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Abstract

Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input
patterns over others, have been shown to be associated with the notion of information filtering and coding
of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an
important player in the generation of temporal filters. We carry out a systematic modeling, analysis and
computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal
filters are generated in response to periodic presynaptic spike trains in the presence STP. We investi-
gate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes,
including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic
connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the inter-
play of a collection of time scales that operate at the single-event level (roughly, during each presynaptic
interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic
events. These time scales are generated at the levels of the presynaptic cell (captured by the presynap-
tic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic
cellular currents. We develop mathematical tools to link the single-event time scales with the time scales
governing the long-term dynamics of the resulting temporal filters for a relatively simple model where
depression and facilitation interact at the level of the synaptic efficacy change. We extend our results
and tools to account for more complex models. These include multiple STP time scales and non-periodic
presynaptic inputs. The results and ideas we develop have implications for the understanding of the gen-
eration of temporal filters in complex networks for which the simple feedforward network we investigate
here is a building block.

1 Introduction

The synaptic communication between neurons involves a multiplicity of interacting time scales and is
affected by a number of factors including short-term plasticity [1-3], primarily involved in information
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filtering, long-term plasticity [4,5], involved in learning and memory [6], homeostatic plasticity [7], involved
in the maintenance of function in the presence of changing environments, neuromodulation [8, 9], and
astrocyte regulation [10, 11], in addition to the temporal properties of the presynaptic spikes, the intrinsic
currents of the postsynaptic neurons and background noise activity.

Short-term plasticity (STP) refers to the increase (synaptic facilitation) or decrease (synaptic de-
pression) of the efficacy of synaptic transmission (strength of the synaptic conductance) in response
to repeated presynaptic spikes with a time scale in the range of hundreds of milliseconds to seconds
[1-3,12,13]. STP is ubiquitous both in invertebrate and vertebrate synapses, and has been shown
to be important for neuronal computation [14-18] and information filtering (temporal and frequency-
dependent) [2, 12, 19-41], and related phenomena such as burst detection [27, 38], temporal coding
and information processing [27, 28, 42—45], gain control [15, 46, 47], information flow [16, 36, 48] given
the presynaptic history-dependent nature of STP, the prolongation of neural responses to transient in-
puts [49-51], the modulation of network responses to external inputs [52, 53], hearing and sound local-
ization [54,55], direction selectivity [56], attractor dynamics [57] (see also [47]), the generation of cortical
up and down states [58], navigation (e.g., place field sensing) [30, 33], vision (e.g., microsacades) [59],
working memory [51,60] and decision making [61].

The notion of information filtering as the result of STP is associated with the concept of temporal
filters [12,22-24] at the synaptic and postsynaptic levels, which are better understood in response to
periodic presynaptic inputs [38,62—64] for a wide enough range of input frequencies. (See the schematic
diagrams in Figs. 1-A and 2-A where x and z describe the evolution over time of synaptic depression and
facilitation, respectively, and their product describes their combined activity.) In spite of the ubiquitousness
of STP and the consequences for information filtering [12, 22, 65], the mechanisms of generation of
postsynaptic temporal filters in response to presynaptic input spikes are not well understood.

One difficulty is that the notion of temporal filters has not been precisely defined. Temporal filters
have been broadly characterized as biological systems that allow certain information carried out by the
presynaptic spike pattern to pass to the postsynaptic neuron with possibly a modification (attenuation or
amplification) in the firing rate, while other information is rejected [22,66]. A systematic mechanistic study
requires a more precise characterization that takes into account the underlying complexity. First, postsy-
naptic temporal filters result from the concatenation of various processes: the structure of the presynaptic
spike patterns, STP, synaptic dynamics and the intrinsic dynamics of the postsynaptic cell resulting from
the intrinsic currents (diagram in Fig. 2). It is not well understood how the time scales associated with
the dynamics of synaptic depression and facilitation interact with the presynaptic spike train time scales
(interspike intervals, ISIs) and the membrane potential time scales to generate the resulting temporal
filters. Second, temporal filters are a transient phenomenon in the time domain, in addition to being
frequency-dependent [12]. Therefore, the steady-state postsynaptic membrane potential profiles (curves
of the postsynaptic membrane potential amplitudes or peaks as a function of the presynaptic input fre-
quency) [38,67,68] does not necessarily capture the system’s filtering properties. (These steady-state
profiles are the natural extensions of the impedance profiles for subthreshold resonance in neurons.)
Third, the STP’s history-dependent properties generate a significant amount of variability in the STP-
mediated temporal patterns due to the multiple possible arrangements of ISls’ durations in non-periodic
presynaptic input patterns.

In this paper, we adopt the use of periodic presynaptic spike patterns as the reference presynaptic
spike trains to define and characterize the various types of temporal filters that emerge and investigate
the mechanisms by which they are generated. This can serve as the reference point for the investigation
of the filtering properties of temporal patterns in response to more complex presynaptic patterns (e.g.,
bursting, Poisson distributed). Periodic presynaptic spike trains have been used by other authors [38,62—
64] to illustrate the emergence of temporal patterns in the presence of STP.

We focus on the feedforward network described in the diagram in Fig. 2, which is the minimal model
that can show postsynaptic membrane potential temporal filters in response to presynaptic spike trains
in the presence of STP. We leave out the postsynaptic firing rate responses. In some cases, they can be
directly derived from the membrane potential responses.



Phenomenological models of synaptic depression and facilitation [21, 43, 62,63, 67—-73] describe the
evolution of two variables that abruptly decrease and increase, respectively, by a certain amount in re-
sponse to each presynaptic spike and relax towards their steady-state values during the presynaptic ISls
(see Fig. 2-A1 for the depression and facilitation variables x and z, respectively). At the arrival of each
presynaptic spike, the synaptic function (S) is updated by an amount AS equal to the appropriate product
of x and z at the arrival time. The cumulative effect of these single-spike events along the sequence of
presynaptic spikes generates temporal patterns in the variables z, z and S (Figs. 1 and 2), which are
transmitted to the postsynaptic cell (diagram in Fig. 2) to produce postsynaptic temporal filters.

The temporal filters for the variables = and z are better captured by the sequences of peak values X,
and Z,, (for the spike index n) (Figs. 1) whose evolution is characterized by the (long-term) time scales
(0dep and os,c) and the steady state values (X and Z) Fig. (2). Because of their monotonic decreasing
(X,) and increasing (Z,,) properties, we refer to them as temporal low-pass (X,,) and high-pass (Z,)
filters, respectively. The synaptic update is the product AS,, = X, Z,, and the corresponding filter can
have a transient peak, which we refer to as a temporal band-pass filter and, as we show, it involves an
additional (long-term) time scale (o 4ep+ rac)- These time scales depend on the single-event time scales
(Tdep @nd 7¢4.) and the presynaptic ISI (A,px) in complex ways. In addition, the phenomenon of sum-
mation in a postsynaptic cell in response to presynaptic inputs may develop an additional (postsynaptic)
high-pass temporal filter (Fig. 2-B), which is independent of the ones described above, and is character-
ized by the (long-term) time scale (0., ) and the steady state value (S). They depend on the membrane
time constant, the synaptic decay time 74.. and the presynaptic A,;. For relatively fast synapses (e.g.,
AMPA), summation is not observed at the synaptic level, but at the postsynaptic level, and depends on
the time scale of the postsynaptic cell (7,,,) and the presynaptic Agpy.

A key idea we develop in this paper is that of the communication of time scales (i) across levels of
organization (presynaptic, STP, synaptic, postsynaptic; Fig. 2) and (ii) from these operating at the single
event level (e.9., Tdep, Tfaes Tdees Tm, QDspi) t0 the (long-term) ones operating at the filter level (e.g.,
Odeps Ofacs Osum)- ThiS notion of communication involves the complex interaction of time scales and
generation of new time scales. We use this framework to organize our mechanistic understanding of the
temporal filtering phenomena. However, we note that while in some cases the time scales can be easily
represented by time constants, in other cases they are more difficult to be precisely characterized.

More specifically, we use biophysically plausible (conductance-based) mathematical modeling and
dynamical systems tools to systematically understand how the postsynaptic low-, high- and band-pass
temporal filters are generated in response to presynaptic spike trains in the presence of STP. Using a
combination of analytical and computational tools, we describe the dependence of the dynamic properties
of these filters, captured by the long-term time scales, on the interplay of the hierarchy of processes,
ranging from the arrival of the presynaptic spike trains, to the activation of STP to the activation of the
synaptic function to the response of the postsynaptic cell (Fig. 2, diagram). In particular we describe how
all this depends on the time scales of the building blocks (Tgep, Tac, Tdee, Tm and the presynaptic Ag,r).
We then extend our results and tools to account for more complex models. These include synaptic
depression and facilitation processes with multiple time scales and non-periodic presynaptic synaptic
inputs.

The conceptual and mathematical framework we introduce to develop these ideas and identify the
contribution of each of the network components to the generation of temporal filters can be extended to
understand the filtering and coding properties of more complex scenarios. These involve more realistic
description of the participating processes at the various levels of organization and the presynaptic input
spike trains (e.g., bursting patterns). Finally, the results and ideas we develop have implications for the
understanding of the generation of temporal filters in complex networks for which the simple feedforward
network we investigate here is a building block.



2 Methods

2.1 Models

2.1.1 Postsynaptic cell: leaky integrate-and-fire model
The current-balance equation for the post-synaptic cell is given by

dv
O% = —gr (V—EL)+Iapp—Isyn+Inoisea (1)

where t is time (ms), V represents the voltage (mV), C is the specific capacitance (uF/cm?), g1, is the
leak conductance (mS/cm?), I, is the tonic (DC) current (uA/cm?)), Ioise = V2 Dn(t) represents
white noise (delta correlated with zero mean), and I, is an excitatory synaptic current of the form

Isyn = Gem S (V - Eem)- (2)

Here G., is the maximal synaptic conductance (mS/cm?), E,, = 0 is the reversal potential for AMPA
excitation, and the synaptic variable .S obeys a kinetic equation of the form
as S

E - _Tdec + AS"n. 5(t - tspk)a (3)

where 74.. (ms) is the decay time of excitation. Each presynaptic spike instantaneously raises S to
some value AS,, which varies depending on the properties of the short-term dynamics (depression
and/or facilitation) and defined below. We refer the reader to [69, 74] for additional details on biophysical
(conductance-based) models.

2.1.2 Presynaptic spike-trains

We model the spiking activity of the presynaptic cell as a spike train with presynaptic spike times ¢y, t2, ..., tN.
We consider two types of input spike-trains: uniformly and Poisson distributed. The former is character-
ized by the interspike interval (ISl) of length A, (or its reciprocal, the spiking frequency fs,x) and the
latter are characterized by the mean spiking rate (or the associated exponential distribution of ISIs).

2.1.3 The DA (Dayan-Abbott) phenomenological model for short-term dynamics: synap-
tic depression and facilitation

This simplified phenomenological model is assembled in the [74] and attributed to Dayan and Abbott,
and Collaborators. It is relatively simpler than the well-known phenomenological MT (Markram-Tsodkys)
model described below [63]. In particular, the depression and facilitation processes are independent
(the updates upon arrival of each presynaptic spike are uncoupled). We use it for its tractability and to
introduce some conceptual ideas.

The magnitude AS of the synaptic release per presynaptic spike is assumed to be the product of the
depressing and facilitating variables

AS =z 2zt (4)
where

dr Too — X
= == - 5(t — tepi), 5
dt Tdep aq T ( Pk) ( )

and



dz 2o — 2
i o +ar(l—2)6(t—tspr)- (6)

Each time a presynaptic spike arrives (t = t,), the depressing variable x is decreased by an amount
aq z (the release probability is reduced) and the facilitating variable z is increased by an amount ay (1—2)
(the release probability is augmented). During the presynaptic interspike intervals (ISls) both = and =
decay exponentially to their saturation values z., and z,, respectively. The rate at which this occurs
is controlled by the parameters 74, and 7tq.. Following others we use zo = 1 and z,. = 0. The
superscripts “+" in the variables = and z indicate that the update is carried out by taking the values of
these variables prior (7) or after (*) the arrival of the presynaptic spike.

Fig. 1-A1 illustrates the -, z- and M = xz-traces (curves of z, z and M as a function of time) in
response to a periodic presynaptic input train for representative parameter values. (Note that M = z =
is defined for all values of ¢, while AS = x~ 2% is used for the update of S after the arrival of spikes and
AS, = X, Z, is the sequence of peaks.)

2.1.4 DA model in response to presynaptic inputs

Peak dynamics and temporal filters

By solving the differential equations (5)-(6) during the presynaptic ISIs and appropriately updating the
solutions at t = t,, (occurrence of each presynaptic spike), one arrives at the following recurrent formula
for the peak sequences in terms of the model parameters

Xn+1 = Tso + [(1 — ad)Xn — Zoo ] e_ASPk,n/Tdep (7)

and

Zn+1 =ar + (1 - af) [ZOO + (Zn - Zoo)eiASPkV"/TfaC ] (8)

where {Aspk,n}ﬁ[jﬁ’k represents the lengths of the presynaptic ISls.

Fig. 1-A2 illustrates the peak envelopes (curves joining the peak sequences for X,,, Z,, and AS,, =
X, Z,, circles) for the parameter values in Fig. 1-A1. These are sequences indexed by the input spike
number, which we calculate analytically below. As expected, X,, is a decreasing sequence (temporal
low-pass filter) and Z,, is an increasing sequence (temporal high-pass filter). Their product (computed so
that the peak of the product is the product of the peaks) exhibits a transient peak (temporal band-pass

filter).

Steady-state frequency-dependent filters

For periodic inputs, Ay is independent of n (A,,;) and egs. (7)-(8) are linear 1D difference equations.
Therefore both the sequences X and Z obey linear discrete dynamics (e.g., see [75]), decaying to their
steady state values

(1 _ e_Aspk/Tdep )xoo
1 — (1 — ag) e~ Berk/Tacp

X =
and

5 (1_e—Aspk/‘rfac)(l—af)zoo—i—af (10)
1— (1 —ajf)e Bspr/Trac

as shown in Figs. 1 -B and -C (red and green).
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Figure 1: Short-term depression and facilitation and the generation of temporal filters in response to periodic presynaptic
inputs. A1l. z-, z- and M-traces (curves of x, z and M = zz as a function of t). A2. Circles: X,-, Z,- and AS,, = X, Z,- peak
sequence computed using (7)-(8). Solid curves: join the X,,-, Z,- and AS,, = X,, Z,- envelope peak sequences computed using
the caricature (descriptive) model (31)-(34). The values of the envelope peaks decay constants are oq ~ 91.5 and oy ~ 26.4.
We used the simplified model (4)-(6) and the following parameter values: T4ep = 400, Tfac = 50, aqg = 0.1, a5y = 0.2, oo = 1,
Zeo = 0, fspr = 80 Hz (presynaptic input frequency). B. Depression- and facilitation-dominated peak sequences. B1. Depression-
dominated temporal filter regime. B2. Facilitation-dominated temporal filter regime. We used the simplified model (4)-(6) and
the following parameter values: 74e, = 200 (B1), T4ep = 40 (B2), Tfac = 10 (B1), Tfac = 200 (B2), aq = 0.1, ay = 0.1,
Too = 1, 200 = 0, fspr = 50 Hz. C. Input frequency-dependent temporal filters. C1. High-pass temporal filter for low spiking input
frequencies (fspr = 20). C2. Band-pass temporal filter for higher spiking input frequencies (fspx = 100). We used the simplified
model (4)-(6) and the following parameter values: T4ep = 200, Tfoc = 200, ag = 0.1, ay = 0.2, Too = 1, 200 = 0.
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Figure 2: Single event and temporal filters’ time scales and other attributes in response to presynaptic spike trains in
the presence of synaptic depression (x) and facilitation (z). The presynaptic cell is modeled as a periodic spike train with
period A,,. The postsynaptic cell is modeled as a passive cell (capacitive and leak currents) with a membrane time constant 7,,.
The excitatory synaptic function S raises and decays with time constants 7,s. and 7., respectively. The synaptic depression and
facilitations are 74¢p, and Tyqc, respectively. A. Depression and facilitation. A1. Single events. At the arrival of each presynaptic
spike (black dots), the depression (x) and facilitation (z) variables decrease and increase, respectively. In the models we use in this
paper, they are discretely updated. They decay towards their (single event) steady-states (zro« = 1 and z.. = 0) with the (single
event) time scales 74, and 74, respectively. A2, A3. Temporal patterns (filters) generated by presynaptic spike trains with different
ISIs Aspr (or frequencies fspr) and the dynamics of the single events (controlled by 4., and 7f..). Depression and facilitation
always give rise to low- (red) and high- (green) pass filters respectively. Their product can be a depression-dominated (low-pass)
filter, facilitation-dominated (high-pass) filter (A2), or a band-pass filter (A3). The (emergent, long term) filter time scales cuep, 0 fac
and ggep+ fac depend on the interplay of 74ep, Trac and Aspk. The temporal filter steady-states are captured by the peak sequence
steady-states X, Z and AS = XZ. B. Synaptic dynamics. B1. Single events. At the arrival of each presynaptic spike (black
dots) the synaptic variable S increases instantaneously (7-se = 0) and then decreases with a time constant 7., which defines the
decay time scale. In the models we use in this paper, S is discretely updated. B2, B3. Temporal patterns (filters) generated by
presynaptic spike trains with different ISIs A, (or frequencies fs,x) and the dynamics of the single events (controlled by Tge.).
For small 74.. and A, the S pattern is flat (B2). For larger values of 74.. and A,x, summation generates a high-pass filter.
The emergent time scales depend on the interplay of 74.. and Ag,x. The temporal filter steady-states are captured by the peak
sequence steady-states S.
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2.1.5 The MT (Markram-Tsodkys) phenomenological model for short-term dynamics:
synaptic depression and facilitation

This model was introduced in [63] as a simplification of earlier models [1,43,76]. It is more complex and
more widely used than the DA model described above [38, 77], but still a phenomenological model.

As for the DA model, the magnitude AS of the synaptic release per presynaptic spike is assumed to
be the product of the depressing and facilitating variables:

AS =R u" (11)
where, in its more general formulation,
dR 1—-R
— = — R ut6(t —topr), 12
dt Tdep ur o k) (12)
and
du U-—u
— = Ul —u")(t — tspr)- 13
T tU =)= ) (13)

Each time a presynaptic spike arrives (¢t = t,,), the depressing variable R is decreased by R~ vt and
the facilitating variable w is increased by U (1 — u~). As before, the superscripts “+" in the variables R
and v indicate that the update is carried out by taking the values of these variables prior (7) or after (*)
the arrival of the presynaptic spike. In contrast to the DA model, the update of the depression variable
R is affected by the value of the facilitation variable u ™. Simplified versions of this model include making
U =0][21,62,63,67,73,78] and U = U [38].

2.1.6 MT model in response to presynaptic inputs

Peak dynamics and temporal filters

By solving the differential equations (12)-(13) during the presynaptic ISls and appropriately updating the
solutions at t = ¢,, (occurrence of each presynaptic spike), one arrives at the following recurrent formula
for the peak sequences in terms of the model parameters

Rog1 = Ry(1 = g )e” Sor/Ter 41 — = Bevkn/Tacr (14)

and

U1 =U +U = UU 4 up(1 = U)e Aerkn/Trac _ (1 — U)e~Berkin/Trac, (15)

Steady-state frequency-dependent filters

As before, for presynaptic inputs A,k » is independent of n and these equations represent a system two
1D difference equations, which are now nonlinear. The steady-state values are given by

_ 1 — e~ Aspk/Tdep
R=1C (1 — @) e~ Depk/Tacp (16)

and

U+U-UU - U(l — U)e_ASPk/Tfac
1-— (1 — U) eiASPk/Tfac

u =

(17)



2.1.7 Synaptic dynamics in response to periodic presynaptic inputs and a constant up-
date

Peak dynamics

By solving the differential equation (3) for a constant value of AS,, = AS during the presynaptic ISls
and updating the solution at each occurrence of the presynaptic spikes att = t,, n = 1,..., Ny, One
arrives to the following discrete linear differential equation for the peak sequences in terms of the model
parameters

Spyp = e derk/Tace § 4 AS (18)

Steady-states and frequency filters
The steady state values of (18) are given by

= AS
S = 1 J— eiAspk/Tdec ’

2.2 Numerical simulation

The numerical solutions were computed using the modified Euler method (Runge-Kutta, order 2) [79] with
a time step At = 0.01 ms (or smaller values of At when necessary) in MATLAB (The Mathworks, Natick,
MA). The code is available at \https://github.com/BioDatanamics-Lab/temporal_filters_p20_01.

3 Results

3.1 Temporal summation filters for linear synaptic dynamics and constant up-
dates: the single-event and the (long-term) filter time scales coincide

As discussed above, the mechanisms of generation of temporal filters involve the communication of the
time scales from the single event (the 7’s) to the filter levels (the ¢’s) (Fig. 2). These two classes
of time scales are generally different reflecting the complexity of the process (e.g., the updates of the
corresponding variables at the arrival of each presynaptic spike are non-constant, state-dependent). Here
we discuss the special case of synaptic summation (linear single event dynamics and constant update)
for which both types of time scales coincide. This is relevant both as a reference case and because S is
a component o the feedforward network we investigate here.

Temporal summation filters (SFs, Fig. 2-B3) refer to the long-term patterns generated in the re-
sponse of a dynamical system to periodic stimulation with constant amplitude by the accumulation of the
responses produced by the single events (cycles). Temporal summation synaptic filters are high-pass
filters (HPFs) and naturally develop in the response of linear systems such as eq. (18) with a constant
update (independent of the spike index) where the activity S decays during the presynaptic ISI and it is
updated in an additive manner at the arrival of each presynaptic spike. If the quotient A, /T4 is finite,
S will not be able to reach a small enough vicinity of zero before the next presynaptic spike arrives and
then the S-peak envelope will increase across cycles. While summation does not require the presynaptic
inputs to be periodic or the input to have constant amplitude, the notion of summation filter we use here
does.

The solution to equation (18) is given by



S = §+ e~ (D) Bugn/mace (8, _ §), .

where S; = AS (see Appendix A). This equation describes the temporal filter in response to the presy-
naptic spike train. For technical purposes, one can extend eq. (20) to include the point (0, 0), obtaining

Sy =8 (1 — e Berk/Taee ), (21)

A further extension to the continuous domain yield

Sy =8 (1 — e t/maee), (22)
which is the solution to
dsS, _
Tdecd—tt =3 -8, (23)

We use the notation S; instead of S(t) to emphasize the origin of S; as the continuous extension of a
discrete sequence rather than the evolution of Eq. (3).

Together these results show the temporal SF and the single events are controlled by the same time
constant 74... While the time scale is independent of Ay, the steady-state S is A,,-dependent.

3.2 Dynamics of the depression (z) and facilitation (z) variables and their inter-
action: emergence of temporal low-, high-and band-pass filters

3.2.1 From single events (local in time) to temporal patterns and filters (global in time)

The dynamics of single events for the variables = (depression) and z (facilitation) are governed by egs.
(5)-(6) , respectively. After the update upon the arrival of a spike, x and z decay towards their saturation
values (= 1) and zo, (= 0), respectively.

The response of x and z to repetitive input spiking generates patterns for these variables in the
temporal domain (e.g., Fig. 1-A1) and for the peak sequences X,, and Z,, in the (discrete) presynaptic
spike-time domain (e.g., Fig. 1-A2). The latter consist of the transition from the initial peaks X; and Z; to
X and Z, respectively, as n — oco. The properties of these patterns depend not only on the parameters
for the single events (74cp/rac @nd aq, ), but also on the input frerquency fs,x (or the presynaptic ISI
Agpi) as reflected by egs. (9)-(10) describing the peak-envelope steady-state values. We note that we
use the notation X,, and Z,, for the peak envelope sequences to refer to the sequences {X,,}5°; and
{(Zn}oes.

The peak envelope patterns have emergent, long-term time constants, for which we use the notation
Tdep aNd oyqc.. As we show in more detail later in the next section, oe;,/fac depend oN Tyep/ facs Asp
and aq, s in a relatively complex way. This is in contrast to our discussion in the previous section for the
synaptic dynamics where the single event and long-term time scales coincide.

The AS,, envelope patterns combine these time scales in ways that involve different levels of complex-
ity. We refer to the AS,, patterns that are monotonically decreasing (e.g., Fig. 1-B1) and increasing (e.g.,
Fig. 1-B2) as temporal low- and high-pass filters (LPFs and HPFs), respectively. We refer to the AS,,
patterns that exhibit a peak in the temporal domain (e.g., Fig. 1-A2) as temporal band-pass filters (BPFs).
This terminology is extended to the peak envelopes X,, (temporal LPFs) and Z,, (temporal HPFs).

3.2.2 Depression-/ facilitation-dominated regimes and transitions between them

In the absence of either facilitation or depression, the AS,, temporal LPFs and HPFs reflect the presence
of depressing or facilitating synapses, respectively. However, AS,, temporal LPFs and HPFs need not be
generated by pure depression and facilitation but can reflect different balances between these processes
where either depression (Fig. 1-B1) or facilitation (Fig. 1-B2) dominates.
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Itis instructive to look at the limiting cases. A small enough value of 74,/ rq. Causes a fast recovery to
the saturation value (z, or z,) and therefore the corresponding sequence (X, or Z,,) is almost constant.
In contrast, a large enough value of 74, ¢, Causes a slow recovery to the saturation value and therefore
the corresponding sequence shows a significant decrease (X)) or increase (Z,,) as the result of the
corresponding underlying variables (x and z), being almost constant during the ISI. Therefore, when
Tdep = Tfac, depression dominates (Fig. 1-B1) and when 74, < 74, facilitation dominates (Fig. 1-B2).

In both regimes, the exact ranges depend on the input frequency fs,,. Anincrease in fs, reduces the
ability of = and z to recover to their saturation values within each presynaptic ISI, and therefore amplifies
the depression and facilitation effects over the same time interval and over the same amount of input
spikes (compare Figs. 1-C1 and -C2). Therefore, the different balances between X,, and Z,, as f.,x
generate different types of AS,, patterns and may cause transitions between qualitatively different AS,,
patterns.

3.3 Dependence of the temporal (depression and facilitation) LPFs and HPFs on
the single event time scales

3.3.1 Communication of the single event time scales to the (long-term) history-dependent
filters

Here we focus on understanding how the (long-term) time scales of the peak envelope sequences X,
and Z, (04ep and o 4., respectively) result from the interaction between the time constants for the corre-
sponding single events (74, and 7¢4.) and the presynaptic spike input time scales A

Standard methods (see Appendix A with Ag,,i. » = Agpr, independent of n) applied to difference egs.
(7)-(8) yield

Xn - X + Q(ada 7716;))7171 (Xl - X) (24)
and
Zn=Z+ Qlag,Tac)" " (Z1 = Z) (25)
forn=1,..., Ngpr, where
Q(astpa Tstp) = (1 - astp) e_ASpk/TStp- (26)

The evolution of the temporal patterns X,, and Z,, are controlled by the behavior of Q(ad,Tdep)"‘l
and Q(as, Trqc)" ! @s n — oo. Because both approach zero as n — oo (e.g., Figs. 3, gray), the X, and
Z,, patterns decrease and increase monotonically to X and Z, respectively (e.g., Figs. 1 and 3, red and
green dots, respectively). The convergence for as;, < 1 is guaranteed by the fact that Q(asip, 7sp) < 1.
Biophysically plausible values of a4 and ay are well within this range.

The effective time scale of the sequence @Q,, = Q™! can be quantified by calculating the approxi-
mated time it takes for @Q; (where the index n is substituted by ¢) to decrease from @@; = 1 to 0.37 (decay
by 63 % of the total decay range) and multiply this number by A,,. This yields

In (0.37) Agpr 1
g, = ~ 5 27
Q In (1 —astp) _Aspk/Tstp 1/Tstp —In (1 —astp)/Aspk ( )
where o is expressed in decimal numbers and has units of time. The time scales o4, and o . for
the sequences X,, and Z,, are obtained by substituting 75, and as, by T4ep and aq (X,,) and by 74
and ay (Zy), respectively. These time scales quantify the time it takes for X,, to decrease from X to
X1 —0.63(X; — X) and for Z,, to increase from Z; to Z; + 0.63(Z — Z1), respectively.
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Figure 3: Low-, high- and band-pass filters in response to periodic presynaptic inputs in the presence of synaptic
depression and facilitation: peak envelope dynamics. The evolution of the peak sequences X, (depression, red) and Z,
(facilitation, green), respectively are governed by eqgs. (24)-(26) and the sequence Q. = Q(as:p, Tstp)™ * (light gray) is given by
eq. (26). We used the same parameter values for depression and facilitation: Tgep = Tfac = Tstp and aq = a5 = asp = 0.1, A,
Tstp = 100. Al. fopr = 50. A2. fopr = 100. A3. fopr = 250. B. Tty = 250. B1. fopr = 50. B2. fopr = 100. B3. fopr = 250.
C. Tstp = 500. C1. fopr = 50. C2. fspr, = 100. C3. fspr = 250. We used the folowing additional parameter values: - = 1 and

Zoo = 0.
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3.3.2 Additional properties of the depression and facilitation temporal LPFs and HPFs

The properties of the temporal LPFs and HPFs generated by X,, and Z,, are primarily dependent on the
properties of the corresponding functions Q. For each value of n, Q"' is an increasing function of Q
and for each fixed value of @, Q™' is a decreasing function of n. Together, the larger Q, the larger the
sequence @, = Q™! and the slower Q,, = Q™! converges to zero. From eq. (26), all other parameters
fixed, Q™! decreases slower the smaller A, (the larger fs,x) (compare Fig. 3 columns 1 to 3), the
larger 75, (compare Fig. 3 rows 1 to 3) and the smaller a,, (not shown in the figure). An extended
analysis of the dependence of Q(astp, Tstp) ON both parameters can be found in Fig S1.

While the dynamics of Q(asip, Tstp), Xrn and Z,, depend on the quotient A, /7sip (the two interacting
time scales for the single events), the long-term time scales (cg = 04ep, 0rac) depend on these quantities
in a more complex way (Fig.5-A). For the limiting case Agpx — 00, Tdep/fac — Tdep/ fac- FOr the limiting
case Agpr — 0, 0gep/fac — 0. For values of Ay in between (see Appendix B), o4c;, and oy, decrease
between these extreme values (dogep/fac/dAspr < 0). The dependence of g4e, and opqae With 74
and 7y, follows a different pattern since (dogep) fac/dTdep/fac > 0). Both g4ep and o4 increase with
Tdep @Nd Tr4., respectively. The dependence of o4, and oy, With ag and ay follows a similar pattern
(dogss/dagsy > 0). Details for these calculations are presented in the Appendix B.

One important feature is the dependence of the sequences X,, and Z, on A,y for fixed values
of Taep/ rac- This highlights the fact the depression/facilitation-induced history-dependent filters are also
frequency-dependent. A second important feature is that multiple combinations of 74,/ fc and Ag,x give
rise to the same sequence X,, and Z,,, which from egs. (7)-(8) depend on the ratios

Aspk

A
pk and 5= . (28)

Tdep Tfac

Yd =

Constant values of v4 and ¢ generate identical sequences X,, and Z,, respectively, which will be differ-
ently distributed in the time domain according to the rescaling provided by A, reflecting the long-term
time scales o4,/ 7. This degeneracy also occurs for the steady state values X and Z (9)-(10), gener-
ating the X - and Z-profiles (curves of X and Z as a function of the input frequency 1000A;p1k). This type
of degeneracies may interfere with the inference process of short-term dynamics from experimental data.
A third important feature is that the update values a4 and a; that operate at the single events contribute
to the long-term time scale for the filters and do not simply produce a multiplicative effect on the filters
uniformly across events.

3.3.3 Descriptive envelope model for short-term dynamics in response to periodic presy-
naptic inputs

The relative simplicity of the DA model allows for the analytical calculation of the temporal patterns X,
and Z,, (24)-(26) (for constant values of A ) and the subsequent analytical calculation of the (long-term)
time scales o4cp (LPF) and o4, (HPF) (27) in terms of the single event time constants 74., and 7f4c,
respectively. Here, we develop an alternative approach for the computation of the LPF and HPF time
constants, which is applicable to both a more general class of STP-mediated LPFs and HPFs, generated
by more complex models for which we have no analytical expressions available, and to data collected
following the appropriate stimulation protocols. This model is descriptive, as opposed to mechanistic, in
the sense that it consists of functions that capture the shapes of the temporal LPFs and HPFs, but the
model does not explain how these temporal filters are generated in terms of the parameters governing
the dynamics of the single events, in contrast to the DA model.

We explain the basic ideas using data generated by the DA model. We then use this approach for the
MT model in the supplementary material.

The shapes of the temporal LPFs and HPFs suggest an exponential-like decay to their steady states
(e.g., Fig. 1). For the DA model this can be computed analytically following a similar approach to the
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Figure 4: The time scales for the peak envelope responses X,, and Z,, to periodic presynaptic spikes and AS,, temporal
filters (04, o+ and o4 ¢) depend on the interplay of 74cp, 7rac and fopr (Or Aspr). A. Dependence of o4, o and o4y ¢ with the
presynaptic input frequency fspi. Al. oq for agep = 0.1. A2. oy for ag.. = 0.2. A3. 044 computed using eq. (107) from o4 and
oy in panels A1 and A2. B. The contribution of the combined time scale o4 s increases with f,,. The function H (¢x) is given by
(39) and the function H..; consists of the three first terms in (39). B1-B3. T4ep = Tfac = 100. B4-B6. Tgep = Trac = 200. We
used the simplified model (4)-(6) and the formulas (34) for the (simplified) descriptive model, together with (7)-(10) and the following
parameter values: aq = 0.1, ay = 0.2, oo = 1, 200 = 0.
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Figure 5: The time scales for the peak envelope responses X,, and Z,, to periodic presynaptic spikes and AS,, = X,,Z,
temporal filters (04ep, 0fac @Nd Taep+rac) depend on the interplay of 74cp, Tac and fopr (Or Agpr). The evolution of the
peak sequences X,, (depression, red) and Z,, (facilitation, green), respectively are governed by egs. (24)-(26) and the sequence
Qn = Qlasip, Tstp)™* (light gray) is given by eq. (26). A. Dependence of the (long-term) temporal filter time constants 4., and
o rac With the presynaptic input frequency f.,» and (short-term) time constants for the single events 74., and 75,.. We used eq. (27)
with 75t and ast;, substituted by Tiep face @nd agqy 5, respectively. Al. ag = ay = 0.1. A2. aq = ay = 0.2. B. Dependence of the
the (long-term) temporal filter time constants o 4ep+ rac With the presynaptic input frequency fspx and (short-term) time constants for
the single events 74c, and 754.. We used eq. (27). C. Comparison between the filters produced by the “cut” sequence AScut,» (light
coral) and the sequence AS,, (blue) for representative parameter values. Al. aq = 0.1, ay = 0.1, T4ep = 250 and 7pq. = 250.
A2. ag = 0.1, a5y = 0.2, Tgep = 200 and 74 = 250. A3. aqg = 0.1, ay = 0.2, T4ep = 100 and 774 = 250. We used the following
additional parameter values: xoc = 1 and zo = 0.
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one developed in Section 3.1 (for the synaptic dynamics) and extend the peak sequences (24)-(25) to the
continuous domain

Xi =X + (1 —ag)/Berret/maer (1 - X) (29)

and

Zy=Z[1— (1 —ay)/Berke=t/Trac), (30)

We assume exponential decay and define the following envelope functions

F(tk) =A+ (1 — A)ef(tkftl)/gd (31)

and

G(ty) = B[1— Ce~temt)/or) (32)

for the LPF and HPF, respectively. The parameters o4 and o are the filter time scales. We use a different
notation than in the previous section to differentiate these time scales from the ones computed analytically
for the DA model.

The parameters of the descriptive model (31)-(32) can be computed from the graphs of peak se-
quences (e.g., X,, and Z, for the DA model or R,, and w,, for the MT model) by matching the initial
values (e.g., F(t;) = X; and G(t1) = Z;), the steady steady state values e. g., ( X = limj_.o, X} and
Z = limp_,o Z1) and the intermediate values (t., X.) and (., Z.) chosen to be in the range of fastest
increase/decrease of the corresponding sequences (~ 50% of the gap between the initial and steady
state values). This gives

A=X, B=2Z, c-?-9u
7

(33)

oq=(te—t1) In"" (;__);) and op=(te—t1) In" (ZZ_CZ ) (34)

Fig. 1 (solid) shows the plots of F' (red), G (green) and H = F'G (blue) superimposed with the X, -,
Z,- and AS,-sequence values. The error between the sequences and the envelope curves (using a
normalized sum of square differences) is extremely small in both cases, consistent with previous findings
[75]. For the DA model, 04¢, and o, are well approximated by o4 and o, respectively.

For fsp — 0, both X,, and Z,, are almost constant, since the z(t) and z(t) have enough time to
recover to their steady state values before the next input spike arrives, and therefore o4 > 1 and oy > 1.
In contrast, for fo,r > 1, z(t) and z(t) have little time to recover before the next input spike arrives and
therefore they rapidly decay to their steady state values. In the limit of fs,r, — 00, g = o = 0. In
between these two limiting cases, o4 and o are decreasing functions of f,,. (Figs. 4-A1 and -A2). For
fixed-values of f,,r, both o4 and o are increasing functions of 74, and 7., respectively. These results
are consistent with the analytical results described above.

3.4 Emergence of temporal band-pass filters for AS, = X, Z,: interplay of de-
pression and facilitation

Under certain conditions, the interplay of depression and facilitation generates temporal band-pass filters
(BPFs) in response to periodic inputs for (Fig. 1-A), which are captured by the sequence AS, = X, Z,
(Fig. 1-A2 and -C2). BPFs represent an overshoot for the sequence AS,, (they require AS; < AS = XZ
and the existence of a spike index m such that AS,, > AS). This in turn requires that the two time
constants 4., and 7¢,. are such that they create the appropriate balance between the two temporal filter
time constants o4, and oy, (0or o4 and oy when using the descriptive model) to support a BPF.
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Figure 6: Transition from temporal high- to low-pass filters as the presynaptic frequency increases via a temporal band-
pass filtering mechanism for fixed values of the synaptic depression and facilitation time constants. The evolution of the
peak sequences X,, (depression, red) and Z,, (facilitation, green), respectively are governed by egs. (24)-(26). We used the same
parameter values for depression and facilitation: 7gep = 7Tfac = 100 and aq = ay = 0.1. A. fopr = 80. B. fopr = 100. C.
fspr = 200. D. fopr = 500. E. fopr = 1000. F. fspr = 5000. We used the following additional parameter values: x- = 1 and

Zoo = 0.
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For the parameter values in Figs. 3, AS,, BPFs emerge and become more prominent as the input
frequency fspi increases for fixed values of 74¢p, = Tfac(= Tsip). This results from both the dependence
of the X,, and Z,, time constants o,/ rqc ON the single event time constants 7., 4. and the fact that
X decreases and Z increases with increasing values of f,,,. Fig. 6 further illustrates that temporal
AS,, BPFs (panels C, D, E) provide a transition mechanism from LPFs for low enough input frequencies
(panels A and B) to HPFs for high-enough frequencies (panel F, which is strictly not a HPF, but it is
effectively so for the time scale considered). Fig. 3 also illustrates that for fixed values of f,, the AS,,
BPFs emerge and become more prominent as 74, = Tyrqc increases. This is a consequence of the
dependence of the X,, and Z,, time constants o.,/ 4. ON the single event time constants 74,/ r4 and
the fact that X decreases with increasing values of 74, and Z increases with increasing values of 774..
Fig. 7-A summarizes the dependences of X, Z and the quotient between o4, and os,.. Because of the
dependence of X,, and Z,, on the quotients Aspr/Taep/ fac: ASn BPFs can be generated by increasing
values of 7gep, Trac OF both (not shown).

From a purely geometric perspective (devoid of any biophysical meaning), it is expected that the prod-
uct of two exponential-like decaying functions, one increasing and the other decreasing, has a peak in
certain parameter regimes (see Appendix E). By design, the geometric/dynamic mechanism described
in the Appendix E is based on the assumption that all the parameters are free and independent. How-
ever, from egs. (9)-(10) and (33)-(34) the geometric parameters that describe the LPF and HPF are not
independent and therefore it is not clear how AS,, BPF are generated and how they depend on the single
event time constants 74, and Tyqc.

3.5 AS,-band pass filters require a third (emergent) time scale whose contribu-
tion is independent from the low- and high-pass filters’ time scales

The linear one-dimensional dynamics for both depression and facilitation at the single event level gen-
erate linear one-dimensional discrete dynamics at the (long-term) temporal (low- and high-pass) filters
level where the long-term time constants (o4, and oy,.) depend on the short-term time constants (74,
and 7y4.) and the input frequency (A,,r). From the discrete dynamics point of view, the temporal BPFs
obtained as the product of the temporal LPF and HPF are considered overshoots where the sequence
evolves by peaking at a higher value than the steady-state (without exhibiting damped oscillations). Over-
shoots require at least two-dimensional dynamics (generated by a difference equation where each value
of the resulting sequence depends on the previous two) with the appropriate time scales. In [75] we
showed that in certain circumstances the generation of temporal BPFs requires three-dimensional dy-
namics. Here we investigate how the time scales giving rise to temporal BPF depend on the time scales
of the temporal LPF and HPF and these of the corresponding single events.

3.5.1 Mechanistic DA model
From (24)-(26),

AS, = X, Z, = XZ+ Q(ad,Tdep)n_l (Xl — X) 7+ Q(af,Tfac)n_l (Zl — Z) X+

+Q(ad; Taep)" ' Qag, Trac)" T (X1 — X) (Z1 - 2). (35)

The dynamics of the three last terms in eq. (35) are governed by Q(aq, Taep)™*, Q(af, Trac)” ! and
[Q(ad, Taep) Qag, Trac) |V~ 1, respectively, and AS,, — XZ as n — oc. The first two are given eq. (26)
with 7, substituted by 74, and 74, and a,y, substituted by aq and af, accordingly. The corresponding
time scales are given by eq. (27) with the same substitutions. The last one is given by

Q(ad, Taep) Qag, Trae) = (1 — ag) (1 — ay) e~ Berk(V/TaerT1/Tsac), (36)
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Figure 7: Temporal band-pass filters generated as the result of the multiplicative interaction of temporal low- and high-
pass filters: Peak envelope responses to periodic presynaptic inputs. A. Dependence of ) = 04ep/0 fac, X and Z with the
presynaptic input frequency fspr. We used formulas (9)-(10) together with (34) and the following parameter values: aqs = 0.1,
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The product [ Q(ad, Taep) Q(ar, Trac) |~ cannot be expressed in terms of a linear combination of Q(a4, Taep)™ "
and Q(ays, Trqc)" ! and therefore the four terms in (35) are linearly independent.

The time scale associated to the fourth terms in (35) can be computed from (36) (as we did before) by
calculating the time it takes for [ Q(ad, Taep) Q(af, Trac) |~ to decrease from [ Q(aq, Taep) Q(af, Trac) "1
from 1 (is value for n = 1) to 0.37 and multiply this number by A,. This yields

In (0.37) Agpr
In (1 — ad) + In (1 - af) - Aspk(l/Tdep + l/Tfac)

Odep+fac =

1
(raen + 1/ 7500) — [ —a) (1 — )/ B )

This long-term time scale has similar properties as o4cp, and osqc.. In particular, for fo,, — 0,
Odep+fac — TdepTfac/(Tdep + Trac). FOr fopk — 00, Odeptfac — 0. For values of fy,, in between,
Odep+ fac deCrease between these extreme values. This is illustrated in Fig. 5-B along the time other two
times scales, o4¢p and o, (Fig. 5-B).

To say that the three time scales (0g4ep, Tfac @Nd Tgeptrac) are independent is equivalent to state
that the dynamics is three dimensional, while the dynamics of the depression and facilitation sequences
are one-dimensional. It also means that erasing one of the terms in AS,, is equivalent to projecting the
three-dimensional signal into a two-dimensional space with the consequent loss of information if it does
not provide a good approximation to the original signal, and this loss of information may in principle be the
loss of the band-pass filter (overshoot). On the other hand, two-dimensional systems are able to produce
overshoots. So the question arises of whether the signal AS,, without the last term (that combines the
time scales of the two filters X, and Z,,) preserves the temporal band-pass filter and, if yes, under what
conditions.

In order to test the necessity of this third time scale for the generation of temporal band-pass filters,
we consider the “cut” sequence

AScut,n = XZ + Q(ada Tdep)n_l (Xl - X) Z + Q(afa Tfac)n_l (Zl - Z) Xa

where AS.11 = (X1 — X)Z + 71X and limy, 00 ASeutn = XZ. Forag = ay and Taep = Tac
Q(ad, Tdep) = Q(ay, Trqac), and therefore AS,,,. ., has the same structure as X,, and Z,,, and therefore
AScut,n cannot generate a temporal band-pass filter regardless of the value of A,,,. This includes the
examples presented in Fig. 3. For other parameter values, standard calculations show that the parameter
ranges for which AS.,: , shows a peak are very restricted and when it happens, they rarely provide a
good approximation to the temporal band-pass filter exhibited by AS,,. Fig. 5-C illustrates this for a
number of representative examples.

3.5.2 Descriptive envelope model

Here we address similar issues using the descriptive models described in the previous section. We
consider the function

H(ty) = F(te) G(tr), (38)
which approximates the behavior of AS,,. From (31)-(32),

H(ty) = Z[X + (1 — X)e te—t)/oa _ XCe=te=t)/os _ (1 = X)C e~ (temt1)/0a41 (39)

where

-1
Odtf = (i + ! ) ; (40)

o4 Of
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and o4 and oy are given by (34). Note that o4, oy and o4y ¢ are different quantities from o4ep,, 04 and
Odep+fac discussed above. Note also that, formally, the dependences of the third time scales (0gep+fac
and o4+ ) on the corresponding LPF and HPF time scales are different. In contrast to the analytical
expression for the DA model, the third time scale for the descriptive model (044 ¢) can be explicitely
computed in terms of the time scales for the LPF and HPF.

Together, these results and the results from the previous section shows that while X,, and Z,, are
generated by a 1D (linear) discrete dynamical systems (1D difference equations), AS,, is generated by a
3D (linear) discrete dynamical system (3D discrete difference equation). Under certain conditions, a 2D
(linear) discrete dynamical system will produce a good approximation. AS,, is able to exhibit a band-pass
filter because of the higher dimensionality of its generative model.

In order to understand the contribution of the combined time scale o4y, we look at the effect of cutting
the fourth term in H (39). We call this function H.,;. Fig. 4-B shows that H.,; does not approximate AS,,
well during the transients (response to the first input spikes) and fails to capture the transient peaks and
the temporal band-pass filter properties of AS,,. This discrepancy between AS,, (or H) and H,; is more
pronounced for low than for high input frequencies. In fact H..(t1) = Z — X(Z — ay), while H(t1) = ay.
The question remains of whether there could be a 2D (linear) dynamical system able to reproduce the
temporal filters for AS,, with (emergent) time scales different from o4 and oy. In other words, whether
AS,, can be captured by a function of the form

Hyp(ty) = ho + hye” (h710/70 4 gy e (temta)/oz, (41)

where hg, h1, hs, 01 and o9 are constants where by necessity,
tILIEOHQD(tk):hOZXZ and HQD(tl):h0+h1+h2:H(t1):aj'. (42)

The fact that the function H is a sum of exponentials indicate that the answer is negative.

The dependence of the estimated time scales o4, 0y and o044y on the parameters fo,x, Taep and 7rac
needs to be computed numerically. Our results are presented in Fig. 4-A, and are consistent with our
previous results.

3.6 Interplay of short-term synaptic and cellular postsynaptic dynamics: tempo-
ral BPFs generated within and across levels of organization

Earlier models of synaptic dynamics consider the postsynaptic potential (PSP) peak sequence to be
proportional to AS,, = X,,Z, [21,63,67]. This approach does not take into consideration the dynamic
interaction between the synaptic function S and the postsynaptic membrane potential, particularly the
membrane time scale. Subsequent models consider synaptic currents such as I, in eq. (2). The
synaptic function .S, which controls the synaptic efficacy, obeys a first linear kinetic equation (see Ap-
pendix C). The presence of additional times scales further in the line (e.g., membrane potential time
scale) gives rise to the phenomenon of temporal summation and the associated HPF in response to pe-
riodic synaptic inputs (see Fig. 2-B), which interacts with the LPFs and HPFs associated with synaptic
depression and facilitation, respectively. The resulting PSP temporal filters reflect these interactions and
therefore are expected to depart from the proportionality relationship with the A.S,, filters.

Here we address these issues by following a dual approach. We first consider postsynaptic dynamics
governed by eq. (3). We interpret the variable S as the postsynaptic membrane potential and the decay
time 74.. as reflecting the membrane potential dynamics (Section 3.6.1). The simplified model has the
advantage of being analytically solvable and it allows us to understand the effects of the temporal filtering
(depression, facilitation and summation) time scales in terms of the single event time constants (74p,
Trac @nd T4ec). Then, we consider the more biophysically realistic approach by using egs. (1)-(3) where
Tdec 1S chosen to be relatively small, of the order of magnitude of the AMPA decay time (Section 3.6.2). In
this model, the membrane time constant is C/G, and the interplay between the synaptic input and the
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postsynaptic cell is multiplicative (nonlinear). In both approaches, a systematic analysis of the generation
and properties of temporal PSP filters would require the consideration of an enormous amount of cases
given the increase in the number of building blocks and the consequent increase in the number of time
scales involved. Therefore, in our study we consider a number of representative guided by mechanistic
questions. For conceptual purposes, we also considered the case where rise times are non-zero (see
eg. (91) in Appendix C.1).

3.6.1 PSP temporal filters in the simplified model

We use eq. (3) with decay times reflecting the membrane potential time scales of postsynaptic cells. As
mentioned above, in this simplified intermediate approach S is interpreted as the postsynaptic membrane
potential. Our goal is to understand how the (global) time scales of the S-response patterns to periodic
inputs depend on the time constant 74.. and the depression and facilitation time scales 74, and 774
through the AS, filter time scales o4c, and o#4c.

In the absence of depression and facilitation (74ep, Trac — 0), AS,, is constant across cycles and S
generates temporal summation HPFs as described in Section 3.1 (Fig. 2-B) with osym = Tgec- We use
the notation SY for the corresponding peak sequences. In the presence of either depression or facilitation,
the update AS,, is no longer constant across cycles and therefore, the STP LPFs and HPFs interact with
the summation HPFs.

By solving the differential equation (3) where S is increased by AS,, at the arrival of each spike (¢ = t,,,
n =1,..., Ng) one arrives to the following discrete linear differential equation for the peak sequences
in terms of the model parameters

Spy1 = e Berk/Tiee 4 NS, L. (43)

The solution to eq. (43) is given by the following equation involving the convolution between the STP
input AS,, and an exponentially decreasing function

n—2
S, = e_(n_l)As:Dk/TdccSl + Z e—kAspk/TdecASn_k (44)
k=0
with S = AS; = ay. The evolution of S,, is affected by the history of the STP inputs AS,, weighted by
an exponentially decreasing function of the spike index and a coefficient
A
Vi = =2, (45)

Tdec

The steady state is given by

s- [y - AS
= —kAspr/Taee _ ke
°7 <l§0€ ) A5 = 1 — e—Dspk/Taee’ (46)

where AS = X Z given by (9) and (10). Note that Eq. (19) is a particular case of eq. (46) when AS,, is
a constant sequence (no STP).

Both S,, and S depend on A, and the time constants 74ep, Trac and 4. through the quotients
(28) and (45). Therefore, here we consider temporal patterns for a fixed-value of A,,,. The temporal
patterns for other values of A, will be temporal compressions, expansions and height modulations of
these baseline patterns. The values of 74y, Trac @and 74.. Used in our simulations should be interpreted
in this context.

For the limiting case 74ec — 0, S,, = AS,, for1 = 2,..., Ngp,. The S-temporal filter reproduces (is
equal to or a multiple of) the AS,, as in [21,63,67]. For the limiting case 74.. — oo, S — oo reflecting the
lack of convergence of the sum in eq. (44). As the presynaptic spike number increases, the S-temporal
filter reproduces the S°-temporal filter since the AS,, — AS. In the remaining regimes, changes in 74..

22



affect both the steady state and the temporal properties of S in an input frequency-dependent manner as
the S-temporal filter transitions between the two limiting cases. Here we focus on the temporal filtering
properties. The former will be the object of a separate study.

Emergence of S,, temporal BPFs: Interplay of synaptic depression (LPF) and postsynap-
tic summation (HPF)

In the AS,, facilitation-dominated regime (Fig. 8-A), the PSP S,, patterns result from the interaction
between two HPFs, the AS,, facilitation and the 52 summation ones. The filter time constant increases
with increasing values of 74.. reflecting the dependence of the summation (global) time constant osym,
with Tdec-

In the AS,, depression-dominated regime (Fig. 8-B), the temporal PSP S,, BPFs emerge as the result
of the interaction between the AS,, depression LPF and a sg HPF for intermediate values of 74.. (Fig.
8-B2). S,, BPFs are not present for small enough values of 74.. (Fig. 8-B1) since this would require AS,,
to be a BPF, and are also not present for large enough values of 74.. (Fig. 8-B3) since this would require
SY to be a BPF. As for the depression/facilitation BPFs discussed above, the S,, BPFs are a balance
between the two other filters and emerge as S, transitions in between them as 74.. changes.

Dislocation of the (output) S,, temporal BPF from the (input) AS,, temporal BPFs

In this scenario, a depression-facilitation AS,, BPF is generated at the synaptic level and interacts with
the summation Sg HPF (Fig. 8-C). The AS,, BFP evokes a PSP S,, BFP for low enough values of 74,
(Fig. 8-C1). As 74 increases, the S,, pattern transitions to the S° HPF (Fig. 8-C3). As this transition
happens, the S,, BPF moves to the right and increases in size before entering the summation-dominated
HPF regime. While the PSP S, BPF is inherited from the synaptic regime, its structure results from the
interplay of the synaptic BPF and PSP temporal summation.

3.6.2 Biophysically realistic models reproduce the above PSP temporal filters with sim-
ilar mechanisms

Here we test whether the results and mechanisms discussed above remain valid when using the more
realistic, conductance-based model (1)-(3). Here S has its original interpretation as a synaptic function
with relatively small time constants, consistent with AMPA excitatory synaptic connections. Because the
interaction between the synaptic variable .S and V' are multiplicative, the model is not analytically solvable.

The V temporal patterns generated by this model (Fig. 9) are largely similar to the ones discussed
above (Fig. 8) and are generated by similar mechanisms described in terms of the interplay of the
membrane potential time scale 7,,, (= C'/gL) and the depression/facilitation time scales (74, and 774.)
through the (global) AS,, filter time scales (oq4cp and osq.). Because 74 is relatively small, S largely
reproduces the temporal properties of the AS,, pattern. As before, V., refer to the voltage response to
presynaptic periodic inputs in the absence of STD (S is updated to AS,, constant). Fig. 9-A illustrates the
generation of V' temporal BPFs as the result of the interaction between synaptic depression (LPF) and
postsynaptic summation (HPF). Fig. 9-B illustrates the dislocation of postsynaptic BPF inherited from the
synaptic input Fig. 9-A. We limited our study to realistic values of 7,,,.

3.6.3 Attenuation of the filtering properties as the rise time increases

A conceptual question that arises in this context is whether and how S interacts with the membrane
potential in the presence of longer rise times than the ones considered here. We did not take this into
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Figure 8: Temporal S-filters in response to periodic presynaptic inputs in the presence of STP. We used the DA model for
synaptic depression and facilitation to generate the sequences AS,, and eq. (3) to generate the S,, sequences. The SO sequences
were computed using eq. (3) with a constant value of AS,, = AS = as... The curves are normalized by their maxima Sy, maz,
ASp maz and sg,mw. A. Facilitation-dominated regime. S,, is a HPF (transitions between two HPFs). The time constant increases
monotonically with 74... B. Depression-dominated regime. A S, BPF is created as the result of the interaction between the
presynaptic (depression) LPF and the temporal summation HPF. C. S,, and AS,, temporal BPFs peak at different times. We used
the following parameter values: aq = 0.1, ay = 0.2, oo = 1, 2o = 0. For visualization purposes and to compare the (global)
time constants of the S, AS and S° temporal filters, we present the S, AS,, and S (Tacp, Trac — 0) curves normalized by their

maxima.
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Figure 9: Temporal V filters in response to periodic presynaptic inputs in the presence of STP. We used the DA model for
synaptic depression and facilitation to generate the sequences AS,, eq. (3) (Tsec = 5) to generate the S,, sequences, and the
passive membrane equation (1)-(2) to generate the V,, sequences. The V,? sequences were computed using eq. (3) with a constant
value of AS,, = AS = asq.. The curves are normalized by their maxima Vi, maz, §n,maz and Vr?,maz- B. Depression-dominated
regime. A V,, BPF is created as the result of the interaction between the presynaptic (depression) LPF and the temporal summation
HPF. C. V,, and S, temporal BPFs peak at different times. We used the following parameter values: a4 = 0.1, ay = 0.2, xc = 1,
Zoo =0,C =1, Er = —60, Esyn = 0, Gsyn = 0.1.
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account, in geneeral since rise times for the type of synapses we use are assumed to be fast (typical for
AM PA and also GABA ,) for which the instantaneous approximation is justified. We illustrate the effect
of longer rise times in Fig. S2 in the context of the DA model. We used presynaptic spikes of 1 ms width.
(see explanation in Appendix C.1 and eq. (91)). In the first row of Fig. S2, we see a comparison of how
the rise time affects .S and V" alone and in the second line we see panels of the same simulation above
but in the presence of the DA model. As 7,.;5. increases, the presynaptic spikes take longer and longer to
increase. In the first row, we see that the steady-state is lowered by such an effect and in the second row,
we see that the type of BPF from the DA models persists qualitatively but is suppressed quantitatively.

3.7 Interplay of multiple depression and facilitation processes with different time
scales

In the models discussed so far both short-term depression and facilitation involve one time scale (74e,
and 7s,.) that governs the evolution of the corresponding variables (x and z) in between presynaptic
spikes. These single-event time scales are the primary component of the temporal filter time scales (o 4¢,
and o,.) that develop in response to the periodic repetitive arrival of presynaptic spikes.

Here we extend these ideas to include scenarios where depression and facilitation involve more than
one time scale. We interpret this as the coexistence of more than one depression or facilitation process
whose dynamics are governed by a single single-event time scale each. Similar to the standard model,
the independent filters that develop in response to the presynaptic spike train inputs interact to provide
an input to the synaptic dynamics. In principle, this interaction may take various forms. Here, for ex-
ploratory purposes and to develop ideas, we consider a scenario where the processes of the same type
(depression or facilitation) are linearly combined and the interaction between depression and facilitation
is multiplicative as for the single depression-facilitation processes. We refer to it as the distributive or
cross model. In the Appendix D we discuss other possible formulations. The ideas we develop here can
be easily extended to more than two STD processes.

3.7.1 The cross (distributive) model

In this formulation, the depression and facilitation variables x; and zx, k£ = 1,2 obey equations of the
form (5)-(6) with parameters Tgep i, Trac,ks @d,kx @nd ayj for k = 1,2. The evolution of these variables
generate the sequences Xy, ,, and Z;. ,, (k = 1, 2) given by (24)-(25) with the steady-state values X and
Zy (k = 1,2) given by (9)-(10). For simplicity, we consider a1 = a4 2 and as1 = ay 2 (and omit the index
k) so the differences between two depression or facilitation filters depend only on the differences of the
single-event time constants. This can be easily extended to different values of these parameters for the
different processes. In what follows, we will not specify the range of the index k = 1, 2 unless necessary
for clarity.
In the cross (or distributive) model, the variable M is given by

M (t) = [nag 1(t) +na2 22(t) ] [n5,1 21(t) + 15,2 22(8) ] (47)
where ng1 + 14,2 = 1 and 1 + 15,2 = 1. Correspondingly, the synaptic update is given by

2 2
ASY = [nag Xin +na2 Xon ] [0f1 Zin + 152 Zon]| = <Z nd,ka.,n> <Z nf,ka-,n> (48)
k=1 k=1

forn =1,..., Ng. This model allows for all possible interactions between the participating depression
and facilitation processes. It reduces to the single depression-facilitation process for 142 = 12 = 0 (or
n4,1 = Ny,1 = 0) and allows for independent reductions of depression and facilitation by making 742 = 0
or ny.2 = 0, but not both simultaneously.
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From (24)-(26),

X = Xi + Qaa, Taep )"~ (X — Xy) (49)
and

Ziom = Zi+ Q(ag, Trac k)" (Z — Zy) (50)
for k = 1,2 with

Q(astpa Tstp,k) = (1 - astp) e_ASpk/TStp’ka (51)

where for use the notation X and Z to refer to the first elements in the sequences, which, for simplicity,
are assumed to be independent of k.
We use the notation

AS:; = ASdep,n ASfac,ny (52)
where after algebraic manipulation,
2 B 2 o
ASdep,n _ an,ka + (1 . ad)n—l an,ke_(n—l)Aspk/Tdcp,k(X _ Xk) (53)
k=1 k=1
and
2 2 X
AStacn = anf,ka +(1- af)n_l Z nf,ke_(n_l)ASPk/Tf“”‘(Z — Zk) (54)
k=1 k=1

3.7.2 Depression (ASg, ), facilitation (ASy,. ) and AS) temporal filters

The history-dependent temporal filter ASye, ,, transitions from ASyep1 = X 10 ASqep = 741 X1 + 74,2 X2
as n — 00, and AS 4., transitions from AS e = Z 10 ASfae = 17121 417272 as n — co. Because
the individual filters are monotonic functions, the linearly combined filters represented by the sequences
ASgep.n and AS¢,. ,, are also monotonic functions lying in between the corresponding filters for the indi-
vidual filter components (Figs. 10-A1 and 11-A1for depression and Figs. 10-A2 and 11-A2 for facilitation).
As a consequence, the AS) filters also lie in between the product of the corresponding individual filter
components AS; ,, and ASs ,, (Figs. 10-A3 and Figs. 11-A3). In these figures, all parameter values are
the same except for 74ep,1 @and 7yqc,1, Which are 74ep 1 = Trac,1 = 100 in Fig. 10 and Tgep,1 = Trac,1 = 10
in Fig. 11. In both figures, the values of the facilitation time constants are 74,2 = Tfqc,2 = 1000.

In Fig. 10-A3 both AS; ,, and ASs, are temporal BPFs peaking almost at the same time. Conse-
quently AS)¢ is also temporal BPFs lying strictly in between the individual ones and peaking almost at
the same time. In Fig. 11-A3, in contrast, AS; ,, is a temporal HPF, while AS, ,, is a temporal BPF. The
resulting AS,¢ is also a temporal BFP, but the two temporal BPFs peak at different times.

3.7.3 Communication of the single event time scales to the history-dependent filters

In Section 3.3.3 we developed a descriptive envelope model for STD in response to periodic presynaptic
inputs consisting of the functions F'(t) for depression, G(t) for facilitation, and H (t) = F(t)G(t) for the
synaptic update, given by egs. (31)-(33) and (39). By approximating the model parameters using the
results of our simulations for z(¢) and z(t), we computed the filter time constants o4, o, using (34) and
Od+f = (od_l + of_.l)‘l. This approach is not strictly necessary for the DA model since the sequences
X, and Z, can be computed analytically as well as the filter time constants o4cp, 0fac aNd Taept facs
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Figure 10: Temporal filters generated by the interplay of multiple depression and facilitation processes with different
single-event time scales. A. Depression (X), facilitation (Z) and AS = X Z filters for representative parameter values. We use
the distributive model (47)-(52) for the synaptic updates AS,\. The factors ASgep,» and ASy,c. in AS; are given by egs. (53)-
(54). The depression and facilitation individual filters X, and Z ., (k = 1, 2) are given by egs. (49)-(51). These and the ASgep,n
and ASyq.,n filters were approximated by using the descriptive envelope model for STD in response to periodic presynaptic inputs
(solid curves superimposed to the dotted curves) described in Section 3.3.3 by egs. (31)-(33). The filter AS,’ was approximated
by using with eq. (39) with F' and G substituted by the corresponding approximations to ASgep » and ASfqc.». B. Dependence of
the filter (global) time constants on the single events time constants. We used fixed values of Tgep,2 = Tfac,2 and 7gep,1. Fig. 10
uses a different value of 74, 1. The filter (global) time constants were computed using eq. (34). We used the following parameter
values: ag = 0.1, ay = 0.2, 2o = 1, 2oo = 0, Tdep,2 = Tfac,2 = 1000, Ngep = Nfac = 0.5, Tdep,1 = Tfac,1 = 100, and A,pr = 10.
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Figure 11: Temporal filters generated by the interplay of multiple depression and facilitation processes with different
single-event time scales. A. Depression (X), facilitation (Z) and AS = X Z filters for representative parameter values. We use
the distributive model (47)-(52) for the synaptic updates AS,\. The factors ASgep,» and ASy,c. in AS; are given by egs. (53)-
(54). The depression and facilitation individual filters X, and Z ., (k = 1, 2) are given by egs. (49)-(51). These and the ASgep,n
and ASyq.,n filters were approximated by using the descriptive envelope model for STD in response to periodic presynaptic inputs
(solid curves superimposed to the dotted curves) described in Section 3.3.3 by egs. (31)-(33). The filter AS,* was approximated by
using with eq. (39) with with " and G substituted by the corresponding approximations t0 ASgep,» and ASfq. . B. Dependence
of the filter (global) time constants on the single events time constants. We used fixed values of Tgep,2 = Tfac,2 @and 7gep,1. Fig. 10
uses a different value of 74.,,1. The filter (global) time constants were computed using eq. (34). We used the following parameter
values: ag = 0.1, ay = 0.2, o = 1, 2oo = 0, Taep,2 = Tfac,2 = 1000, Ngep = Nfac = 0.5, Tdep,1 = Tfac,1 = 10, and Agpr = 10.
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which convey the same dynamic information as o4, oy and o4y . The calculation of these time constants
is possible since the filter sequences involved a single n-dependent term. However, this is not the case
for ASgep,n and AS¢,.n, Which are linear combinations of n-dependent terms. On the other hand,
the shapes of ASgep,»n and AS¢,. . suggest these filters can be captured by the descriptive model by
computing the appropriate parameters using the results of our simulations. We use the notation Fie,,
Froc and H*(t) = Fyep(t)Frac(t). The solid lines in Figs. 10-A1 to -A3 and 11-A1 to A3 confirm this.
In particular, parameter values can be found so that Fyep(t), Frec(t) and H*(¢t) provide a very good
approximation to ASgep n, ASfac,n and AS), respectively (gray solid lines).

Using the descriptive model we computed the time constants o, o and o, = (0 )" +(o5 )71
Figs. 10-B and 11-B (blue) show the dependence of these time constants with the single-event depres-
sion and facilitation time constant 74cp.2 (= Tfqc,2) for two values of T4ep.1 (= Trac,1) and Agp = 10
(fspr = 100). These results capture the generic model behavior via rescalings of the type (28). A salient
feature is the non-monotonicity of the curves for o7, o and o}, , (blue) in contrast to the monotonicity
of the curves for 04,2, 072 and o441 2 for the depression and facilitation second component (red).

3.7.4 Degeneracy

The fact that the same type of descriptive envelope models such as the one we use here capture the
dynamics of the temporal filters for both single and multiple depression and facilitation processes show
it will be difficult to distinguish between them on the basis of data on temporal filters. In other words,
the type of temporal filters generated by the DA model (single depression and facilitation processes) are
consistent with the presence of multiple depression and facilitation processes interacting as described by
the cross (distribute) model.

3.8 Persistence and disruption of temporal filters for AS,, = X,, 7, in response
to variable presynaptic spike trains

By design, the temporal filters discussed above emerge in response to periodic presynaptic spike trains
(with period A,,k). Naturally, a question arises as to whether these type of temporal filters emerge in
response to non-periodic inputs and how their properties are affected by input variability. To address
this issue, here we consider more realistic, irregular presynaptic spike trains with variable (n-dependent)
ISls represented by the sequence {Aspk,n}fj;ﬁ". The natural candidates are Poisson spike trains (the
ISI distribution follows a Poisson process with the parameter r representing the mean firing rate) [69, 80].
For Poisson spike trains both the mean ISI (< IS >) and the standard deviation (SD) are equal to 7!
and therefore the coefficient of variation CV = 1. For Poisson spike trains with absolute refractoriness
ISIin, < ISI >=r~' +1S1,;, and CV = 1 — IS1,,;, < IST >~1[80], making them more regular.
We use here 1S51,,;, = 1 so that the irregularity remains high. As a first step, we consider variable
presynaptic spike trains consisting of small perturbations to periodic spike trains.

3.8.1 Perturbations to periodic presynaptic spike train inputs
To introduce some ideas, we consider perturbations of periodic presynaptic spiking patterns of the form

Aspk,n = Aspk + 55pk,n (55)

k

where A, is constant (n-independent) and 6, = {6spk,n}fj§1 is a sequence of real numbers. The
exponential factors in (7)-(8) and (26) read

e_Aspk,n/Tstp — e_Aspk/7—stpe_6spk,n/7—stp7 (56)

where Ty, represents 74ep Of Tfqc.
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If we further assume |dspk,n/Tstp| < 1 for all n, then

—A /T —Api/T 5spk n 6§pkn —Api/T 55pk.n
e spk,n/Tstp — o spk/Tstp |1 — 2207 + O 3 . ~ € spk/Tstp 1 - =="]. (57)

Tstp Tstp Tstp

Egs. (7)-(8) have the general form

WnJrl = Qp Wn + ﬁn (58)
forn=1,2,..., Ngi — 1 with
an,X — (1 _ ad)efAspk,n/Tdep’ (59)
ﬁn,X = xoo(l - e_ASpk’n/Tdep)a (60)
an,z = (1— af)e_ASP’“"/Tf“, (61)
and
Brnz=a;+ (1 —af)ze(l— e_ASP’“’"/Tf‘“). (62)

Substitution of (57) into these expressions yields

—_ T, 55 n
X = Q(aa Taep) = (1= ag)e™Sert/Tor 2228, (63)
ep
58 n
Bax = Too(l — e~ Berk/Tacn) 4 g = Bern/ Tacn _Tz’“ : (64)
ep
—_ T 55 n
.z = Qag Trac) = (1= ay)e Soot/Tree 2o, (65)
and
58 n
Bz = as+ (1 — ap)zeo(1 — e Berk/Trae) 4 (1 — ap)zgge™ Bovh/Trac ZPI1 66
, ! ! f

Tfac

The last terms in these expressions are the O(dspk.n/Tsip) COrrections to the corresponding param-
eters for the constant values of A, (6, = 0, remaining terms) and contribute to the variance of the
corresponding expressions. One important observation is that these variances monotonically increase
with decreasing values of A, (increasing values of f,;). A second important observation is the com-
peting effects exerted by the parameters 7., (T4ep and 7yq4c) On the variance through the quotients

_Aspk:/TStp

Tstp

e

As 74, decreases (increases), e~ 2srk/Totr decreases (increases) and 1 /Tstp increases (decreases). In

the limit, 7, — 0, e"®s»#/Tst» — 0 and 1/7, — oo and vice versa. Therefore, one expects the
variability to change non-monotonically with 74¢, and 774c.
To proceed further, we use the notation

an,x = ax + 0a,Xn, Bn,x = Bx +08,Xn, (67)
Qn,z = 0z + 0a,Zn- Bn,z = Bz +08,7zn- (68)
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Substituting into (83) in the Appendix A.2 we obtain

X0 (6p) = X +a% 1 (X1 - X)+ a5 %X,y Z&xxzﬁ-ﬁx Za}k 2 Z 5ax,7+za?{k Y65 x .k
j=k+1
(69)

Zn(0p) = Z +ay (2 — Z)+ oy 27, Z%z;r%ﬁz Zag k=2 Z 00,2, +Za7§ 165 2k
j=k+1

(70)
where ax = Q(aq, Taep) and az = Q(ay, Trqc). In (69) and (70) the first two terms correspond to the
solution (24) and (25) to the corresponding systems in response to a presynaptic spike train input with a
constant ISI Ag,i (0, = 0), which were analyzed in the previous sections. The remaining terms capture
the (first order approximation) effects of the perturbations 6, = {dspk,}, Which depend on the model
parameters through ax, Sx, az, Bz and the sequences 6., xn, 93,x,n, da,z,n and dg,z ,, defined by the
equations above.

These effects are accumulated as n increases as indicated by the sums. However, as n increases,
both Q(aq, Taep)™ and Q(ay, Trac)™ decrease (they approach zero as n — oo) and therefore the effect of
some terms will not be felt for large values of n provided the corresponding infinite sums converge. On
the other hand, the effect of the perturbations will be present as n — oo in other sums. For example, for
k = n — 1 in the last sums in (69) and (70), o’y *~! = a%27*~! = 1 and therefore both Js x 1 and
03,z n—1 Will contribute X,, and Z,,, respectively, for all values of n. For small enough values of §,, the
response sequences X, (d,) and Z,,(d,) will remain close X,,(0) and Z,,(0), respectively (the response
sequences to the corresponding unperturbed, periodic spike train inputs) and therefore the temporal
filters will persist. Fig. 12 shows that this is also true for higher values of §,. There, the sequence 4,
was normally distributed with zero mean and variance D = 1. In all cases, the mean sequence values
computed after the temporal filter decayed (by taking the second half of the sequence points for a total
time T}, = 100000, X, and Z.) coincides to a good degree of approximation with fixed-point of the
unperturbed sequences X and Z (compared the corresponding solid and dotted curves).

These results also confirm (by inspection) the previous theoretical observations. First, the variability
is smaller for 7gep, = Tqc = 500 than for 74., = 774, = 100. Second, as A, decreases f,,, increases),
the variability increases. For 74ep = Trqc = 100 (Fig. 12-A) the variability of AS. = X.Z. is smaller than
the variabilities of both X. and Z.. For 74¢p = 7rqc = 100 (Fig. 12-B), the variability of AS, = X .Z. is
smaller than the variability of X, but not always smaller than the variability of Z..

While this approach is useful to understand certain aspects of the temporal synaptic update filtering
properties in response to non-periodic presynaptic spike train inputs, it is limited since it does not admit
arbitrarily large perturbations, which could cause the perturbed ISI to be negative. One solution is to make
phase-based perturbations instead of time-based perturbations. But it is not clear whether comparison
among patterns corresponding to different A, are meaningful.

3.8.2 Poisson distributed presynaptic spike train inputs

Fig. 13 shows the response of the depression (X,,), facilitation (Z,,) and synaptic update (AS,,) peak
sequences to Poisson distributed presynaptic spike train inputs for representative values of the spiking
mean rate r,;, and the depression and facilitation time constants 4., and 7¢,.. Each protocol consists
of 100 trials. A comparison between these responses and the temporal filters in response to periodic
presynaptic spike inputs with a frequency equal to 7, (the Poisson rate) shows that collectively the
temporal filtering properties persist with different levels of fidelity. Clearly, variability in the responses are
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Figure 12: Temporal filters persist in response to variable presynaptic spike trains: Depression, facilitation and synaptic
update response to normally distributed ISI perturbations to periodic spike train inputs. We used the recurrent equations
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present for each trial (Fig. S3). Figs. S3-B2 and -C2, the temporal band pass-filter is terminated earlier
than the corresponding deterministic one. However, in Fig. S3-B1 the temporal band-pass filter is initiated
earlier than the corresponding deterministic one.

A B

o X —X,
o Zy —Znaa
o AS) AS

det

0 200 400 600 800 1000 0 200 400 600 800 1000
t [ms] t [ms]

rspk=50 Tdep=500 TfaC=500 rspk=100 rdep=500 TfaC=500

0 200 400 600 800 1000 0 200 400 600 800 1000
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Figure 13: Temporal filters persist in response to variable presynaptic spike trains: Synaptic update response to Poisson
distributed spike train inputs We used the recurrent equations (7) and (8) for X,, and Z,, respectively. The ISIs have mean and
standard deviation equal to r4,,. Simulations were run for a total time Tnqax = 2000 (At = 0.01). We consider 100 trials and
averaged nearby points. A. Tgep = Trac = 100 and fopr = 50. B. Tyep = Trae = 100 and fspr = 100. C. T4ep = Trae = 500 and
fspk = 50. D. Tgep = Trac = 500 and fspr, = 500. We used the following parameter values: aq = 0.1, ay = 0.2, oo = 1, 2oo = 0.

In Fig. 14 we briefly analyze the response variability of the X,,, Z,, and AS,, sequences induced by
the presynaptic ISI variability. For X,, and Z,,, the variability decreases with increasing values of 74,
and Tyq. in an g, -dependent manner (Fig. 14-A). For most cases, the variability also decreases with
increasing values of 74, in a 74ep- and 7¢4.-manner (Fig. 14-B). An exception to this rule is shown in Fig.
14-B1 for the lower values of ;..

The variability of the AS,, sequences is more complex. Figs. 14-A1 and -A2 show examples of the
peaking at intermediate values of 74, and 77,.. Fig. 14-B1 shows an example of the variability reaching
a trough for an intermediate value of r,,; and relatively low values of 74, and 74, while Figs. 14-B2
and -B3 show examples of the variability peaking at intermediate values of r,,;. for higher values of 74,
and 77,.. This different dependence of the variability with the model parameters and input rates emerge
as the result of the different variability properties of the product of the sequences X,, and Z,,. A more
detailed understanding of these properties is beyond the scope of this paper.
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3.9 The MT model exhibits similar filtering properties as the DA model: Dynam-
ics of the depression (R) and facilitation (u) variables and their interaction

The main difference between the DA model (5)-(6) and the MT model (12)-(13) is the update of the
depression variables (z in the DA model and R in the MT model). Notation aside, the dynamics for
depression and facilitation variables x and z in the DA model are completely independent both during
the presynaptic ISI and the update. In the MT model, in contrast, while the dynamics of the depression
and facilitation variables R and u are independent during the presynaptic I1SI as well as the u-update,
the R-update is dependent on u™. As a result, the difference equations describing the peak sequence
dynamics for R,, and u,, (14)-(15) (peak envelope responses to periodic presynaptic inputs) are not fully
independent, but the equation for R,, is forced by the sequence w,,, which is independent of R,,. For the
DA model, the difference equations for Z,, and Z,, are independent (7)-(8). Naturally, the steady-states
(X and Z) in the DA model are independent, while in the MT model, the steady state R depends on the
steady state u. Here we show that despite these differences and the increased difficulty in the interpre-
tation of the analytical solution for the MT model as compared to the DA model for the determination of
the long-term depression and facilitation filter time constants, the two models describe similar dynamics.

Standard methods (see Appendix A) applied to these linear difference equations for Ak, = Agpk
(independent of n) yield

n—1 n—1 n—1
Ry = e 08k /Taer TT(1—upyg) + (L= e Bern/Taen) N 7 em(mhmD8en/maer T (1—uyy) (71)
k=1 k=1 j=k+1
and
up =1+ Q(U, Tfac)"_l (up — 1) (72)

where Q(U, Tyqc) is given by (26).

Because of the complexity of (71) we are not able to use the approach described in Section 3.3.1 to
compute the (long-term) history-dependent time scales o4¢, and oy, in terms of the single event time
scales (74¢p and 7rqc) given by eq. (27). Instead, we use the descriptive modeling approach described in
Section (3.3.3) by egs. (31)-(34) and Section 3.3.3.

4 Discussion

The temporal and frequency-dependent properties of postsynaptic patterns are shaped by the presence
of synaptic short-term plasticity (synaptic depression and facilitation; STP). In response to a presynaptic
spike train, the postsynaptic membrane potential response may be amplified, attenuated or both, thus
exhibiting a maximal response for an intermediate presynaptic spike (or spike sequence). This gives rise
to the notion of STP-mediated temporal filtering: the response is optimal within a certain time window
(or windows). During these temporal bands, sensory input is enhanced and the communication between
neurons is facilitated.

We set out to understand the mechanisms of generation of temporal filters in response to presynaptic
spike trains in the presence of STP. We focused on a feedforward network consisting of a presynaptic cell
(modeled as a presynaptic spike train) synaptically connected to a passive cell (diagram in Fig. 2). This is
the minimal network model that allows the systematic investigation of postsynaptic potential (PSP) tem-
poral filters in response to presynaptic inputs. In our simulations we primarily used parameters consistent
with AMPA excitation. We adopted the use of periodic spike trains as the reference presynaptic spiking
input. This allowed us to conduct a systematic study of temporal filters. First, we characterized the three
types of temporal filters that emerge: low-, high-, and band-pass filters (LPF, HPF, BPF, respectively).
Second, we systematically investigated how their properties depend on the properties of the network
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building blocks, particularly the time constants involved in the sequence of concatenated processes: (i)
the presynaptic spike train ISl Ay, (ii) the short-term depression and facilitation 74, and 74, (iii) the
synaptic decay time 74, and (iv) the membrane time constant 7,,,. We then showed that the reference
temporal filters are preserved at the population (multiple trial) level in response to variable presynaptic
spike trains. The degree of variability of these patterns within and across trials depends on the parameter
values, but the temporal filtering properties remain. To our knowledge, this is the first systematic investi-
gation of STP-mediated neuronal temporal filters. Our results have implications for the understanding of
the mechanism underlying the temporal information filtering properties of neuronal systems discussed in
the Introduction.

We used two biophysically plausible phenomenological models that have been widely used in the
literature: the DA (Dayan-Abbott) and the MT (Markram-Tsodkys) models [21, 43,62, 63,67—-73]. In the
DA model [69], the depression and facilitation variables evolve independently, while in the MT model [63],
the evolution of the depression variable is affected by the facilitation variable. We found no significant
differences between the results for both models. The simplicity of the DA model allows for a number of
analytical calculations that facilitate the analysis and the mechanistic understanding. From the differential
equations describing the continuous evolution of the depression (z) and facilitation (z) processes one
can extract the difference equations describing the discrete evolution of the peak sequences X,, and
Z,, respectively. These can be solved analytically providing the input AS,, = X, Z, to the synaptic
variable S at the arrival of each presynaptic spike. The solution to the difference equation for the synaptic
peak sequences .S, produces expressions for the synaptic peaks. The investigation of the MT model
required the development of additional tools and numerical simulations since the difference equations
for the depression variable (R) is nonlinear and not analytically solvable. Of particular importance is the
development of a descriptive modeling approach to capture the shape of the temporal filters in terms of
the model parameters or data (see Supplementary Material Section for the more detailed analysis). In
contrast to the DA model where the temporal filter parameters (e.g., the filter time constants o4, and
0 tac) are derived from the single event parameters, for the MT model the temporal filter parameters (e.g.,
the filter time constants o4, and o) are inferred from the shapes obtained by simulating the equations
for the depression and facilitations variables (R and «). An additional step is needed to relate the filter
parameters to the single event parameters. This approach can be easily adapted to more complex models
for which analytical solutions are not available and to experimental data following a similar protocol.

Dynamically, temporal BPFs can be considered as overshoot types of solution to a linear difference
equation. Overshoots are not possible for one-dimensional linear difference equations (e.g., temporal
LPFs and HPFs), but they are possible for two-dimensional linear difference equations. This implies that
two time scales would be enough to explain the properties of BPFs for AS,,. However, our results indicate
that a third time scale is needed to explain the BPF properties for AS,, in the general case, consistent
with previous results [75]. This emergent time scale combines the first two and is further propagated to
the higher levels of organization.

The interaction between the STP-mediated LPFs and HPFs with the synaptic and postsynaptic dy-
namics generates additional LPFs, HPFs and BPFs, with additional emergent time scales. For relatively
low membrane time constants, the postsynaptic dynamics reflect the synaptic dynamics and the PSP
filters are proportional to the synaptic filters (e.g., [21, 63, 67]). However, for higher membrane time
constants, the PSP filters depart from this proportionality with the synaptic ones. Specifically, PSP BPF
emerge in the presence of synaptic LPFs or in the presence of synaptic BPFs, but having different shapes
and peaking at different times. This additional processing affects the communication between pre- and
postsynaptic cells in the presence of STP.

In order to account for more realistic situations, we considered scenarios where more than one de-
pression and facilitation processes with different time constants interact. The results are consistent with
the ones for the single processes. However, the models we used (in the main body and in the Appendix)
have been developed as natural extensions of the ones for single processes and are not based on ob-
servations or previous information about the presence of multiple depression and facilitation processes.
More research is needed to determine whether these models and the resulting filters capture realistic
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situations.

An important conceptual question we addressed in our work is how the single event time constants
(€.9., Tdeps Tfacs Tdec)s Which control the systems’ dynamics during the ISls, are communicated to the
temporal filters. In other words, how the temporal filters’ long-term time constants (c4ep, 0 facs Tsum fOr
the DA model and oq4, o¢, osum for the MT model) depend on the single-event time constants for each
presynaptic spike train ISl A,. For the simplest synaptic model (one-dimensional linear dynamics for
the variable synaptic variable S during the I1SI and a constant update AS, independent of S), the single-
event and temporal filter time constant coincide. For the slightly more complex models for depression
and facilitation (one-dimensional linear dynamics for the variables x and z during the ISI, but the updates
depend on the appropriate values of the variables at the arrival of the presynaptic spikes), there is a
departure of the temporal filter time constants from the single event time constants. The dependence
between the two types of time constants (filter and single event) is relatively complex and involves the
presynaptic time scale A, and additional parameter values. This complexity is propagated to the PSP
filters and is expected to be further propagated to higher levels of organization that are beyond the scope
of the paper, but not unimportant.

While biophysically plausible, the phenomenological models of STP we used in this paper are rela-
tively simple and leave out a number of important biological details that might contribute to determining
the properties of STP-mediated temporal filters and their consequences for information processing. Fur-
ther research is needed to understand the properties of these filters and how they emerge as the result
of the interaction of the building blocks. An additional aspect that requires attention is the possible effect
of astrocyte regulation of STP [10, 11] on the mechanisms of generation of STP-dependent temporal fil-
ters. Our work leaves out the mechanisms of generation and properties of the stationary low-, high- and
band-pass filters and the associated phenomenon of synaptic and postsynaptic resonance. This will be
discussed elsewhere.

The conceptual framework we developed in this paper allows the development of ideas on the proper-
ties of PSP temporal filters in response to presynaptic inputs in the presence of STP and the mechanism
underlying their generation. An important aspect of this framework is the separation of the feedforward
network into a number of building blocks, each one with its own dynamics. The emerging temporal fil-
ters can be analyzed in terms of the hierarchical interaction of these building blocks. This conceptual
framework can be used to investigate the properties of low-, high- and band-pass stationary, frequency-
dependent filters and the emergence of synaptic and postsynaptic resonances. It is conceived to be
further extended to include a number of more complex scenarios, including non-periodic synaptic spike
trains (e.g., Poisson spike inputs, bursting patterns with two or more spiking frequencies), more com-
plex networks (e.g., two recurrently connected cells with STP in both synapses, three-cell feedforward
networks with STP in both synapses), the modulatory effects of astrocytes, more complex postsynaptic
dynamics involving ionic currents that have been shown to produce resonances [81-87], and the gen-
eration of postsynaptic spiking temporal filters. A first step in this direction is to extend the notion of
STP-mediated temporal filters to the postsynaptic spiking domain and characterize the resulting firing
rate temporal filters.

Our results make a number of predictions that can be experimentally tested both in vitro and in vivo
using current clamp, and optogenetics [88,89]. These primarily pertain to the dependence of the type
and shape of the temporal PSP filters with the presynaptic spikes and the STP properties. These include
our results in Figs. 8 and 9 (and analogous figures for the MT model) and extensions to additional
results about the dependence of these filters with the model parameters (not presented here for lack of
space) that can be obtained by using our modeling approach. In particular, we predict that PSP filters
in the presence of STP are not proportional to the product of the synaptic depression and facilitation
variables, but reflect the processing occurring at the postsynaptic level. The fact that temporal PSP
filters persist in response to variable presynaptic spike inputs is important for this task. Our results using
the simplified models also generate hypothesis to be tested in more detailed models of STP. From a
different perspective, the PSP temporal filters can be used to infer the model parameters describing the
single event processes (e.g., time constants of depression and facilitation) and to extract biophysical and
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dynamic information from experimental data.
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A 1D linear difference equations

A.1 Constant coefficients

Consider the following linear difference equation

Wpt1 = @ wy, + B, n=12,... (73)
where « and ( are constants. The steady-state for this equation, if it exists, is given by
w = b . (74)
11—«
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By solving (73) recurrently and using

nia -
> a - (75)

where a # 1 is a real number, one gets

n—1 _ 1
wy = o™y + 5% (76)
a—1
Substitution of (74) into this equation yields
wy =W+ a" " (wy —w). (77)
Application of formula (77) to the difference equations (7) and (8) gives, respectively,
Xop=X+(1-X)(1—ag)" tem ("7 Rewr/Taer —
X+(1-X) e~ (=D[Aspr/Taep—In(1—aq)] (78)
and
Zy=2+(1-2)(1—ay)" tem(mmDBwr/Troe =
Z+(1-2) e~ (= D[ Aspr/Tac—In(1—ay)] (79)
A.2 Variable (n-dependent) coefficients
Consider the following linear difference equation
Wn+1 :anwn'i'ﬂnv n=12... (80)
By solving (73) recurrently one gets
n—1 n—1 n—1
Wy, = <H Oék> xl—l—z H Q; B (81)
k=1 k=1 \j=k+1

where we are using the convention H;f = 1if j1 > j2. Eq. (81) reduces to eq. (79) if both coefficients in
(81) are constant.

Consider now eq. (80) where the coefficients are expressed as small perturbations 4., <« 1 and
dg.n < 1(n=1,2,...),respectively, of constant coefficients

oy = o+ 6a,n and Bn - ﬂ + 5[5,71- (82)
To the first order approximation, the solution (81) reads
n—1

—1 —1 —1 —1

n—1 «@ -1 n—2 S S n—k—2 K K n—k—1

Wy, = wl—i—Bﬁ—i—a w1 E 5a,k+ﬁ E « E 5a,j+ E a 5571€=.
k=1 k=1 j=k+1 k=1

n—1 n—1 n—1 n—1
=w+a" ! (w — W) +a" 2w Z dax + 08 Z ank=2 Z da,j + Z "Rl (83)
k=1 k=1 j=k+1 k=1
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B Some properties of X and Z and their dependence with Agpr and

Tdep/ fac

Consider X and Z given by (9) and (10), respectively.

B.1 Monotonic dependence of X and Z with A,

If ag > 0 and zo > 0, then X is an increasing function of A, and a decreasing function of f,,i. This
results from

BX Too Ad eiAspk/Tdep
- > 0. 84
Ik Taep [1 — (1 — ag)e=Dorr/Tacs 2 (84)

Ifar <1andzs < 1,then Zisa decreasing function of A,y and an increasing function of fs,;. This
results from

07 af(1—ay) (200 = 1)
= ' ' < 0. 85
OAspk Trac[l — (1 — ap)e=Bspr/Trac]2 (85)

B.2 Monotonic dependence of X and Z with 7., a.
If ag > 0 and zo > 0, then X is an decreasing function of 74.,. This results from

8X AS 00 _Aspk/Tdcp
=—— pk Loo Ad € <0 (86)
OAgpi 73, [1— (1 — ag)e=Bswn/Tacr ]2

If ay < 1and zo < 1, then Z is a decreasing function of 7¢,.. This results from

aZ Aspk af (1 — (If) (Zoo — 1)
- 0. 87
6ASP7€ T?ac [1 - (1 - af)€7ASPk/TfaC]2 > ( )

C Models of synaptic depression and facilitation

C.1 Depression - facilitation model used in [90]
Following [91,92], the synaptic variables S obey a kinetic equation of the form

ds (1-5) S

— =N{V)——~ - — 88

&N - (88)
where N (V') (mM) representes the neurotransmitter concentration in the synaptic cleft. Neurotransmitters
are assumed to be released quickly upon the arrival of a presynaptic spike and remain in the synaptic

cleft for the duration of the spike (~ 1 ms). This can be modeled by either using a sigmoid function

1+ tanh(V/4)
= 5 ,
or a step function if the release is assumed to be instantaneous. The parameters 7, and 74 are the rise
and decay time constants respectively (msec).

This model assumes N (V') is independent of the spiking history (the value of N(V') during a spike is
constant, except possibly for the dependence on V). (There is evidence that this is not realistic [78,93].)
In [90], the “activated" time was 1 ms [94, 95].

N(V) (89)

45



In [90], they followed the description of the synaptic short-term dynamics following [43, 62] (Section
2.1.5). For the dynamics of the synaptic function .S, they used a function [T] = x AS,, during the release
time and [T'] = 0 otherwise, instead of N (V). The combination of the two formulations yields

@ =k AS, N(V) a-=95_5s

d Ty T4

(90)

In the following alternative formulation [68] x AS,, does not affect the effective rise time of the synaptic
function S

e Gt ) (91)
dt Ty T4

C.2 Depression model used in [96]

Following experimental procedures described in [97], the synaptic current is described by Iy, = Geza d(V —
E..) where a and d are variables that represent activation and depression processes, respectively. They
follow the form:

@ _ yoo(vpre - y)

= 92
dt Ty ’ (92)

where y = a, d. The steady-state of y is given by

1
Yoo = ) (93)
1+ exp((V — Va)/k)
and its time constant follows

Ty = AL (94)

T e (V = Vo) k)

This model is used in [96] to describe bistability in pacemaker networks with recurrent inhibition and
depressing synapses. Parameters in these equations are experimentally fitted from the pyloric network
of the crab Cancer borealis.

D Additional model formulations for multiple depression-facilitation
processes

In Section 3.7 we discussed the model formulation (47)-(48) describing the interplay of two depression-
facilitations processes. A number of additional, simplified formulations are possible based on different
assumptions. The models we propose here are natural mathematical extensions of the single depres-
sion/facilitation processes discussed in the main body of this paper. They are phenomenological models,
not based on any experimental observation or theoretical foundation, and they are limited in their general
applicability. However, they are useful to explore the possible scenarios underlying the interplay of multi-
ple depression and facilitation time scales affecting the PSP dynamics of a cell in response to presynaptic
input trains.

D.1 Additive and multiplicative segregated-processes models

In the additive and multiplicative segregated models, the variable M is given, respectively, by

M*(t) = (1 —a)x1(t)21(t) + aza(t)2za(t) (95)
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and

M*(t) = [a1 (t)z1 (1))~ [z (t) 22(8)) (96)

where the parameter o € [0, 1] controls the relative contribution of each of the processes. Correspond-
ingly, the updates are given by

ASH=(1-a)X1 0 Z1p+aXonZon (97)

and

AS:; - [Xl,nzl,n]lia [XQ,nZQ,n]a- (98)

For a = 0, AS;" and AS? reduce to AS; ,, (single depression-facilitation process). This accounts for
the regimes where 74cp 2, Trac,2 < 1. If the two processes are equal (Tgep,1 = Tdep,2 @NA Trac,1 = Tfac,2)s
then AS;" and AS;: also reduce to AS; ,,. However, these models fail to account for the reducibility in the
situations where only 74¢p 2 << 1 0r 714.2 < 1, but not both. The option of considering depression to be
described by x; and facilitation by 22 (with 714¢,1, Taep,2 < 1) is technically possible in the context of the
model, but it wouldn’t be consistent with the model description of single depression-facilitation processes,
and it will make no sense to use the model in this way. In general, this model would be useful when the
depression and facilitation time scales for each process 1 and 2 are comparable and the differences in
these time scales across depression/facilitation processes should be large enough.

D.2 Fully multiplicative model

One natural way to extend the variable M to more than one process is by considering

M#(t) = x1 ()21 (t) 2o (t) 22 (1) (99)
and the synaptic update, given by

ASH = X1 071 n XonZom. (100)

This formulation presents us with a number of consistency problems related to the reducibility (or
lack of thereoff) to a single depression-facilitation process in some limiting cases when, for example,
the two depression or facilitation time constants are very similar and therefore the associated processes
are almost identical, or the depression or facilitation time constants are very small and therefore the
envelopes of the associated processes are almost constant across cycles.

More specifically, first, if T4ep. 2, Trac,2 < 1 (almost no STD), then Xs ,Z2.,, ~ X2Zo = ay for all n
after a very short transient and therefore AS# = X;Z1ay # AS1,,. One way, perhaps the simplest,
to address this is to divide the expressions (99 ) and (100 ) by afc and redefine ASy, ,, for the single
depression-facilitation process accordingly. Specifically,

Xl,nZLnXQ,nZQ,n Xl,nZLn X2,nZQ,n

ASH = . = , (101)
af af af

where we use the notation

X1nZ1in XonZon
ASy, = Slnsln and ASy, = 22na2n

CLf af
The effect of redefining AS;, ,, by dividing the original expression (used in the previous sections) does
not affect the time constants and the differences in the values between the two formulations is absorbed
by the maximal synaptic conductance.

(102)
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Second, if Tgep,1 = Tdep,2 @Nd Trge,1 = Tfac,2, then Xy, = X, and Z,,, = Zy, for all n, and
AS# = AS}, instead of AS# = AS) .. In order to address this, the synaptic update can be modified

to

)\fac
Zl,nZZ,n

2
@y

ASHF = [ X1 p Xon] "

where

1 1
/\dep = H( and )\fac = H(

|Tdep,1 — Tdep,2 |)

|Tfac,1 — Tfac,2 |)

and H(AT) is a rapidly decreasing function satisfying H(0) = 2 and lima,— .o H(AT) = 1.

simulations we will use

H(AT) =14 e 27/8
with 3 > 0. Correspondingly,
()]
z z
M#* = [oy(t)aa (£ [ — ]
a
f
In this way,

o If Tgep.1 = Tdep,2, then X1 ,, = Xy ,, forall m and Agep = 1/2. This gives
Afac
Zl,nZQ,n !

ASH =X, >
ay

If, in addition, Tfac,1 # Tfac,2 @Nd |Tfac,1 — Trac,2| > 0 is large enough, then A, =1 and

o If Trac1 = Trac,2, then Zy , = Z5 , forall n, A = 2 and

Zl,n

ASHF = [X1 Xy 7
ar
If, in addition, T4ep1 7 Tdep,2 AN |Tgep,1 — Taep,2| > 0 is large enough, then Az, = 1 and

Zl,n
af

ASH = X1 2 Xop = AS) 1 Xop.

(103)

(104)

In our

(105)

(106)

o |t follows that if both 74ep,1 = Tdep,2 ANd Trac,1 = Trac,2, then Xy, = X5, and 7, ,, = Z3,, for all

n, /\dep = /\fac =2and

Zl,n
af

ASH =X,

= AS, ..
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o If Tgepo < 1 and |Tgep,1 — Tdep,2| is large enough, then X, ,, = 1 for all n (after a very short
transient), Agep = 1, and then

Afac

Zl,nZQ,n

ASH =X, >
ay

If, in addition, T4ep,1 < 1@Nd Taep.2 ~ Taep,1 ( [Taep,1 — Taep,2| ~ 0 not large enough), then X; ,, =1

for all n (after a very short transient), Aqep, = 2, and then

Afac

Zl,nZZ,n
2

@y

ASY? =

o If Tfaeo < 1 @nd |Trac,1 — Trac 2| is large enough, then Z,,, = ay for all n (after a very short

transient), Arq.c = 1, and then
Zin
ASH = [Xy 0 Xo ) er S22
ag

If, in addition, 741 < 1 and Trae2 ~ Trace,1 ( |Tfac,i — Trac,2| ~ 0 not large enough), then
Z1,n = ay for all n (after a very short transient), A¢.. = 2, and then

AS#F = (X1 0 X ] .

o |t follows that if 74ep 1, Taep,2 K 1 (|Tdep,1 — Tdep,2| ~ 0 not large enough) and 774c.1, Trac,2 < 1 (
|Tfac,1 — Trac,2| ~ 0 not large enough), then

AS# = 1.

n

E Descriptive rules for the generation of temporal (envelope) band-
pass filters from the interplay of the temporal (envelope) low- and
high-pass filters

From a geometric perspective, temporal band-pass filters in response to periodic presynaptic inputs arise
as the result of the product of two exponentially increasing and decreasing functions both decaying to-
wards their steady-state (e.g., Fig. 6). At the descriptive level, this is captured by the temporal envelope
functions (F', G and H = FG) discussed above whose parameters are not the result of a sequence
of single events but are related to the biophysical model parameters by comparison with the developed
temporal filters. These functions provide a geometric/dynamic way to interpret the generation of temporal
filters in terms of the properties of depression (decreasing functions) and facilitation (increasing func-
tions) in response to periodic inputs, although this interpretation uses the developed temporal filters and
therefore is devoid from any biophysical mechanistic interpretation.

In order to investigate how the multiplicative interaction between F'(t) and G(t) given by egs. (31)-(32)
give rise to the temporal band-pass filters H = F'G, we consider a rescaled version of these functions

F(t) = A+ (1 — A)e t/n (107)

and

G(t)=B[1-Ce™"] (108)
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where B = 1 and
0d
Uf '
The function G transitions from G(0) = 1 — C to lim;_,~, G(t) = 1 with a fixed time constant (Fig. 15,
green curves). The function F' transitions from F'(0) = 1 to lim; ,~ F'(t) = A with a time constant 7
(Fig. 15, red curves). It follows that H transitions from H(0) = 1 — C to lim;,~, H(t) = A B = A (Fig.
15, blue curves). A temporal band-pass filter is generated if H raises above A for a range of values of .
This requires F' to decay slow enough so within that range H = FG > A (Fig. 15-A) or A to be small
enough (Fig. 15-B). In fact, as A decreases, the values of 1 required to produce a band-pass temporal
filter increases (compare Fig. 15-A2 and -B2).

Changes in the parameter B in (108) affect the height of the band-pass temporal filter, but not the

generation mechanism described above. However, for certain ranges of parameter values H is a temporal
low-pass filter (not shown).

n= (109)
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Figure 15: Temporal band-pass filters generated as the result of the multiplicative interaction of temporal low- and high-
pass filters: envelope functions approach. We used the envelope functions F' and G defined by (107) and (108), respectively,
and H = F'G. A. Increasing 7 contributes to the generation of a band-pass temporal filter. We used A = 0.5, C' = 0.8 and A1.
n =0.1. A2. n = 1. A3. n = 10. B. Decreasing A contributes to the generation of a band-pass temporal filter. We used n = 1,

C=08andB1. A=0.2.B2. A=04. B3. A=0.6.

50



f,_, =150 0

Supplementary Material
Extended analysis

fooc =10 0 o =50 0

1 1 1 1
0.8 0.8 . 0.8 . 0.8
0.6 0.6 . 0.6 . 0.6

o o [}
©

0.4 0.4 . 0.4 . 0.4
N — . | _ . | .

o 0 ‘ 0

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
T, T, T,

stp stp stp

st

Figure S1: Colormap of Q(astp, 7stp) The colormaps show how @ (see eq 26) spanned over different values of asi, and Tsep
behave. We consider as;, in the range [0:1] and 7., in the range [0:500]. Every panel is computed for a different value of fsp.
Notice that Q(astp, Tstp) has, in general, lower values for higher fs,y.
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Figure S2: DA model combined with synaptic rise times. In every row we show the variable S and the variable V for a given
rise time (see legend) without STP (first row) and with STP from the DA model (second row). Notice that for very small 7,;s. the
increments in S and V are fast. When combined with STP, a band-pass filter shows up in S (see egs 4-6). In this paper, we
considered that rise times are very fast such as the ones found in AMPA and GABA 4. However, in cases where 7,5 increases our
observations indicate that the band-pass filter is suppressed until it can no longer be observed. This effect happens because the
presynaptic spikes take longer and longer to increase the value of S as 7,.:s. increases until they become unnoticeable. We used
the following parameters: Tgec = 20, Taep = 400, Tfac = 50, @dep = 0.1, afac = 0.2, and fpr = 80. The model for the rise times
is taken from eq. (91) and assumes that a presynaptic spike has a time window of 1 ms which will be the time the postsynaptic
membrane voltage takes to rise. We assume £ = 1 mM.
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Figure S3: Temporal filters persist in response to variable presynaptic spike trains: Synaptic update response to Poisson
distributed spike train inputs. We used the recurrent equations (7) and (8) for X,, and Z,, respectively. The ISls have mean and
standard deviation equal to r,,,. Simulations were run for a total time T = 200000 (At = 0.01). A, B. Tgep = Trac = 100.
A. fopr = 50. B. fopr = 100. C, D. Tgep = Trac = 500. C. fspr = 50. D. fspr = 100. We used the following parameter values:

ag=01,ar =02, 0o =1, 200 = 0.
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The Markran-Tsodyks (MT) model

First, we briefly remark on the notation used in this section. We conduct analysis using continuous
extensions of AS,,, S, and V,, —denoted as AS, S, V in the forthcoming figures and text. Time scales
of temporal HPFs and LPFs in S are denoted o 5 and o4 5. The third time scale in temporal BPFs in §
are denoted 04, f,5. All temporal filters are fitted using gradient descent of a quadratic cost function.

The analysis for the MT model proceeds similarly to the DA models’. As seen in Section 3.3, the inter-
action between X and Z produces low-, high-, and band-pass temporal filters in AS. Similarly, R and u
produce low-, high-, and band-pass temporal filters in AS. Again, we find AS temporal LPFs and HPFs
not only develop in synapses exhibiting exclusively STD and STF, respectively. Indeed, AS temporal
LPFs (HPFs) can develop in synapses where the time scale of depression (facilitation) dominates facili-
tation (depression). However, as in the case of the DA model, the exact ranges of £, over which LPFs
and HPFs develop depend on the balance between facilitation and depression. Figure S4-A1 shows that
almost exclusively depressive synapses exhibit LPFs for 0 < fs,, < 150, whereas a dominantly depres-
sive synapse may stop producing LPFs for f,,, > 100 (compare to Figure S4-A5). A similar situation
arises in facilitating synapses (Figure S4-A2 and -A5).
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Figure S4: Temporal Filters in AS for the MT model. The interaction of presynaptic spiking and STP timescales create
only high-pass, low-pass, and band-pass temporal filters. For these simulations 74.. = .01 to suppress summation. A1. Low-
pass temporal filters appear for all input frequencies. As the input frequency increases, the low-pass temporal filters decay more
aggressively (74ep = 150, 7rqc = 1). A2. High-pass temporal filters appear for all input frequencies. As the input frequency
increases, the high-pass temporal filters rise more aggressively (T4ep = 1, Trac = 150). A3. Band-pass temporal filters appear
for all input frequencies. As the input frequency increases, the band-pass temporal filters become more sharply peaked (74ep =
150, 7roc = 150). A4. Low-pass temporal filters appear for low input frequencies but then band-pass temporal filters develop
for higher input frequencies (74, = 150, Tpqc = 30). A5. High-pass temporal filters appear for low input frequencies but then
band-pass temporal filters develop for higher input frequencies (Tqep = 30, Trac = 150). In all simulations for the synapse: Uy = .1.

R, and u,, are well described by exponential decays, much in the same way X,, and Z,, are observed

to be (Section 3.4). As such, as we did in the DA model, in the MT model we imagine that temporal filters
in AS are heuristically the product of two exponentials. Despite the non-linearity present in MT model
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which complicates the analysis of how the long-term time scales of R,, and u,, are passed through their
product AS, AS temporal LPFs (examples in Figures S5-B2,-B3) and HPFs (examples in Figures S5-
A2,-A3) are still well described by a single time scale exponential. The time scales extracted from HPFs
at dominantly facilitating and exclusively facilitating synapses are summarized in Figure S5-A1. Figure
S5-B shows analogous results for LPFs of the MT model. A careful reader will note that Figure S5 refers
to temporal filters of S, rather than AS. However, 74.. = 3 for these figures so that the contribution of the
synaptic HPF implemented by synaptic decay is inconsequential for this discussion. The same remark
also applies to Figures S6, S9, and S10.
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Figure S5: A. STF dominated synapses exhibit high-pass temporal filter. (7;.. = 500) A1. The dependence of high-pass
temporal filter’s time scale on input frequency: a comparison of a synapse with no STD and fast STD. A2. Example of high-pass
temporal filter at synapse with no STD. (T4ep = 0, fspr = 40) A3. Example of high-pass temporal filter at synapse with fast STD.
(Taep = 50, fspr, = 40) B. STD dominated synapses exhibit low-pass temporal filter: a comparison of a synapse with no STF and
fast STF. (tqep = 500) B1. The dependence of low-pass temporal filter’s time scale on input frequency. B2. Example of low-pass
temporal filter at synapse with no STF. (7. = 0, fspr = 20) B3. Example of low-pass temporal filter at synapse with fast STF.
(Tfae = 50, fspr = 20) In all simulations for the synapse: Uy = .1 and 74.. = 3. Upper bound of RMSE on all low- and high-pass
temporal fits: .012.

In Section 3.6, BPFs in the DA model are shown to arise from 3 time scales, 2 of which can be
extracted from corresponding LPFs and HPFs. A similar result is true for the MT model. Figure S6 outlines
how these three time scales vary as the input frequency varies. Band-pass temporal filters become more
sharply peaked as the input frequency increases. This reflects itself as observable decreases in the
scenario where three time scales characterize band-pass temporal filters. Figure S6-B show that this
third time scale is not superfluous — that removing the o4+ ¢, 5 time scale from the model drastically alters
the temporal filter fit.

Finally, we briefly review how AS temporal LPFs, HPFs, and BPFs are propagated to .S and PSP. We
note that 74.. and T,em implement temporal HPFs. Figure S7 summarizes the types of filters that result
in S from different incident AS temporal filters. Similarly, Figure S8 summarizes the types of filters that
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Figure S6: The time scales of band-pass temporal filters are determined by the mix of STF’s and STD’s time scales
at the synapse along with input frequency. A. The time scales of STD and STF impact the three time scales characterizing
band-pass filters in different ways. A1. The impact of STD’s time scale, 74, On the band-pass temporal filter’s time scale related
to low-pass temporal filters. (77, = 0) A2. The impact of STF’s time scale, 774, on the band-pass temporal filter’s time scale
related to high-pass temporal filters. (74, = 0) A3. The impact that both STD’s and STF’s time scale have on third time scale
of temporal filtering. Solid lines are fit 044 5,5 fitted from three time scale model of temporal BPFs. The dashed lines are the
corresponding values of (1/a4 + 1/0;)~". B. The third time scale is not redundant. Without it, the temporal band-pass filter will fail
to fit. (Taep = Traec = 200). The three time scales for the temporal filters in the following figures can be obtained from the foregoing
three figures. S?:;f is the temporal BPF extracted using the three time scale model. Sf,jtf is obtained by setting the coefficient on
the third time scale to zero. B1. Temporal BPF fit with and without third time scale when fs,,. = 30. The circles in A represent the
time scales extracted using the three time scale model BPF model. B2. Temporal BPF fit with and without third time scale when
fspr = 90. The squares in A represent the time scales extracted using the three time scale model BPF model. B3. Temporal BPF
fit with and without third time scale when f,,, = 150. The diamonds in A represent the time scales extracted using the three time
scale model BPF model In all simulations for the synapse: Uy = .1 and 74 = 3. Upper bound of RMSE on all temporal filter fits
used in this figure: .01.
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result in V' from different incident S temporal filters. As in the DA model, we note there are instances
where BPFs are passed through levels of organization and others where they arise due to an interaction
of filters at different levels of organization (see Section 3.7). The communication through BPFs between
levels of organization is exemplified by Figure S7-A3 (AS to S) and Figure S8-A3 (S to V). BPFs arising
from interactions of filters between levels of organization are exemplified by Figure S7-A1 (AS to .S) and

Figure S8-A1 (S to V).
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Figure S7: Temporal Filters in S for the MT model. AS create only low-pass, high-pass, and band-pass temporal filters.
Now we examine the effect that summation has on these temporal filters. The effect of summation can be understood to be a
high-pass temporal filter interacting with a temporal filter created from the interaction of input and STP time scales (shown here for
fspi = 100). A1. The interaction of a low-pass temporal filter in AS with the time scale of summation, 74.. is shown. We observe
that low-pass temporal filters become band-pass temporal filters for longer time scales of summation (74ep = 150, Tfac = 1). Note
that for extreme, unphysiological time scales of summation (r4.c > 150), high pass temporal filters in S may also develop (not
shown). A2. The interaction of a high-pass temporal filter in AS with the time scale of summation, 74.. is shown. We observe
that high-pass temporal filters remain high-pass temporal filters for any time scale of summation (7qep = 1, Tfoc = 150). A3. The
interaction of a band-pass temporal filter in AS with the time scale of summation, 74.. is shown. We observe that band-pass
temporal filters remain band-pass temporal filters (74, = 150, 774 = 150). Longer time scales of summation increase the size of
the band-pass peak (both in height and width). Note that for extreme, unphysiological time scales of synaptic decay (74ec > 150),

high pass temporal filters in S may also develop (not shown). In all simulations for the synapse: Uy = .1.

BPFs in the PSP arise in two ways — either passed through from the incident BPF filter or as the
result of interacting an incident LPF and HPF implemented by the post-synaptic cell. These BPFs can
be distinguished by analyzing the three time constants used to fit BPFs. First we consider synaptic BPFs
that transfer to the post-syntactic cell’s response.

In this case, the procedure to extract the three time constants of the PSP BPF differs slightly from the
procedure used to extract the three time constants of BPFs in .S and AS. Instead of fixing LPF and HPF
time scales and finding the best fitting third time constant, as was done in the AS BPFs, all three time
constants for the PSP BPF are allowed to vary. In this way, we find a triple of time constants that fit the
PSP BPF: p,, p» and p. (Example shown in Figure S9-A3). Then we introduce the following quantities:

p1 = max(pa; Py, Pc)
p2 = median(pq, py, pc)
p3 = min(pa, pp, pe)

These time constants are then compared to the magnitude of the time constants obtained from the synap-
tic BPF. In Figure S9-C we note that the synaptic BPF has time constants suchthatog.s > 0f.5 > 04 ¢.5.
Assuming the post-synaptic cell maintains this relation, we associate p; with 04 5, p2 with oy 5, and ps3
with 044 7 5. Figure S9-C suggests that the HPF implemented by the membrane time constant is modify-
ing all three time constants of the incident synaptic BPF.

BPFs in the post-synaptic cell are implemented also by the interaction with synaptic LPFs and the
HPF implemented by the membrane time constant. One may use the same three parameter model to fit

57



-20 -25
—V(r =10) V(T =1)
-25 mem mem
V(7 =2) 30 |
_— mem — — — S (rescaled)
-30
_35 L
-35 R L
s s y SHor
E 0 B E
, 45 b
> > >
-50 N\ -45 S0y \
55 - 50 -55 | T —
60 . . . . . 55 . . . . . 60 . . . . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
time [ms] time [ms] time [ms]

Figure S8: Temporal Filters in V' for the MT model. The interaction of input, STP, and summation time scales combine to
create only low-pass, high-pass, and band-pass temporal filters. Now we examine the effect that the membrane time constant of
the post-synaptic cell has on the temporal filters incident from the synapse. For fast enough membrane time constants (Tmem < 1
ms, g > 1) the post-synaptic temporal filter reflects the synaptic temporal filter (fspr = 100, 74.c = 5). As the membrane
time constant slows, the synaptic temporal filter interacts with the post-synaptic cell. Biophysically, the effect of a slow membrane
time constant is to create post-synaptic summation — resulting in a high-pass post-synaptic temporal filter. The development of
an interaction between the high-pass post-synaptic temporal filter with the synaptic temporal filter is seen in these figures as the
membrane time constant slows. For these figure G;, = 0.1,0.5, and 1. These correspond t0 e, = 10 ms, 2 ms, and 1 ms,
respectively. A1. The interaction of a low-pass synaptic temporal filter in S (rescaled and shown in gray) with the membrane time
constant is shown. We observe that low-pass synaptic temporal filters can become band-pass temporal filters as the membrane
time constant slows (74ep = 150, 774 = 1). A2. The interaction of a high-pass synaptic temporal filter in S (rescaled and shown in
gray) with the membrane time constant is shown. We observe that high-pass synaptic temporal filters remain high-pass temporal
filters in the post-synaptic response as the membrane time constant slows (74ep = 1,7r4c = 150). A3. The interaction of a
band-pass synaptic temporal filter in .S (rescaled and shown in gray) with the membrane time constant is shown. We observe
that band-pass synaptic temporal filters remain band-pass temporal filters in the post-synaptic cell (74ep = 150, Tfac = 150). In
particular, as the membrane time constant slows, the size of the band-pass peak increases (both in height and width). We remark
that for all cases, for extremely slow membrane time constants (Tmem > 1 sec or gr, < .001), high-pass post-synaptic temporal
filters develop (not shown). In all simulations for the synapse: Uy = .1,74.c = 5. In all simulations of the post-synaptic cell:
Gewe =1,C =1,E, = —60, Ee. = 0.
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these PSP BPFs. However, we find that there are actually two time scales describing the shape of these
BPFs. Figure S10-B show explicit examples of the third time scale’s insignificance. Furthermore, one of
the time scales describing the PSP BPF is shown to be inherited from the incident LPF’s time scale of
decay.

Figure -B1 and -B2 show how the membrane time constant also modifies incident LPF and HPF time
constants in the post-synaptic cell. Here, the same models to extract time constants of rise for HPFs and
time constants of decay for LPFs in AS also work well for extracting time constants for LPFs and HPFs of
the PSP (example fits in Figure S9-A1 and -A2). In this figure, o v is the time constant of rising in PSP
HPFs and o4, v is the time constant of decay in PSP LPFs, respectively.

In Section 3.9.2, we discuss how the temporal filters implemented by Z,,, X,,, and AS,, persist in
the presence of Poisson spiking. Here we review a potential consequence of Poisson inputs interacting
with temporal filters: gain control. The data in the following figure, Figure S11, uses the MT model,
however, the foregoing discussion suggests that the DA and MT model both exhibit temporal filters, albeit
via slightly differing quantitative mechanisms. Figure S11 plots average amplitude of voltage response
over 1100 trials where the input Poisson rates change over time. As the spiking rates change over time,
different steady states are achieved. Overshooting transient features develop between rate changes when
STD time scales increase. The fact that these overshoots depend on the time scale of STD suggests
that there may be a connection between the overshoot magnitudes and the LPFs that STD implement.
Furthermore, the magnitude of these average rate changes and their dependence on the initial and final
rates was studied as a mechanism for gain control by Abbott et. al.. Figure S11 show that average
amplitude also depends on the time scale of STD and membrane time scales - ergo, it follows that filters
that STD and membrane time constants implement may also play an important role in determining the
average amplitude of voltage response.
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Figure S9: A. Representative fits of low-, high-, and band-pass temporal filters in passive post-synaptic cell. (G = .5) Al.
Example of high-pass post-synaptic temporal filter. (74gep = 0, Trac = 200, fspr = 80) A2. Example of low-pass post-synaptic
temporal filter. (74ep = 200, Trac = 0, fsp = 80) A3. Example of band-pass post-synaptic temporal filter. (74ep = 200, Tfac =
200, fspr = 80) B1. The impact that membrane time constant has on the time scale of post-synaptic high-pass temporal filters.
The incident synaptic temporal filter is high-pass and given by 74ep, = 0,77ac = 200. B2. The impact that membrane time
constant has on the time scale of post-synaptic low-pass temporal filters. The incident synaptic temporal filter is low-pass and
given by 74ep = 200, Trac = 0. “X” marks the input frequency at which the post-synaptic temporal filter transitions from low-pass
to band-pass. These band-band pass temporal filters are analyzed in Figure S10. C. The impact that membrane time constant
has on the time scales of post-synaptic band-pass temporal filters. The incident synaptic temporal filter is band-pass and given by
Tdep = 200, Trac = 200. The way the time scales, p1, p2 and ps, are obtained are outlined in Methods. C1. The impact of the
membrane time constant on p;. C2. The impact of the membrane time constant on p2. C3. The impact of the membrane time
constant on ps. All simulations were performed using MT Model with Uy = .1 and 74 = 3. The parameters for the passive cell
are Ge, = 1,C =1, Er, = —60, E.;, = 0. The upper bound on the RMSE for all temporal filters (low-, high-, and band-pass) is .4
mV. The upper bound on the maximum difference between a fit and the temporal filters for all voltage responses is 1 mV.
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Figure S10: A. Time scales of band-pass temporal filters formed by incident low-pass synaptic temporal filters. The incident
synaptic temporal filter is low-pass and given by 74., = 200, 7o = 0. Al. p; plotted as a function of frequency and compared
to oq4. A2. p2 and ps plotted as a function of frequency. B. The three temporal band-pass temporal filters plotted in A. “3 sigma”
is the fit obtained using BPF filter model letting all three time scales vary. “2 sigma” is the fit obtained omitting the fastest time
scale, ps, from the fit. (G = .4) B1. Temporal band-pass temporal filters plotted in A with its fits. (fsprx = 130) B2. Temporal
band-pass temporal filters plotted in A with its fits. (fs,x = 140) B3. Temporal band-pass temporal filters plotted in A with its fits.
(fspr = 150) All simulations were performed using MT Model with Uy = .1 and 4. = 3. The parameters for the passive cell are
Gex = 1,C =1, Fr, = —60, Ee;; = 0. The upper bound on the RMSE for all temporal filters (low-, high-, and band-pass) is .4 mV.
The upper bound on the maximum difference between a fit and the peaks of voltage response is 1 mV.
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Figure S11: Each trace in the figure is the average of 1100 trails. A trial consists of the following: 7.5 secs of 20 Hz Poisson
stimulus, 5 secs of 40 Hz Poisson stimulus, and 2 secs of 80 Hz Poisson stimulus. The first second of the simulation is cut off
to remove the transient behaviors from the initialization of the simulation. All simulations were performed using MT model with
parameters: Tfqc = 0, Tagee = 3, Uo = .1. Passive post-synaptic cell parameters were C = 1,Gex = .1, Ef, = —60, E.; = 0.
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