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Abstract

Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input

patterns over others, have been shown to be associated with the notion of information filtering and coding

of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an

important player in the generation of temporal filters. We carry out a systematic modeling, analysis and

computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal

filters are generated in response to periodic presynaptic spike trains in the presence STP. We investi-

gate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes,

including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic

connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the inter-

play of a collection of time scales that operate at the single-event level (roughly, during each presynaptic

interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic

events. These time scales are generated at the levels of the presynaptic cell (captured by the presynap-

tic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic

cellular currents. We develop mathematical tools to link the single-event time scales with the time scales

governing the long-term dynamics of the resulting temporal filters for a relatively simple model where

depression and facilitation interact at the level of the synaptic efficacy change. We extend our results

and tools to account for more complex models. These include multiple STP time scales and non-periodic

presynaptic inputs. The results and ideas we develop have implications for the understanding of the gen-

eration of temporal filters in complex networks for which the simple feedforward network we investigate

here is a building block.

1 Introduction

The synaptic communication between neurons involves a multiplicity of interacting time scales and is

affected by a number of factors including short-term plasticity [1–3], primarily involved in information
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filtering, long-term plasticity [4,5], involved in learning and memory [6], homeostatic plasticity [7], involved

in the maintenance of function in the presence of changing environments, neuromodulation [8, 9], and

astrocyte regulation [10, 11], in addition to the temporal properties of the presynaptic spikes, the intrinsic

currents of the postsynaptic neurons and background noise activity.

Short-term plasticity (STP) refers to the increase (synaptic facilitation) or decrease (synaptic de-

pression) of the efficacy of synaptic transmission (strength of the synaptic conductance) in response

to repeated presynaptic spikes with a time scale in the range of hundreds of milliseconds to seconds

[1–3, 12, 13]. STP is ubiquitous both in invertebrate and vertebrate synapses, and has been shown

to be important for neuronal computation [14–18] and information filtering (temporal and frequency-

dependent) [2, 12, 19–41], and related phenomena such as burst detection [27, 38], temporal coding

and information processing [27, 28, 42–45], gain control [15, 46, 47], information flow [16, 36, 48] given

the presynaptic history-dependent nature of STP, the prolongation of neural responses to transient in-

puts [49–51], the modulation of network responses to external inputs [52, 53], hearing and sound local-

ization [54,55], direction selectivity [56], attractor dynamics [57] (see also [47]), the generation of cortical

up and down states [58], navigation (e.g., place field sensing) [30, 33], vision (e.g., microsacades) [59],

working memory [51,60] and decision making [61].

The notion of information filtering as the result of STP is associated with the concept of temporal

filters [12, 22–24] at the synaptic and postsynaptic levels, which are better understood in response to

periodic presynaptic inputs [38,62–64] for a wide enough range of input frequencies. (See the schematic

diagrams in Figs. 1-A and 2-A where x and z describe the evolution over time of synaptic depression and

facilitation, respectively, and their product describes their combined activity.) In spite of the ubiquitousness

of STP and the consequences for information filtering [12, 22, 65], the mechanisms of generation of

postsynaptic temporal filters in response to presynaptic input spikes are not well understood.

One difficulty is that the notion of temporal filters has not been precisely defined. Temporal filters

have been broadly characterized as biological systems that allow certain information carried out by the

presynaptic spike pattern to pass to the postsynaptic neuron with possibly a modification (attenuation or

amplification) in the firing rate, while other information is rejected [22,66]. A systematic mechanistic study

requires a more precise characterization that takes into account the underlying complexity. First, postsy-

naptic temporal filters result from the concatenation of various processes: the structure of the presynaptic

spike patterns, STP, synaptic dynamics and the intrinsic dynamics of the postsynaptic cell resulting from

the intrinsic currents (diagram in Fig. 2). It is not well understood how the time scales associated with

the dynamics of synaptic depression and facilitation interact with the presynaptic spike train time scales

(interspike intervals, ISIs) and the membrane potential time scales to generate the resulting temporal

filters. Second, temporal filters are a transient phenomenon in the time domain, in addition to being

frequency-dependent [12]. Therefore, the steady-state postsynaptic membrane potential profiles (curves

of the postsynaptic membrane potential amplitudes or peaks as a function of the presynaptic input fre-

quency) [38, 67, 68] does not necessarily capture the system’s filtering properties. (These steady-state

profiles are the natural extensions of the impedance profiles for subthreshold resonance in neurons.)

Third, the STP’s history-dependent properties generate a significant amount of variability in the STP-

mediated temporal patterns due to the multiple possible arrangements of ISIs’ durations in non-periodic

presynaptic input patterns.

In this paper, we adopt the use of periodic presynaptic spike patterns as the reference presynaptic

spike trains to define and characterize the various types of temporal filters that emerge and investigate

the mechanisms by which they are generated. This can serve as the reference point for the investigation

of the filtering properties of temporal patterns in response to more complex presynaptic patterns (e.g.,

bursting, Poisson distributed). Periodic presynaptic spike trains have been used by other authors [38,62–

64] to illustrate the emergence of temporal patterns in the presence of STP.

We focus on the feedforward network described in the diagram in Fig. 2, which is the minimal model

that can show postsynaptic membrane potential temporal filters in response to presynaptic spike trains

in the presence of STP. We leave out the postsynaptic firing rate responses. In some cases, they can be

directly derived from the membrane potential responses.
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Phenomenological models of synaptic depression and facilitation [21, 43, 62, 63, 67–73] describe the

evolution of two variables that abruptly decrease and increase, respectively, by a certain amount in re-

sponse to each presynaptic spike and relax towards their steady-state values during the presynaptic ISIs

(see Fig. 2-A1 for the depression and facilitation variables x and z, respectively). At the arrival of each

presynaptic spike, the synaptic function (S) is updated by an amount ∆S equal to the appropriate product

of x and z at the arrival time. The cumulative effect of these single-spike events along the sequence of

presynaptic spikes generates temporal patterns in the variables x, z and S (Figs. 1 and 2), which are

transmitted to the postsynaptic cell (diagram in Fig. 2) to produce postsynaptic temporal filters.

The temporal filters for the variables x and z are better captured by the sequences of peak values Xn

and Zn (for the spike index n) (Figs. 1) whose evolution is characterized by the (long-term) time scales

(σdep and σfac) and the steady state values (X̄ and Z̄) Fig. (2). Because of their monotonic decreasing

(Xn) and increasing (Zn) properties, we refer to them as temporal low-pass (Xn) and high-pass (Zn)

filters, respectively. The synaptic update is the product ∆Sn = XnZn and the corresponding filter can

have a transient peak, which we refer to as a temporal band-pass filter and, as we show, it involves an

additional (long-term) time scale (σdep+fac). These time scales depend on the single-event time scales

(τdep and τfac) and the presynaptic ISI (∆spk) in complex ways. In addition, the phenomenon of sum-

mation in a postsynaptic cell in response to presynaptic inputs may develop an additional (postsynaptic)

high-pass temporal filter (Fig. 2-B), which is independent of the ones described above, and is character-

ized by the (long-term) time scale (σsum) and the steady state value (S̄). They depend on the membrane

time constant, the synaptic decay time τdec and the presynaptic ∆spk . For relatively fast synapses (e.g.,

AMPA), summation is not observed at the synaptic level, but at the postsynaptic level, and depends on

the time scale of the postsynaptic cell (τm) and the presynaptic ∆spk.

A key idea we develop in this paper is that of the communication of time scales (i) across levels of

organization (presynaptic, STP, synaptic, postsynaptic; Fig. 2) and (ii) from these operating at the single

event level (e.g., τdep, τfac, τdec, τm, ∆spk) to the (long-term) ones operating at the filter level (e.g.,

σdep, σfac, σsum). This notion of communication involves the complex interaction of time scales and

generation of new time scales. We use this framework to organize our mechanistic understanding of the

temporal filtering phenomena. However, we note that while in some cases the time scales can be easily

represented by time constants, in other cases they are more difficult to be precisely characterized.

More specifically, we use biophysically plausible (conductance-based) mathematical modeling and

dynamical systems tools to systematically understand how the postsynaptic low-, high- and band-pass

temporal filters are generated in response to presynaptic spike trains in the presence of STP. Using a

combination of analytical and computational tools, we describe the dependence of the dynamic properties

of these filters, captured by the long-term time scales, on the interplay of the hierarchy of processes,

ranging from the arrival of the presynaptic spike trains, to the activation of STP to the activation of the

synaptic function to the response of the postsynaptic cell (Fig. 2, diagram). In particular we describe how

all this depends on the time scales of the building blocks (τdep, τfac, τdec, τm and the presynaptic ∆spk).

We then extend our results and tools to account for more complex models. These include synaptic

depression and facilitation processes with multiple time scales and non-periodic presynaptic synaptic

inputs.

The conceptual and mathematical framework we introduce to develop these ideas and identify the

contribution of each of the network components to the generation of temporal filters can be extended to

understand the filtering and coding properties of more complex scenarios. These involve more realistic

description of the participating processes at the various levels of organization and the presynaptic input

spike trains (e.g., bursting patterns). Finally, the results and ideas we develop have implications for the

understanding of the generation of temporal filters in complex networks for which the simple feedforward

network we investigate here is a building block.
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2 Methods

2.1 Models

2.1.1 Postsynaptic cell: leaky integrate-and-fire model

The current-balance equation for the post-synaptic cell is given by

C
dV

dt
= −gL (V − EL) + Iapp − Isyn + Inoise, (1)

where t is time (ms), V represents the voltage (mV), C is the specific capacitance (µF/cm2), gL is the

leak conductance (mS/cm2), Iapp is the tonic (DC) current (µA/cm2)), Inoise =
√
2Dη(t) represents

white noise (delta correlated with zero mean), and Isyn is an excitatory synaptic current of the form

Isyn = Gex S (V − Eex). (2)

Here Gex is the maximal synaptic conductance (mS/cm2), Eex = 0 is the reversal potential for AMPA

excitation, and the synaptic variable S obeys a kinetic equation of the form

dS

dt
= − S

τdec
+∆Sn δ(t− tspk), (3)

where τdec (ms) is the decay time of excitation. Each presynaptic spike instantaneously raises S to

some value ∆Sn which varies depending on the properties of the short-term dynamics (depression

and/or facilitation) and defined below. We refer the reader to [69, 74] for additional details on biophysical

(conductance-based) models.

2.1.2 Presynaptic spike-trains

We model the spiking activity of the presynaptic cell as a spike train with presynaptic spike times t1, t2, . . . , tN .

We consider two types of input spike-trains: uniformly and Poisson distributed. The former is character-

ized by the interspike interval (ISI) of length ∆spk (or its reciprocal, the spiking frequency fspk) and the

latter are characterized by the mean spiking rate (or the associated exponential distribution of ISIs).

2.1.3 The DA (Dayan-Abbott) phenomenological model for short-term dynamics: synap-

tic depression and facilitation

This simplified phenomenological model is assembled in the [74] and attributed to Dayan and Abbott,

and Collaborators. It is relatively simpler than the well-known phenomenological MT (Markram-Tsodkys)

model described below [63]. In particular, the depression and facilitation processes are independent

(the updates upon arrival of each presynaptic spike are uncoupled). We use it for its tractability and to

introduce some conceptual ideas.

The magnitude ∆S of the synaptic release per presynaptic spike is assumed to be the product of the

depressing and facilitating variables

∆S = x− z+ (4)

where

dx

dt
=

x∞ − x

τdep
− ad x δ(t− tspk), (5)

and
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dz

dt
=

z∞ − z

τfac
+ af (1− z) δ(t− tspk). (6)

Each time a presynaptic spike arrives (t = tspk), the depressing variable x is decreased by an amount

ad x (the release probability is reduced) and the facilitating variable z is increased by an amount af (1−z)
(the release probability is augmented). During the presynaptic interspike intervals (ISIs) both x and z
decay exponentially to their saturation values x∞ and z∞ respectively. The rate at which this occurs

is controlled by the parameters τdep and τfac. Following others we use x∞ = 1 and z∞ = 0. The

superscripts “±" in the variables x and z indicate that the update is carried out by taking the values of

these variables prior (−) or after (+) the arrival of the presynaptic spike.

Fig. 1-A1 illustrates the x-, z- and M = xz-traces (curves of x, z and M as a function of time) in

response to a periodic presynaptic input train for representative parameter values. (Note that M = x z
is defined for all values of t, while ∆S = x−z+ is used for the update of S after the arrival of spikes and

∆Sn = XnZn is the sequence of peaks.)

2.1.4 DA model in response to presynaptic inputs

Peak dynamics and temporal filters

By solving the differential equations (5)-(6) during the presynaptic ISIs and appropriately updating the

solutions at t = tn (occurrence of each presynaptic spike), one arrives at the following recurrent formula

for the peak sequences in terms of the model parameters

Xn+1 = x∞ + [ (1− ad)Xn − x∞ ] e−∆spk,n/τdep (7)

and

Zn+1 = af + (1 − af ) [ z∞ + (Zn − z∞)e−∆spk,n/τfac ] (8)

where {∆spk,n}Nspk
n=1 represents the lengths of the presynaptic ISIs.

Fig. 1-A2 illustrates the peak envelopes (curves joining the peak sequences for Xn, Zn and ∆Sn =
XnZn, circles) for the parameter values in Fig. 1-A1. These are sequences indexed by the input spike

number, which we calculate analytically below. As expected, Xn is a decreasing sequence (temporal

low-pass filter) and Zn is an increasing sequence (temporal high-pass filter). Their product (computed so

that the peak of the product is the product of the peaks) exhibits a transient peak (temporal band-pass

filter).

Steady-state frequency-dependent filters

For periodic inputs, ∆spk,n is independent of n (∆spk) and eqs. (7)-(8) are linear 1D difference equations.

Therefore both the sequences X and Z obey linear discrete dynamics (e.g., see [75]), decaying to their

steady state values

X̄ =
( 1− e−∆spk/τdep )x∞

1− (1 − ad) e−∆spk/τdep
(9)

and

Z̄ =
( 1− e−∆spk/τfac ) (1− af ) z∞ + af

1− (1 − af ) e−∆spk/τfac
(10)

as shown in Figs. 1 -B and -C (red and green).
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Figure 1: Short-term depression and facilitation and the generation of temporal filters in response to periodic presynaptic

inputs. A1. x-, z- and M -traces (curves of x, z and M = xz as a function of t). A2. Circles: Xn-, Zn- and ∆Sn = XnZn- peak

sequence computed using (7)-(8). Solid curves: join the Xn-, Zn- and ∆Sn = XnZn- envelope peak sequences computed using

the caricature (descriptive) model (31)-(34). The values of the envelope peaks decay constants are σd ∼ 91.5 and σf ∼ 26.4.

We used the simplified model (4)-(6) and the following parameter values: τdep = 400, τfac = 50, ad = 0.1, af = 0.2, x∞ = 1,

z∞ = 0, fspk = 80 Hz (presynaptic input frequency). B. Depression- and facilitation-dominated peak sequences. B1. Depression-

dominated temporal filter regime. B2. Facilitation-dominated temporal filter regime. We used the simplified model (4)-(6) and

the following parameter values: τdep = 200 (B1), τdep = 40 (B2), τfac = 10 (B1), τfac = 200 (B2), ad = 0.1, af = 0.1,

x∞ = 1, z∞ = 0, fspk = 50 Hz. C. Input frequency-dependent temporal filters. C1. High-pass temporal filter for low spiking input

frequencies (fspk = 20). C2. Band-pass temporal filter for higher spiking input frequencies (fspk = 100). We used the simplified

model (4)-(6) and the following parameter values: τdep = 200, τfac = 200, ad = 0.1, af = 0.2, x∞ = 1, z∞ = 0.
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Figure 2: Single event and temporal filters’ time scales and other attributes in response to presynaptic spike trains in

the presence of synaptic depression (x) and facilitation (z). The presynaptic cell is modeled as a periodic spike train with

period ∆spk . The postsynaptic cell is modeled as a passive cell (capacitive and leak currents) with a membrane time constant τm.

The excitatory synaptic function S raises and decays with time constants τrse and τdec, respectively. The synaptic depression and

facilitations are τdep and τfac, respectively. A. Depression and facilitation. A1. Single events. At the arrival of each presynaptic

spike (black dots), the depression (x) and facilitation (z) variables decrease and increase, respectively. In the models we use in this

paper, they are discretely updated. They decay towards their (single event) steady-states (x∞ = 1 and z∞ = 0) with the (single

event) time scales τdep and τfac, respectively. A2, A3. Temporal patterns (filters) generated by presynaptic spike trains with different

ISIs ∆spk (or frequencies fspk) and the dynamics of the single events (controlled by τdep and τfac). Depression and facilitation

always give rise to low- (red) and high- (green) pass filters respectively. Their product can be a depression-dominated (low-pass)

filter, facilitation-dominated (high-pass) filter (A2), or a band-pass filter (A3). The (emergent, long term) filter time scales σdep, σfac

and σdep+fac depend on the interplay of τdep, τfac and ∆spk. The temporal filter steady-states are captured by the peak sequence

steady-states X̄, Z̄ and ∆̄S = X̄Z̄. B. Synaptic dynamics. B1. Single events. At the arrival of each presynaptic spike (black

dots) the synaptic variable S increases instantaneously (τrse = 0) and then decreases with a time constant τdec, which defines the

decay time scale. In the models we use in this paper, S is discretely updated. B2, B3. Temporal patterns (filters) generated by

presynaptic spike trains with different ISIs ∆spk (or frequencies fspk) and the dynamics of the single events (controlled by τdec).

For small τdec and ∆spk , the S pattern is flat (B2). For larger values of τdec and ∆spk, summation generates a high-pass filter.

The emergent time scales depend on the interplay of τdec and ∆spk. The temporal filter steady-states are captured by the peak

sequence steady-states S̄.
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2.1.5 The MT (Markram-Tsodkys) phenomenological model for short-term dynamics:

synaptic depression and facilitation

This model was introduced in [63] as a simplification of earlier models [1, 43, 76]. It is more complex and

more widely used than the DA model described above [38,77], but still a phenomenological model.

As for the DA model, the magnitude ∆S of the synaptic release per presynaptic spike is assumed to

be the product of the depressing and facilitating variables:

∆S = R− u+ (11)

where, in its more general formulation,

dR

dt
=

1−R

τdep
−R−u+ δ(t− tspk), (12)

and

du

dt
=

Û − u

τfac
+ U (1 − u−) δ(t− tspk). (13)

Each time a presynaptic spike arrives (t = tspk), the depressing variable R is decreased by R−u+ and

the facilitating variable u is increased by U (1 − u−). As before, the superscripts “±" in the variables R
and u indicate that the update is carried out by taking the values of these variables prior (−) or after (+)

the arrival of the presynaptic spike. In contrast to the DA model, the update of the depression variable

R is affected by the value of the facilitation variable u+. Simplified versions of this model include making

Û = 0 [21,62,63,67,73,78] and Û = U [38].

2.1.6 MT model in response to presynaptic inputs

Peak dynamics and temporal filters

By solving the differential equations (12)-(13) during the presynaptic ISIs and appropriately updating the

solutions at t = tn (occurrence of each presynaptic spike), one arrives at the following recurrent formula

for the peak sequences in terms of the model parameters

Rn+1 = Rn(1− un+1)e
−∆spk/τdep + 1− e−∆spk,n/τdep (14)

and

un+1 = Û + U − ÛU + un(1− U)e−∆spk,n/τfac − Û(1− U)e−∆spk,n/τfac . (15)

Steady-state frequency-dependent filters

As before, for presynaptic inputs ∆spk,n is independent of n and these equations represent a system two

1D difference equations, which are now nonlinear. The steady-state values are given by

R̄ =
1− e−∆spk/τdep

1− (1− ū) e−∆spk/τdep
(16)

and

ū =
Û + U − ÛU − Û (1 − U)e−∆spk/τfac

1− (1 − U) e−∆spk/τfac
(17)
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2.1.7 Synaptic dynamics in response to periodic presynaptic inputs and a constant up-

date

Peak dynamics

By solving the differential equation (3) for a constant value of ∆Sn = ∆S during the presynaptic ISIs

and updating the solution at each occurrence of the presynaptic spikes at t = tn, n = 1, . . . , Nspk, one

arrives to the following discrete linear differential equation for the peak sequences in terms of the model

parameters

Sn+1 = e−∆spk/τdec Sn +∆S (18)

Steady-states and frequency filters

The steady state values of (18) are given by

S̄ =
∆S

1− e−∆spk/τdec
. (19)

2.2 Numerical simulation

The numerical solutions were computed using the modified Euler method (Runge-Kutta, order 2) [79] with

a time step ∆t = 0.01 ms (or smaller values of ∆t when necessary) in MATLAB (The Mathworks, Natick,

MA). The code is available at \https://github.com/BioDatanamics-Lab/temporal_filters_p20_01.

3 Results

3.1 Temporal summation filters for linear synaptic dynamics and constant up-

dates: the single-event and the (long-term) filter time scales coincide

As discussed above, the mechanisms of generation of temporal filters involve the communication of the

time scales from the single event (the τ ’s) to the filter levels (the σ’s) (Fig. 2). These two classes

of time scales are generally different reflecting the complexity of the process (e.g., the updates of the

corresponding variables at the arrival of each presynaptic spike are non-constant, state-dependent). Here

we discuss the special case of synaptic summation (linear single event dynamics and constant update)

for which both types of time scales coincide. This is relevant both as a reference case and because S is

a component o the feedforward network we investigate here.

Temporal summation filters (SFs, Fig. 2-B3) refer to the long-term patterns generated in the re-

sponse of a dynamical system to periodic stimulation with constant amplitude by the accumulation of the

responses produced by the single events (cycles). Temporal summation synaptic filters are high-pass

filters (HPFs) and naturally develop in the response of linear systems such as eq. (18) with a constant

update (independent of the spike index) where the activity S decays during the presynaptic ISI and it is

updated in an additive manner at the arrival of each presynaptic spike. If the quotient ∆spk/τdec is finite,

S will not be able to reach a small enough vicinity of zero before the next presynaptic spike arrives and

then the S-peak envelope will increase across cycles. While summation does not require the presynaptic

inputs to be periodic or the input to have constant amplitude, the notion of summation filter we use here

does.

The solution to equation (18) is given by
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Sn = S̄ + e−(n−1)∆spk/τdec (S1 − S̄), (20)

where S1 = ∆S (see Appendix A). This equation describes the temporal filter in response to the presy-

naptic spike train. For technical purposes, one can extend eq. (20) to include the point (0, 0), obtaining

Sn = S̄ (1 − e−n∆spk/τdec ). (21)

A further extension to the continuous domain yield

St = S̄ (1− e−t/τdec ). (22)

which is the solution to

τdec
dSt

dt
= S̄ − St. (23)

We use the notation St instead of S(t) to emphasize the origin of St as the continuous extension of a

discrete sequence rather than the evolution of Eq. (3).

Together these results show the temporal SF and the single events are controlled by the same time

constant τdec. While the time scale is independent of ∆spk, the steady-state S̄ is ∆spk-dependent.

3.2 Dynamics of the depression (x) and facilitation (z) variables and their inter-

action: emergence of temporal low-, high-and band-pass filters

3.2.1 From single events (local in time) to temporal patterns and filters (global in time)

The dynamics of single events for the variables x (depression) and z (facilitation) are governed by eqs.

(5)-(6) , respectively. After the update upon the arrival of a spike, x and z decay towards their saturation

values x∞(= 1) and z∞(= 0), respectively.

The response of x and z to repetitive input spiking generates patterns for these variables in the

temporal domain (e.g., Fig. 1-A1) and for the peak sequences Xn and Zn in the (discrete) presynaptic

spike-time domain (e.g., Fig. 1-A2). The latter consist of the transition from the initial peaks X1 and Z1 to

X̄ and Z̄, respectively, as n → ∞. The properties of these patterns depend not only on the parameters

for the single events (τdep/fac and ad/f ), but also on the input frerquency fspk (or the presynaptic ISI

∆spk) as reflected by eqs. (9)-(10) describing the peak-envelope steady-state values. We note that we

use the notation Xn and Zn for the peak envelope sequences to refer to the sequences {Xn}∞n=1 and

{Zn}∞n=1.

The peak envelope patterns have emergent, long-term time constants, for which we use the notation

σdep and σfac. As we show in more detail later in the next section, σdep/fac depend on τdep/fac, ∆spk

and ad/f in a relatively complex way. This is in contrast to our discussion in the previous section for the

synaptic dynamics where the single event and long-term time scales coincide.

The ∆Sn envelope patterns combine these time scales in ways that involve different levels of complex-

ity. We refer to the ∆Sn patterns that are monotonically decreasing (e.g., Fig. 1-B1) and increasing (e.g.,

Fig. 1-B2) as temporal low- and high-pass filters (LPFs and HPFs), respectively. We refer to the ∆Sn

patterns that exhibit a peak in the temporal domain (e.g., Fig. 1-A2) as temporal band-pass filters (BPFs).

This terminology is extended to the peak envelopes Xn (temporal LPFs) and Zn (temporal HPFs).

3.2.2 Depression- / facilitation-dominated regimes and transitions between them

In the absence of either facilitation or depression, the ∆Sn temporal LPFs and HPFs reflect the presence

of depressing or facilitating synapses, respectively. However, ∆Sn temporal LPFs and HPFs need not be

generated by pure depression and facilitation but can reflect different balances between these processes

where either depression (Fig. 1-B1) or facilitation (Fig. 1-B2) dominates.
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It is instructive to look at the limiting cases. A small enough value of τdep/fac causes a fast recovery to

the saturation value (x∞ or z∞) and therefore the corresponding sequence (Xn or Zn) is almost constant.

In contrast, a large enough value of τdep/fac causes a slow recovery to the saturation value and therefore

the corresponding sequence shows a significant decrease (Xn) or increase (Zn) as the result of the

corresponding underlying variables (x and z), being almost constant during the ISI. Therefore, when

τdep ≫ τfac, depression dominates (Fig. 1-B1) and when τdep ≪ τfac, facilitation dominates (Fig. 1-B2).

In both regimes, the exact ranges depend on the input frequency fspk. An increase in fspk reduces the

ability of x and z to recover to their saturation values within each presynaptic ISI, and therefore amplifies

the depression and facilitation effects over the same time interval and over the same amount of input

spikes (compare Figs. 1-C1 and -C2). Therefore, the different balances between Xn and Zn as fspk
generate different types of ∆Sn patterns and may cause transitions between qualitatively different ∆Sn

patterns.

3.3 Dependence of the temporal (depression and facilitation) LPFs and HPFs on

the single event time scales

3.3.1 Communication of the single event time scales to the (long-term) history-dependent

filters

Here we focus on understanding how the (long-term) time scales of the peak envelope sequences Xn

and Zn (σdep and σfac, respectively) result from the interaction between the time constants for the corre-

sponding single events (τdep and τfac) and the presynaptic spike input time scales ∆spk.

Standard methods (see Appendix A with ∆spk,n = ∆spk , independent of n) applied to difference eqs.

(7)-(8) yield

Xn = X̄ +Q(ad, τdep)
n−1 (X1 − X̄) (24)

and

Zn = Z̄ +Q(af , τfac)
n−1 (Z1 − Z̄) (25)

for n = 1, . . . , Nspk, where

Q(astp, τstp) = (1− astp) e
−∆spk/τstp . (26)

The evolution of the temporal patterns Xn and Zn are controlled by the behavior of Q(ad, τdep)
n−1

and Q(af , τfac)
n−1 as n → ∞. Because both approach zero as n → ∞ (e.g., Figs. 3, gray), the Xn and

Zn patterns decrease and increase monotonically to X̄ and Z̄, respectively (e.g., Figs. 1 and 3, red and

green dots, respectively). The convergence for astp < 1 is guaranteed by the fact that Q(astp, τstp) < 1.

Biophysically plausible values of ad and af are well within this range.

The effective time scale of the sequence Qn = Qn−1 can be quantified by calculating the approxi-

mated time it takes for Qt (where the index n is substituted by t) to decrease from Q1 = 1 to 0.37 (decay

by 63 % of the total decay range) and multiply this number by ∆spk. This yields

σQ =
ln (0.37)∆spk

ln (1− astp)−∆spk/τstp
∼ 1

1/τstp − ln (1− astp)/∆spk
, (27)

where σQ is expressed in decimal numbers and has units of time. The time scales σdep and σfac for

the sequences Xn and Zn are obtained by substituting τstp and astp by τdep and ad (Xn) and by τfac
and af (Zn), respectively. These time scales quantify the time it takes for Xn to decrease from X1 to

X1 − 0.63(X1 − X̄) and for Zn to increase from Z1 to Z1 + 0.63(Z̄ − Z1), respectively.
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Figure 3: Low-, high- and band-pass filters in response to periodic presynaptic inputs in the presence of synaptic

depression and facilitation: peak envelope dynamics. The evolution of the peak sequences Xn (depression, red) and Zn

(facilitation, green), respectively are governed by eqs. (24)-(26) and the sequence Qn = Q(astp, τstp)
n−1 (light gray) is given by

eq. (26). We used the same parameter values for depression and facilitation: τdep = τfac = τstp and ad = af = astp = 0.1. A.

τstp = 100. A1. fspk = 50. A2. fspk = 100. A3. fspk = 250. B. τstp = 250. B1. fspk = 50. B2. fspk = 100. B3. fspk = 250.

C. τstp = 500. C1. fspk = 50. C2. fspk = 100. C3. fspk = 250. We used the folowing additional parameter values: x∞ = 1 and

z∞ = 0.
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3.3.2 Additional properties of the depression and facilitation temporal LPFs and HPFs

The properties of the temporal LPFs and HPFs generated by Xn and Zn are primarily dependent on the

properties of the corresponding functions Q. For each value of n, Qn−1 is an increasing function of Q
and for each fixed value of Q, Qn−1 is a decreasing function of n. Together, the larger Q, the larger the

sequence Qn = Qn−1 and the slower Qn = Qn−1 converges to zero. From eq. (26), all other parameters

fixed, Qn−1 decreases slower the smaller ∆spk (the larger fspk) (compare Fig. 3 columns 1 to 3), the

larger τstp (compare Fig. 3 rows 1 to 3) and the smaller astp (not shown in the figure). An extended

analysis of the dependence of Q(astp, τstp) on both parameters can be found in Fig S1.

While the dynamics of Q(astp, τstp), Xn and Zn depend on the quotient ∆spk/τstp (the two interacting

time scales for the single events), the long-term time scales (σQ = σdep, σfac) depend on these quantities

in a more complex way (Fig.5-A). For the limiting case ∆spk → ∞, σdep/fac → τdep/fac. For the limiting

case ∆spk → 0, σdep/fac → 0. For values of ∆spk in between (see Appendix B), σdep and σfac decrease

between these extreme values (dσdep/fac/d∆spk < 0). The dependence of σdep and σfac with τdep
and τfac follows a different pattern since (dσdep/fac/dτdep/fac > 0). Both σdep and σfac increase with

τdep and τfac, respectively. The dependence of σdep and σfac with ad and af follows a similar pattern

(dσd/f/dad/f > 0). Details for these calculations are presented in the Appendix B.

One important feature is the dependence of the sequences Xn and Zn on ∆spk for fixed values

of τdep/fac. This highlights the fact the depression/facilitation-induced history-dependent filters are also

frequency-dependent. A second important feature is that multiple combinations of τdep/fac and ∆spk give

rise to the same sequence Xn and Zn, which from eqs. (7)-(8) depend on the ratios

γd =
∆spk

τdep
and γf =

∆spk

τfac
. (28)

Constant values of γd and γf generate identical sequences Xn and Zn, respectively, which will be differ-

ently distributed in the time domain according to the rescaling provided by ∆spk, reflecting the long-term

time scales σdep/fac. This degeneracy also occurs for the steady state values X̄ and Z̄ (9)-(10), gener-

ating the X̄- and Z̄-profiles (curves of X̄ and Z̄ as a function of the input frequency 1000∆−1
spk). This type

of degeneracies may interfere with the inference process of short-term dynamics from experimental data.

A third important feature is that the update values ad and af that operate at the single events contribute

to the long-term time scale for the filters and do not simply produce a multiplicative effect on the filters

uniformly across events.

3.3.3 Descriptive envelope model for short-term dynamics in response to periodic presy-

naptic inputs

The relative simplicity of the DA model allows for the analytical calculation of the temporal patterns Xn

and Zn (24)-(26) (for constant values of ∆spk) and the subsequent analytical calculation of the (long-term)

time scales σdep (LPF) and σfac (HPF) (27) in terms of the single event time constants τdep and τfac,
respectively. Here, we develop an alternative approach for the computation of the LPF and HPF time

constants, which is applicable to both a more general class of STP-mediated LPFs and HPFs, generated

by more complex models for which we have no analytical expressions available, and to data collected

following the appropriate stimulation protocols. This model is descriptive, as opposed to mechanistic, in

the sense that it consists of functions that capture the shapes of the temporal LPFs and HPFs, but the

model does not explain how these temporal filters are generated in terms of the parameters governing

the dynamics of the single events, in contrast to the DA model.

We explain the basic ideas using data generated by the DA model. We then use this approach for the

MT model in the supplementary material.

The shapes of the temporal LPFs and HPFs suggest an exponential-like decay to their steady states

(e.g., Fig. 1). For the DA model this can be computed analytically following a similar approach to the
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Figure 4: The time scales for the peak envelope responses Xn and Zn to periodic presynaptic spikes and ∆Sn temporal

filters (σd, σf and σd+f ) depend on the interplay of τdep, τfac and fspk (or ∆spk). A. Dependence of σd, σf and σd+f with the

presynaptic input frequency fspk. A1. σd for adep = 0.1. A2. σf for afac = 0.2. A3. σd+f computed using eq. (107) from σd and

σf in panels A1 and A2. B. The contribution of the combined time scale σd+f increases with fspk. The function H(tk) is given by

(39) and the function Hcut consists of the three first terms in (39). B1-B3. τdep = τfac = 100. B4-B6. τdep = τfac = 200. We

used the simplified model (4)-(6) and the formulas (34) for the (simplified) descriptive model, together with (7)-(10) and the following

parameter values: ad = 0.1, af = 0.2, x∞ = 1, z∞ = 0.
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Figure 5: The time scales for the peak envelope responses Xn and Zn to periodic presynaptic spikes and ∆Sn = XnZn

temporal filters (σdep, σfac and σdep+fac) depend on the interplay of τdep, τfac and fspk (or ∆spk). The evolution of the

peak sequences Xn (depression, red) and Zn (facilitation, green), respectively are governed by eqs. (24)-(26) and the sequence

Qn = Q(astp, τstp)
n−1 (light gray) is given by eq. (26). A. Dependence of the (long-term) temporal filter time constants σdep and

σfac with the presynaptic input frequency fspk and (short-term) time constants for the single events τdep and τfac. We used eq. (27)

with τstp and astp substituted by τdep/fact and ad/f , respectively. A1. ad = af = 0.1. A2. ad = af = 0.2. B. Dependence of the

the (long-term) temporal filter time constants σdep+fac with the presynaptic input frequency fspk and (short-term) time constants for

the single events τdep and τfac. We used eq. (27). C. Comparison between the filters produced by the “cut" sequence ∆Scut,n (light

coral) and the sequence ∆Sn (blue) for representative parameter values. A1. ad = 0.1, af = 0.1, τdep = 250 and τfac = 250.

A2. ad = 0.1, af = 0.2, τdep = 200 and τfac = 250. A3. ad = 0.1, af = 0.2, τdep = 100 and τfac = 250. We used the following

additional parameter values: x∞ = 1 and z∞ = 0.
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one developed in Section 3.1 (for the synaptic dynamics) and extend the peak sequences (24)-(25) to the

continuous domain

Xt = X̄ + (1− ad)
t/∆spke−t/τdep (1− X̄) (29)

and

Zt = Z̄ [ 1− (1 − af )
t/∆spke−t/τfac ]. (30)

We assume exponential decay and define the following envelope functions

F (tk) = A+ (1−A)e−(tk−t1)/σd (31)

and

G(tk) = B [ 1− Ce−(tk−t1)/σf ] (32)

for the LPF and HPF, respectively. The parameters σd and σf are the filter time scales. We use a different

notation than in the previous section to differentiate these time scales from the ones computed analytically

for the DA model.

The parameters of the descriptive model (31)-(32) can be computed from the graphs of peak se-

quences (e.g., Xn and Zn for the DA model or Rn and un for the MT model) by matching the initial

values (e.g., F (t1) = X1 and G(t1) = Z1), the steady steady state values e. g., ( X̄ = limk→∞ Xk and

Z̄ = limk→∞ Zk) and the intermediate values (tc, Xc) and (tc, Zc) chosen to be in the range of fastest

increase/decrease of the corresponding sequences (∼ 50% of the gap between the initial and steady

state values). This gives

A = X̄, B = Z̄, C =
Z̄ − af

Z̄
, (33)

σd = (tc − t1) ln
−1

(

1− X̄

Xc − X̄

)

and σf = (tc − t1) ln
−1

(

Z̄ C

Z̄ − Zc

)

. (34)

Fig. 1 (solid) shows the plots of F (red), G (green) and H = FG (blue) superimposed with the Xn-,

Zn- and ∆Sn-sequence values. The error between the sequences and the envelope curves (using a

normalized sum of square differences) is extremely small in both cases, consistent with previous findings

[75]. For the DA model, σdep and σfac are well approximated by σd and σf , respectively.

For fspk → 0, both Xn and Zn are almost constant, since the x(t) and z(t) have enough time to

recover to their steady state values before the next input spike arrives, and therefore σd ≫ 1 and σf ≫ 1.

In contrast, for fspk ≫ 1, x(t) and z(t) have little time to recover before the next input spike arrives and

therefore they rapidly decay to their steady state values. In the limit of fspk → ∞, σd = σf = 0. In

between these two limiting cases, σd and σf are decreasing functions of fspk (Figs. 4-A1 and -A2). For

fixed-values of fspk, both σd and σf are increasing functions of τdep and τfac, respectively. These results

are consistent with the analytical results described above.

3.4 Emergence of temporal band-pass filters for ∆Sn = XnZn: interplay of de-

pression and facilitation

Under certain conditions, the interplay of depression and facilitation generates temporal band-pass filters

(BPFs) in response to periodic inputs for (Fig. 1-A), which are captured by the sequence ∆Sn = XnZn

(Fig. 1-A2 and -C2). BPFs represent an overshoot for the sequence ∆Sn (they require ∆S1 < ∆̄S = X̄Z̄
and the existence of a spike index m such that ∆Sm > ∆̄S). This in turn requires that the two time

constants τdep and τfac are such that they create the appropriate balance between the two temporal filter

time constants σdep and σfac (or σd and σf when using the descriptive model) to support a BPF.
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Figure 6: Transition from temporal high- to low-pass filters as the presynaptic frequency increases via a temporal band-

pass filtering mechanism for fixed values of the synaptic depression and facilitation time constants. The evolution of the

peak sequences Xn (depression, red) and Zn (facilitation, green), respectively are governed by eqs. (24)-(26). We used the same

parameter values for depression and facilitation: τdep = τfac = 100 and ad = af = 0.1. A. fspk = 80. B. fspk = 100. C.

fspk = 200. D. fspk = 500. E. fspk = 1000. F. fspk = 5000. We used the following additional parameter values: x∞ = 1 and

z∞ = 0.
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For the parameter values in Figs. 3, ∆Sn BPFs emerge and become more prominent as the input

frequency fspk increases for fixed values of τdep = τfac(= τstp). This results from both the dependence

of the Xn and Zn time constants σdep/fac on the single event time constants τdep/fac and the fact that

X̄ decreases and Z̄ increases with increasing values of fspk. Fig. 6 further illustrates that temporal

∆Sn BPFs (panels C, D, E) provide a transition mechanism from LPFs for low enough input frequencies

(panels A and B) to HPFs for high-enough frequencies (panel F, which is strictly not a HPF, but it is

effectively so for the time scale considered). Fig. 3 also illustrates that for fixed values of fspk, the ∆Sn

BPFs emerge and become more prominent as τdep = τfac increases. This is a consequence of the

dependence of the Xn and Zn time constants σdep/fac on the single event time constants τdep/fac and

the fact that X̄ decreases with increasing values of τdep and Z̄ increases with increasing values of τfac.
Fig. 7-A summarizes the dependences of X̄ , Z̄ and the quotient between σdep and σfac. Because of the

dependence of Xn and Zn on the quotients ∆spk/τdep/fac, ∆Sn BPFs can be generated by increasing

values of τdep, τfac or both (not shown).

From a purely geometric perspective (devoid of any biophysical meaning), it is expected that the prod-

uct of two exponential-like decaying functions, one increasing and the other decreasing, has a peak in

certain parameter regimes (see Appendix E). By design, the geometric/dynamic mechanism described

in the Appendix E is based on the assumption that all the parameters are free and independent. How-

ever, from eqs. (9)-(10) and (33)-(34) the geometric parameters that describe the LPF and HPF are not

independent and therefore it is not clear how ∆Sn BPF are generated and how they depend on the single

event time constants τdep and τfac.

3.5 ∆Sn-band pass filters require a third (emergent) time scale whose contribu-

tion is independent from the low- and high-pass filters’ time scales

The linear one-dimensional dynamics for both depression and facilitation at the single event level gen-

erate linear one-dimensional discrete dynamics at the (long-term) temporal (low- and high-pass) filters

level where the long-term time constants (σdep and σfac) depend on the short-term time constants (τdep
and τfac) and the input frequency (∆spk). From the discrete dynamics point of view, the temporal BPFs

obtained as the product of the temporal LPF and HPF are considered overshoots where the sequence

evolves by peaking at a higher value than the steady-state (without exhibiting damped oscillations). Over-

shoots require at least two-dimensional dynamics (generated by a difference equation where each value

of the resulting sequence depends on the previous two) with the appropriate time scales. In [75] we

showed that in certain circumstances the generation of temporal BPFs requires three-dimensional dy-

namics. Here we investigate how the time scales giving rise to temporal BPF depend on the time scales

of the temporal LPF and HPF and these of the corresponding single events.

3.5.1 Mechanistic DA model

From (24)-(26),

∆Sn = XnZn = X̄Z̄ +Q(ad, τdep)
n−1 (X1 − X̄) Z̄ +Q(af , τfac)

n−1 (Z1 − Z̄) X̄+

+Q(ad, τdep)
n−1 Q(af , τfac)

n−1 (X1 − X̄) (Z1 − Z̄). (35)

The dynamics of the three last terms in eq. (35) are governed by Q(ad, τdep)
n−1, Q(af , τfac)

n−1 and

[Q(ad, τdep)Q(af , τfac) ]
n−1, respectively, and ∆Sn → X̄Z̄ as n → ∞. The first two are given eq. (26)

with τstp substituted by τdep and τfac, and astp substituted by ad and af , accordingly. The corresponding

time scales are given by eq. (27) with the same substitutions. The last one is given by

Q(ad, τdep)Q(af , τfac) = (1− ad) (1− af ) e
−∆spk(1/τdep+1/τfac). (36)
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Figure 7: Temporal band-pass filters generated as the result of the multiplicative interaction of temporal low- and high-

pass filters: Peak envelope responses to periodic presynaptic inputs. A. Dependence of η = σdep/σfac, X̄ and Z̄ with the

presynaptic input frequency fspk. We used formulas (9)-(10) together with (34) and the following parameter values: ad = 0.1,

af = 0.2, x∞ = 1, z∞ = 0. B-D. Variables Xn, Zn, and ∆Sn for different presynaptic input frequencies and combinations of τdep
and τfac (see legend). B1. τdep = τfac = 100 and fspk = 40. C1. τdep = τfac = 200 and fspk = 40. D1. τdep = τfac = 300
and fspk = 40. B2. τdep = τfac = 100 and fspk = 100. C2. τdep = τfac = 200 and fspk = 100. D2. τdep = τfac = 300 and

fspk = 100.
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The product [Q(ad, τdep)Q(af , τfac) ]
n−1 cannot be expressed in terms of a linear combination of Q(ad, τdep)

n−1

and Q(af , τfac)
n−1 and therefore the four terms in (35) are linearly independent.

The time scale associated to the fourth terms in (35) can be computed from (36) (as we did before) by

calculating the time it takes for [Q(ad, τdep)Q(af , τfac) ]
n−1 to decrease from [Q(ad, τdep)Q(af , τfac) ]

n−1

from 1 (is value for n = 1) to 0.37 and multiply this number by ∆spk. This yields

σdep+fac =
ln (0.37)∆spk

ln (1− ad) + ln (1 − af )−∆spk(1/τdep + 1/τfac)
∼

∼ 1

(1/τdep + 1/τfac)− ln [(1− ad) (1− af )]/∆spk
. (37)

This long-term time scale has similar properties as σdep and σfac. In particular, for fspk → 0,

σdep+fac → τdepτfac/(τdep + τfac). For fspk → ∞, σdep+fac → 0. For values of fspk in between,

σdep+fac decrease between these extreme values. This is illustrated in Fig. 5-B along the time other two

times scales, σdep and σfac (Fig. 5-B).

To say that the three time scales (σdep, σfac and σdep+fac) are independent is equivalent to state

that the dynamics is three dimensional, while the dynamics of the depression and facilitation sequences

are one-dimensional. It also means that erasing one of the terms in ∆Sn is equivalent to projecting the

three-dimensional signal into a two-dimensional space with the consequent loss of information if it does

not provide a good approximation to the original signal, and this loss of information may in principle be the

loss of the band-pass filter (overshoot). On the other hand, two-dimensional systems are able to produce

overshoots. So the question arises of whether the signal ∆Sn without the last term (that combines the

time scales of the two filters Xn and Zn) preserves the temporal band-pass filter and, if yes, under what

conditions.

In order to test the necessity of this third time scale for the generation of temporal band-pass filters,

we consider the “cut" sequence

∆Scut,n = X̄Z̄ +Q(ad, τdep)
n−1 (X1 − X̄) Z̄ +Q(af , τfac)

n−1 (Z1 − Z̄) X̄,

where ∆Scut,1 = (X1 − X̄)Z̄ + Z1X̄ and limn→∞ ∆Scut,n = X̄Z̄. For ad = af and τdep = τfac,
Q(ad, τdep) = Q(af , τfac), and therefore ∆Scut,n has the same structure as Xn and Zn, and therefore

∆Scut,n cannot generate a temporal band-pass filter regardless of the value of ∆spk. This includes the

examples presented in Fig. 3. For other parameter values, standard calculations show that the parameter

ranges for which ∆Scut,n shows a peak are very restricted and when it happens, they rarely provide a

good approximation to the temporal band-pass filter exhibited by ∆Sn. Fig. 5-C illustrates this for a

number of representative examples.

3.5.2 Descriptive envelope model

Here we address similar issues using the descriptive models described in the previous section. We

consider the function

H(tk) = F (tk)G(tk), (38)

which approximates the behavior of ∆Sn. From (31)-(32),

H(tk) = Z̄ [ X̄ + (1− X̄)e−(tk−t1)/σd − X̄Ce−(tk−t1)/σf − (1 − X̄)C e−(tk−t1)/σd+f ] (39)

where

σd+f =

(

1

σd
+

1

σf

)

−1

, (40)
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and σd and σf are given by (34). Note that σd, σf and σd+f are different quantities from σdep, σfac and

σdep+fac discussed above. Note also that, formally, the dependences of the third time scales (σdep+fac

and σd+f ) on the corresponding LPF and HPF time scales are different. In contrast to the analytical

expression for the DA model, the third time scale for the descriptive model (σd+f ) can be explicitely

computed in terms of the time scales for the LPF and HPF.

Together, these results and the results from the previous section shows that while Xn and Zn are

generated by a 1D (linear) discrete dynamical systems (1D difference equations), ∆Sn is generated by a

3D (linear) discrete dynamical system (3D discrete difference equation). Under certain conditions, a 2D

(linear) discrete dynamical system will produce a good approximation. ∆Sn is able to exhibit a band-pass

filter because of the higher dimensionality of its generative model.

In order to understand the contribution of the combined time scale σd+f , we look at the effect of cutting

the fourth term in H (39). We call this function Hcut. Fig. 4-B shows that Hcut does not approximate ∆Sn

well during the transients (response to the first input spikes) and fails to capture the transient peaks and

the temporal band-pass filter properties of ∆Sn. This discrepancy between ∆Sn (or H) and Hcut is more

pronounced for low than for high input frequencies. In fact Hcut(t1) = Z̄− X̄(Z̄ − af), while H(t1) = af .

The question remains of whether there could be a 2D (linear) dynamical system able to reproduce the

temporal filters for ∆Sn with (emergent) time scales different from σd and σf . In other words, whether

∆Sn can be captured by a function of the form

H2D(tk) = h0 + h1 e
−(tk−t1)/σ1 + h2 e

−(tk−t1)/σ2 . (41)

where h0, h1, h2, σ1 and σ2 are constants where by necessity,

lim
t→∞

H2D(tk) = h0 = X̄Z̄ and H2D(t1) = h0 + h1 + h2 = H(t1) = af . (42)

The fact that the function H is a sum of exponentials indicate that the answer is negative.

The dependence of the estimated time scales σd, σf and σd+f on the parameters fspk, τdep and τfac
needs to be computed numerically. Our results are presented in Fig. 4-A, and are consistent with our

previous results.

3.6 Interplay of short-term synaptic and cellular postsynaptic dynamics: tempo-

ral BPFs generated within and across levels of organization

Earlier models of synaptic dynamics consider the postsynaptic potential (PSP) peak sequence to be

proportional to ∆Sn = XnZn [21, 63, 67]. This approach does not take into consideration the dynamic

interaction between the synaptic function S and the postsynaptic membrane potential, particularly the

membrane time scale. Subsequent models consider synaptic currents such as Isyn in eq. (2). The

synaptic function S, which controls the synaptic efficacy, obeys a first linear kinetic equation (see Ap-

pendix C). The presence of additional times scales further in the line (e.g., membrane potential time

scale) gives rise to the phenomenon of temporal summation and the associated HPF in response to pe-

riodic synaptic inputs (see Fig. 2-B), which interacts with the LPFs and HPFs associated with synaptic

depression and facilitation, respectively. The resulting PSP temporal filters reflect these interactions and

therefore are expected to depart from the proportionality relationship with the ∆Sn filters.

Here we address these issues by following a dual approach. We first consider postsynaptic dynamics

governed by eq. (3). We interpret the variable S as the postsynaptic membrane potential and the decay

time τdec as reflecting the membrane potential dynamics (Section 3.6.1). The simplified model has the

advantage of being analytically solvable and it allows us to understand the effects of the temporal filtering

(depression, facilitation and summation) time scales in terms of the single event time constants (τdep,

τfac and τdec). Then, we consider the more biophysically realistic approach by using eqs. (1)-(3) where

τdec is chosen to be relatively small, of the order of magnitude of the AMPA decay time (Section 3.6.2). In

this model, the membrane time constant is C/GL and the interplay between the synaptic input and the
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postsynaptic cell is multiplicative (nonlinear). In both approaches, a systematic analysis of the generation

and properties of temporal PSP filters would require the consideration of an enormous amount of cases

given the increase in the number of building blocks and the consequent increase in the number of time

scales involved. Therefore, in our study we consider a number of representative guided by mechanistic

questions. For conceptual purposes, we also considered the case where rise times are non-zero (see

eq. (91) in Appendix C.1).

3.6.1 PSP temporal filters in the simplified model

We use eq. (3) with decay times reflecting the membrane potential time scales of postsynaptic cells. As

mentioned above, in this simplified intermediate approach S is interpreted as the postsynaptic membrane

potential. Our goal is to understand how the (global) time scales of the S-response patterns to periodic

inputs depend on the time constant τdec and the depression and facilitation time scales τdep and τfac
through the ∆Sn filter time scales σdep and σfac.

In the absence of depression and facilitation (τdep, τfac → 0), ∆Sn is constant across cycles and S
generates temporal summation HPFs as described in Section 3.1 (Fig. 2-B) with σsum = τdec. We use

the notation S0
n for the corresponding peak sequences. In the presence of either depression or facilitation,

the update ∆Sn is no longer constant across cycles and therefore, the STP LPFs and HPFs interact with

the summation HPFs.

By solving the differential equation (3) where S is increased by ∆Sn at the arrival of each spike (t = tn,

n = 1, . . . , Nspk) one arrives to the following discrete linear differential equation for the peak sequences

in terms of the model parameters

Sn+1 = e−∆spk/τdec Sn +∆Sn+1. (43)

The solution to eq. (43) is given by the following equation involving the convolution between the STP

input ∆Sn and an exponentially decreasing function

Sn = e−(n−1)∆spk/τdecS1 +

n−2
∑

k=0

e−k∆spk/τdec∆Sn−k (44)

with S1 = ∆S1 = af . The evolution of Sn is affected by the history of the STP inputs ∆Sn weighted by

an exponentially decreasing function of the spike index and a coefficient

γdec =
∆spk

τdec
. (45)

The steady state is given by

S̄ =

(

∞
∑

k=0

e−k∆spk/τdec

)

∆̄S =
∆̄S

1− e−∆spk/τdec
, (46)

where ∆̄S = X̄Z̄ given by (9) and (10). Note that Eq. (19) is a particular case of eq. (46) when ∆Sn is

a constant sequence (no STP).

Both Sn and S̄ depend on ∆spk and the time constants τdep, τfac and τdec through the quotients

(28) and (45). Therefore, here we consider temporal patterns for a fixed-value of ∆spk. The temporal

patterns for other values of ∆spk will be temporal compressions, expansions and height modulations of

these baseline patterns. The values of τdep, τfac and τdec used in our simulations should be interpreted

in this context.

For the limiting case τdec → 0, Sn → ∆Sn for 1 = 2, . . . , Nspk. The S-temporal filter reproduces (is

equal to or a multiple of) the ∆Sn as in [21,63,67]. For the limiting case τdec → ∞, S̄ → ∞ reflecting the

lack of convergence of the sum in eq. (44). As the presynaptic spike number increases, the S-temporal

filter reproduces the S0-temporal filter since the ∆Sn → ∆̄S. In the remaining regimes, changes in τdec
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affect both the steady state and the temporal properties of S in an input frequency-dependent manner as

the S-temporal filter transitions between the two limiting cases. Here we focus on the temporal filtering

properties. The former will be the object of a separate study.

Emergence of Sn temporal BPFs: Interplay of synaptic depression (LPF) and postsynap-

tic summation (HPF)

In the ∆Sn facilitation-dominated regime (Fig. 8-A), the PSP Sn patterns result from the interaction

between two HPFs, the ∆Sn facilitation and the S0
n summation ones. The filter time constant increases

with increasing values of τdec reflecting the dependence of the summation (global) time constant σsum

with τdec.

In the ∆Sn depression-dominated regime (Fig. 8-B), the temporal PSP Sn BPFs emerge as the result

of the interaction between the ∆Sn depression LPF and a S0
n HPF for intermediate values of τdec (Fig.

8-B2). Sn BPFs are not present for small enough values of τdec (Fig. 8-B1) since this would require ∆Sn

to be a BPF, and are also not present for large enough values of τdec (Fig. 8-B3) since this would require

S0
n to be a BPF. As for the depression/facilitation BPFs discussed above, the Sn BPFs are a balance

between the two other filters and emerge as Sn transitions in between them as τdec changes.

Dislocation of the (output) Sn temporal BPF from the (input) ∆Sn temporal BPFs

In this scenario, a depression-facilitation ∆Sn BPF is generated at the synaptic level and interacts with

the summation S0
n HPF (Fig. 8-C). The ∆Sn BFP evokes a PSP Sn BFP for low enough values of τdec

(Fig. 8-C1). As τdec increases, the Sn pattern transitions to the S0
n HPF (Fig. 8-C3). As this transition

happens, the Sn BPF moves to the right and increases in size before entering the summation-dominated

HPF regime. While the PSP Sn BPF is inherited from the synaptic regime, its structure results from the

interplay of the synaptic BPF and PSP temporal summation.

3.6.2 Biophysically realistic models reproduce the above PSP temporal filters with sim-

ilar mechanisms

Here we test whether the results and mechanisms discussed above remain valid when using the more

realistic, conductance-based model (1)-(3). Here S has its original interpretation as a synaptic function

with relatively small time constants, consistent with AMPA excitatory synaptic connections. Because the

interaction between the synaptic variable S and V are multiplicative, the model is not analytically solvable.

The V temporal patterns generated by this model (Fig. 9) are largely similar to the ones discussed

above (Fig. 8) and are generated by similar mechanisms described in terms of the interplay of the

membrane potential time scale τm (= C/gL) and the depression/facilitation time scales (τdep and τfac)
through the (global) ∆Sn filter time scales (σdep and σfac). Because τdec is relatively small, S largely

reproduces the temporal properties of the ∆Sn pattern. As before, V 0
n refer to the voltage response to

presynaptic periodic inputs in the absence of STD (S is updated to ∆Sn constant). Fig. 9-A illustrates the

generation of V temporal BPFs as the result of the interaction between synaptic depression (LPF) and

postsynaptic summation (HPF). Fig. 9-B illustrates the dislocation of postsynaptic BPF inherited from the

synaptic input Fig. 9-A. We limited our study to realistic values of τm.

3.6.3 Attenuation of the filtering properties as the rise time increases

A conceptual question that arises in this context is whether and how S interacts with the membrane

potential in the presence of longer rise times than the ones considered here. We did not take this into
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Figure 8: Temporal S-filters in response to periodic presynaptic inputs in the presence of STP. We used the DA model for

synaptic depression and facilitation to generate the sequences ∆Sn and eq. (3) to generate the Sn sequences. The S0
n sequences

were computed using eq. (3) with a constant value of ∆Sn = ∆S = afac. The curves are normalized by their maxima Sn,max,

∆Sn,max and S0
n,max. A. Facilitation-dominated regime. Sn is a HPF (transitions between two HPFs). The time constant increases

monotonically with τdec. B. Depression-dominated regime. A Sn BPF is created as the result of the interaction between the

presynaptic (depression) LPF and the temporal summation HPF. C. Sn and ∆Sn temporal BPFs peak at different times. We used

the following parameter values: ad = 0.1, af = 0.2, x∞ = 1, z∞ = 0. For visualization purposes and to compare the (global)

time constants of the S, ∆S and S0 temporal filters, we present the Sn, ∆Sn and S0
n (τdep, τfac → 0) curves normalized by their

maxima.
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Figure 9: Temporal V -filters in response to periodic presynaptic inputs in the presence of STP. We used the DA model for

synaptic depression and facilitation to generate the sequences ∆Sn, eq. (3) (τdec = 5) to generate the Sn sequences, and the

passive membrane equation (1)-(2) to generate the Vn sequences. The V 0
n sequences were computed using eq. (3) with a constant

value of ∆Sn = ∆S = afac. The curves are normalized by their maxima Vn,max, §n,max and V 0
n,max. B. Depression-dominated

regime. A Vn BPF is created as the result of the interaction between the presynaptic (depression) LPF and the temporal summation

HPF. C. Vn and Sn temporal BPFs peak at different times. We used the following parameter values: ad = 0.1, af = 0.2, x∞ = 1,

z∞ = 0, C = 1, EL = −60, Esyn = 0, Gsyn = 0.1.
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account, in geneeral since rise times for the type of synapses we use are assumed to be fast (typical for

AMPA and also GABAA) for which the instantaneous approximation is justified. We illustrate the effect

of longer rise times in Fig. S2 in the context of the DA model. We used presynaptic spikes of 1 ms width.

(see explanation in Appendix C.1 and eq. (91)). In the first row of Fig. S2, we see a comparison of how

the rise time affects S and V alone and in the second line we see panels of the same simulation above

but in the presence of the DA model. As τrise increases, the presynaptic spikes take longer and longer to

increase. In the first row, we see that the steady-state is lowered by such an effect and in the second row,

we see that the type of BPF from the DA models persists qualitatively but is suppressed quantitatively.

3.7 Interplay of multiple depression and facilitation processes with different time

scales

In the models discussed so far both short-term depression and facilitation involve one time scale (τdep
and τfac) that governs the evolution of the corresponding variables (x and z) in between presynaptic

spikes. These single-event time scales are the primary component of the temporal filter time scales (σdep

and σfac) that develop in response to the periodic repetitive arrival of presynaptic spikes.

Here we extend these ideas to include scenarios where depression and facilitation involve more than

one time scale. We interpret this as the coexistence of more than one depression or facilitation process

whose dynamics are governed by a single single-event time scale each. Similar to the standard model,

the independent filters that develop in response to the presynaptic spike train inputs interact to provide

an input to the synaptic dynamics. In principle, this interaction may take various forms. Here, for ex-

ploratory purposes and to develop ideas, we consider a scenario where the processes of the same type

(depression or facilitation) are linearly combined and the interaction between depression and facilitation

is multiplicative as for the single depression-facilitation processes. We refer to it as the distributive or

cross model. In the Appendix D we discuss other possible formulations. The ideas we develop here can

be easily extended to more than two STD processes.

3.7.1 The cross (distributive) model

In this formulation, the depression and facilitation variables xk and zk, k = 1, 2 obey equations of the

form (5)-(6) with parameters τdep,k, τfac,k, ad,k and af,k for k = 1, 2. The evolution of these variables

generate the sequences Xk,n and Zk,n (k = 1, 2) given by (24)-(25) with the steady-state values X̄k and

Z̄k (k = 1, 2) given by (9)-(10). For simplicity, we consider ad,1 = ad,2 and af,1 = af,2 (and omit the index

k) so the differences between two depression or facilitation filters depend only on the differences of the

single-event time constants. This can be easily extended to different values of these parameters for the

different processes. In what follows, we will not specify the range of the index k = 1, 2 unless necessary

for clarity.

In the cross (or distributive) model, the variable M is given by

M×(t) = [ ηd,1 x1(t) + ηd,2 x2(t) ] [ ηf,1 z1(t) + ηf,2 z2(t) ] (47)

where ηd,1 + ηd,2 = 1 and ηf,1 + ηf,2 = 1. Correspondingly, the synaptic update is given by

∆S×

n = [ ηd,1X1,n + ηd,2X2,n ] [ ηf,1 Z1,n + ηf,2 Z2,n ] =

(

2
∑

k=1

ηd,kXk,n

) (

2
∑

k=1

ηf,kZk,n

)

(48)

for n = 1, . . . , Nspk. This model allows for all possible interactions between the participating depression

and facilitation processes. It reduces to the single depression-facilitation process for ηd,2 = ηf,2 = 0 (or

ηd,1 = ηf,1 = 0) and allows for independent reductions of depression and facilitation by making ηd,2 = 0
or ηf,2 = 0, but not both simultaneously.
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From (24)-(26),

Xk,n = X̄k +Q(ad, τdep,k)
n−1 (X̂ − X̄k) (49)

and

Zk,n = Z̄k +Q(af , τfac,k)
n−1 (Ẑ − Z̄k) (50)

for k = 1, 2 with

Q(astp, τstp,k) = (1 − astp) e
−∆spk/τstp,k , (51)

where for use the notation X̂ and Ẑ to refer to the first elements in the sequences, which, for simplicity,

are assumed to be independent of k.

We use the notation

∆S×

n = ∆Sdep,n ∆Sfac,n, (52)

where after algebraic manipulation,

∆Sdep,n =

2
∑

k=1

ηd,kX̄k + (1 − ad)
n−1

2
∑

k=1

ηd,ke
−(n−1)∆spk/τdep,k(X̂ − X̄k) (53)

and

∆Sfac,n =

2
∑

k=1

ηf,kZ̄k + (1− af )
n−1

2
∑

k=1

ηf,ke
−(n−1)∆spk/τfac,k(Ẑ − Z̄k). (54)

3.7.2 Depression (∆Sdep,n), facilitation (∆Sfac,n) and ∆S×
n temporal filters

The history-dependent temporal filter ∆Sdep,n transitions from ∆Sdep,1 = X̂ to ∆̄Sdep = ηd,1X̄1+ηd,2X̄2

as n → ∞, and ∆Sfac,n transitions from ∆Sfac,1 = Ẑ to ∆̄Sfac = ηf,1Z̄1 + ηf,2Z̄2 as n → ∞. Because

the individual filters are monotonic functions, the linearly combined filters represented by the sequences

∆Sdep,n and ∆Sfac,n are also monotonic functions lying in between the corresponding filters for the indi-

vidual filter components (Figs. 10-A1 and 11-A1for depression and Figs. 10-A2 and 11-A2 for facilitation).

As a consequence, the ∆S×

n filters also lie in between the product of the corresponding individual filter

components ∆S1,n and ∆S2,n (Figs. 10-A3 and Figs. 11-A3). In these figures, all parameter values are

the same except for τdep,1 and τfac,1, which are τdep,1 = τfac,1 = 100 in Fig. 10 and τdep,1 = τfac,1 = 10
in Fig. 11. In both figures, the values of the facilitation time constants are τdep,2 = τfac,2 = 1000.

In Fig. 10-A3 both ∆S1,n and ∆S2,n are temporal BPFs peaking almost at the same time. Conse-

quently ∆S×

n is also temporal BPFs lying strictly in between the individual ones and peaking almost at

the same time. In Fig. 11-A3, in contrast, ∆S1,n is a temporal HPF, while ∆S2,n is a temporal BPF. The

resulting ∆S×

n is also a temporal BFP, but the two temporal BPFs peak at different times.

3.7.3 Communication of the single event time scales to the history-dependent filters

In Section 3.3.3 we developed a descriptive envelope model for STD in response to periodic presynaptic

inputs consisting of the functions F (t) for depression, G(t) for facilitation, and H(t) = F (t)G(t) for the

synaptic update, given by eqs. (31)-(33) and (39). By approximating the model parameters using the

results of our simulations for x(t) and z(t), we computed the filter time constants σd, σf using (34) and

σd+f = (σ−1
d + σ−1

f )−1. This approach is not strictly necessary for the DA model since the sequences

Xn and Zn can be computed analytically as well as the filter time constants σdep, σfac and σdep+fac,
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Figure 10: Temporal filters generated by the interplay of multiple depression and facilitation processes with different

single-event time scales. A. Depression (X), facilitation (Z) and ∆S = XZ filters for representative parameter values. We use

the distributive model (47)-(52) for the synaptic updates ∆S×
n . The factors ∆Sdep,n and ∆Sfac,n in ∆S×

n are given by eqs. (53)-

(54). The depression and facilitation individual filters Xk,n and Zk,n (k = 1, 2) are given by eqs. (49)-(51). These and the ∆Sdep,n

and ∆Sfac,n filters were approximated by using the descriptive envelope model for STD in response to periodic presynaptic inputs

(solid curves superimposed to the dotted curves) described in Section 3.3.3 by eqs. (31)-(33). The filter ∆S×
n was approximated

by using with eq. (39) with F and G substituted by the corresponding approximations to ∆Sdep,n and ∆Sfac,n. B. Dependence of

the filter (global) time constants on the single events time constants. We used fixed values of τdep,2 = τfac,2 and τdep,1. Fig. 10

uses a different value of τdep,1. The filter (global) time constants were computed using eq. (34). We used the following parameter

values: ad = 0.1, af = 0.2, x∞ = 1, z∞ = 0, τdep,2 = τfac,2 = 1000, ηdep = ηfac = 0.5, τdep,1 = τfac,1 = 100 , and ∆spk = 10.
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Figure 11: Temporal filters generated by the interplay of multiple depression and facilitation processes with different

single-event time scales. A. Depression (X), facilitation (Z) and ∆S = XZ filters for representative parameter values. We use

the distributive model (47)-(52) for the synaptic updates ∆S×
n . The factors ∆Sdep,n and ∆Sfac,n in ∆S×

n are given by eqs. (53)-

(54). The depression and facilitation individual filters Xk,n and Zk,n (k = 1, 2) are given by eqs. (49)-(51). These and the ∆Sdep,n

and ∆Sfac,n filters were approximated by using the descriptive envelope model for STD in response to periodic presynaptic inputs

(solid curves superimposed to the dotted curves) described in Section 3.3.3 by eqs. (31)-(33). The filter ∆S×
n was approximated by

using with eq. (39) with with F and G substituted by the corresponding approximations to ∆Sdep,n and ∆Sfac,n. B. Dependence

of the filter (global) time constants on the single events time constants. We used fixed values of τdep,2 = τfac,2 and τdep,1. Fig. 10

uses a different value of τdep,1. The filter (global) time constants were computed using eq. (34). We used the following parameter

values: ad = 0.1, af = 0.2, x∞ = 1, z∞ = 0, τdep,2 = τfac,2 = 1000, ηdep = ηfac = 0.5, τdep,1 = τfac,1 = 10, and ∆spk = 10.
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which convey the same dynamic information as σd, σf and σd+f . The calculation of these time constants

is possible since the filter sequences involved a single n-dependent term. However, this is not the case

for ∆Sdep,n and ∆Sfac,n, which are linear combinations of n-dependent terms. On the other hand,

the shapes of ∆Sdep,n and ∆Sfac,n suggest these filters can be captured by the descriptive model by

computing the appropriate parameters using the results of our simulations. We use the notation Fdep,

Ffac and H×(t) = Fdep(t)Ffac(t). The solid lines in Figs. 10-A1 to -A3 and 11-A1 to A3 confirm this.

In particular, parameter values can be found so that Fdep(t), Ffac(t) and H×(t) provide a very good

approximation to ∆Sdep,n, ∆Sfac,n and ∆S×

n , respectively (gray solid lines).

Using the descriptive model we computed the time constants σ×

d , σ×

f and σ×

d+f = [(σ×

d )−1+(σ×

f )−1]−1.

Figs. 10-B and 11-B (blue) show the dependence of these time constants with the single-event depres-

sion and facilitation time constant τdep,2 (= τfac,2) for two values of τdep,1 (= τfac,1) and ∆spk = 10
(fspk = 100). These results capture the generic model behavior via rescalings of the type (28). A salient

feature is the non-monotonicity of the curves for σ×

d , σ×

f and σ×

d+f (blue) in contrast to the monotonicity

of the curves for σd,2, σf,2 and σd+f,2 for the depression and facilitation second component (red).

3.7.4 Degeneracy

The fact that the same type of descriptive envelope models such as the one we use here capture the

dynamics of the temporal filters for both single and multiple depression and facilitation processes show

it will be difficult to distinguish between them on the basis of data on temporal filters. In other words,

the type of temporal filters generated by the DA model (single depression and facilitation processes) are

consistent with the presence of multiple depression and facilitation processes interacting as described by

the cross (distribute) model.

3.8 Persistence and disruption of temporal filters for ∆Sn = XnZn in response

to variable presynaptic spike trains

By design, the temporal filters discussed above emerge in response to periodic presynaptic spike trains

(with period ∆spk). Naturally, a question arises as to whether these type of temporal filters emerge in

response to non-periodic inputs and how their properties are affected by input variability. To address

this issue, here we consider more realistic, irregular presynaptic spike trains with variable (n-dependent)

ISIs represented by the sequence {∆spk,n}Nspk

n=1 . The natural candidates are Poisson spike trains (the

ISI distribution follows a Poisson process with the parameter r representing the mean firing rate) [69,80].

For Poisson spike trains both the mean ISI (< ISI >) and the standard deviation (SD) are equal to r−1

and therefore the coefficient of variation CV = 1. For Poisson spike trains with absolute refractoriness

ISImin, < ISI >= r−1 + ISImin and CV = 1 − ISImin < ISI >−1 [80], making them more regular.

We use here ISImin = 1 so that the irregularity remains high. As a first step, we consider variable

presynaptic spike trains consisting of small perturbations to periodic spike trains.

3.8.1 Perturbations to periodic presynaptic spike train inputs

To introduce some ideas, we consider perturbations of periodic presynaptic spiking patterns of the form

∆spk,n = ∆spk + δspk,n (55)

where ∆spk is constant (n-independent) and δp = {δspk,n}Nspk

n=1 is a sequence of real numbers. The

exponential factors in (7)-(8) and (26) read

e−∆spk,n/τstp = e−∆spk/τstpe−δspk,n/τstp , (56)

where τstp represents τdep or τfac.
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If we further assume |δspk,n/τstp| ≪ 1 for all n, then

e−∆spk,n/τstp = e−∆spk/τstp

[

1− δspk,n
τstp

+O
(

δ2spk,n
τ2stp

)]

∼ e−∆spk/τstp

(

1− δspk,n
τstp

)

. (57)

Eqs. (7)-(8) have the general form

Wn+1 = αn Wn + βn (58)

for n = 1, 2, . . . , Nspk − 1 with

αn,X = (1 − ad)e
−∆spk,n/τdep , (59)

βn,X = x∞(1 − e−∆spk,n/τdep), (60)

αn,Z = (1− af )e
−∆spk,n/τfac , (61)

and

βn,Z = af + (1− af )z∞(1− e−∆spk,n/τfac). (62)

Substitution of (57) into these expressions yields

αn,X = Q(ad, τdep)− (1− ad)e
−∆spk/τdep

δspk,n
τdep

, (63)

βn,X = x∞(1 − e−∆spk/τdep) + x∞e−∆spk/τdep
δspk,n
τdep

, (64)

αn,Z = Q(af , τfac)− (1− af )e
−∆spk/τfac

δspk,n
τfac

, (65)

and

βn,Z = af + (1 − af )z∞(1− e−∆spk/τfac) + (1− af )z∞e−∆spk/τfac
δspk,n
τfac

. (66)

The last terms in these expressions are the O(δspk,n/τstp) corrections to the corresponding param-

eters for the constant values of ∆spk (δp = 0, remaining terms) and contribute to the variance of the

corresponding expressions. One important observation is that these variances monotonically increase

with decreasing values of ∆spk (increasing values of fspk). A second important observation is the com-

peting effects exerted by the parameters τstp (τdep and τfac) on the variance through the quotients

e−∆spk/τstp
1

τstp
.

As τstp decreases (increases), e−∆spk/τstp decreases (increases) and 1/τstp increases (decreases). In

the limit, τstp → 0, e−∆spk/τstp → 0 and 1/τstp → ∞ and vice versa. Therefore, one expects the

variability to change non-monotonically with τdep and τfac.
To proceed further, we use the notation

αn,X = αX + δα,X,n, βn,X = βX + δβ,X,n, (67)

αn,Z = αZ + δα,Z,n. βn,Z = βZ + δβ,Z,n. (68)
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Substituting into (83) in the Appendix A.2 we obtain

Xn(δp) = X̄+αn−1
X (X1− X̄)+αn−2

X X1

n−1
∑

k=1

δα,X,k+βX

n−1
∑

k=1

αn−k−2
X

n−1
∑

j=k+1

δα,X,j +

n−1
∑

k=1

αn−k−1
X δβ,X,k

(69)

and

Zn(δp) = Z̄ + αn−1
Z (Z1 − Z̄) + αn−2

Z Z1

n−1
∑

k=1

δα,Z,k + βZ

n−1
∑

k=1

αn−k−2
Z

n−1
∑

j=k+1

δα,Z,j +

n−1
∑

k=1

αn−k−1
Z δβ,Z,k,

(70)

where αX = Q(ad, τdep) and αZ = Q(af , τfac). In (69) and (70) the first two terms correspond to the

solution (24) and (25) to the corresponding systems in response to a presynaptic spike train input with a

constant ISI ∆spk (δp = 0), which were analyzed in the previous sections. The remaining terms capture

the (first order approximation) effects of the perturbations δp = {δspk,n}, which depend on the model

parameters through αX , βX , αZ , βZ and the sequences δα,X,n, δβ,X,n, δα,Z,n and δβ,Z,n defined by the

equations above.

These effects are accumulated as n increases as indicated by the sums. However, as n increases,

both Q(ad, τdep)
n and Q(af , τfac)

n decrease (they approach zero as n → ∞) and therefore the effect of

some terms will not be felt for large values of n provided the corresponding infinite sums converge. On

the other hand, the effect of the perturbations will be present as n → ∞ in other sums. For example, for

k = n − 1 in the last sums in (69) and (70), αn−k−1
X = αn−k−1

Z = 1 and therefore both δβ,X,n−1 and

δβ,Z,n−1 will contribute Xn and Zn, respectively, for all values of n. For small enough values of δp, the

response sequences Xn(δp) and Zn(δp) will remain close Xn(0) and Zn(0), respectively (the response

sequences to the corresponding unperturbed, periodic spike train inputs) and therefore the temporal

filters will persist. Fig. 12 shows that this is also true for higher values of δp. There, the sequence δp
was normally distributed with zero mean and variance D = 1. In all cases, the mean sequence values

computed after the temporal filter decayed (by taking the second half of the sequence points for a total

time Tmax = 100000, Xc and Zc) coincides to a good degree of approximation with fixed-point of the

unperturbed sequences X̄ and Z̄ (compared the corresponding solid and dotted curves).

These results also confirm (by inspection) the previous theoretical observations. First, the variability

is smaller for τdep = τfac = 500 than for τdep = τfac = 100. Second, as ∆spk decreases fspk increases),

the variability increases. For τdep = τfac = 100 (Fig. 12-A) the variability of ∆Sc = XcZc is smaller than

the variabilities of both Xc and Zc. For τdep = τfac = 100 (Fig. 12-B), the variability of ∆Sc = XcZc is

smaller than the variability of Xc, but not always smaller than the variability of Zc.

While this approach is useful to understand certain aspects of the temporal synaptic update filtering

properties in response to non-periodic presynaptic spike train inputs, it is limited since it does not admit

arbitrarily large perturbations, which could cause the perturbed ISI to be negative. One solution is to make

phase-based perturbations instead of time-based perturbations. But it is not clear whether comparison

among patterns corresponding to different ∆spk are meaningful.

3.8.2 Poisson distributed presynaptic spike train inputs

Fig. 13 shows the response of the depression (Xn), facilitation (Zn) and synaptic update (∆Sn) peak

sequences to Poisson distributed presynaptic spike train inputs for representative values of the spiking

mean rate rspk and the depression and facilitation time constants τdep and τfac. Each protocol consists

of 100 trials. A comparison between these responses and the temporal filters in response to periodic

presynaptic spike inputs with a frequency equal to rspk (the Poisson rate) shows that collectively the

temporal filtering properties persist with different levels of fidelity. Clearly, variability in the responses are
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Figure 12: Temporal filters persist in response to variable presynaptic spike trains: Depression, facilitation and synaptic

update response to normally distributed ISI perturbations to periodic spike train inputs. We used the recurrent equations

(7) and (8) for Xn and Zn respectively. The ISIs are perturbations around the ISI with constant ∆spk according to eq. (55) where

the sequence δp = {δspk,n}
Nspk

n=1 is normally distributed with zero mean and variance D = 1. Simulations were run for a total time

Tmax = 100000. The sequences Xc, Zc and ∆Sc consist of the last half set of values for Xp, Zp and ∆Sp, respectively, after

the temporal filters decay to a vicinity of X̄, Z̄ and ∆̄S. A. τdep = τfac = 100. A1. var(Xc) = 0.000015, var(Zc) = 0.000020,

var(∆Sc) = 0.000002. A2. var(Xc) = 0.000057, var(Zc) = 0.000065, var(∆Sc) = 0.000006. A3. var(Xc) = 0.000152,

var(Zc) = 0.000092, var(∆Sc) = 0.000053. B. τdep = τfac = 500. B1. var(Xc) = 0.000006, var(Zc) = 0.000003, var(∆Sc) =

0.000002. B2. var(Xc) = 0.000012, var(Zc) = 0.000005, var(∆Sc) = 0.000008. B3. var(Xc) = 0.000016, var(Zc) = 0.000006,

var(∆Sc) = 0.000013. We used the following parameter values: ad = 0.1, af = 0.2, x∞ = 1, z∞ = 0.
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present for each trial (Fig. S3). Figs. S3-B2 and -C2, the temporal band pass-filter is terminated earlier

than the corresponding deterministic one. However, in Fig. S3-B1 the temporal band-pass filter is initiated

earlier than the corresponding deterministic one.

Figure 13: Temporal filters persist in response to variable presynaptic spike trains: Synaptic update response to Poisson

distributed spike train inputs We used the recurrent equations (7) and (8) for Xn and Zn respectively. The ISIs have mean and

standard deviation equal to rspk. Simulations were run for a total time Tmax = 2000 (∆t = 0.01). We consider 100 trials and

averaged nearby points. A. τdep = τfac = 100 and fspk = 50. B. τdep = τfac = 100 and fspk = 100. C. τdep = τfac = 500 and

fspk = 50. D. τdep = τfac = 500 and fspk = 500. We used the following parameter values: ad = 0.1, af = 0.2, x∞ = 1, z∞ = 0.

In Fig. 14 we briefly analyze the response variability of the Xn, Zn and ∆Sn sequences induced by

the presynaptic ISI variability. For Xn and Zn, the variability decreases with increasing values of τdep
and τfac in an rspk-dependent manner (Fig. 14-A). For most cases, the variability also decreases with

increasing values of rspk in a τdep- and τfac-manner (Fig. 14-B). An exception to this rule is shown in Fig.

14-B1 for the lower values of rspk .

The variability of the ∆Sn sequences is more complex. Figs. 14-A1 and -A2 show examples of the

peaking at intermediate values of τdep and τfac. Fig. 14-B1 shows an example of the variability reaching

a trough for an intermediate value of rspk and relatively low values of τdep and τfac, while Figs. 14-B2

and -B3 show examples of the variability peaking at intermediate values of rspk for higher values of τdep
and τfac. This different dependence of the variability with the model parameters and input rates emerge

as the result of the different variability properties of the product of the sequences Xn and Zn. A more

detailed understanding of these properties is beyond the scope of this paper.
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Figure 14: Response variability to non-periodic presynaptic spike trains: depression, facilitation and synaptic update

response to Poisson spike train inputs. We used the recurrent equations (7) and (8) for Xn and Zn respectively. The ISIs

have mean and standard deviation equal to rspk. Simulations were run for a total time Tmax = 500000 (∆t = 0.01). A. Variance

as a function of τdep and τfac (τdep = τfac) for fixed values of the Poisson input spike rate. A1. rspk = 50. A2. rspk = 100.

A3. rspk = 200. B. Variance as a function of the Poisson spike rate for fixed values of τdep and τfac (τdep = τfac). B1.

τdep = τfac = 100. B2. τdep = τfac = 500. B3. τdep = τfac = 1000. We used the following parameter values: ad = 0.1,

af = 0.2, x∞ = 1, z∞ = 0.

35



3.9 The MT model exhibits similar filtering properties as the DA model: Dynam-

ics of the depression (R) and facilitation (u) variables and their interaction

The main difference between the DA model (5)-(6) and the MT model (12)-(13) is the update of the

depression variables (x in the DA model and R in the MT model). Notation aside, the dynamics for

depression and facilitation variables x and z in the DA model are completely independent both during

the presynaptic ISI and the update. In the MT model, in contrast, while the dynamics of the depression

and facilitation variables R and u are independent during the presynaptic ISI as well as the u-update,

the R-update is dependent on u+. As a result, the difference equations describing the peak sequence

dynamics for Rn and un (14)-(15) (peak envelope responses to periodic presynaptic inputs) are not fully

independent, but the equation for Rn is forced by the sequence un, which is independent of Rn. For the

DA model, the difference equations for Zn and Zn are independent (7)-(8). Naturally, the steady-states

(X̄ and Z̄) in the DA model are independent, while in the MT model, the steady state R̄ depends on the

steady state ū. Here we show that despite these differences and the increased difficulty in the interpre-

tation of the analytical solution for the MT model as compared to the DA model for the determination of

the long-term depression and facilitation filter time constants, the two models describe similar dynamics.

Standard methods (see Appendix A) applied to these linear difference equations for ∆spk,n = ∆spk

(independent of n) yield

Rn = e−(n−1)∆spk/τdep

n−1
∏

k=1

(1−un+1)+(1−e−∆spk/τdep)

n−1
∑

k=1

e−(n−k−1)∆spk/τdep

n−1
∏

j=k+1

(1−uj+1) (71)

and

un = ū+Q(U, τfac)
n−1 (u1 − ū) (72)

where Q(U, τfac) is given by (26).

Because of the complexity of (71) we are not able to use the approach described in Section 3.3.1 to

compute the (long-term) history-dependent time scales σdep and σfac in terms of the single event time

scales (τdep and τfac) given by eq. (27). Instead, we use the descriptive modeling approach described in

Section (3.3.3) by eqs. (31)-(34) and Section 3.3.3.

4 Discussion

The temporal and frequency-dependent properties of postsynaptic patterns are shaped by the presence

of synaptic short-term plasticity (synaptic depression and facilitation; STP). In response to a presynaptic

spike train, the postsynaptic membrane potential response may be amplified, attenuated or both, thus

exhibiting a maximal response for an intermediate presynaptic spike (or spike sequence). This gives rise

to the notion of STP-mediated temporal filtering: the response is optimal within a certain time window

(or windows). During these temporal bands, sensory input is enhanced and the communication between

neurons is facilitated.

We set out to understand the mechanisms of generation of temporal filters in response to presynaptic

spike trains in the presence of STP. We focused on a feedforward network consisting of a presynaptic cell

(modeled as a presynaptic spike train) synaptically connected to a passive cell (diagram in Fig. 2). This is

the minimal network model that allows the systematic investigation of postsynaptic potential (PSP) tem-

poral filters in response to presynaptic inputs. In our simulations we primarily used parameters consistent

with AMPA excitation. We adopted the use of periodic spike trains as the reference presynaptic spiking

input. This allowed us to conduct a systematic study of temporal filters. First, we characterized the three

types of temporal filters that emerge: low-, high-, and band-pass filters (LPF, HPF, BPF, respectively).

Second, we systematically investigated how their properties depend on the properties of the network
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building blocks, particularly the time constants involved in the sequence of concatenated processes: (i)

the presynaptic spike train ISI ∆spk , (ii) the short-term depression and facilitation τdep and τfac, (iii) the

synaptic decay time τdec, and (iv) the membrane time constant τm. We then showed that the reference

temporal filters are preserved at the population (multiple trial) level in response to variable presynaptic

spike trains. The degree of variability of these patterns within and across trials depends on the parameter

values, but the temporal filtering properties remain. To our knowledge, this is the first systematic investi-

gation of STP-mediated neuronal temporal filters. Our results have implications for the understanding of

the mechanism underlying the temporal information filtering properties of neuronal systems discussed in

the Introduction.

We used two biophysically plausible phenomenological models that have been widely used in the

literature: the DA (Dayan-Abbott) and the MT (Markram-Tsodkys) models [21, 43, 62, 63, 67–73]. In the

DA model [69], the depression and facilitation variables evolve independently, while in the MT model [63],

the evolution of the depression variable is affected by the facilitation variable. We found no significant

differences between the results for both models. The simplicity of the DA model allows for a number of

analytical calculations that facilitate the analysis and the mechanistic understanding. From the differential

equations describing the continuous evolution of the depression (x) and facilitation (z) processes one

can extract the difference equations describing the discrete evolution of the peak sequences Xn and

Zn, respectively. These can be solved analytically providing the input ∆Sn = XnZn to the synaptic

variable S at the arrival of each presynaptic spike. The solution to the difference equation for the synaptic

peak sequences Sn produces expressions for the synaptic peaks. The investigation of the MT model

required the development of additional tools and numerical simulations since the difference equations

for the depression variable (R) is nonlinear and not analytically solvable. Of particular importance is the

development of a descriptive modeling approach to capture the shape of the temporal filters in terms of

the model parameters or data (see Supplementary Material Section for the more detailed analysis). In

contrast to the DA model where the temporal filter parameters (e.g., the filter time constants σdep and

σfac) are derived from the single event parameters, for the MT model the temporal filter parameters (e.g.,

the filter time constants σdep and σfac) are inferred from the shapes obtained by simulating the equations

for the depression and facilitations variables (R and u). An additional step is needed to relate the filter

parameters to the single event parameters. This approach can be easily adapted to more complex models

for which analytical solutions are not available and to experimental data following a similar protocol.

Dynamically, temporal BPFs can be considered as overshoot types of solution to a linear difference

equation. Overshoots are not possible for one-dimensional linear difference equations (e.g., temporal

LPFs and HPFs), but they are possible for two-dimensional linear difference equations. This implies that

two time scales would be enough to explain the properties of BPFs for ∆Sn. However, our results indicate

that a third time scale is needed to explain the BPF properties for ∆Sn in the general case, consistent

with previous results [75]. This emergent time scale combines the first two and is further propagated to

the higher levels of organization.

The interaction between the STP-mediated LPFs and HPFs with the synaptic and postsynaptic dy-

namics generates additional LPFs, HPFs and BPFs, with additional emergent time scales. For relatively

low membrane time constants, the postsynaptic dynamics reflect the synaptic dynamics and the PSP

filters are proportional to the synaptic filters (e.g., [21, 63, 67]). However, for higher membrane time

constants, the PSP filters depart from this proportionality with the synaptic ones. Specifically, PSP BPF

emerge in the presence of synaptic LPFs or in the presence of synaptic BPFs, but having different shapes

and peaking at different times. This additional processing affects the communication between pre- and

postsynaptic cells in the presence of STP.

In order to account for more realistic situations, we considered scenarios where more than one de-

pression and facilitation processes with different time constants interact. The results are consistent with

the ones for the single processes. However, the models we used (in the main body and in the Appendix)

have been developed as natural extensions of the ones for single processes and are not based on ob-

servations or previous information about the presence of multiple depression and facilitation processes.

More research is needed to determine whether these models and the resulting filters capture realistic
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situations.

An important conceptual question we addressed in our work is how the single event time constants

(e.g., τdep, τfac, τdec), which control the systems’ dynamics during the ISIs, are communicated to the

temporal filters. In other words, how the temporal filters’ long-term time constants (σdep, σfac, σsum for

the DA model and σd, σf , σsum for the MT model) depend on the single-event time constants for each

presynaptic spike train ISI ∆spk. For the simplest synaptic model (one-dimensional linear dynamics for

the variable synaptic variable S during the ISI and a constant update ∆S, independent of S), the single-

event and temporal filter time constant coincide. For the slightly more complex models for depression

and facilitation (one-dimensional linear dynamics for the variables x and z during the ISI, but the updates

depend on the appropriate values of the variables at the arrival of the presynaptic spikes), there is a

departure of the temporal filter time constants from the single event time constants. The dependence

between the two types of time constants (filter and single event) is relatively complex and involves the

presynaptic time scale ∆spk and additional parameter values. This complexity is propagated to the PSP

filters and is expected to be further propagated to higher levels of organization that are beyond the scope

of the paper, but not unimportant.

While biophysically plausible, the phenomenological models of STP we used in this paper are rela-

tively simple and leave out a number of important biological details that might contribute to determining

the properties of STP-mediated temporal filters and their consequences for information processing. Fur-

ther research is needed to understand the properties of these filters and how they emerge as the result

of the interaction of the building blocks. An additional aspect that requires attention is the possible effect

of astrocyte regulation of STP [10, 11] on the mechanisms of generation of STP-dependent temporal fil-

ters. Our work leaves out the mechanisms of generation and properties of the stationary low-, high- and

band-pass filters and the associated phenomenon of synaptic and postsynaptic resonance. This will be

discussed elsewhere.

The conceptual framework we developed in this paper allows the development of ideas on the proper-

ties of PSP temporal filters in response to presynaptic inputs in the presence of STP and the mechanism

underlying their generation. An important aspect of this framework is the separation of the feedforward

network into a number of building blocks, each one with its own dynamics. The emerging temporal fil-

ters can be analyzed in terms of the hierarchical interaction of these building blocks. This conceptual

framework can be used to investigate the properties of low-, high- and band-pass stationary, frequency-

dependent filters and the emergence of synaptic and postsynaptic resonances. It is conceived to be

further extended to include a number of more complex scenarios, including non-periodic synaptic spike

trains (e.g., Poisson spike inputs, bursting patterns with two or more spiking frequencies), more com-

plex networks (e.g., two recurrently connected cells with STP in both synapses, three-cell feedforward

networks with STP in both synapses), the modulatory effects of astrocytes, more complex postsynaptic

dynamics involving ionic currents that have been shown to produce resonances [81–87], and the gen-

eration of postsynaptic spiking temporal filters. A first step in this direction is to extend the notion of

STP-mediated temporal filters to the postsynaptic spiking domain and characterize the resulting firing

rate temporal filters.

Our results make a number of predictions that can be experimentally tested both in vitro and in vivo

using current clamp, and optogenetics [88, 89]. These primarily pertain to the dependence of the type

and shape of the temporal PSP filters with the presynaptic spikes and the STP properties. These include

our results in Figs. 8 and 9 (and analogous figures for the MT model) and extensions to additional

results about the dependence of these filters with the model parameters (not presented here for lack of

space) that can be obtained by using our modeling approach. In particular, we predict that PSP filters

in the presence of STP are not proportional to the product of the synaptic depression and facilitation

variables, but reflect the processing occurring at the postsynaptic level. The fact that temporal PSP

filters persist in response to variable presynaptic spike inputs is important for this task. Our results using

the simplified models also generate hypothesis to be tested in more detailed models of STP. From a

different perspective, the PSP temporal filters can be used to infer the model parameters describing the

single event processes (e.g., time constants of depression and facilitation) and to extract biophysical and
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dynamic information from experimental data.
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A 1D linear difference equations

A.1 Constant coefficients

Consider the following linear difference equation

wn+1 = αwn + β, n = 1, 2, . . . (73)

where α and β are constants. The steady-state for this equation, if it exists, is given by

w̄ =
β

1− α
. (74)
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By solving (73) recurrently and using

N
∑

n=0

an =
aN+1 − 1

a− 1
(75)

where a 6= 1 is a real number, one gets

wn = αn−1w1 + β
αn−1 − 1

α− 1
. (76)

Substitution of (74) into this equation yields

wn = w̄ + αn−1 (w1 − w̄). (77)

Application of formula (77) to the difference equations (7) and (8) gives, respectively,

Xn = X̄ + (1 − X̄) (1− ad)
n−1e−(n−1)∆spk/τdep =

X̄ + (1− X̄) e−(n−1)[∆spk/τdep−ln(1−ad)] (78)

and

Zn = Z̄ + (1− Z̄) (1 − af )
n−1e−(n−1)∆spk/τfac =

Z̄ + (1− Z̄) e−(n−1)[∆spk/τfac−ln(1−af )]. (79)

A.2 Variable (n-dependent) coefficients

Consider the following linear difference equation

wn+1 = αn wn + βn, n = 1, 2, . . . (80)

By solving (73) recurrently one gets

wn =

(

n−1
∏

k=1

αk

)

x1 +

n−1
∑

k=1





n−1
∏

j=k+1

αj



 βk (81)

where we are using the convention
∏j2

j1
= 1 if j1 > j2. Eq. (81) reduces to eq. (79) if both coefficients in

(81) are constant.

Consider now eq. (80) where the coefficients are expressed as small perturbations δα,n ≪ 1 and

δβ,n ≪ 1 (n = 1, 2, . . .), respectively, of constant coefficients

αn = α+ δα,n and βn = β + δβ,n. (82)

To the first order approximation, the solution (81) reads

wn = αn−1w1 + β
αn−1 − 1

α− 1
+ αn−2w1

n−1
∑

k=1

δα,k + β
n−1
∑

k=1

αn−k−2
n−1
∑

j=k+1

δα,j +
n−1
∑

k=1

αn−k−1 δβ,k = .

= w̄ + αn−1 (w1 − w̄) + αn−2w1

n−1
∑

k=1

δα,k + β
n−1
∑

k=1

αn−k−2
n−1
∑

j=k+1

δα,j +
n−1
∑

k=1

αn−k−1 δβ,k. (83)
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B Some properties of X̄ and Z̄ and their dependence with ∆spk and

τdep/fac

Consider X̄ and Z̄ given by (9) and (10), respectively.

B.1 Monotonic dependence of X̄ and Z̄ with ∆spk

If ad > 0 and x∞ > 0, then X̄ is an increasing function of ∆spk and a decreasing function of fspk. This

results from

∂X̄

∂∆spk
=

x∞ ad e
−∆spk/τdep

τdep [1− (1− ad)e−∆spk/τdep ]2
> 0. (84)

If af < 1 and z∞ < 1, then Z̄ is a decreasing function of ∆spk and an increasing function of fspk. This

results from

∂Z̄

∂∆spk
=

af (1− af ) (z∞ − 1)

τfac [1− (1 − af)e−∆spk/τfac ]2
< 0. (85)

B.2 Monotonic dependence of X̄ and Z̄ with τdep/fac

If ad > 0 and x∞ > 0, then X̄ is an decreasing function of τdep. This results from

∂X̄

∂∆spk
= − ∆spk x∞ ad e

−∆spk/τdep

τ2dep [1− (1− ad)e−∆spk/τdep ]2
< 0. (86)

If af < 1 and z∞ < 1, then Z̄ is a decreasing function of τfac. This results from

∂Z̄

∂∆spk
= − ∆spk af (1− af ) (z∞ − 1)

τ2fac [1 − (1− af )e−∆spk/τfac ]2
> 0. (87)

C Models of synaptic depression and facilitation

C.1 Depression - facilitation model used in [90]

Following [91,92], the synaptic variables S obey a kinetic equation of the form

dS

dt
= N(V )

(1− S)

τr
− S

τd
, (88)

where N(V ) (mM) representes the neurotransmitter concentration in the synaptic cleft. Neurotransmitters

are assumed to be released quickly upon the arrival of a presynaptic spike and remain in the synaptic

cleft for the duration of the spike (∼ 1 ms). This can be modeled by either using a sigmoid function

N(V ) =
1 + tanh(V/4)

2
, (89)

or a step function if the release is assumed to be instantaneous. The parameters τr and τd are the rise

and decay time constants respectively (msec).

This model assumes N(V ) is independent of the spiking history (the value of N(V ) during a spike is

constant, except possibly for the dependence on V ). (There is evidence that this is not realistic [78, 93].)

In [90], the “activated" time was 1 ms [94,95].
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In [90], they followed the description of the synaptic short-term dynamics following [43, 62] (Section

2.1.5). For the dynamics of the synaptic function S, they used a function [T ] = κ∆Sn during the release

time and [T ] = 0 otherwise, instead of N(V ). The combination of the two formulations yields

dS

dt
= κ∆SnN(V )

(1 − S)

τr
− S

τd
. (90)

In the following alternative formulation [68] κ∆Sn does not affect the effective rise time of the synaptic

function S

dS

dt
= N(V )

(κ∆Sn − S)

τr
− S

τd
. (91)

C.2 Depression model used in [96]

Following experimental procedures described in [97], the synaptic current is described by Isyn = Gexa d(V−
Eex) where a and d are variables that represent activation and depression processes, respectively. They

follow the form:

dy

dt
=

y∞(Vpre − y)

τy
, (92)

where y = a, d. The steady-state of y is given by

y∞ =
1

1 + exp((V − Vx)/k)
, (93)

and its time constant follows

τy = τ1 +
τh − τ1

1 + exp((V − Vx)/k)
. (94)

This model is used in [96] to describe bistability in pacemaker networks with recurrent inhibition and

depressing synapses. Parameters in these equations are experimentally fitted from the pyloric network

of the crab Cancer borealis.

D Additional model formulations for multiple depression-facilitation

processes

In Section 3.7 we discussed the model formulation (47)-(48) describing the interplay of two depression-

facilitations processes. A number of additional, simplified formulations are possible based on different

assumptions. The models we propose here are natural mathematical extensions of the single depres-

sion/facilitation processes discussed in the main body of this paper. They are phenomenological models,

not based on any experimental observation or theoretical foundation, and they are limited in their general

applicability. However, they are useful to explore the possible scenarios underlying the interplay of multi-

ple depression and facilitation time scales affecting the PSP dynamics of a cell in response to presynaptic

input trains.

D.1 Additive and multiplicative segregated-processes models

In the additive and multiplicative segregated models, the variable M is given, respectively, by

M+(t) = (1− α)x1(t)z1(t) + αx2(t)z2(t) (95)

46



and

M∗(t) = [x1(t)z1(t)]
1−α [x2(t)z2(t)]

α (96)

where the parameter α ∈ [0, 1] controls the relative contribution of each of the processes. Correspond-

ingly, the updates are given by

∆S+
n = (1− α)X1,nZ1,n + αX2,nZ2,n (97)

and

∆S∗

n = [X1,nZ1,n]
1−α [X2,nZ2,n]

α. (98)

For α = 0, ∆S+
n and ∆S∗

n reduce to ∆S1,n (single depression-facilitation process). This accounts for

the regimes where τdep,2, τfac,2 ≪ 1. If the two processes are equal (τdep,1 = τdep,2 and τfac,1 = τfac,2),

then ∆S+
n and ∆S∗

n also reduce to ∆S1,n. However, these models fail to account for the reducibility in the

situations where only τdep,2 ≪ 1 or τfac,2 ≪ 1, but not both. The option of considering depression to be

described by x1 and facilitation by z2 (with τfac,1, τdep,2 ≪ 1) is technically possible in the context of the

model, but it wouldn’t be consistent with the model description of single depression-facilitation processes,

and it will make no sense to use the model in this way. In general, this model would be useful when the

depression and facilitation time scales for each process 1 and 2 are comparable and the differences in

these time scales across depression/facilitation processes should be large enough.

D.2 Fully multiplicative model

One natural way to extend the variable M to more than one process is by considering

M#(t) = x1(t)z1(t)x2(t)z2(t) (99)

and the synaptic update, given by

∆S#
n = X1,nZ1,nX2,nZ2,n. (100)

This formulation presents us with a number of consistency problems related to the reducibility (or

lack of thereoff) to a single depression-facilitation process in some limiting cases when, for example,

the two depression or facilitation time constants are very similar and therefore the associated processes

are almost identical, or the depression or facilitation time constants are very small and therefore the

envelopes of the associated processes are almost constant across cycles.

More specifically, first, if τdep,2, τfac,2 ≪ 1 (almost no STD), then X2,nZ2,n ∼ X̄2Z̄2 = af for all n
after a very short transient and therefore ∆S#

n = X1Z1af 6= ∆S1,n. One way, perhaps the simplest,

to address this is to divide the expressions (99 ) and (100 ) by a2f and redefine ∆Sk,n for the single

depression-facilitation process accordingly. Specifically,

∆S#
n =

X1,nZ1,nX2,nZ2,n

a2f
=

X1,nZ1,n

af

X2,nZ2,n

af
, (101)

where we use the notation

∆S1,n =
X1,nZ1,n

af
and ∆S2,n =

X2,nZ2,n

af
. (102)

The effect of redefining ∆Sk,n by dividing the original expression (used in the previous sections) does

not affect the time constants and the differences in the values between the two formulations is absorbed

by the maximal synaptic conductance.
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Second, if τdep,1 = τdep,2 and τfac,1 = τfac,2, then X1,n = X2,n and Z1,n = Z2,n for all n, and

∆S#
n = ∆S2

1,n instead of ∆S#
n = ∆S1,n. In order to address this, the synaptic update can be modified

to

∆S#
n = [X1,nX2,n]

λdep

[

Z1,nZ2,n

a2f

]λfac

(103)

where

λdep =
1

H(|τdep,1 − τdep,2|)
and λfac =

1

H(|τfac,1 − τfac,2|)
(104)

and H(∆τ) is a rapidly decreasing function satisfying H(0) = 2 and lim∆τ→∞ H(∆τ) = 1. In our

simulations we will use

H(∆τ) = 1 + e−∆τ/β (105)

with β > 0. Correspondingly,

M# = [x1(t)x2(t)]
λdep

[

z1(t)z2(t)

a2f

]λfac

(106)

In this way,

• If τdep,1 = τdep,2, then X1,n = X2,n for all n and λdep = 1/2. This gives

∆S#
n = X1,n

[

Z1,nZ2,n

a2f

]λfac

.

If, in addition, τfac,1 6= τfac,2 and |τfac,1 − τfac,2| > 0 is large enough, then λfac = 1 and

∆S#
n = X1,n

Z1,nZ2,n

a2f
= ∆S1,n

Z2,n

af
.

• If τfac,1 = τfac,2, then Z1,n = Z2,n for all n, λfac = 2 and

∆S#
n = [X1,nX2,n]

λdep
Z1,n

af
.

If, in addition, τdep,1 6= τdep,2 and |τdep,1 − τdep,2| > 0 is large enough, then λdep = 1 and

∆S#
n = X1,nX2,n

Z1,n

af
= ∆S1,nX2,n.

• It follows that if both τdep,1 = τdep,2 and τfac,1 = τfac,2, then X1,n = X2,n and Z1,n = Z2,n for all

n, λdep = λfac = 2 and

∆S#
n = X1,n

Z1,n

af
= ∆S1,n.
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• If τdep,2 ≪ 1 and |τdep,1 − τdep,2| is large enough, then X2,n = 1 for all n (after a very short

transient), λdep = 1, and then

∆S#
n = X1,n

[

Z1,nZ2,n

a2f

]λfac

.

If, in addition, τdep,1 ≪ 1 and τdep,2 ∼ τdep,1 ( |τdep,1− τdep,2| ∼ 0 not large enough), then X1,n = 1
for all n (after a very short transient), λdep = 2, and then

∆S#
n =

[

Z1,nZ2,n

a2f

]λfac

.

• If τfac,2 ≪ 1 and |τfac,1 − τfac,2| is large enough, then Z2,n = af for all n (after a very short

transient), λfac = 1, and then

∆S#
n = [X1,nX2,n]

λdep
Z1,n

af
.

If, in addition, τfac,1 ≪ 1 and τfac,2 ∼ τface,1 ( |τfac,1 − τfac,2| ∼ 0 not large enough), then

Z1,n = af for all n (after a very short transient), λfac = 2, and then

∆S#
n = [X1,nX2,n]

λdep .

• It follows that if τdep,1, τdep,2 ≪ 1 ( |τdep,1 − τdep,2| ∼ 0 not large enough) and τfac,1, τfac,2 ≪ 1 (

|τfac,1 − τfac,2| ∼ 0 not large enough), then

∆S#
n = 1.

E Descriptive rules for the generation of temporal (envelope) band-

pass filters from the interplay of the temporal (envelope) low- and

high-pass filters

From a geometric perspective, temporal band-pass filters in response to periodic presynaptic inputs arise

as the result of the product of two exponentially increasing and decreasing functions both decaying to-

wards their steady-state (e.g., Fig. 6). At the descriptive level, this is captured by the temporal envelope

functions (F , G and H = FG) discussed above whose parameters are not the result of a sequence

of single events but are related to the biophysical model parameters by comparison with the developed

temporal filters. These functions provide a geometric/dynamic way to interpret the generation of temporal

filters in terms of the properties of depression (decreasing functions) and facilitation (increasing func-

tions) in response to periodic inputs, although this interpretation uses the developed temporal filters and

therefore is devoid from any biophysical mechanistic interpretation.

In order to investigate how the multiplicative interaction between F (t) and G(t) given by eqs. (31)-(32)

give rise to the temporal band-pass filters H = FG, we consider a rescaled version of these functions

F (t) = A+ (1−A)e−t/η (107)

and

G(t) = B [ 1− Ce−t ] (108)
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where B = 1 and

η =
σd

σf
. (109)

The function G transitions from G(0) = 1 − C to limt→∞ G(t) = 1 with a fixed time constant (Fig. 15,

green curves). The function F transitions from F (0) = 1 to limt→∞ F (t) = A with a time constant η
(Fig. 15, red curves). It follows that H transitions from H(0) = 1 − C to limt→∞ H(t) = AB = A (Fig.

15, blue curves). A temporal band-pass filter is generated if H raises above A for a range of values of t.
This requires F to decay slow enough so within that range H = FG > A (Fig. 15-A) or A to be small

enough (Fig. 15-B). In fact, as A decreases, the values of η required to produce a band-pass temporal

filter increases (compare Fig. 15-A2 and -B2).

Changes in the parameter B in (108) affect the height of the band-pass temporal filter, but not the

generation mechanism described above. However, for certain ranges of parameter values H is a temporal

low-pass filter (not shown).
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Figure 15: Temporal band-pass filters generated as the result of the multiplicative interaction of temporal low- and high-

pass filters: envelope functions approach. We used the envelope functions F and G defined by (107) and (108), respectively,

and H = FG. A. Increasing η contributes to the generation of a band-pass temporal filter. We used A = 0.5, C = 0.8 and A1.

η = 0.1. A2. η = 1. A3. η = 10. B. Decreasing A contributes to the generation of a band-pass temporal filter. We used η = 1,

C = 0.8 and B1. A = 0.2. B2. A = 0.4. B3. A = 0.6.
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Supplementary Material

Extended analysis

Figure S1: Colormap of Q(astp, τstp) The colormaps show how Q (see eq 26) spanned over different values of astp and τstp
behave. We consider astp in the range [0:1] and τstp in the range [0:500]. Every panel is computed for a different value of fspk.

Notice that Q(astp, τstp) has, in general, lower values for higher fspk .
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Figure S2: DA model combined with synaptic rise times. In every row we show the variable S and the variable V for a given

rise time (see legend) without STP (first row) and with STP from the DA model (second row). Notice that for very small τrise the

increments in S and V are fast. When combined with STP, a band-pass filter shows up in S (see eqs 4–6). In this paper, we

considered that rise times are very fast such as the ones found in AMPA and GABAA . However, in cases where τrise increases our

observations indicate that the band-pass filter is suppressed until it can no longer be observed. This effect happens because the

presynaptic spikes take longer and longer to increase the value of S as τrise increases until they become unnoticeable. We used

the following parameters: τdec = 20, τdep = 400, τfac = 50, adep = 0.1, afac = 0.2, and fspk = 80. The model for the rise times

is taken from eq. (91) and assumes that a presynaptic spike has a time window of 1 ms which will be the time the postsynaptic

membrane voltage takes to rise. We assume k = 1 mM.
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Figure S3: Temporal filters persist in response to variable presynaptic spike trains: Synaptic update response to Poisson

distributed spike train inputs. We used the recurrent equations (7) and (8) for Xn and Zn respectively. The ISIs have mean and

standard deviation equal to rspk. Simulations were run for a total time Tmax = 200000 (∆t = 0.01). A, B. τdep = τfac = 100.

A. fspk = 50. B. fspk = 100. C, D. τdep = τfac = 500. C. fspk = 50. D. fspk = 100. We used the following parameter values:

ad = 0.1, af = 0.2, x∞ = 1, z∞ = 0.
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The Markran-Tsodyks (MT) model

First, we briefly remark on the notation used in this section. We conduct analysis using continuous

extensions of ∆Sn, Sn, and Vn – denoted as ∆S, S, V in the forthcoming figures and text. Time scales

of temporal HPFs and LPFs in S are denoted σf,S and σd,S . The third time scale in temporal BPFs in S
are denoted σd+f,S . All temporal filters are fitted using gradient descent of a quadratic cost function.

The analysis for the MT model proceeds similarly to the DA models’. As seen in Section 3.3, the inter-

action between X and Z produces low-, high-, and band-pass temporal filters in ∆S. Similarly, R and u
produce low-, high-, and band-pass temporal filters in ∆S. Again, we find ∆S temporal LPFs and HPFs

not only develop in synapses exhibiting exclusively STD and STF, respectively. Indeed, ∆S temporal

LPFs (HPFs) can develop in synapses where the time scale of depression (facilitation) dominates facili-

tation (depression). However, as in the case of the DA model, the exact ranges of fspk over which LPFs

and HPFs develop depend on the balance between facilitation and depression. Figure S4-A1 shows that

almost exclusively depressive synapses exhibit LPFs for 0 < fspk < 150, whereas a dominantly depres-

sive synapse may stop producing LPFs for fspk > 100 (compare to Figure S4-A5). A similar situation

arises in facilitating synapses (Figure S4-A2 and -A5).
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Figure S4: Temporal Filters in ∆S for the MT model. The interaction of presynaptic spiking and STP timescales create

only high-pass, low-pass, and band-pass temporal filters. For these simulations τdec = .01 to suppress summation. A1. Low-

pass temporal filters appear for all input frequencies. As the input frequency increases, the low-pass temporal filters decay more

aggressively (τdep = 150, τfac = 1). A2. High-pass temporal filters appear for all input frequencies. As the input frequency

increases, the high-pass temporal filters rise more aggressively (τdep = 1, τfac = 150). A3. Band-pass temporal filters appear

for all input frequencies. As the input frequency increases, the band-pass temporal filters become more sharply peaked (τdep =
150, τfac = 150). A4. Low-pass temporal filters appear for low input frequencies but then band-pass temporal filters develop

for higher input frequencies (τdep = 150, τfac = 30). A5. High-pass temporal filters appear for low input frequencies but then

band-pass temporal filters develop for higher input frequencies (τdep = 30, τfac = 150). In all simulations for the synapse: U0 = .1.

Rn and un are well described by exponential decays, much in the same way Xn and Zn are observed

to be (Section 3.4). As such, as we did in the DA model, in the MT model we imagine that temporal filters

in ∆S are heuristically the product of two exponentials. Despite the non-linearity present in MT model
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which complicates the analysis of how the long-term time scales of Rn and un are passed through their

product ∆S, ∆S temporal LPFs (examples in Figures S5-B2,-B3) and HPFs (examples in Figures S5-

A2,-A3) are still well described by a single time scale exponential. The time scales extracted from HPFs

at dominantly facilitating and exclusively facilitating synapses are summarized in Figure S5-A1. Figure

S5-B shows analogous results for LPFs of the MT model. A careful reader will note that Figure S5 refers

to temporal filters of S, rather than ∆S. However, τdec = 3 for these figures so that the contribution of the

synaptic HPF implemented by synaptic decay is inconsequential for this discussion. The same remark

also applies to Figures S6, S9, and S10.
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Figure S5: A. STF dominated synapses exhibit high-pass temporal filter. (τfac = 500) A1. The dependence of high-pass

temporal filter’s time scale on input frequency: a comparison of a synapse with no STD and fast STD. A2. Example of high-pass

temporal filter at synapse with no STD. (τdep = 0, fspk = 40) A3. Example of high-pass temporal filter at synapse with fast STD.

(τdep = 50, fspk = 40) B. STD dominated synapses exhibit low-pass temporal filter: a comparison of a synapse with no STF and

fast STF. (τdep = 500) B1. The dependence of low-pass temporal filter’s time scale on input frequency. B2. Example of low-pass

temporal filter at synapse with no STF. (τfac = 0, fspk = 20) B3. Example of low-pass temporal filter at synapse with fast STF.

(τfac = 50, fspk = 20) In all simulations for the synapse: U0 = .1 and τdec = 3. Upper bound of RMSE on all low- and high-pass

temporal fits: .012.

In Section 3.6, BPFs in the DA model are shown to arise from 3 time scales, 2 of which can be

extracted from corresponding LPFs and HPFs. A similar result is true for the MT model. Figure S6 outlines

how these three time scales vary as the input frequency varies. Band-pass temporal filters become more

sharply peaked as the input frequency increases. This reflects itself as observable decreases in the

scenario where three time scales characterize band-pass temporal filters. Figure S6-B show that this

third time scale is not superfluous – that removing the σd+f,S time scale from the model drastically alters

the temporal filter fit.

Finally, we briefly review how ∆S temporal LPFs, HPFs, and BPFs are propagated to S and PSP. We

note that τdec and τmem implement temporal HPFs. Figure S7 summarizes the types of filters that result

in S from different incident ∆S temporal filters. Similarly, Figure S8 summarizes the types of filters that
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Figure S6: The time scales of band-pass temporal filters are determined by the mix of STF’s and STD’s time scales

at the synapse along with input frequency. A. The time scales of STD and STF impact the three time scales characterizing

band-pass filters in different ways. A1. The impact of STD’s time scale, τdep, on the band-pass temporal filter’s time scale related

to low-pass temporal filters. (τfac = 0) A2. The impact of STF’s time scale, τfac, on the band-pass temporal filter’s time scale

related to high-pass temporal filters. (τdep = 0) A3. The impact that both STD’s and STF’s time scale have on third time scale

of temporal filtering. Solid lines are fit σd+f,S fitted from three time scale model of temporal BPFs. The dashed lines are the

corresponding values of (1/σd +1/σf )
−1. B. The third time scale is not redundant. Without it, the temporal band-pass filter will fail

to fit. (τdep = τfac = 200). The three time scales for the temporal filters in the following figures can be obtained from the foregoing

three figures. Sd+f
fit is the temporal BPF extracted using the three time scale model. Sd+f

cut is obtained by setting the coefficient on

the third time scale to zero. B1. Temporal BPF fit with and without third time scale when fspk = 30. The circles in A represent the

time scales extracted using the three time scale model BPF model. B2. Temporal BPF fit with and without third time scale when

fspk = 90. The squares in A represent the time scales extracted using the three time scale model BPF model. B3. Temporal BPF

fit with and without third time scale when fspk = 150. The diamonds in A represent the time scales extracted using the three time

scale model BPF model In all simulations for the synapse: U0 = .1 and τdec = 3. Upper bound of RMSE on all temporal filter fits

used in this figure: .01.
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result in V from different incident S temporal filters. As in the DA model, we note there are instances

where BPFs are passed through levels of organization and others where they arise due to an interaction

of filters at different levels of organization (see Section 3.7). The communication through BPFs between

levels of organization is exemplified by Figure S7-A3 (∆S to S) and Figure S8-A3 (S to V ). BPFs arising

from interactions of filters between levels of organization are exemplified by Figure S7-A1 (∆S to S) and

Figure S8-A1 (S to V ).
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Figure S7: Temporal Filters in S for the MT model. ∆S create only low-pass, high-pass, and band-pass temporal filters.

Now we examine the effect that summation has on these temporal filters. The effect of summation can be understood to be a

high-pass temporal filter interacting with a temporal filter created from the interaction of input and STP time scales (shown here for

fspk = 100). A1. The interaction of a low-pass temporal filter in ∆S with the time scale of summation, τdec is shown. We observe

that low-pass temporal filters become band-pass temporal filters for longer time scales of summation (τdep = 150, τfac = 1). Note

that for extreme, unphysiological time scales of summation (τdec > 150), high pass temporal filters in S may also develop (not

shown). A2. The interaction of a high-pass temporal filter in ∆S with the time scale of summation, τdec is shown. We observe

that high-pass temporal filters remain high-pass temporal filters for any time scale of summation (τdep = 1, τfac = 150). A3. The

interaction of a band-pass temporal filter in ∆S with the time scale of summation, τdec is shown. We observe that band-pass

temporal filters remain band-pass temporal filters (τdep = 150, τfac = 150). Longer time scales of summation increase the size of

the band-pass peak (both in height and width). Note that for extreme, unphysiological time scales of synaptic decay (τdec > 150),

high pass temporal filters in S may also develop (not shown). In all simulations for the synapse: U0 = .1.

BPFs in the PSP arise in two ways – either passed through from the incident BPF filter or as the

result of interacting an incident LPF and HPF implemented by the post-synaptic cell. These BPFs can

be distinguished by analyzing the three time constants used to fit BPFs. First we consider synaptic BPFs

that transfer to the post-syntactic cell’s response.

In this case, the procedure to extract the three time constants of the PSP BPF differs slightly from the

procedure used to extract the three time constants of BPFs in S and ∆S. Instead of fixing LPF and HPF

time scales and finding the best fitting third time constant, as was done in the ∆S BPFs, all three time

constants for the PSP BPF are allowed to vary. In this way, we find a triple of time constants that fit the

PSP BPF: ρa, ρb and ρc (Example shown in Figure S9-A3). Then we introduce the following quantities:

ρ1 = max(ρa, ρb, ρc)

ρ2 = median(ρa, ρb, ρc)

ρ3 = min(ρa, ρb, ρc)

These time constants are then compared to the magnitude of the time constants obtained from the synap-

tic BPF. In Figure S9-C we note that the synaptic BPF has time constants such that σd,S > σf,S > σd+f,S .

Assuming the post-synaptic cell maintains this relation, we associate ρ1 with σd,S , ρ2 with σf,S , and ρ3
with σd+f,S . Figure S9-C suggests that the HPF implemented by the membrane time constant is modify-

ing all three time constants of the incident synaptic BPF.

BPFs in the post-synaptic cell are implemented also by the interaction with synaptic LPFs and the

HPF implemented by the membrane time constant. One may use the same three parameter model to fit
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Figure S8: Temporal Filters in V for the MT model. The interaction of input, STP, and summation time scales combine to

create only low-pass, high-pass, and band-pass temporal filters. Now we examine the effect that the membrane time constant of

the post-synaptic cell has on the temporal filters incident from the synapse. For fast enough membrane time constants (τmem < 1
ms, gL > 1) the post-synaptic temporal filter reflects the synaptic temporal filter (fspk = 100, τdec = 5). As the membrane

time constant slows, the synaptic temporal filter interacts with the post-synaptic cell. Biophysically, the effect of a slow membrane

time constant is to create post-synaptic summation – resulting in a high-pass post-synaptic temporal filter. The development of

an interaction between the high-pass post-synaptic temporal filter with the synaptic temporal filter is seen in these figures as the

membrane time constant slows. For these figure GL = 0.1, 0.5, and 1. These correspond to τmem = 10 ms, 2 ms, and 1 ms,

respectively. A1. The interaction of a low-pass synaptic temporal filter in S (rescaled and shown in gray) with the membrane time

constant is shown. We observe that low-pass synaptic temporal filters can become band-pass temporal filters as the membrane

time constant slows (τdep = 150, τfac = 1). A2. The interaction of a high-pass synaptic temporal filter in S (rescaled and shown in

gray) with the membrane time constant is shown. We observe that high-pass synaptic temporal filters remain high-pass temporal

filters in the post-synaptic response as the membrane time constant slows (τdep = 1, τfac = 150). A3. The interaction of a

band-pass synaptic temporal filter in S (rescaled and shown in gray) with the membrane time constant is shown. We observe

that band-pass synaptic temporal filters remain band-pass temporal filters in the post-synaptic cell (τdep = 150, τfac = 150). In

particular, as the membrane time constant slows, the size of the band-pass peak increases (both in height and width). We remark

that for all cases, for extremely slow membrane time constants (τmem > 1 sec or gL < .001), high-pass post-synaptic temporal

filters develop (not shown). In all simulations for the synapse: U0 = .1, τdec = 5. In all simulations of the post-synaptic cell:

Gex = 1, C = 1, EL = −60, Eex = 0.
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these PSP BPFs. However, we find that there are actually two time scales describing the shape of these

BPFs. Figure S10-B show explicit examples of the third time scale’s insignificance. Furthermore, one of

the time scales describing the PSP BPF is shown to be inherited from the incident LPF’s time scale of

decay.

Figure -B1 and -B2 show how the membrane time constant also modifies incident LPF and HPF time

constants in the post-synaptic cell. Here, the same models to extract time constants of rise for HPFs and

time constants of decay for LPFs in ∆S also work well for extracting time constants for LPFs and HPFs of

the PSP (example fits in Figure S9-A1 and -A2). In this figure, σf,V is the time constant of rising in PSP

HPFs and σd,V is the time constant of decay in PSP LPFs, respectively.

In Section 3.9.2, we discuss how the temporal filters implemented by Zn, Xn, and ∆Sn persist in

the presence of Poisson spiking. Here we review a potential consequence of Poisson inputs interacting

with temporal filters: gain control. The data in the following figure, Figure S11, uses the MT model,

however, the foregoing discussion suggests that the DA and MT model both exhibit temporal filters, albeit

via slightly differing quantitative mechanisms. Figure S11 plots average amplitude of voltage response

over 1100 trials where the input Poisson rates change over time. As the spiking rates change over time,

different steady states are achieved. Overshooting transient features develop between rate changes when

STD time scales increase. The fact that these overshoots depend on the time scale of STD suggests

that there may be a connection between the overshoot magnitudes and the LPFs that STD implement.

Furthermore, the magnitude of these average rate changes and their dependence on the initial and final

rates was studied as a mechanism for gain control by Abbott et. al.. Figure S11 show that average

amplitude also depends on the time scale of STD and membrane time scales - ergo, it follows that filters

that STD and membrane time constants implement may also play an important role in determining the

average amplitude of voltage response.
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Figure S9: A. Representative fits of low-, high-, and band-pass temporal filters in passive post-synaptic cell. (GL = .5) A1.

Example of high-pass post-synaptic temporal filter. (τdep = 0, τfac = 200, fspk = 80) A2. Example of low-pass post-synaptic

temporal filter. (τdep = 200, τfac = 0, fspk = 80) A3. Example of band-pass post-synaptic temporal filter. (τdep = 200, τfac =
200, fspk = 80) B1. The impact that membrane time constant has on the time scale of post-synaptic high-pass temporal filters.

The incident synaptic temporal filter is high-pass and given by τdep = 0, τfac = 200. B2. The impact that membrane time

constant has on the time scale of post-synaptic low-pass temporal filters. The incident synaptic temporal filter is low-pass and

given by τdep = 200, τfac = 0. “X” marks the input frequency at which the post-synaptic temporal filter transitions from low-pass

to band-pass. These band-band pass temporal filters are analyzed in Figure S10. C. The impact that membrane time constant

has on the time scales of post-synaptic band-pass temporal filters. The incident synaptic temporal filter is band-pass and given by

τdep = 200, τfac = 200. The way the time scales, ρ1, ρ2 and ρ3, are obtained are outlined in Methods. C1. The impact of the

membrane time constant on ρ1. C2. The impact of the membrane time constant on ρ2. C3. The impact of the membrane time

constant on ρ3. All simulations were performed using MT Model with U0 = .1 and τdec = 3. The parameters for the passive cell

are Gex = 1, C = 1, EL = −60, Eex = 0. The upper bound on the RMSE for all temporal filters (low-, high-, and band-pass) is .4
mV. The upper bound on the maximum difference between a fit and the temporal filters for all voltage responses is 1 mV.
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Figure S10: A. Time scales of band-pass temporal filters formed by incident low-pass synaptic temporal filters. The incident

synaptic temporal filter is low-pass and given by τdep = 200, τfac = 0. A1. ρ1 plotted as a function of frequency and compared

to σd. A2. ρ2 and ρ3 plotted as a function of frequency. B. The three temporal band-pass temporal filters plotted in A. “3 sigma”

is the fit obtained using BPF filter model letting all three time scales vary. “2 sigma” is the fit obtained omitting the fastest time

scale, ρ3, from the fit. (GL = .4) B1. Temporal band-pass temporal filters plotted in A with its fits. (fspk = 130) B2. Temporal

band-pass temporal filters plotted in A with its fits. (fspk = 140) B3. Temporal band-pass temporal filters plotted in A with its fits.

(fspk = 150) All simulations were performed using MT Model with U0 = .1 and τdec = 3. The parameters for the passive cell are

Gex = 1, C = 1, EL = −60, Eex = 0. The upper bound on the RMSE for all temporal filters (low-, high-, and band-pass) is .4 mV.

The upper bound on the maximum difference between a fit and the peaks of voltage response is 1 mV.
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Figure S11: Each trace in the figure is the average of 1100 trails. A trial consists of the following: 7.5 secs of 20 Hz Poisson

stimulus, 5 secs of 40 Hz Poisson stimulus, and 2 secs of 80 Hz Poisson stimulus. The first second of the simulation is cut off

to remove the transient behaviors from the initialization of the simulation. All simulations were performed using MT model with

parameters: τfac = 0, τdec = 3, U0 = .1. Passive post-synaptic cell parameters were C = 1, Gex = .1, EL = −60, Eex = 0.
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