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Abstract
Let T1 and T2 be two rooted trees with an equal number of leaves. The leaves are
labeled, and the labeling of the leaves in T2 is a permutation of those in T1. Nodes
are associated with weight, such that the weight of a node u, denoted by W (u), is
more than the weight of its parent. A node x ∈ T1 and a node y ∈ T2 are induced, iff
their subtrees have at least one common leaf label. A heaviest induced ancestor query
HIA(u1, u2) with input nodes u1 ∈ T1 and u2 ∈ T2 asks to output the pair (u∗

1, u
∗
2) of

induced nodes with the highest combined weight W(u∗
1) + W(u∗

2), such that u∗
1 is an

ancestor of u1 and u∗
2 is an ancestor of u2. This is a useful primitive in several text

processing applications. Gagie et al. (Proceedings of the 25th Canadian Conference on
Computational Geometry, CCCG 2013, Waterloo, Ontario, Canada, 2013) introduced
this problem and proposed three data structures with the following space-time trade-
offs: (i) O(n log2 n) space and O(log n log log n) query time, (ii) O(n log n) space
and O(log2 n) query time, and (iii) O(n) space and O(log3+ε n) query time. Here n is
the number of nodes in both trees combined and ε > 0 is an arbitrarily small constant.

An early version of this work appeared in CPM 2018 [1].
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We present two new data structures with better space-time trade-offs: (i) O(n log n)

space and O(log n log log n) query time, and (ii) O(n) space and O(log2 n/log log n)

query time. Additionally, we present new applications of these results.

Keywords Data structure · String algorithms · Orthogonal range queries

1 Introduction

Let T1 and T2 be two rooted trees, having n1 and n2 nodes respectively, and let
n = n1 + n2. Each node u in either of the trees is associated with a weight, denoted
by W (u). Moreover, W(u) > W(parent(u)), where parent(u) is the parent of node
u. For convenience, the pre-order rank of a node u is also denoted by u. Each tree has
exactly m ≤ min{n1, n2} leaves. Leaves in both trees are labeled, and the labeling of
the leaves in T2 is a permutation of the labeling of the leaves in T1. A pair of nodes,
each from T1 and T2, are induced if the leaves in the respective subtrees have at least
one common label. Any node on the path from a node u to the tree’s root is called an
ancestor of u. Moreover, an ancestor v of u is a proper ancestor iff u �= v. We revisit
the following problem, introduced by Gagie et al. [22]. See Fig. 1 for an illustration.

Problem 1 (Heaviest Induced Ancestors (HIA) Problem [22]) Given a node u1 ∈ T1
and a node u2 ∈ T2, find HIA(u1, u2), which is defined as the pair of induced nodes
(u∗

1, u
∗
2) with the highest combined weightW(u∗

1) +W(u∗
2), such that u

∗
1 (resp., u

∗
2) is

an ancestor of u1 (resp., u2).

Fig. 1 Nodes u∗
1 and u

∗
2 are ancestors of u1 and u2 respectively. They are induced since their subtrees have

leaf label 3 in common. Note that u∗
1 and t are also induced but we don’t report them as the answer to the

HIA problem since they have a lower combined weight (11+10 = 21) compared to W (u∗
1) + W (u∗

2) which
is 24
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Gagie et al. [22] achieved the following space-time trade-offs in the standard word
RAM model of computation with word size Ω(log n) bits. Here and hereafter, ε is an
arbitrarily small positive constant.

– an O(n log2 n) space and O(log n log log n) query time
– an O(n log n) space and O(log2 n) query time
– an O(n) space and O(log3+ε n) query time.

Throughout this paper, the space is measured in words (unless specified otherwise).
We present two new data structures, with improved bounds.

Theorem 1 A heaviest induced ancestors query over two trees of n nodes in total can
be answered

– in O(log n log log n) time using an O(n log n) space data structure, or

– in O

(
log2 n

log log n

)
time using an O(n) space data structure.

The heaviest induced ancestors query is a useful primitive in several text/string pro-
cessing applications. We now proceed to present some examples.

1.1 Applications to StringMatching

Let LCS(X ,Y ) denote the longest common substring (LCS) of two strings X and Y .

1.1.1 Longest Common Substring of LZ77 Compressed Strings

Problem 2 Build a data structure for a string S of length N, whose LZ77 parsing
contains n phrases, that supports the following query: given a pattern P, report
LCS(S, P).

If one were to forego the compression requirement, the problem could be easily
solved bymaintaining a suffix tree [33] of S inO(N ) space yieldingO(|P|)query time.
On the other hand, we can also answer LCS(S, P) queries using compressed/succinct
data structures, such as the FM Index or Compressed Suffix Array [16, 23, 28], with
a slight slow down in the query time. However, for strings having a repetitive struc-
ture, LZ77-based compression techniques [36] offer better space efficiency than those
obtained using FM-Index or Compressed Suffix Array.

Gagie et al. [22] showed that Problem2 can be solved using anO(n log N+n log2 n)

space index with a very high probability (i.e., greater than 1−|P|−c for some constant
c) in O(|P| log n log log n) query time. Alternatively, they presented an O(n log N )

space index with query time O(|P| log2 n). Using Theorem 1 and the techniques in
[22], we present an improved result for Problem 2 (see Theorem 2).We omit the details
as they are immediate from the discussions in [22].

Theorem 2 Given a string S of length N, we can build an O(n log N ) space structure
that reports LCS(S, P) in O(|P| log n log log n) time with a very high probability,
where n is the number of phrases in an LZ77 parsing of S.
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1.2 All-Pairs Longest Common Substring Problem

Here we are given a collection T1, T2, . . . , Td of d strings, each of length roughly n,
and the task is to compute LCS(Ti , Tj ) for all (i, j) pairs. This is a useful primitive in
several bioinformatics applications [2, 13]. However, a conditional lower bound based
on the boolean matrix multiplication suggests that significant improvements over the
naive O(d2n) time algorithm is unlikely [31] in the general case. However, we present
an improved solution for the cases where many strings are highly similar (a.k.a. highly
repetitive). Specifically, we present a data structure of space and pre-processing time

Õ(nd), that computes LCS(Ti , Tj ) for any i, j in time Õ
(
min{|Ti |,|Tj |}
|LCS(Ti ,Tj )|

)
. We defer

details to Sect. 5.2.

1.2.1 Dynamic Longest Common Substring Problem

In [5], Amir et al. introduced the following problem: build a data structure over two
strings T1 and T2 of total n characters over an alphabet set Σ , such that given a query
(p, α), where p ∈ [1, |T1|] and α ∈ Σ , report LCS(T ∗

1 , T2), where T ∗
1 is a new string

obtained by replacing the pth character of T1 by α. They presented an O(n log3 n)

space data structure with O(log3 n) query time. We not only improve their bound, but
also propose a solution to solve a more general case, where the query consists of a
set S of (posi tion, character) pairs, and the task is to compute LCS(T ∗

1 , T2), where
T ∗
1 is obtained from T1 by making the changes (substitutions) as specified by S. We

achieve the same space-time trade-offs as that of Theorem 1, where time is the time
per substitution. Details are deferred to Sect. 5.3.

The problem is evenmore complicatedwhen the changes are allowed in both strings.
Amir et al. [6, 7] proposed an Õ(n) space solution with query time Õ(n2/3). A new
result improving this query to Õ(1) amortized time has been announced recently [12].
They also showed that the query time is Ω(log n/ log log n) for any polynomial-size
data structure. See [3, 4, 8, 18–21, 32] for other related work.

1.3 Map

In Sect. 2, we revisit some of the well-known data structures that have been used to
arrive at our results. Sect. 3 presents an overview of our techniques as an intermediate
step into the final data structures. The final data structures for Theorem 1 are presented
in Sect. 4. Section 5 is dedicated to applications. We conclude in Sect. 6 with some
future directions.

2 Preliminaries and Terminologies

2.1 Predecessor/Successor Queries

Let S be a subset of U = {0, 1, 2, 3, . . . ,U −1} of size n. A predecessor search query
p on S asks to return p if p ∈ S, else return max{q < p | q ∈ S}. Similarly, a
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successor query p on S asks to return p if p ∈ S, else return min{q > p | q ∈ S}.
By preprocessing S into a y-fast trie of size O(n), we can answer such queries in
O(log logU ) time [34].

2.2 Fully-Functional Succinct Tree

Let T be a tree having n nodes, such that nodes are numbered from 1 to n in the
ascending order of their pre-order rank. Also, let �i denote the i th leftmost leaf. Then
by maintaining an index of size 2n + o(n) bits, we can answer the following queries
on T in constant time [29]:

– parentT (u) = parent of node u.
– sizeT (u) = number of leaves in the subtree of u.
– nodeDepthT (u) = number of nodes on the path from u to the root of T .
– levelAncestorT (u, D) = ancestor w of u such that nodeDepth(w) = D.
– lMostT (u) = i , where �i is the leftmost leaf in the subtree of u.
– rMostT (u) = j , where � j is the rightmost leaf in the subtree of u.
– lcaT (u, v) = lowest common ancestor (LCA) of two nodes u and v.

We omit the subscript “T ” if the context is clear.

2.3 RangeMaximumQuery (RMQ) and PathMaximumQuery (PMQ)

Let A[1, n] be an array of n elements. A range maximum query RMQA(a, b) asks to
return k ∈ [a, b], such that A[k] = max{A[i] | i ∈ [a, b]}. Path maximum query
(PMQ) (or bottleneck edge query [14]) is a generalization of RMQ from arrays to
trees. Let T be a tree having n nodes, such that each node u is associated with a
score. A path maximum query PMQT (a, b) returns the node k in T , where k is a node
with the highest score among all nodes on the path from node a to node b. Cartesian
tree-based solutions exist for both problems. The space and query time are 2n + o(n)

bits and O(1), respectively [14, 17].

2.4 Orthogonal Range Queries in 2-Dimension

Let P be a set of n points in an [1, n] × [1, n] grid. Then,
– An orthogonal range counting query (a, b, c, d) on P returns the cardinality of

{(x, y) ∈ P | x ∈ [a, b], y ∈ [c, d]}
– An orthogonal range emptiness query (a, b, c, d) on P returns “EMPTY” if the
cardinality of the set {(x, y) ∈ P | x ∈ [a, b], y ∈ [c, d]} is zero. Otherwise, it
returns “NOT-EMPTY”.

– An orthogonal range predecessor query (a, b, c) onP returns the point in {(x, y) ∈
P | x ∈ [a, b], y ≤ c} with the highest y-coordinate value, if one exists.

– An orthogonal range successor query (a, b, c) on P returns the point in {(x, y) ∈
P | x ∈ [a, b], y ≥ c} with the lowest y-coordinate value, if one exists.

– An orthogonal range selection query (a, b, k) on P returns the point in {(x, y) ∈
P | x ∈ [a, b]} with the kth lowest y-coordinate value.
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By maintaining an O(n) space structure, we can answer orthogonal range count-
ing queries in O(log / log log n) time [26], orthogonal range emptiness queries in
O(logε n) time [11], orthogonal rangepredecessor/successor queries inO(logε n) time
[27] and orthogonal range selection queries in O(log n/ log log n) time [10]. Alter-
natively, by maintaining an O(n log log n) space structure, we can answer orthogonal
range emptiness and orthogonal range predecessor/successor queries in O(log log n)

time [11, 35].

2.5 Heavy Path and Heavy Path Decomposition

We now define the heavy path decomposition [25, 30] of a rooted tree T having n
nodes. First, the nodes in T are categorized into light and heavy. The root node is light,
and exactly one child of every internal node is heavy. Specifically, the child having
the largest number of nodes in its subtree with ties broken arbitrarily. The first heavy
path of T is the path starting at T ’s root and traversing through every heavy node to
a leaf. Each off-path subtree of the first heavy path is further decomposed recursively.
Clearly, a tree with m leaves has m heavy paths. Let u be a node on a heavy path H ,
then hp_root(u) is the highest node on H and hp_leaf(u) is the lowest node on H .
Note that hp_root(·) is always light.
Fact 1 For a tree having n nodes, the path from the root to any leaf traverses at most
�log n� light nodes. Consequently, the sum of the subtree sizes of all light nodes (i.e.,
the starting node of a heavy path) put together is at most n�log n�.

3 Our Framework

We assume that both trees T1 and T2 are compacted, i.e., any internal node has at least
two children. This ensures that the number of internal nodes is strictly less than the
number m of leaves. Thus, n ≤ 4m − 2. We remark that this assumption can be easily
removed without affecting the query time. We maintain the tree topology of T1 and
T2 succinctly in O(n) bits with constant time navigational support (refer to Sect. 2.2).
Define two arrays, Labelk[1,m] for k = 1 and 2, such that Labelk[ j] is the label
associated with the j th leaf node in Tk . The following is a set of m two-dimensional
points based on tree labels.

P = {(i, j) | i, j ∈ [1,m] and Label1[i] = Label2[ j]}

We pre-process P into a data structure to support various range queries described
in Sect. 2.4. For range counting and selection, we maintain data structures with O(n)

space and O(log n/ log log n) time. For range successor/predecessor and emptiness
queries, we have two options: an O(n log log n) space structure with O(log log n)

time, and an O(n) space structure with O(logε n) time. We employ the first result in
our O(n log n) space solution and the second result in our O(n) space solution.
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3.1 Basic Queries

Lemma 1 (Induced-Check) Given two nodes x, y, where x ∈ T1 and y ∈ T2, we can
check if they are induced or not

– in O(log log n) time using an O(n log log n) space structure, or
– in O(logε n) time using an O(n) space structure, where ε is an arbitrarily small
positive constant.

Proof The task can be reduced to a range emptiness query, because x and y are induced
iff the set {(i, j) ∈ P | (i, j) ∈ [lMost(x), rMost(x)] × [lMost(y), rMost(y)]} is not
empty. 	

Definition 1 (Partner) The partner of a node x ∈ T1 w.r.t a node y ∈ T2, denoted by
partner(x/y) is the lowest ancestor y′ of y, such that x and y′ are induced. Likewise,
partner(y/x) is the lowest ancestor x ′ of x , such that x ′ and y are induced.

Lemma 2 (Find Partner) Given two nodes x, y, where x ∈ T1 and y ∈ T2, we can
find partner(x/y) as well as partner(y/x)

– in O(log log n) time using an O(n log log n) space structure, or
– in O(logε n) time using an O(n) space structure, where ε is an arbitrarily small
positive constant.

Proof To find partner(x/y), first check if x and y are induced. If yes, then
partner(x/y) = y. Otherwise, find the last leaf node �a ∈ T2 before y in pre-order,
such that x and �a are induced (�a denotes a-th leftmost leaf). Also, find the first leaf
node �b ∈ T2 after y in pre-order, such that x and �b are induced. Both tasks can be
reduced to orthogonal range predecessor/successor queries:

(·, a) = argmax
j

{(i, j) ∈ P | (i, j) ∈ [lMost(x), rMost(x)] × [1, lMost(y)]}
(·, b) = argmin

j
{(i, j) ∈ P | (i, j) ∈ [lMost(x), rMost(x)] × [rMost(y),m]}

Specifically, a is the y-coordinate of the rightmost point in the rectangular region
[lMost(x), rMost(x)] × [1, lMost(y)] and b is the y-coordinate of the leftmost point
in the rectangular region [lMost(x), rMost(x)] × [rMost(y),m]. Clearly, an ancestor
of y and x are induced iff either �a or �b is in its subtree. Therefore, we report the lowest
node among ua = lca(�a, y) and ub = lca(�a, y) as partner(x/y). The computation
of partner(y/x) is analogous. 	


3.2 Overview

For any two nodes u and v in the same tree T , define Path(u, v, T ) as the set of
nodes on the path from u to v. Let root1 be the root of T1 and root2 be the root of T2.
Throughout this paper, (u1, u2) denotes the input and HIA(u1, u2) = (u∗

1, u
∗
2) denotes

the output. Clearly, u∗
2 = partner(u∗

1/u2) and u∗
1 = partner(u∗

2/u1). Therefore,

(u∗
1, u

∗
2) = argmax

(x,y)
{W (x) + W (y) | y ∈ Path(root2, u2, T2)andx = partner(y/u1)}
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To evaluate the above equation efficiently, we note that the path from root2 to u2
intersects at most log n heavy paths. Therefore, we first focus on solving a restricted
version of HIA problem as follows: given u1 ∈ T1 and u2, w ∈ T2, where w is light
and an ancestor of u2, report the pair (u′

1, u
′
2) of induced ancestors of (u1, u2) with

maximum total weight (if it exists), such that u′
2 is on the heavy path rooted at w.

Clearly, the final output (u∗
1, u

∗
2) is immediate via O(log n) such queries (one for each

light ancestor of u2). We will show that for any fixedw, an auxiliary structure of space
O(size(w)) can answer such queries efficiently. The key intuition is that we need to
consider only the subtree of u2 rooted atw and a corresponding induced subtree of T1,
whose size is also bounded by O(size(w)). Finally, the total size of all such structures
is proportional to the sum of subtree sizes of all light nodes in T2, which is O(n log n).
We then obtain our linear space solution via a compact space encoding of some of the
critical components in the first solution.

We now proceed to present the details.

Definition 2 (Special Nodes) For each light nodew ∈ T2, we identify a set Special(w)

of nodes in T1 (which we call special nodes) as follows: a leaf node �i ∈ T1 is special
iff �i and w are induced. An internal node in T1 is special iff it is the lowest common
ancestor of two special leaves. Additionally, for each node x ∈ Special(w), define its
score w.r.t. w as the sum of weights of x and the node partner(x/hp_leaf(w)) ∈ T2.
Formally,

scorew(x) = W (x) + W (partner(x/hp_leaf(w))

Moreover, |Special(w)| ≤ 2size(w) − 1 and
∑

w is a light node |Special(w)| =
O(n log n).

To answer an HIA query (u1, u2), we first identify some nodes in T1 and T2 as
follows. Nodes w1 = root2, w2, . . . , wk are the light nodes in Path(root2, u2, T2)
(in the ascending order of their pre-order ranks). Nodes t1, t2, . . . , tk are also in
Path(root2, u2, T2), such that tk = u2 and th = parent(wh+1) for h < k.
Therefore, Path(root2, u2, T2) = ∪k

h=1Path(wh, th, T2). Next, α1, α2, . . . , αk and
β1, β2, . . . , βk are nodes in Path(root1, u1, T1), such that for h = 1, 2, . . . , k,
αh = partner(th/u1) and βh = partner(wh/u1). Clearly, there exists an f ∈ [1, k]
such that u∗

2 ∈ Path(w f , t f , T2). See Fig. 2 for an illustration. We now present several
lemmas, which form the basis of our solution.

Lemma 3 The node u∗
1 ∈ Path(α f , β f , T1).

Proof We prove this by contradiction arguments.

– Suppose u∗
1 is a proper ancestor of α f . Then, α f and t f are induced andW (α f )+

W (t f ) > W (u∗
1) + W (u∗

2), a contradiction. Therefore, u
∗
1 is in the subtree of α f .

– Suppose u∗
1 is in the proper subtree of β f . Then, u∗

1 and w f are also induced.
Therefore, partner(w f /u1) is u∗

1 or a node in the subtree of u∗
1. This implies,

β f = partner(w f /u1) is in the proper subtree of β f , a contradiction. Therefore,
u∗
1 is an ancestor of β f .
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Fig. 2 We refer to Sect. 3.2 for the description of this figure

This completes the proof. 	

Lemma 4 The node u∗

1 ∈ Special(w f ) ∪ {β f }.
Proof Let z (if exists) be the first node in Special(w f ) on the path from u∗

1 to β f .
Then,

– if z exists, then u∗
1 /∈ Special(w f ) gives a contradiction as follows. The intersection

of the following two sets is empty: (i) set of labels of the leaves in the subtree of
u∗
1, but not in the subtree of z and (ii) set of labels associated with the leaves in the

subtree of w f . This implies, z and u∗
2 are induced (because u

∗
1 and u

∗
2 are induced)

and W (z) + W (u∗
2) > W (u∗

1) + W (u∗
2), a contradiction.

– otherwise, if z does not exist, then it is possible that u∗
1 /∈ Special(w). However,

in this case, u∗
1 = β f (proof follows from similar arguments as above).

In summary, u∗
1 ∈ Special(w f ) ∪ {β f }. 	


Lemma 5 For any x ∈ Path(α f , β f , T1)\{α f }, partner(x/u2) =
partner(x/hp_leaf(w f )).

Proof We claim that for any x ∈ Path(α f , β f , T1)\{α f }, partner(x/u2) is a proper
ancestor of t f . The proof follows from contradiction as follows. Suppose, there exists
an x ∈ Path(α f , β f , T1)\{α f }, such that partner(x/u2) is in the subtree of t f . Then,
x and t f are induced. This means, α f = partner(t f /u1) is a node in the subtree of x ,
a contradiction.

Since, partner(x/u2) is a proper ancestor of t f , partner(x/u2) = partner(x/r)
for any node r in the subtree of t f . Therefore, by choosing r = hp_leaf(w f ), we
obtain Lemma 5. 	
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Corollary 1 For any x ∈
(
Path(α f , β f , T1)\{α f }

)
,

W (x) + W (partner(x/u2)) = W (x) + W (partner(x/hp_leaf(w f ))) = scorew f (x).

Lemma 6 The node u∗
1 ∈ {α f , β f , γ f }, where

γ f = argmax
x

{scorew f (x) | x ∈ Special(w f ) ∩
(
Path(α f , β f , T1)\{α f , β f }

)
.

Proof Follows from Lemmas 3, 4, 5 and Corollary 1. 	

Lemma 7 Let C = ∪k

h=1{αh, βh, γh}, where

γh = argmax
x

{scorewh (x) | x ∈ Special(wh) ∩
(
Path(αh, βh, T1)\{αh, βh}

)
.

Then,

(u∗
1, u

∗
2) = argmax

(x,y)
{W (x) + W (y) | x ∈ Candy = partner(x/u2)}.

Proof Since f is unknown, we invoke Lemma 5 for f = 1, 2, 3, . . . , k ≤ log n. Recall
that n is the total number of nodes in both trees. 	

Next, we show how to transform the result in Lemma 7 into a data structure.

4 Our Data Structures

We start by defining a crucial component of our solution.

Definition 3 (Induced Subtree) The induced subtree T1(w) of T1 w.r.t. a light node
w ∈ T2 is a tree having exactly |Special(w)| number of nodes, such that

– for each node x ∈ T1(w), there exists a node Mapw(x) ∈ Special(w) and
– for each x ′ ∈ Special(w), there exists a node invMapw(x ′) ∈ T1(w), such that

lcaT1(Mapw(x),Mapw(y)) = Mapw(lcaT1(w)(x, y))

Note that a node x is a leaf in T1(w) iff Mapw(x) is a leaf in T1(w). In the following
lemmas, we present two space-time trade-offs on induced subtrees.

Lemma 8 By maintaining an O(n log n) space structure, we can compute Mapw(·)
and invMapw(·) for any light nodew ∈ T2 in time O(1) and O(log log n), respectively.

Proof Let Lw[1, |Special(w)|] be an array, such that Lw[x] = Mapw(x). For each
w, maintain Lw and a y-fast trie [34] over it. The total space is O(n log n). Now,
any Mapw(·) query can be answered in constant time. Also, for any x ′ ∈ Special(w),
invMapw(x ′) is the number of elements in Lw that are≤ x ′. Therefore, an invMapw(·)
can be reduced to a predecessor search and answered in O(log log n) time. 	
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Lemma 9 By maintaining an O(n) space structure, we can compute Mapw(·) and
invMapw(·) for any light node w ∈ T2 in time O(log n/ log log n).

Proof Let node p be the r th leaf in T1(w) and q = Mapw(p) be the sth leaf in
T1. Then, s is the x-coordinate of the r th point in {(i, j) ∈ P | (i, j) ∈ [1,m] ×
[lMost(w), rMost(w)]} in the ascending order of x-coordinates. Also, r is the number
of points in {(i, j) ∈ P | (i, j) ∈ [1, s]×[lMost(w), rMost(w)]}. Therefore, given p,
we can compute r , then s and q in O(log n/ log log n) time via a range selection query
on P . Similarly, given q, we can compute s and then r and p in O(log n/ log log n)

time via a range counting query on P .
Now, if p is an internal node in T1(w), then Mapw(p) is the same as

lcaT1(Mapw(�L),Mapw(�R)), where �L and �R are the first and last leaves in
the subtree of p. Similarly, if q is an internal node in T1, then invMapw(q) =
lcaT1(w)(invMapw(�A), invMapw(�B)) as follows:

(A, ·) = argmin
i

{(i, j) ∈ P | (i, j) ∈ [lMost(q), rMost(q)] × [lMost(w), rMost(w)]}
(B, ·) = argmax

i
{(i, j) ∈ P | (i, j) ∈ [lMost(q), rMost(q)] × [lMost(w), rMost(w)]}

Here, A and B can be computed via range successor/predecessor queries in O(logε n)

time. Therefore, the total time is logε n + log n/ log log n = O(log n/ log log n) time.
	


Lemma 10 Given an input (a, b, w), where w is a light node in T2 and, a and b are
nodes in T1(w), we can report the node with the highest scorew(Mapw(·)) over all
nodes on the path from a to b in T1(w) in O(1) time using an O(n) space structure.

Proof For each T1(w), maintain the Cartesian tree for path maximum query (refer
to Sect. 2.3). Space for a particular w is |Special(w)|(2 + o(1)) bits and space over
all light nodes w in T2 is O(n log n) bits (from Fact 1), equivalently O(n) space (in
words). For an input (a, b, w), the answer is PMQT1(w)(a, b). 	


4.1 OurO(n log n) Space Data Structure

We maintain T1 and T2 explicitly so that the weight of any node in either of the trees
can be accessed in constant time. Moreover, we maintain a fully-functional succinct
representation of their topologies (refer to Sect. 2.2) for supporting various operations
in O(1) time. Additionally, we maintain the structures for answering Induced-Check
and Find-Partner queries in O(log log n) time, data structures for range predeces-
sor/successor queries on P in O(log log n) time (refer to Sect. 2.4) and the structures
described in Lemmas 8 and 10. Thus, the total space in words is O(n log n).

We now present the algorithm for computing the output (u∗
1, u

∗
2) for a given input

(u1, u2). The followings are the key steps:

1. Find wh and th for h = 1, 2, . . . , k ≤ log n.
2. Find αh and βh for h = 1, 2, . . . , k ≤ log n.
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3. Let α′
h be the first and β ′

h be the last special node (w.r.t. wh) on the path from αh

(excluding αh) to βh (excluding βh). Also, let

γh = Mapwh

(
PMQT1(wh)

(
invMapwh

(α′
h), invMapwh

(β ′
h)

))
.

Compute γh for h = 1, 2, . . . , k ≤ log n.
4. Obtain C = ∪k

h=1{αh, βh, γh} and report

(u∗
1, u

∗
2) = argmax

(x,y)
{W (x) + W (y) | x ∈ C and y = partner(x/u2)}.

The correctness follows immediately from Lemma 7. We now bound the time com-
plexity. Step 1 takes O(k) time and step 2 takes O(k) number of Find-Partner queries
with O(log log n) time per query. The procedure for computing α′

h and β ′
h is the

following.
Find the child α′′

h of αh on the path from αh to βh . Then α′
h = lcaT1(�ah , �bh ),

where �ah (resp. �bh ) is the first (resp. last) special leaf in the subtree of α′′
h (w.r.t wh).

To compute ah and bh , we rely on range predecessor/successor queries on P:

(ah, ·) = argmin
i

{(i, j) ∈ P | (i, j) ∈ [lMost(α′′
h ), rMost(α′′

h )] × [lMost(wh), rMost(wh)]}
(bh, ·) = argmax

i
{(i, j) ∈ P | (i, j) ∈ [lMost(α′′

h ), rMost(α′′
h )] × [lMost(wh), rMost(wh)]}

Find the rightmost special (w.r.t. wh) leaf �dh before βh and the leftmost special
(w.r.t. wh) leaf �gh after the last leaf in the subtree of βh . For this, we rely on range
predecessor/successor queries on P:

(dh, ·) = argmax
i

{(i, j) ∈ P | (i, j) ∈ [1, lMost(α′′
h ) − 1] × [lMost(wh), rMost(wh)]}

(gh, ·) = argmin
i

{(i, j) ∈ P | (i, j) ∈ [rMost(α′′
h ) + 1,m] × [lMost(wh), rMost(wh)]}

Then, β ′
h = lcaT1(�dh , �gh ) if βh and wh are not induced (i.e., there does not

exist a special node (w.r.t. wh) under βh). Otherwise, β ′
h is the lowest node among

lcaT1(�dh , βh) and lcaT1(βh, �gh ).
The time for a range predecessor/successor query on P is O(log log n). Therefore,

the computation of α′
h and β ′

h takes O(log log n) time, and an additional O(log log n)

for evaluating γh . Therefore, the total time for step 3 is O(k log log n). Finally, step
4 also takes O(k log log n) time. By putting everything together, the total time com-
plexity is k log log n = O(log n log log n).

4.2 Our Linear Space Data Structure

We obtain our linear space data structure by replacing all super-linear space com-
ponents in the previous solution by their space-efficient counterparts. Specifically,
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we use linear space structures for Induced-Check, Find-Partner, and range predeces-
sor/successor with query time O(logε n). Also, we use the structure in Lemma 9
instead of the structure in Lemma 8. Thus, the total space is O(n).

The query algorithm remains the same. The time complexity is: O(k) for step 1,
O(k logε n) for step 2, O(k log n/ log log n) for step 3 and O(k logε n) for step 4.
Thus, total time is k log n/ log log n = O(log2 n/ log log n).

5 Applications to String Processing

5.1 Suffix Trees and Suffix Arrays

Let T [1, n] be a text over an alphabet set Σ and let $ /∈ Σ be a special symbol. The
suffix tree STT (resp., prefix tree PTT ) of T is a compact trie over all strings in the set
S = {T [i, n] ◦ $ | i ∈ [1, n]} (resp., SR = {←−−−

T [1, i] ◦ $ | i ∈ [1, n]}). Here ◦ denotes
concatenation and

←−−−
T [1, i] denotes the reverse of T [1, i]. The suffix array SAT and the

inverse suffix array ISAT (resp., the prefix array PAT and the inverse prefix array IPAT )
of T are arrays of length n, such that SAT [i] = j and ISAT [ j] = i (resp., PAT [i] = j

and IPAT [ j] = i) iff T [ j, n]◦$ (resp., ←−−−−
T [1, j]◦$) is the i th smallest string in S (resp.,

SR) in the lexicographic order.
Both STT and PTT have exactly n leaves, and the edges are labeled. For a node

u in either of the trees, we use path(u) to denote the concatenation of edge labels
on the path from the tree’s root to u. The path(·) of i th leftmost leaf in STT (resp.,
PTT ) is the same as the i th smallest string in S (resp., SR) in the lexicographic order.
Therefore, for any two nodes u and v within the same tree with w being their lowest
common ancestor (LCA), the longest common prefix (LCP) of path(u) and path(v)

is the same as path(LCA(u, v)). Note that the prefix tree (resp., prefix array) of a text
is equivalent to the suffix tree (resp., suffix array) of the reverse of the text.

The suffix tree over a collection of strings T1, T2, . . . , Td over an alphabet set Σ

is called a generalized suffix tree (GST), which is a compact trie over all strings in
∪d

j=1{Tj [i, |Tj |]◦$ j | i ∈ [1, |Tj |]}, where $1, $2, . . . , $d are distinct symbols that do
not appear in Σ . The corresponding (generalized) suffix array, prefix tree, and prefix
array can be defined similarly.

All the above data structures can be constructed in linear space and time (assuming
integer alphabet whose size is bounded by nO(1)) [15, 33]. After that, we can find
LCA(·, ·) in O(1) time [9]. Therefore, the length of the longest common prefix (or
suffix) of any two strings (or their substrings) in the collection can be computed in
constant time. We refer to [24] for further reading.

5.2 All-Pairs Longest Common Substring Problem

The formal problem definition along with our result are as below:

Definition 4 Given a collection T1, T2, . . . , Td of d strings, compute LCS(Ti , Tj ) for
all (i, j) pairs.
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Theorem 3 A collection T1, T2, . . . , Td of d strings of total length N can be prepro-
cessed into a data structure in Õ(N ) space and time, that supports an LCS(Ti , Tj )

query for any i, j pair in Õ
(
min{|Ti |,|Tj |}
|LCS(Ti ,Tj )|

)
time.

5.2.1 Data Structure

We maintain a generalized suffix tree GST and a generalized prefix tree GPT over the
collection. Additionally, for each i ∈ [1, d], we maintain our HIA data structure over
the pair of trees STTi and PTTi , such that the weight of nodes being their stringDepth.
We say that a node u1 in STTi and a node u2 in PTTi are induced iff there exists a k,
such that the leaf (say �a) corresponding to the suffix Ti [k, |Ti |] is under u1 and the
leaf (say �b) corresponding to the (reverse of the) prefix Ti [1, k − 1] is under u2. To
align this with the original definition of HIA problem, we assign label k to both �a
and �b. The total space, as well as the preprocessing time, is bounded by Õ(N ).

5.2.2 Query Algorithm

Without loss of generality, we assume |Ti | ≤ |Tj |. First, we present an efficient
procedure for accomplishing the following task: compute λ(Ti , k, Tj ), the length of
the longest substring of Ti , which covers a position in {k − 1, k} and also has an
occurrence in Tj . We say that a substring Tj [x, y] covers k iff k ∈ [x, y].
– Find the largest f and the largest r , such that Ti [k, k + f −1] and Ti [k− r , k −1]
occurs in Tj (say at positions a and b, respectively). This step takes O(log n)

number of LCP queries on the GST. Then, find the lowest node u1 in STTj and
the lowest node u2 in PTTj , such that Ti [k, k + f − 1] is a prefix of path(u1)

and
←−−−−−−−−−−
Ti [k − r , k − 1] is a prefix of path(u2). Note that u1 is on the path from root

ending at the leaf corresponding to the suffix of Tj starting at a. Similarly, u2 is
on the path from root ending at the leaf corresponding to the prefix of Tj ending
at b. Therefore, u1 and u2 can be computed in O(log n) time via binary search.

– If W (u1) = f and W (u2) = r , simply find (u∗
1, u

∗
2) = HIA(u1, u2) and report

W (u∗
1) + W (u∗

2). Otherwise, find (u′
1, u

′
2) = HIA(parent(u1),parent(u2)), the

lowest ancestor u′′
2 of u2 (resp., u′′

1 of u1), such that u1 and u′′
2 (resp., u′′

1 and u2)
are induced. Then, report max{ f + W (u′′

2),W (u′′
1) + r ,W (u′

1) + W (u′
2)}.

The time complexity is Õ(1) and the correctness can be easily verified. We can use
the above procedure to check whether |LCS(Ti , Tj )| ≥ τ for any given τ as follows:
repeat the above procedure for all values of k ∈ {τ, 2τ, 3τ, . . . }. Then report YES
if at least one among the answers is greater than or equal to τ , and NO otherwise.
Therefore, via a simple binary search on τ , we can compute |LCS(Ti , Tj )|. Note that
the values of τ chosen are always greater than |LCS(Ti , Tj )|/2. This yields the desired
query time.
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5.3 Dynamic Longest Common Substring Problem

Problem 3 (LCS after k changes) Given two strings T1 and T2 of total length n over
an alphabet set Σ , build a data structure that supports the following query: given a
set S of k (posi tion, character) pairs, where

S = {(pi , αi ) | pi ∈ [1, |T1|], i ∈ [1, k] and αi ∈ Σ}

report (the length of) LCS(T ∗
1 , T2), where T ∗

1 is the string obtained from T1 by replacing
its pi -th character by αi for each i ∈ [1, k].

We achieve the following result.

Theorem 4 There exist data structures with the following space-time trade-offs for the
LCS after k changes problem on two strings of total length n:

1. O(n log n) space and O(k · log n log log n) query time, and

2. O(n) space and O

(
k · log2 n

log log n

)
query time.

Let p1 < p2 < · · · < pk and φ = ∪k
i=1{pi − 1, pi }. Our approach is to find the

longest common substring of T ∗
1 and T2 (i) that does not cover any position in φ and

(ii) covers a position in φ, and then report the longest among them as LCS(T ∗
1 , T2). We

handle these cases separately, and the following convention will be used: any subarray
or substring over a range [a, b] is empty if a > b.

5.3.1 Handling Case 1

Let ψ = {[1, p1 − 2], [p1 + 1, p2 − 2], [p2 + 1, p3 − 2], . . . , [pk + 1, n]}. Clearly,
the answer we are looking for is max{|LCS(T ∗

1 [i, j], T2)| | [i, j] ∈ ψ}. Since
LCS(T ∗

1 [i, j], T2) = LCS(T1[i, j], T2) for all [i, j] ∈ ψ , we can solve this case in
O(k log n) time using the structure below.

Lemma 11 The strings T1 and T2 can be preprocessed into an O(n) structure, where
|T1| + |T2| = n, that supports the following query in O(log n) time: given a range
[x, y], report (the length of) LCS(T1[x, y], T2).
Proof Maintain an array L , where L[i] = |LCP(T1[i, |T1|], T2)| and range maximum
query (RMQ) data structure over it. To answer a query [x, y], first find the rightmost
position z, such that z + L[z] − 1 < y. This is possible in O(log n) time via a
binary search since i + L[i] − 1 is monotonic. Then, compute |LCS(T1[x, z]), T2)| =
RMQL(x, z) and |LCS(T1[z + 1, y]), T2)| = y − (z + 1) + 1, and report the largest
among them. 	


5.3.2 Handling Case 2

We maintain a generalized suffix tree and a generalized prefix tree of T1 and T2. Also,
maintain our HIA data structure over the pair of trees STT2 and PTT2 as in Sect. 5.2.1.
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Moreover, we can compute (ui1, u
i
2, fi , ri ) for i = 1, 2, . . . , k by processing the input

set (of k changes) in O(k log n) time using standard techniques, where

1. fi is the length of the longest substring of T ∗
1 that starts at position pi

2. ri is the length of the longest substring of T ∗
1 that ends at pi − 1.

3. ui1 is the lowest node in STT2 , s.t. T1[pi , pi + fi − 1] is a prefix of path(ui1).

4. ui2 is the lowest node in PTT2 , s.t.
←−−−−−−−−−−−−
T1[pi − ri , pi − 1] is a prefix of path(ui2).

Finally, for each pi , we compute the (length of the) longest common substring of T ∗
1

and T2 covering a position in {pi − 1, pi } using an HIA query as in Sect. 5.2.2, and
report the largest among.

In summary, the total space is dominated by the space of our HIA structure and the
complexity of query time per change is O(log n) plus the time for an HIA query. This
completes the proof of Theorem 4.

6 Summary and Open Problems

We have presented two new space-time trade-offs for the heaviest induced ancestors
problem, which improves the previous result by Gagie et al. [22]. Open problems
include even better space-time trade-offs and any non-trivial lower bounds. It is also
interesting to investigate what other string problems can be solved efficiently using
HIA framework.
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