solution to the two optimization problems considered here
in Sect. 5. The solution is to iterate over all possible subsets of edges in E , take the
corresponding induced subgraph, and apply Algorithm 1 to identify if the induced
subgraph is isomorphic to a Wheeler graph. For both the WGV and WS problems,
the optimal solution is the encoding with the fewest edges removed. The resulting
time complexity is the same as in Theorem 5 with the addition of one e term in the
exponent. We have shown the following:

123

806 Algorithmica (2022) 84:784–814

Theorem 9 TheWGVproblemandWSproblem for an inputG = (V , E)with n = |V |,
e = |E |, and σ the size of the edge label alphabet, can be solved in time 2e log σ+O(n+e).

6 A Class of Graphs with Linear Time Solution for Recognition

As mentioned earlier, it was shown by Alanko et al. [2] that there exists an algorithm
that solves the recognition problem on 2-NFAs in linear time. Their algorithm works
by reducing the recognition problem to a 2-SAT instance, which can then be efficiently
solved. However, this approach fails to generalize for d-NFAs where d > 2. Here we
allow for arbitrary levels of non-determinism, but we place rather stringent conditions
on the graphs so that our techniques will work. It is also important to note that the
motivation of pattern matching on graphs is not particularly well suited for this class of
graphs (one of themainmotivations of thework ofAlanko et al.).Wewill see that these
graphs can be easily converted into equivalent (from the pattern matching perspective)
DFAs, which are trees, and hence Wheeler graphs. Instead, we take the viewpoint
that these are ordering problems, where the edges in conjunction with Properties 1
and 2 form constraints, and the vertices need to be ordered in a way as to satisfy
these constraints. The below characteristics make this ordering problem solvable in
polynomial time.

We let V0 denote the set of vertices with in-degree zero. We require that the graph
G must have at least one vertex with in-degree zero, making V0 non-empty. We also
insist that all vertices in G must be reachable from some vertex in V0. The following
definitions describe the additional characteristics we require in order for our algorithm
to work.

Definition 4 We consider a graph G to have full-spectrum-outputs if for every vertex
v of out-degree greater than zero, every label appears on an edge leaving from v.

Definition 5 A graph G has the unique-string-traversal property if for every vertex
v, all walks from V0 to v form the same string when the walk’s edge labels are
concatenated.

Definition 6 A graph G is prefix-free if for every vertex v having out-degree zero, the
string obtained by concatenating edge labels when traversing from V0 to v is not a
proper prefix of any string obtained by concatenating edge labels on a walk from V0.

As a consequence of the unique-string-traversal property and all vertices being
reachable from V0, the graph G must also be a DAG. Indeed, a cyclic graph would
have a least one vertex v such that walks of different lengths start in V0 and end at v.

In Fig. 9 we see a simple example of two graphs that satisfy all of the stated con-
ditions, however one is a Wheeler graph and the other is not. Furthermore, it can be
seen from the reductions used in Sect. 2.2 that even when the input graphs satisfy the
unique-string-traversal property and are prefix-free, the recognition problem remains
NP-hard. We leave open whether the problem is NP-hard when restricted to instances
that have full-spectrum-outputs and do not have the unique-string-traversal property
and are not prefix-free.

123

Algorithmica (2022) 84:784–814 807

Fig. 9 On the left is an example of a small graph that has full-spectrum-outputs and the unique-string-
traversal property, but is not a Wheeler graph. On the right is an example of a small graph that has all three
properties and is a Wheeler graph

Fig. 10 Here p-nodes are
represented by circles and
q-nodes by rectangles. In this
PQ-Tree the order on the leaves
1, 2, 3 can be reversed to 3, 2, 1,
the leaves 4, 5, 6 can be
permuted arbitrarily, and the
order of the sets of leaves
{1, 2, 3} and {4, 5, 6}, can be
swapped

The stated conditions make the recognition problem tractable through the use of
techniques similar to those used to detect leveled-planar DAGs. Before presenting our
solution, we introduce an essential data structure, and the process by which it is used
to detect whether a DAG is leveled-planar.

6.1 PQ-Trees

PQ-trees were introduced by Booth and Lueker for the purpose of solving the con-
secutive ones problem [7] and have since found applications in a wide range of
problems, including planarity detection, detecting interval graphs, and graph embed-
ding [7,11,25,30,32]. PQ-trees represent a set of possible orderings of the leaves which
are subject to certain constraints. These constraints specify that some subset of the
leaves must be contiguous in the ordering. The trees are made up of three types of
nodes, p-nodes, q-nodes, and leaves. The p-nodes allow for arbitrary permutations of
their child nodes, whereas q-nodes only allow for the reversal of the ordering on their

123

808 Algorithmica (2022) 84:784–814

child nodes. The leaves represent the actual elements whose ordering we are interested
in. See Fig. 10 for an example.

A universal PQ-tree is a p-node, v, where all of the leaves are v’s children. The
ε-tree, Tε is a special tree which represents the empty set of orderings. We can take
the intersection of two PQ-trees in time proportional to the sum of their two tree sizes
[7]. The resulting PQ-tree represents the intersection of the orderings represented by
each PQ-tree. Deletion of a leaf can be done in constant time.

6.2 Detecting Leveled-Planar DAGs

Detecting whether a DAG is leveled-planar is an important sub-step in determining
whether a graph is a one-queue DAG [26,27]. A DAG, G = (V , E), is leveled-planar
if and only if it has a leveling (a partition of V into sets V1, V2,…, V� where edges
exists only from Vi to Vi+1, 1 ≤ i ≤ � − 1), and there exists an ordering of vertices
for each level that when combined provide a planar layout of G. An algorithm for
determining if a DAG is leveled-planar is given in [27]. We describe the most relevant
portions of this algorithm below.

The restrictions we place on our recognition problem allow for a simplified version
of their algorithm that only works when every vertex is reachable from the first level
of the leveling. We start with a leveling V1,…, V� of G. The idea is to process the
leveling from left-to-right. For 1 ≤ i ≤ �, we will build a PQ-tree Ti whose leaves
represent the vertices in Vi . The PQ-tree Ti captures all possible orderings of vertices
in Vi that still permit a leveled-planar layout of the subgraph induced by V1,…, Vi .
To start, we make T1 the universal PQ-tree whose leaves represent the vertices in V1.
For i > 1, we construct the tree Ti based on the PQ-tree Ti−1 and the edges between
Vi−1 and Vi .

The key to being able to do this is the IDENTIFY operation, whose implementation
can be found in [27]. The IDENTIFY operation takes four arguments: a PQ-tree T ,
two leaves x and y in T , and a new leaf z. IDENTIFY transforms T into a new PQ-tree,
T ′, that contains z and does not contain the leaves x and y. The PQ-tree T ′ represents
the subset of the permutations represented by T where x and y are adjacent. For these
permutations the leaves are modified so that x and y are now a single leaf z. If no such
permutations exist, T ′ is made into the ε-tree.

Equipped with the IDENTIFY operation, we can next describe how to obtain Ti
from Ti−1. The PQ-tree Ti for level Vi is obtained from the PQ-tree Ti−1 for level Vi−1
as follows: Start by making Ti identical to Ti−1. For a vertex u ∈ Vi−1, if u has no out
neighbors then u is deleted. If a vertex u ∈ Vi−1 has only a single neighbor v ∈ Vi ,
then replace u with a new leaf v[u]. If u has out neighbors v1,…, vi , then u is made
into a p-node with children v1[u],…, vi [u]. This is repeated for all u ∈ Vi−1. Then for
a fixed v, all nodes of the form v[·] are merged into a single node using the IDENTIFY
operation. If at any point the ε-tree is returned, we stop and declare that the graph is
not leveled-planar. A technical detail is that the order in which this operation must be
applied is governed by the ordering of the nodes in Vi within the initial leveling. We
refer the reader to [27] for details. Our algorithm for detecting Wheeler graphs under

123

Algorithmica (2022) 84:784–814 809

the stated restrictions will build on this algorithm. For convenience, we will call the
combined steps that create Ti from Ti−1 pushing.

6.3 Linear Time Solution

The basic approach to solving this problem is to use a depth-first search, treating sets of
vertices as a single vertex. These vertex sets will have PQ-trees pushed across them in
a similar fashion as was done in the solution described above. The situation is slightly
more complicated here as we have multiple edge types. This results in a tree structure,
rather than a path of vertex sets. We will label the vertices representing vertex sets
with capital letters and label the PQ-tree for a vertex set W ⊆ V as TW .

We split the algorithm into two parts. The first part is to create a tree where vertex
sets play the role of vertices. It is a depth-first search using the edges between neigh-
borhoods as connecting edges. The pseudocode is given in Algorithm 2. Let Na(W)

denote the set of neighbors of the set W connected by an edge with label a. The
function createVertex takes a set of vertices and creates a new instance of a vertex
class that can maintain pointers to its parent, children, internal vertices, and a string.
Lemma 12 can be proven by applying induction to the number of edge labels, σ .

Algorithm 2 CreateNeighborhoodGraph
Require: Vertex set W with adjacency information
1: function CreateNeighborhoodGraph(W):
2: for all a ∈ [σ] do
3: if Na(W) �= ∅ then
4: Wa ← createVertex(Na(W))

5: Wa .parent ← W
6: Wa .string ← a ◦ W .string � Concatenate
7: W .children.add(CreateNeighborhoodGraph(Wa))

8: end if
9: end for
10: return W
11: end function

Lemma 12 If the given graph G is a Wheeler graph, in a proper ordering, the vertex
sets obtained as above are ordered by the lexicographical ordering of their strings.

An example of a tree obtained from Algorithm 2 is shown in Fig. 11. The vertex
sets are disjoint due to the unique-string-traversal property. During Algorithm 2, we
can identify if the graph satisfies the unique-string-traversal property by checking that
every vertex in V gets included into exactly one vertex set. The prefix-free property
can be easily checked as well.

Moving forward, the next portion of the algorithm is a recursive procedure that
starts with the set of vertices having in-degree zero. Pseudocode is given in Algorithm
3. Letting V ′ be the vertices processed prior to reaching W , we assume inductively
that the PQ-tree TW represents all orderings of W such that if we fixed any one of
these orderings there still exists a proper ordering of the vertices in V ′. Then, after

123

810 Algorithmica (2022) 84:784–814

Fig. 11 On the right is the tree resulting from Algorithm 2 applied to the Wheeler graph shown on the
left. For the graph on the left, red (solid) edges correspond to edges labeled 1, and blue (dashed) edges
correspond to edges labeled 2. For the tree, an oval in the tree corresponds to a set of vertices in theWheeler
graph. The labels for these vertices are shown inside each oval. For each set of vertices inside an oval, the
strings obtained by concatenating the edge labels on the path from the source is the same. These strings are
shown to the side of each oval within the tree. In the tree, the edge colors indicated which type of edge was
taken at each step along a path to that set

performing the first line of the for-loop, the PQ-tree TW1 represents all orderings of
W1 such that if we fixed any one of these orderings there still exists a proper ordering
of the vertices in V ′ ∪ W . After performing the second line in the for-loop, TW1 now
represents all orderings ofW1 such that if we fixed any one of these orderings there still
exists a proper ordering of the vertices in V ′ ∪ W and vertices that are descendants of
W1. After completing the third line in the loop, TW represents all orderings ofW such
that if we fixed any one of them there still exists a proper ordering of the vertices in
V ′ ∪W1 and any descendants of W1. We repeat this process for each of W ’s children.
When finally returned, TW represents all orderings ofW such that there exists working
orderings on V ′ and all descendants of W . The pseudocode for the whole algorithm
is given in Algorithm 4.

The full-spectrum-output and prefix-free conditions are necessary to apply this
algorithm. We need that every vertex in W maps onto some vertex in each of W ’s
children. Thanks to these properties, when the PQ-tree TWi gets pushed back from a
child Wi and the new PQ-tree TW is created, all the vertices in W are also leaves in
TW , and we can take the intersection with the previous PQ-tree for W .

Algorithm 3 Propagating PQ-Trees
Require: PQ-Tree TW and corresponding vertex set W .
1: function PropagatePQTrees(TW ,W):
2: if W .children = ∅ then
3: return TW
4: end if
5: for all Wi ∈ W .children do
6: TWi ← push(TW ,Wi) � Push PQ-Tree down to child.
7: TWi ← PropagatePQTrees(TWi ,Wi) � Recursively apply to children
8: TW ← TW ∩ push(TWi ,W) � Push PQ-tree up from child and take intersection
9: end for
10: return TW
11: end function

123

Algorithmica (2022) 84:784–814 811

Algorithm 4 Detecting Wheeler graphs
Require: full-spectrum G = (V , E) with unique-string-traversal/prefix-free properties.
1: function DetectWheelerGraph(G):
2: Let V0 denote the set of all in-degree zero vertex in G
3: V0 ← createVertex(V0)
4: V0.string ← “ε′′
5: V0 ← createNeighborhoodGraph(V0)
6: Construct TV0 , the universal tree with leaves V0
7: if propagatePQTrees(TV0 , V0) �= Tε then
8: return ‘YES’
9: else
10: return ‘NO’
11: end if
12: end function

Time Complexity: Each set of edges between two vertex sets has PQ-trees pushed
across it twice. These pushes can be done in time proportional to the number of edges.
In addition, all intersections can be done in time proportional to the number of vertices.
As a result of these two facts, the overall algorithm can be performed in linear time.
We have demonstrated the following:

Theorem 10 It can be determined in linear time if a directed, edge labeled graph that
has full-spectrum-outputs, is prefix-free, and has the unique-string-traversal property,
is a Wheeler graph.

7 Discussion and Open Problems

We have shown that recognizing Wheeler graphs is indeed a hard problem in general.
We have also shown a special case where the recognition problem can be performed
efficiently. The most important directions to expand this research appear to be in
identifying more classes of graphs where this can be done in polynomial time. We can
also ask for improvements on the algorithms presented here. Specifically, we ask:

– Is the Wheeler graph recognition problem NP-complete for 3-NFA and 4-NFA?
– For which other classes of graphs can Wheeler graph recognition be done effi-
ciently?

– Is there a fixed-parameter-tractable exponential time algorithm for any of the hard
problems given in this paper?

– Can we provide a better approximation algorithm for the optimization variants?

Constructive answers to these questions will contribute to our knowledge on finding
vertex orderings “close” to that required for a Wheeler graph. It will aid in our ability
to apply BWT based indices to various structures, as well as our ability to find useful
compressible subgraphs.

Acknowledgements This research is supported in part by the U.S. National Science Foundation under the
Grants CCF-1703489 and CCF-2112643. The first author has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement
No. 690941. We thank Travis Gagie and Nicola Prezza for introducing this problem to us. We also thank

123

812 Algorithmica (2022) 84:784–814

the anonymous reviewers of ESA 2019, where a preliminary version of this paper was published [23]. The
author would also like to acknowledge the BIRDS project (Bioinformatics and Information Retrieval Data
Structures Analysis and Design) and the Workshop on Compression, Text and Algorithms 2018.

Funding: This research is supported in part by the U.S. National Science Foundation under the Grants CCF-
1703489 and CCF-2112643. The first author has received funding from the EuropeanUnion’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 690941.

Declarations

Conflict of interest The authors declare that they have no conflicts/competing interests.

Consent for publication The authors consent for this work to be published in Algorithmica.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Commun. ACM
18(6), 333–340 (1975). https://doi.org/10.1145/360825.360855

2. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Regular languages meet prefix sorting. In: Pro-
ceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5–8, 2020, pp. 911–930 (2020). https://doi.org/10.1137/1.9781611975994.55

3. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Wheeler languages. Inf. Comput. (2021). https://
doi.org/10.1016/j.ic.2021.104820

4. Alanko, J.N.,Gagie, T.,Navarro,G.,Benkner, L.S.: Tunneling onwheeler graphs. In:DataCompression
Conference, DCC 2019, Snowbird, UT, USA, March 26–29, 2019, pp. 122–131 (2019). https://doi.
org/10.1109/DCC.2019.00020

5. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the 15th Annual ACM Sympo-
sium on Theory of Computing, 25–27 April, 1983, Boston, Massachusetts, USA, pp. 171–183 (1983).
https://doi.org/10.1145/800061.808746

6. Belazzougui, D.: Succinct dictionarymatchingwith no slowdown. In: Combinatorial PatternMatching,
21st Annual Symposium, CPM2010,NewYork, NY,USA, June 21–23, 2010. Proceedings, pp. 88–100
(2010). https://doi.org/10.1007/978-3-642-13509-5_9

7. Booth, K.S.: Pq-tree algorithms. Technical report, California University, Livermore (USA). Lawrence
Livermore Laboratory (1975)

8. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de bruijn graphs. In: Algorithms in
Bioinformatics—12th International Workshop, WABI 2012, Ljubljana, Slovenia, September 10–12,
2012. Proceedings, pp. 225–235 (2012). https://doi.org/10.1007/978-3-642-33122-0_18

9. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. SRC Research
Report (1994)

10. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feed-
back vertex set problem. J. ACM 55(5), 21:1-21:19 (2008). https://doi.org/10.1145/1411509.1411511

11. Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding planar graphs using
pq-trees. J. Comput. Syst. Sci. 30(1), 54–76 (1985). https://doi.org/10.1016/0022-0000(85)90004-2

12. Claude, F., Navarro, G., Pereira, A.O.: The wavelet matrix: an efficient wavelet tree for large alphabets.
Inf. Syst. 47, 15–32 (2015). https://doi.org/10.1016/j.is.2014.06.002

13. Cotumaccio,N., Prezza,N.:On indexing and compressingfinite automata. In:D.Marx (ed) Proceedings
of the 2021ACM-SIAMSymposiumonDiscreteAlgorithms, SODA2021,VirtualConference, January
10–13, 2021, pp. 2585–2599. SIAM (2021). https://doi.org/10.1137/1.9781611976465.153

14. De Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen
49(49), 758–764 (1946)

15. Dujmovic, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor. Comput. Sci. 6(2),
339–358 (2004). (http://dmtcs.episciences.org/317)

16. Equi, M., Grossi, R., Mäkinen, V., Tomescu, A.I.: On the complexity of string matching for graphs.
In: C. Baier, I. Chatzigiannakis, P. Flocchini, S. Leonardi (eds) 46th International Colloquium on

123

https://doi.org/10.1145/360825.360855
https://doi.org/10.1137/1.9781611975994.55
https://doi.org/10.1016/j.ic.2021.104820
https://doi.org/10.1016/j.ic.2021.104820
https://doi.org/10.1109/DCC.2019.00020
https://doi.org/10.1109/DCC.2019.00020
https://doi.org/10.1145/800061.808746
https://doi.org/10.1007/978-3-642-13509-5_9
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1016/0022-0000(85)90004-2
https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.1137/1.9781611976465.153
http://dmtcs.episciences.org/317

Algorithmica (2022) 84:784–814 813

Automata, Languages, and Programming, ICALP 2019, July 9–12, 2019, Patras, Greece, LIPIcs, vol.
132, pp. 55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.
4230/LIPIcs.ICALP.2019.55

17. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and indexing labeled trees,
with applications. J. ACM 57(1), 4:1-4:33 (2009). https://doi.org/10.1145/1613676.1613680

18. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581 (2005). https://doi.org/
10.1145/1082036.1082039

19. Ferragina, P., Venturini, R.: The compressed permuterm index. ACM Trans. Algorithms 7(1), 10:1-
10:21 (2010). https://doi.org/10.1145/1868237.1868248

20. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: a framework for bwt-based data structures. Theor.
Comput. Sci. 698, 67–78 (2017). https://doi.org/10.1016/j.tcs.2017.06.016

21. Ganguly, A., Shah, R., Thankachan, S.V.: pbwt: Achieving succinct data structures for parameterized
pattern matching and related problems. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16–19,
pp. 397–407 (2017). https://doi.org/10.1137/1.9781611974782.25

22. Gibney, D., Hoppenworth, G., Thankachan, S.V.: Simple reductions from formula-sat to patternmatch-
ing on labeled graphs and subtree isomorphism. In:H.V. Le,V.King (eds) 4th SymposiumonSimplicity
in Algorithms, SOSA 2021, Virtual Conference, January 11–12, 2021, pp. 232–242. SIAM (2021).
https://doi.org/10.1137/1.9781611976496.26

23. Gibney, D., Thankachan, S.V.: On the hardness and inapproximability of recognizing wheeler
graphs. In: 27th Annual European Symposium on Algorithms, ESA 2019, September 9–11, 2019,
Munich/Garching, Germany, pp. 51:1–51:16 (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.51

24. Guruswami, V., Manokaran, R., Raghavendra, P.: Beating the random ordering is hard: inapproxima-
bility of maximum acyclic subgraph. In: 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2008, October 25–28, 2008, Philadelphia, PA, USA, pp. 573–582 (2008). https://doi.
org/10.1109/FOCS.2008.51

25. Haeupler, B., Tarjan, R.E.: Planarity algorithms via pq-trees (extended abstract). Electr. Not. Discrete
Math. 31, 143–149 (2008). https://doi.org/10.1016/j.endm.2008.06.029

26. Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs: Part II. SIAM J.
Comput. 28(5), 1588–1626 (1999). https://doi.org/10.1137/S0097539795291550

27. Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs: Part I.
SIAM J. Comput. 28(4), 1510–1539 (1999). https://doi.org/10.1137/S0097539795280287

28. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958
(1992). https://doi.org/10.1137/0221055

29. Hon, W., Ku, T., Shah, R., Thankachan, S.V., Vitter, J.S.: Faster compressed dictionary matching.
Theor. Comput. Sci. 475, 113–119 (2013). https://doi.org/10.1016/j.tcs.2012.10.050

30. Jiang, H., Chauve, C., Zhu, B.: Breakpoint distance and pq-trees. In: Combinatorial Pattern Matching,
21st Annual Symposium, CPM 2010, New York, NY, USA, June 21–23, 2010. Proceedings, pp. 112–
124 (2010). https://doi.org/10.1007/978-3-642-13509-5_11

31. Kann, V.: On the approximability of np-complete optimization problems. Ph.d. thesis, Royal Institute
of Technology Stockholm (1992)

32. Landau, G.M., Parida, L., Weimann, O.: Gene proximity analysis across whole genomes via PQ trees1.
J. Comput. Biol. 12(10), 1289–1306 (2005). https://doi.org/10.1089/cmb.2005.12.1289

33. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the burrows wheeler transform
and applications to sequence comparison and data compression. In: Combinatorial Pattern Matching,
16th Annual Symposium, CPM 2005, Jeju Island, Korea, June 19–22, 2005, Proceedings, pp. 178–189
(2005). https://doi.org/10.1007/11496656_16

34. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows–Wheeler transform.
Theor. Comput. Sci. 387(3), 298–312 (2007). https://doi.org/10.1016/j.tcs.2007.07.014

35. Miller, G.L.: Graph isomorphism, general remarks. J. Comput. Syst. Sci. 18(2), 128–142 (1979).
https://doi.org/10.1016/0022-0000(79)90043-6

36. Novak, A.M., Garrison, E., Paten, B.: A graph extension of the positional Burrows–Wheeler transform
and its applications. Algorithms Mol. Biol. 12(1), 18:1-18:12 (2017). https://doi.org/10.1186/s13015-
017-0109-9

37. Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979). https://doi.org/10.1137/
0208008

123

https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1868237.1868248
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.4230/LIPIcs.ESA.2019.51
https://doi.org/10.1109/FOCS.2008.51
https://doi.org/10.1109/FOCS.2008.51
https://doi.org/10.1016/j.endm.2008.06.029
https://doi.org/10.1137/S0097539795291550
https://doi.org/10.1137/S0097539795280287
https://doi.org/10.1137/0221055
https://doi.org/10.1016/j.tcs.2012.10.050
https://doi.org/10.1007/978-3-642-13509-5_11
https://doi.org/10.1089/cmb.2005.12.1289
https://doi.org/10.1007/11496656_16
https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.1016/0022-0000(79)90043-6
https://doi.org/10.1186/s13015-017-0109-9
https://doi.org/10.1186/s13015-017-0109-9
https://doi.org/10.1137/0208008
https://doi.org/10.1137/0208008

814 Algorithmica (2022) 84:784–814

38. Sirén, J., Välimäki, N., Mäkinen, V.: Indexing graphs for path queries with applications in genome
research. IEEE ACM Trans. Comput. Biol. Bioinf. (TCBB) 11(2), 375–388 (2014)

39. Younger, D.: Minimum feedback arc sets for a directed graph. IEEE Trans. Circuit Theory 10(2),
238–245 (1963)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Daniel Gibney1 · Sharma V. Thankachan2

B Daniel Gibney
daniel.j.gibney@gmail.com

Sharma V. Thankachan
sharma.thankachan@ucf.edu

1 School of Computational Science and Engineering, Georgia Institute of Technology, CODA Tech
Square, 756 West Peachtree Street, NW, 12th Fl., Station S1257A, Atlanta, GA 30308, USA

2 Department of Computer Science, University of Central Florida, 4000 Central Florida Blvd.,
Orlando, FL 32816-2362, USA

123

http://orcid.org/0000-0003-1493-5432
http://orcid.org/0000-0002-6852-1035

	On the Complexity of Recognizing Wheeler Graphs
	Abstract
	1 Introduction
	1.1 Wheeler Graphs
	1.2 Problem Definitions
	1.3 Our Contribution

	2 NP-Completeness of Wheeler Graph Recognition
	2.1 The Betweenness Problem
	2.2 Reduction from Betweenness to Wheeler Graph Recognition
	2.3 NP-Completeness of Wheeler Graph Recognition on d-NFAs

	3 Wheeler Graphs and Queue Number
	3.1 Queue Number

	4 An Exponential Time Algorithm
	5 Optimization Variants of Wheeler Graph Recognition
	5.1 The Wheeler Graph Violation Problem is APX-Hard
	5.2 The Reduction from FAS to WGV
	5.3 The Wheeler Subgraph Problem is in APX

	6 A Class of Graphs with Linear Time Solution for Recognition
	6.1 PQ-Trees
	6.2 Detecting Leveled-Planar DAGs
	6.3 Linear Time Solution

	7 Discussion and Open Problems
	Acknowledgements
	References

