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Abstract

Neuronal systems are subject to rapid fluctuations both intrinsically and externally. These fluc-
tuations can be disruptive or constructive. We investigate the dynamic mechanisms underlying the
interactions between rapidly fluctuating signals and the intrinsic properties of the target cells to pro-
duce variable and/or coherent responses. We use linearized and non-linear conductance-based
models and piecewise constant (PWC) inputs with short duration pieces. The amplitude distribu-
tions of the constant pieces consist of arbitrary permutations of a baseline PWC function. In each
trial within a given protocol we use one of these permutations and each protocol consists of a sub-
set of all possible permutations, which is the only source of uncertainty in the protocol. We show
that sustained oscillatory behavior can be generated in response to various forms of PWC inputs
independently of whether the stable equilibria of the corresponding unperturbed systems are foci
or nodes. The oscillatory voltage responses are amplified by the model nonlinearities and atten-
uated for conductance-based PWC inputs as compared to current-based PWC inputs, consistent
with previous theoretical and experimental work. In addition, the voltage responses to PWC inputs
exhibited variability across trials, which is reminiscent of the variability generated by stochastic noise
(e.g., Gaussian white noise). Our analysis demonstrates that both oscillations and variability are the
result of the interaction between the PWC input and the target cell’s autonomous transient dynamics
with little to no contribution from the dynamics in vicinities of the steady-state, and do not require
input stochasticity.

1 Introduction

Variability in neuronal activity has been observed at all levels of neuronal organization [1–14]. How-
ever, the mechanisms underlying the generation of variable voltage responses to fluctuating inputs
are not well understood. In particular, it is not well understood which aspects of the variable volt-
age responses of neuronal systems are due to their intrinsic properties (e.g., ionic currents), which
aspects are due to properties of the external inputs, and how the two interact.
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The goal of this paper is to address these issues in the context of single cells receiving external
current inputs. Through a series of case studies, we systematically investigate the role of the intrinsic
properties of the target cells in the generation of oscillatory and variable responses to fluctuating
inputs, and how the response variability is controlled by these intrinsic properties.

The cellular intrinsic and dynamic properties can be uncovered and characterized by the use
of constant inputs. The voltage responses to constant input currents consist of a transient phase
followed by a stationary phase [15]. Examples of transient behavior are monotonic changes towards
equilibrium, overshoots (or sags), and damped oscillations. We collectively refer to them as the
autonomous transient dynamics. These two phases reflect different ways in which the cellular in-
trinsic properties interact with the input and therefore different ways in which the voltage response
encodes information about these cellular intrinsic properties. We argue that the autonomous tran-
sient dynamics plays a key role in determining the cell’s variable response to external inputs, while
the cell’s stationary response to constant inputs plays at most a minor role. We additionally show
that variability emerges in response to multiple presentations of (deterministic) piecewise constant
(PWC) input functions having exactly the same constant pieces arranged in different, arbitrary or-
ders across trials. This provides a way of elucidating the mechanistic role of both the cellular intrinsic
properties through the corresponding autonomous transient dynamics in generating the response
variability. This also supports the idea that variability, although it is present in response to stochastic
inputs, is not inherently a stochastic phenomenon.

A prototypical example of the role of the transient dynamics of individual cells (autonomous
transient dynamics) in determining their response to external inputs is given by subthreshold res-
onance [16–18]. Subthreshold resonance refers to the ability of cells to exhibit a peak in the
impedance amplitude profile (curve of the impedance amplitude as a function of the input frequency,
Figs. 2-b3 and -c3) for a preferred (resonant) input frequency [19,20] (see Appendix A). Subthresh-
old resonance emerges in both cells having intrinsic oscillatory properties (e.g., two-dimensional lin-
ear cells with complex eigenvalues, Fig. 2-c3) and cells lacking intrinsic oscillatory dynamics [16,21]
(e.g., two-dimensional linear cells having real eigenvalues, Fig. 2-b3), but exhibiting an overshoot (or
sag). The effective time scale governing these autonomous transient dynamics is key for the gen-
eration of subthreshold resonance and the determination of the resonant frequency, which reflects
balances between interacting processes. [16–18].

Neurons and neuronal networks are subject to intrinsic random fluctuations [22–24] such as
random opening/closing of ionic channels [25–32] and random synaptic inputs from other neurons
in the network [1,33–38]. Random fluctuations are also exerted by external factors. In mathematical
models, these fluctuations are incorporated as noise interacting in various ways with the underlying
deterministic dynamics [39].

Noise plays many roles in the resulting patterns. It can uncover the transient dynamics of dy-
namical systems [40]. It can also modify the dynamics prescribed by the underlying deterministic
system [41], for example, by creating sustained (irregular) oscillations in systems that would exhibit
an equilibrium otherwise [42] or by creating bursting (spiking) patterns in systems that would exhibit
deterministic spiking (bursting) patterns otherwise. From one point of view, noise is disruptive in the
sense that it creates irregularities in otherwise regular patterns or even destroys equilibrium patterns.
From another perspective, noise is constructive in the sense that it may create oscillatory patterns
or increase the signal coherence. Two prototypical examples are stochastic resonance [43–51] and
coherence resonance [52–59]. Additionally, noise can induce order in chaotic dynamics [60], pro-
mote synchronization (stochastic synchronization) [61–63] or generate synchronized oscillations in
networks of coupled excitable elements [64–67], promote the generation of slow wave oscillations
by inducing transitions between active and silente phases [68,69], and induce transitions in bistable
and excitable systems (non-oscillatory) [29,58,70–74] among other phenomena.

Common to these phenomena is the idea that noise repeatedly “kicks" trajectories and keeps
them away from their stationary solutions (when they exist) to create alternative patterns (irregu-
lar versions of the underlying noiseless pattern or qualitatively different patterns). In practice, ex-
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Figure 1: Representative voltage responses of linear systems to piecewise constant inputs with normally dis-

tributed amplitudes. a. Representative examples of piecewise constant inputs (N = 10, ∆ = 100). Top: the values of the

constant pieces of Iη are normally distributed (mean zero and variance one). Middle: the values of the constant pieces of

Iη,step are as in the top panel, but rearranged in increasing order. Botton: the values of the constant pieces of Istep are such

that the steps are equal with η1 and ηN taken from Iη,step (bottom). In other words, Iη,step and Istep change in between the

same values (η1 and ηN ) across trials. b. Dependence of the overshoot (b1) and first oscillation (b2) peaks with the initial

value w(0) = w0 for the recovery variable w in response to the same constant input Iapp = 1 and v(0) = 0 . Changes in

the initial value of v produces only minor changes in the response patterns. c to e. Response of cells with three qualitatively

different types of autonomous dynamics to piecewise constant inputs (N = 5, ∆ = 200). Red and green dots indicate

peaks and troughs, respectively. Row 2. Istep ordered by increasing values of {ηk}5k=1: (-2,-1,0,1,2). Row 3. Iη using the

values of {ηk}5k=1: (-2,-0,1,-1,2) as in row 2, but with a different (non-monotonic) distribution. c. Passive cell. We used the

following parameter values: C = 1, gL = 0.25. Red dots indicate the boundaries between constant pieces (there are no

peaks and troughs). d. 2D linear system exhibiting an overshoot in response to step-constant inputs. We used the following

parameter values: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100. e. 2D linear system exhibiting damped oscillations in response

to step-constant inputs. We used the following parameter values: C = 1, gL = 0.05, g1 = 0.3, τ1 = 100.
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Figure 2: Piecewise constant inputs with normally distributed amplitudes capture the transient dynamics of the

target cells. The piecewise constant inputs Iη have ∆ = 5 (total time = 10000 ms, N = 2000). The insets have ∆ = 200

(total time = 10000 ms, N = 50). The parameter values are the same as in Fig. 1. Row 1. Representative V traces (only

1000 ms are shown). The coral dots indicate peaks-and-troughs patterns computed as the maximum (minimum) of the V

response if ηk > ηk−1 (ηk < ηk−1). Row 2. Power spectra density (PSD) profiles for the sample V trace. Row 3. Impedance

amplitude (Z) profiles for the sample V trace. a. Passive cell (fnat = fres = 0). We used the following parameter values:

C = 1, gL = 0.25. b. 2D linear system exhibiting an overshoot in response to step-constant inputs ((fnat = 0, fres ∼ 9Hz).

We used the following parameter values: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100. c. 2D linear system exhibiting damped

oscillations in response to step-constant inputs (fnat ∼ fres ∼ 8Hz). We used the following parameter values: C = 1,

gL = 0.05, g1 = 0.3, τ1 = 100.
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ternal noise interacts with the cell, which responds by integrating the intrinsic (deterministic) and
input (stochastic) components (similarly to what was described above). A prototypical example
of a stochastic input to a neuron is the Ornstein-Uhlenbeck (OU) process [75–77] (Appendix B).
While the response’s expected value coincides with the stationary solution of the noiseless sys-
tem, the response’s variance involves a combination of the (noiseless) model parameters and the
variance of the Gaussian white noise input. In other words, the response variability is controlled
by the autonomous transient dynamics. For higher-dimensional OU process, the determination of
the dependence of the variability with the autonomous transient dynamics is more difficult than for
one-dimensional OU processes given the complexity of the covariance formulas. This type of deter-
mination is analytically not possible for noise-driven nonlinear systems (including voltage-dependent
nonlinearities or conductance-based synaptic inputs). These tasks require a different approach and
the development of a conceptual framework that allows the investigation of the response properties
in terms of the properties of the participating building blocks: the target cells and the fluctuating
inputs. The autonomous transient dynamics are a key element of this framework.

Here, we use piecewise constant (PWC) input currents (Iη) with short duration pieces and vari-
able amplitudes that allow for the autonomous transient dynamics to develop in response to each
constant piece input. When the set of amplitudes (η) are normally distributed and the durations are
small enough, Iη is an approximation to Gaussian white noise [78]. However, in this paper we are
not interested in this limit. We first show that an additive input Iη with normally distributed ampli-
tudes evoke oscillatory voltage responses in cells whose stable equilibria are either foci or nodes
(displaying damped oscillations and overshoots in response to constant inputs, respectively). We
note that the former captures results described in [76] for Gaussian white noise (see also [79] for
two-dimensional linear cells with damped oscillations). We then use the same input to investigate the
response properties of a nonlinear (piecewise linear, PWL) model [17], which mimics the voltage-
dependencies present in neurons, and a linear model receiving a (multiplicative) conductance-based
synaptic-like current. We explain how oscillations are nonlinearly amplified or attenuated in these
models. Next, we investigate how the voltage response variability is linked to the properties of the
autonomous transient dynamics. All trials for a given protocol have the same set of linear piece
amplitudes η, but the order of the constant pieces is different for each trial. Each protocol consists
of a subset of all possible order permutations of the elements of the set η. This is the only source
of uncertainty in the process. We compute the peak-and-troughs voltage response profiles Pη
consisting of the set of peaks and troughs of the voltage response evoked by each constant piece,
arranged in an appropriate way for comparison. We analyze the dependence of the variability of
the Pη patterns across trials with the properties of the autonomous transient dynamics, and we use
these results to understand how the response variability depends on the model parameters. More
specifically, this variability results from the multiple different ways a target cell reacts to the same
constant inputs (across trials) as it transitions from the response to the previous constant piece.
Finally, we show how frequency-dependent inputs affect these processes.

2 Methods

2.1 Models

In this paper we use relatively simple biophysically plausible models describing the subthreshold
dynamics of individual neurons subject to both additive and multiplicative inputs.

2.1.1 Linear model: additive input

For the individual neurons we use the following linearized biophysical (conductance-based) model
[16,21]
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C
dv

dt
= −gLv − g1w + I(t) (1)

τ1
dw

dt
= v − w, (2)

where v (mV) is the membrane potential relative to the voltage coordinate of the fixed-point (equilib-
rium potential) of the original model, w (mV) is the recovery (gating) variable relative to the gating
variable coordinate of the fixed-point of the original model normalized by the derivative of the cor-
responding activation curve, C ( µF/cm2) is the specific membrane capacitance, gL (mS/cm2) is
the linearized leak conductance, g1 (mS/cm2) is the linearized ionic conductance, τ1 (ms) is the
linearized gating variable time constant and I(t) (µA/cm2) is the time-dependent input current. In
this paper we consider resonant gating variables (g1 > 0; providing a negative feedback effect). The
linearization process for conductance-based models for single cells has been previously described
in [16,21]. We refer the reader to these references for details.

2.1.2 Piecewise linear (PWL) model: additive input

To account for nonlinear effects we extend the linear model (1)-(2) to include a piecewise linear
function FPWL [17]

C
dv

dt
= −gL FPWL(v)− g1w + I(t) (3)

τ1
dw

dt
= v − w, (4)

where

FPWL(v)

{
v v < vc
vc + gc/gL(v − vc) v > vc,

(5)

where vc is the cutting point (or breaking point) of the PWL model. This model has been used to
investigate the dynamic mechanisms underlying the nonlinear amplification of the resonant voltage
responses to sinusoidal inputs [17] and captures the nonlinear amplification effects of the resonant
voltage responses off two-dimensional models with parabolic-like voltage nullclines [18]. Note that
the PWL model has linear dynamics for v < vc and therefore the PWL model becomes effectively
linear if vc is large enough.

2.1.3 Conductance-based synaptic input model: multiplicative input

To account for the effects of conductance-based synaptic inputs we extend the model (3)-(5) to
include a synaptic current

C
dv

dt
= −gL FPWL(v)− g1w −GsynS(t)(v − Esyn) (6)

τ1
dw

dt
= v − w (7)

where Gsyn (mS/cm2) is the maximal synaptic conductance, Esyn (mV) is the synaptic reversal
potential and S(t) is the time-dependent synaptic input. We use Esyn = 1 (excitatory synaptic
current).
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2.2 Piecewise constant (PWC) input functions with variable amplitudes

We use PWC functions with short-duration pieces as a tool to understand how the properties of
the transient voltage response of individual cells to constant inputs (autonomous transient dynam-
ics) control the response variability of these cells to time-dependent inputs with variable, abruptly
changing amplitudes. White noise and related stochastic inputs (e.g. colored noise) satisfies these
last two properties. PWC inputs with variable amplitudes and short durations provide a good bal-
ance between input variability and the ability of the autonomous transient dynamics to develop, and
therefore they can be linked to the input amplitude that gave rise to them. In addition, PWC inputs
with variable amplitudes allow us to use the same set of amplitudes in all trials for each protocol,
arranged in different order for each trial, and therefore have a better control of the process. PWC
functions with normally distributed amplitudes have been used to approximate white noise [78] (see
also [80]) and converge to white noise as the duration of all pieces approaches zero.

2.2.1 Piecewise constant input functions with normally distributed amplitudes

We partition the time interval [0, Tmax] into N pieces of equal length ∆, and we define Iη(t) = ηk
for t ∈ (tk−1, tk) for k = 1, . . . N . The values of the amplitudes {ηk}Nk=1 of the constant pieces
are normally distributed (zero mean and variance D) (Fig. 1, top, see also Fig. 3-a). For each
protocol in our study we use multiple different input trial functions Iη(t) constrained to consist of
different (random) permutations of the same set {ηk}Nk=1. As part of our analysis we use one specific
rearranged version Iη,step of Iη where the linear pieces {ηk}Nk=1 are ordered in a monotonically
increasing amplitude manner (Fig. 1, middle). We use this as our notion of a reference (“ordered")
input in the sense that Iη,step has the minimum piece-to-piece variability (except possibly for the
decreasing order).

2.2.2 Piecewise constant input functions with arbitrarily, but deterministically dis-
tributed amplitudes

The choice of normally distributed amplitudes (Fig. 3-a) is motivated by the fact that in the limit of
∆ → 0, Iη approaches white Gaussian noise when the piece duration goes to zero. In order to
decouple the effect of the autonomous transient dynamics evoked by abrupt transitions between
constant pieces and the randomness of the signal, we use fully deterministic distributions of am-
plitudes within some range. More specifically, we use arbitrary order permutations of a number of
constant pieces initially arranged in increasing order of amplitudes where the amplitudes are cho-
sen according to deterministic rules. Each protocol (see Section 2.2.1) consists of a subset of all
possible permutations (of the order of constant pieces), which is the only source of uncertainty in
the protocol.

We use two types of (deterministic) amplitude distributions for {ηk}Nk=1 within the range [ηmin, ηmax]:
equispaced (Fig. 3-b) and bell-shaped-like (Fig. 3-c). In the equispaced distribution the values of
ηk cover the full range [ηmin, ηmax] and satisfy ηk+1 − ηk is equal for all k = 1, . . . , N − 1. The “or-
dered" PWC function Iη,step is linear (Fig. 3-b2). The bell-shaped-like distribution was constructed
from the random distribution (see the caption in Fig. 3). The corresponding “ordered" PWC function
Iη,step has an inflection point reflecting larger number of input amplitudes around zero (Fig. 3-c3).

2.3 Output Metrics

2.3.1 Impedance (amplitude) profile

The impedance (amplitude) profile is defined as the magnitude of the ratio of the output (voltage)
and input (current) Fourier transforms

7



a b1 b2

c1 D = 1.5 c2 D = 1 c3

Figure 3: Histograms for representative distribution of the piecewise constant input amplitudes (η) of Iη . To

construct Iη(t) we partition the time interval [0, Tmax] into N pieces of equal length ∆, and we define Iη(t) = ηk for

t ∈ (tk−1, tk) for k = 1, . . . N . The values of the amplitudes {ηk}Nk=1 of the constant pieces are selected by following

different rules (panels a to c). Each realization of Iη(t) corresponds to a permutation of the order of the set {ηk}Nk=1.

Iη,step(t) is the special case where ηk are organized in a non-decreasing order (used for reference). In all cases, ∆ = 1 with

a total time = 1000000 ms. a. Random normal distribution with mean zero and variance one. b. Equispaced (deterministic)

distribution in the η interval [−2, 2]. Iη,step(t) consist of the {ηk}Nk=1 organized in an increasing order of amplitudes with

c constant amplitude difference between adjacent pieces . c. Bell-shaped-like (deterministic) distribution in the η interval

[ηmin = −2, ηmax = 2]. They were computed by (i) generating an equispaced distribution in the ηaux interval [ηmin, ηmax],

(ii) generating a cumulative distribution function (CDF) over ηaux of a normal distribution with mean zero and variance D, (iii)

computingAmpaux by flipping over (left to right) the left half the sequence of the CDF and multiplying it by 2 so to the resulting

Ampaux lies in the interval [0, 1], (iv) Computing Ampint = Ampaux ∗ (ηmax − ηmin)/(2 ∗ ΣAmpaux). The right hand is

computed by making it symmetric to the left hand over the ordinates axis. The ordered sequence {ηk}Nk=1 is computed from

these amplitudes. c1. D = 1.5. c2. D = 1.
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Z(f) =

∣∣∣∣F{v(t)}
F{I(t)}

∣∣∣∣ , (8)

where F{x(t)} =
∫ T
0
dte−2πiftx(t). In practice, we use the Fast Fourier Transform algorithm (FFT)

to compute F{x(t)}. Note that Z(f) is typically used as the complex impedance, a quantity that has
amplitude and phase. For simplicity, here we used the notation Z(f) for the impedance amplitude.
Since we deal with discontinuous inputs (PWC), we have checked if Gibbs phenomenon would be
an issue. As a result, we did not identify any ringing effect in the Fourier transforms related to Gibbs
phenomenon.

2.3.2 Voltage and impedance (amplitude) envelope profiles

The upper and lower envelope profiles V +/−
ENV are curves joining the peaks and troughs of the steady

state voltage response as a function of the input frequency f . The envelope impedance profile is
defined as [17,18]

ZENV(f) =
V +
ENV (f)− V −ENV (f)

2Ain
, (9)

where Ain is the input amplitude. For linear systems, ZENV(f) coincides with Z(f).

2.3.3 Voltage power spectral density

In the frequency-domain, we compute the power spectral density (PSD) of the voltage as the abso-
lute value of its Fourier transform F{v(t)}. We will refer to this measure as PSD or VPSD.

2.3.4 Peaks-and-troughs voltage response profiles

In each protocol, we compute the cells’ voltage response to the multiple trials described above. For
each trial, we compute the sequence of the voltage response peaks and troughs consisting of the
maximum value of the voltage v within the duration of a piece ηk if ηk > ηk−1 and the minimum of v
within the range of a piece ηk if ηk < ηk−1, respectively. We use these peaks-and-troughs patterns
or profiles (e.g., Fig. 4-a; difference between red and green dots in Fig 1 c-e) to characterize
the voltage response patterns and their variability. We note that there are other possible metrics,
including the whole v traces and the set of all peaks and troughs present in these traces (e.g., Fig.
4-c to -e). We found the peaks-and-troughs profiles as described above to be a simple and useful
way to compare the voltage responses across trial (permutations).

2.3.5 Rearranged peaks-and-troughs voltage response profiles

In order to compare the voltage responses across trials we rearrange the peak-and-troughs voltage
response profiles according to the increasing amplitude values of the elements of the set {ηk}Nk=1

from which they were evoked. We use the notation Pη for the resulting rearranged voltage response
patterns and Pη,step for these voltage response profiles produced by Iη,step (inputs with increasing
order of constant piece amplitudes). In this way, we compare multiple different ways in which the
response to a given constant piece is produced by transitions from pieces with different amplitudes
(i.e., different initial conditions with respect to that constant piece). The differences in the voltage
peak/troughs values across trials for each piece will be due to the differences in the values of V and
the other variables at the arrival time of that piece (initial conditions) and therefore to the differences
in the transient dynamics that they evoke.
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Passive Node Focus

Node/Focus Node/Passive Focus/Passive

b1 c1 d1

b2 c2 d2

Figure 4: Variability (across trials) of the voltage responses of linear systems to piecewise constant inputs with

normally distributed amplitudes. Trials consist of different permutations of the same set of constant pieces {ηk}Nk=1. The

piecewise constant inputs Iη have ∆ = 5, N = 200 (a, b) and N = 2000 (a). The parameter values are the same as in

Fig. 1. The color dots indicate the peaks-and-troughs patterns for all trials reorganized so that the corresponding values of ηk
from which they originate are ordered in a monotonically increasing manner. All dots for a given piece correspond to the same

value of ηk. < Pη > (blue) is the mean value of the reordered peaks-and-troughs patterns for each linear piece. < Pη,step >

(green) is the peaks-and-troughs pattern corresponding to the (ordered) input function Iη,step. b1 to d1. Variance (b1 to d1)

of the peaks-and-troughs patterns in panel a. b1. Comparison between cells having a node and a focus. c1. Comparison

between a cell having a node and the corresponding passive cell. d1. Comparison between a cell having a focus and the

corresponding passive cell. b2 to d2. Normalized variance (b2 to d2) computed as the variance (b1 to d1) divided by the

peak of the unforced cells’ response to a step-constant input of amplitude 1. b2. Comparison between cells having a node

and a focus. c2. Comparison between a cell having a node and the corresponding passive cell. d2. Comparison between

a cell having a focus and the corresponding passive cell. We used the following parameter values: (i) C = 1, gL = 0.25,

g1 = 0.25, τ1 = 100 for the node, and (ii) C = 1, gL = 0.05, g1 = 0.3, τ1 = 100 for the focus.
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2.3.6 Numerical simulations

We used the modified Euler method (Runge-Kutta, order 2) [81] with step size ∆t = 0.01 ms.
Preliminary simulations where lower step sizes than this have been tested did not change our results.
All neural models and metrics, including phase-plane analysis, were implemented by self-developed
Matlab routines (The Mathworks, Natick, MA) and are available in https://github.com/BioData
namics-Lab/impedance_input_dependent.

3 Results

3.1 Voltage response to piecewise constant inputs with variable amplitudes:
sequence of autonomous transient dynamics followed by steady-state re-
sponses

Figs. 1-c1 to -e1 illustrate the voltage response of three types of cells to the same PWC inputs with
increasing amplitude (generated by Istep, see Fig. 1-a, bottom). We use long piece durations here
only for explanatory purposes. The voltage response to each linear piece consists of a transient and
a steady-state components, which depend on the model parameters. The properties of the transient
component in each case (the autonomous transient dynamics) are qualitatively different for the
three cell types. Passive cells (and cells behaving as passive cells) (Fig. 1-c1) exhibit a monotonic
increase towards the steady-state. The node cells (cells having a stable node, N-cells) in Fig. 1-
d1 display overshoots and the focus cells (cells having a stable focus, F-cells) in Fig. 1-e1 display
damped oscillations before converging to the steady-state. We note that not all two-dimensional
cells having a stable node or focus show prominent overshoots or damped oscillations.

Figs. 1-c2 to -e2 show the voltage response of the same three cell types to PWC inputs with
the same constant pieces as in Figs. 1-c1 to -e1, but the three intermediate pieces are arranged in
a different order. The type of autonomous transient dynamics, which are activated at the transition
points between input pieces, remains the same as in Figs. 1-c1 to -e1, but the response amplitude
of the voltage response pattern increases for the N- and F-cells as compared to Figs. 1-d1 and -e1.
This is due to a combination of factors that involve the differences in the jump sizes between linear
pieces and the differences in initial conditions for each linear piece (e.g., Fig. 1-b). The values of the
participating variables prior to the transition between linear pieces serve as initial conditions for the
new regime. While for 1D system, the response amplitude is bounded by the steady-state for each
linear piece regardless of the initial conditions, for 2D systems the amplitude response depends on
the initial conditions not only of the main variable (v), but also the recovery variable that is not shown
in the graph (e.g., Fig. 1-b).

3.2 Oscillatory voltage response properties to piecewise constant inputs
with arbitrarily distributed amplitudes

The V patterns discussed above (Fig. 1, row 2) for a small number of input (Iη) partitions (large
∆ = 200) display the fully developed autonomous transient dynamics of the three cell types to
step-constant inputs. The extension of these results to the V patterns generated by inputs with a
larger, more realistic number of partitions (smaller ∆) is not straightforward since the smaller the
partition size the less time the cell has to develop the autonomous transient behavior corresponding
to each partition. Still, the transient dynamics reflect the model properties and the differences among
models.
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3.2.1 Piecewise constant inputs with normally distributed amplitudes and a large
enough number of partitions uncovers the oscillatory dynamic properties of the tar-
get cells

Figs. 2 shows the V response patterns to inputs Iη with a larger number of partitions (∆ = 5).
Figs. 2-a1 and -b1 show no apparent oscillatory pattern, while Fig. 2-c1 shows irregular oscillations,
which is confirmed by the PSD graph in Fig. 2-c2. The PSD graph in Fig. 2-b2 uncovers the
presence of oscillations in the corresponding V pattern (Fig. 2-b1), while the PSD graph in Fig.
2-a2 confirms the absence of oscillations consistent with the 1D dynamics of the cell. Interestingly,
not only the F-cell that shows damped voltage oscillations in response to step-constant inputs shows
oscillatory activity in response to Iη, but also the N-cell that shows overshoots in response to step-
constant inputs. This would be in principle not surprising since both cell types show resonance
in response to sinusoidal inputs [16, 17], but the PSDs for the input patterns Iη with a smaller
number of partitions (∆ = 200 as in Fig. 1, row 3) shows no oscillations for the three responses
(see insets in Fig. 2, row 2). The arbitrarily (randomly) distributed amplitudes allow the voltage
response to explore a wide region of the phase-space and therefore capture information about the
vector field governing the transient dynamics. The short duration of the pulses keeps the trajectory
(“almost continuously") exploring the vector field by sequentially activating the autonomous transient
dynamics, and this “permanent motion" prevents the interference of the regions of the vector field
governing the dynamics in close vicinities of the steady-state. This mechanism is conceptually
similar to the one governing the generation of resonance in response to oscillatory inputs in both
linear and nonlinear systems [17, 18] where resonance can be observed in the absence of intrinsic
oscillatory behavior [16,17,21].

3.2.2 Uncovering the oscillatory dynamic properties of the target cells requires con-
stant pieces with arbitrarily distributed amplitudes, but not amplitude randomness

Here we decouple the effects of the autonomous transient dynamics (in response to the sequence
of input constant pieces) from the pieces’ amplitude randomness on the ability of these PWC inputs
to uncover the oscillatory (intrinsic) and resonant properties of the receiving cells.

To this end we use fully deterministic distributions of amplitudes within some range as described
in Section 2.2.2. This leaves the choice of the subset of all possible permutations (number of
trials) for each protocol as the only source of uncertainty in the input signal. Fig. S1 (∆ = 5
and ∆ = 1) show the response patterns to these PWC inputs (equispaced distributed, deterministic
amplitudes) for the same parameter values as Fig. 2 (random amplitudes). The Z-profiles in these
three figures are almost identical. The V PSD profiles in Figs. 2 and S1 are also very similar. The
differences between the V PSD profiles in these figures and the ones for ∆ = 5 are due to the larger
value of the total time used there. Together, these results show that randomness is not needed to
uncover the resonant and oscillatory properties of the receiving cells and these oscillatory properties
emerge almost exclusively as the result of the sequential and fast activation of the cell’s autonomous
transient dynamics.

3.2.3 PWC inputs with arbitrarily distributed amplitudes capture the nonlinear am-
plification of the oscillatory voltage responses

The amplification of the voltage response oscillations to PWC inputs discussed so far was presented
in the context of linear systems as the result of changes in the model parameter values (e.g, from N-
to F- cells in Figs. 2-, S1-, -b and -c). Because the models used there are linear, the dependence of
the voltage response amplitude on the input amplitude (D) is simple. Increasing values of D cause
proportional increases in the voltage response amplitude so that the Z-profile remains unchanged.
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Here we focus on the nonlinear amplifications produced in (nonlinear) models as the result of
increasing values of the input amplitude D. To this end we use the piecewise linear (PWL) model
(3)-(5), which is a continuous, nonlinear extension of the linear model (1)-(2) where the V -nullcline
is “broken" (e.g., Figs. 5-b). It was shown in [17] that this type of models display nonlinear amplifica-
tions of the voltage response to sinusoidal inputs and capture similar phenomena observed in more
realistic nonlinear models, in particular two-dimensional models having parabolic-like V -nullclines
describing the subthreshold voltage dynamics. [18].

a b c

LIN PWL PWL
Current-based Current-based Conductance-based

Figure 5: Nonlinear transient voltage response amplifications and attenuations in current- vs. conductance-based

inputs. Phase-plane diagrams for I = 1. The solid-red curve represents the V -nullcline for I = 0, The dashed-red curve

represents the V -nullcline for I = 1, the solid-green curve represents the w-nullcline for I = 0, and the solid-blue curve

represents the trajectory which initially starts at (0, 0) (the fixed-point for I = 0) and converges to the fixed-point for I = 1.

The insets show the V traces. The 2D linear system exhibits and overshoot in response to step-constant inputs and resonance

in response to oscillatory inputs [16, 17, 21]. a. Linear (LIN) model described by eqs. (1)-(2). b. Current-based piecewise

linear (PWL) model described by eqs. (3)-(5). c. Conductance-based piecewise linear (PWL) model described by eqs. (6)-(7)

and (5) with S substituted by I. We used the following parameter values: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100 (same as

in Figs. 1 and 2-b), vc = 1 and gc = 0.1.

We first introduce the ideas by examining the autonomous transient dynamics of the PWL model
in response to a constant input I and then use these results to understand the nonlinear amplification
of this PWL model in response to PWC inputs with increasing values of D. Figs. 5-a and -b show
the superimposed phase-plane diagrams for a PWL model (b) and the linear model (a) from which
it originates for I = 0 (solid-red, baseline) and I = 1 (dashed-red). The w-nullclinne is unaffected
by changes in I. The trajectory (blue), initially at the fixed-point for I = 0, evolves towards the fixed-
point for I = 1. In both cases (Figs. 5-a and -b) the voltage response exhibits an overshoot. The
peaks (inset) occur when the trajectories cross the V -nullcline. For low enough values of I (lower
than in Figs. 5-a and -b) the trajectory remains within the linear region (the trajectory does not reach
the V -nullcline’s “breaking point" value of V ) and therefore the increasing values of I produce a
linear voltage response amplification (no differences between the responses of the linear and PWL
model; not shown). The nonlinear amplification is apparent for values of I for which the v-nullcline is
high enough so the trajectory is able to cross from one linear regime (determined by the left piece of
the dashed-red V-nullcline) where the trajectory is at t=0, to the other (determined by the right piece
of the dashed-red V-nullcline). The virtual fixed-point moved from the position where I = 0 and
converged to the position where nullclines cross for I = 1. Because the V -nullcline’s “right piece"
has a smaller slope than the “left piece" (the slope it would have if it were linear), the trajectory is
able to reach larger values of V for the nonlinear system than for the corresponding linear one before
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turning around, and therefore the peak for the nonlinear system is higher than for the linear system.
Nonlinear voltage response amplifications in this type of system are dependent on the time scale
separation between the participating variables. For smaller values of τ1 this nonlinear amplification
is reduced and although the system is nonlinear, it behaves quasi-linearly [17,18].

The nonlinear amplification discussed above is particularly stronger for the transient dynamics
(initial upstroke) than for the steady-state response, and therefore it is expected to have conse-
quences for the nonlinear responses of nonlinear models to PWC inputs with large enough values
of D (Fig. 6). We use a PWC input with a (non-random) equispaced distribution of constant piece
amplitudes in the range [0, 2] multiplied by D. For small enough values of D (Fig. 6-a1) the trajec-
tory remains within the linear regime and therefore the responses to the linear and the PWL models
are almost identical (blue and red). As D increases, the nonlinear amplification becomes stronger
(Figs. 6-b1 and -c1, blue and red). This is accompanied by similar changes in the Z profile (not
shown). As discussed above, these mechanisms are dependent on the time scale separation be-
tween the participating variables, determined by τ1 and the nonlinear voltage response amplification
is reduced for smaller values of τ1 (see Fig 6-a2, -b2, and - c2 for τ1=10). Lowering the parameter
τ1 makes the system more linear and reduces the amplification.

Figure 6: Oscillatory voltage responses for current- vs. conductance-based piecewise constant inputs with eq-

uispaced (non-randomly) distributed amplitudes and different time constants. The piecewise constant inputs Iη have

∆ = 1 (total time = 1000000 ms, N = 1000000). The constant pieces’ amplitudes are equispaced and deterministically dis-

tributed in the range [0, 2]. The 2D linear system exhibits and overshoot in response to step-constant inputs and resonance in

response to oscillatory inputs. Parameter values are as in the first row of Fig. 6 (the parameter values for the linear systems

are the same as in Figs. 1 and 2-b). Power spectra density (PSD) profiles for a sample V trace. The piecewise constant

inputs Iη (total time = 1000000 ms, N = 1000000) have different values of D. a. D = 0.25. b. D = 0.5. c. D = 1. We used

the following parameter values in a1, b1., and c1. : C = 1, gL = 0.25, g1 = 0.25 , τ1 = 100, vc = 1 and gc = 0.1. We used

the following parameter values in a2, b2., and c2. : C = 1, gL = 0.25, g1 = 0.25 , τ1 = 10, vc = 1 and gc = 0.1.
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3.2.4 Oscillation amplification and attenuation: current- versus conductance-based
responses to synaptic-like PWC inputs

The oscillatory dynamics considered above emerge in response to additive PWC current inputs.
However, the synaptic inputs received by neurons are multiplicative and conductance-based as
described by the model (6)-(7).

From the phase-plane diagram in Fig. 5-c we see that increasing values of I (replacing S in the
model) reduces the nonlinearity of the V -nullcline (dashed-red) and increases (in absolute value)
its slope. Both phenomena oppose the voltage response amplification (blue) and the overshoot
becomes much less prominent. The triangular region (bounded by the V -axis, the displaced V -
nullcline (dashed-red) and the w-nullcline (green)) is reduced in size as compared to the current-
based inputs (panel b) and therefore the response is reduced in amplitude. Moreover, because
the displaced V -nullcline in panel c is more vertical than the baseline V -nullcline, the size of the
voltage overshoot in response to constant inputs is reduced and, in this sense, the voltage responses
become quasi-1D. As a consequence, the initial portion of the transient responses to abrupt changes
in input is reduced in size. This translates into the oscillatory response to PWC inputs, which is also
attenuated and the resonant peak disappears or is significantly reduced (Figs. 6-c1, green).

3.3 Emergence of variability in response to piecewise constant inputs with
normally distributed amplitudes

Here we address the relationship between the transient dynamic properties of individual cells (au-
tonomous transient dynamics) and the variability of their responses to piecewise constant (PWC)
input functions with pieces of the same duration and randomly distributed amplitudes. We primarily
use Gaussian distributions and a relatively large number of pieces (with a small duration each). This
allows us to separate the effects of the autonomous transient dynamics activated by the transition
between pieces with variable size-steps from the variability of the piece duration, which is chosen to
be in a range much lower than the cell’s intrinsic (natural) and resonant frequencies. In the next Sec-
tion, we show that amplitude randomness is not needed, but only the arbitrary order of the amplitude
of the constant pieces.

3.3.1 Variability in response to piecewise constant inputs emerges from the tran-
sient response properties of the autonomous system to step constant inputs

The voltage response of cells to PWC inputs consists of a sequence of transient behaviors (initiated
immediately after the transition between two constant pieces), reflecting the autonomous transient
dynamics in response to a set of initial conditions for the participating variables, followed by an
approximation to the steady-state for each input piece. The latter and part of the former may be
absent if the duration ∆ of each constant piece is not long enough. As discussed above, Figs. 1-c1
to -e1 illustrate three qualitatively different ways in which cells respond to a sequence of increasing
step function inputs according to whether they have a stable node (N, 2D), a stable focus (F, 2D) or
they are passive (P, 1D). For illustrative purposes, the value of ∆ was chosen to be large enough
so as to show both dynamic components of the response to each linear piece. In subsequent
simulations, ∆ will be chosen to be much smaller so as to capture realistic situations (as discussed
above), and therefore the voltage response will capture only the initial portions of the autonomous
transient dynamics.

Passive (1D) cells exhibit a monotonic behavior towards the steady-state in response to each
input piece. For the parameters chosen, the transient increase is relatively fast (Fig. 1-c1). 2D
cells, in addition, can display overshoots (Fig. 1-d1, N) and damped oscillations (Fig. 1-e1, F)
as they approach the steady-state in response to each input piece. The peak amplitudes of V in
response to each input piece correspond to the transient component of the response and depend
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on the initial conditions in that regime (Fig. 1-b), which in turn depend on the values both V and
particularly w reach at the end of the previous regime. Because of this sensitivity of the transient
responses to initial conditions, an order rearrangement of the constant pieces produces different
response patterns (Figs. 1-c2 to -e2). This variability, which is reflected in the peak and trough
values of the “disordered" patterns (c2, d2, e2) as compared to the “ordered" ones (c1, d1, e1) is
due to the differences in the initial conditions in each regime as v transitions between pieces with
different amplitudes. The variability among patterns generated by different permutations of the set
{ηk}Nk=1 is inherited from this principle since the initial conditions for a given input piece depends
on the “last" values of the participating variables in response to the previous piece. The variability is
stronger for the 2D cells (Fig. 1-d and Fig. 1-e) than to for the 1D cell (Fig. 1-c1) since the sensitivity
to initial conditions is weaker for the former than for the latter. The addition of a second variable
(dimension) typically adds sensitivity to initial conditions.

3.3.2 The response variability to piecewise constant inputs with normally distributed
amplitudes depends on the cell’s autonomous transient dynamic complexity

Fig. 4-a (colored dots) shows the distribution of the peaks-and-troughs patterns Pη for 100 trials
(permutations of a randomly distributed set {ηk}Nk=1, N = 200, ∆ = 5) for a passive cell (P), a
cell having a node (N) and a cell having a focus (F). The average < Pη > and the Pη,step curves,
superimposed to Pη, show that the average across trials and the response to the reference pattern
(with minimal variability) are not identical. In this figure they are relatively close.

The variability of Pη across trials, Var(Pη) is larger for the F-cell than for the N-cell and there
seems to be no significant difference between the variability of N- and P-cells. (The latter two are
comparable since they have the same value of gL.) However, the qualitative differences between N-
and F-cells are accompanied by different strengths in the responses to step-constant inputs (e.g.,
Fig. 1), and one has to account for these differences in order to isolate the effects of the type of
transient dynamics. We note that these parameter values were chosen so that the two cells (N and
F) have resonance in the same frequency band.

Figs. 4-b1 to -d1 show the variances of Pη (Var(Pη)) and Figs. 4-b2 to -d2 show the normalized
variances (VarN(Pη)) computed as these variances divided by the peak of the unforced cells’ re-
sponse to a step-constant input of amplitude 1. Fig. 4-b show that both Var(Pη) and VarN(Pη) are
larger for the F-cell than for the N-cell. Fig. 4-c shows that both Var(Pη) and VarN(Pη) are slightly
larger for the N-cell than for the corresponding P-cell (obtained by making g1 = 0). In contrast to
this, Fig. 4-d shows that Var(Pη) and VarN(Pη) have different relative values for the F-cell and the
corresponding P-cell; Var(Pη) is larger for the P- than for the F-cell, but VarN(Pη) is larger for the
F- than for the P-cell. The values of these quantities in both cases are significantly larger for the
F-/P-cells than for the N-/P-cells. Together, these results suggest that under the constraints imposed
by the two cells having resonance in the same frequency band, the voltage response of the F-cell
is more variable than the voltage response of the N-cell, and the larger variability of the F-/P-cells
as compared to the N-/P-cells is due to a smaller value of gL, which in turn indicates a stronger am-
plification of the transient voltage response to step-constant inputs. However, the larger variabilities
cannot be attributed to these differences in the voltage response amplitudes since they persist after
the variances have been normalized.

A similar result is obtained when one lifts the resonance constraint on the N- and F-cells. Fig. 7-b
shows the effects of changes in g1 on Var(Pη) and VarN(Pη) for fixed values of gL. As g1 increases
the transient dynamics of the cell transitions from P (green) to N (blue, fres = 7) to F (red, fres = 14,
fnat = 12.3) (Fig. 7-a). Var(Pη) is slightly larger for the F- than for the N-cell and larger than these
two for the P-cell. In contrast, VarN(Pη) is much larger for the F- than for the N-cell, and VarN(Pη)
for the P-cell is comparable to that for the N-cell.
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a b1 b2

c1 c2 d

Figure 7: Variability (across trials) of the responses of linear systems to piecewise constant inputs with normally

distributed amplitudes. Trials consist of different permutations of the same set of constant pieces {ηk}Nk=1. The piecewise

constant inputs Iη have ∆ = 5, N = 200. a. V traces for the node, focus and passive cells in response to a constant input

of amplitude 1. b. Effects of changes of the linearized resonant conductance g1 on the variances Var(Pη) and normalized

variances VarN(Pη) of the peaks-and-troughs patterns. Normalized variance computed as the variance (b1) divided by the

peak of the unforced cells’ response to a step-constant input of amplitude 1 (a). b1. Var(Pη). b2. VarN(Pη). We used the

following parameter values: C = 1, gL = 0.1, τ1 = 100, g1 = 0.2 (node), g1 = 0.8 (focus) and g1 = 0 (passive). c. Effects of

changes of the linearized conductances gL and g1 on the variances Var(Pη). c1. ∆ = 5. c2. ∆ = 1. We used the following

additional parameter values: C = 1 and τ1 = 100. d. Effects of changes of τ1 on the variances Var(Pη). We used ∆ = 1.

We used the following additional parameter values: C = 1, gL = 0.1 and g1 = 2.
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3.3.3 The response variability along time and across trials depends on the levels of
complexity of the autonomous transient dynamics

If the voltage response variability to PWC inputs with randomly distributed amplitudes primarily
depends on the receiving cell’s autonomous transient dynamics, then one expects the variability to
be higher, the faster the response of the individual cells to step-constant inputs. As this response
becomes faster, then it is easier for V to reach values further away from the mean The parameter
gL is the ideal one to test these ideas since it determines the time constant of the V equation.
The smaller GL, the faster the response. Fig. 7-c shows that Var(Pη) is higher for gL = 0.1 than
for gL = 0.2 and this remains true for various representative values of g1. The dependence of
Var(Pη) with g1 is more complex and less clear. For gL = 0.2, Var(Pη) increases with g1, while for
gL = 0.1, Var(Pη) first decreases and then increases with increasing values of g1. For ∆ = 1 these
dependences are less well separated (Fig. 7-c2) when compared with ∆ = 5 (Fig 7-c1).

For fixed values of gL and g1, the time constant τ1 associated to the recovery variable w controls
the time separation between the variables v and w. The larger τ1 (the slower w), the faster the au-
tonomous transient response. Because of this stronger sensitivity to initial conditions, the variability
is expected to be larger, which is confirmed by Fig. 7-d.

Together, these results show how the variability of the responses to PWC input functions with nor-
mally distributed amplitudes are controlled by the transient dynamics of the autonomous responses
to piecewise constant inputs. This variability emerges as the input pieces within the same set are
permuted for different trials. The differences among the responses to the same piece (piece with the
same amplitude) across trials are due to differences in the initial conditions relative to these pieces
caused primarily by the varying amplitudes of the preceding pieces.

3.3.4 The peak-and-trough profiles are able to capture the nonlinear properties of
the target cells

In our previous discussion, we have used linear models as the receiving cells to the PWC inputs.
We have also shown that the presence of certain types of nonlinearities affects not only the vector
field but also the effective time constants of the cell, which in turn affect their autonomous transient
dynamics. We reasoned that these types of nonlinearities may also affect the variability of the cells’
response to PWC inputs. To test these ideas we used the piecewise-linear (PWL) model (3)-(5)
where the v-nullcline (right hand side of the first equation equal to zero) is broken into two linear
pieces at v = vc. We chose vc > 0 to be within the range of values of the v response to the PWC
input and gL > gc. Effectively, the cell’s membrane time constant transitions from g−1L to g−1c at
v = vc. Therefore one should expect the variability pattern to be larger. Since the PWL model
is asymmetric with respect to the equilibrium of the autonomous cell, then one should expect the
variability pattern to be asymmetric with respect to the responses mean. Figs. 8 (rows 1 and 2)
illustrate these ideas. Figs. 8 (row 3) summarize these results and also shows that the variability
for the nonlinear models shows a strong dependence on the amplitude of the input constant pieces,
while the variability pattern for the linear model is flatter. This is also expected since the larger the
input amplitude, the more likely the response to reach values beyond vc. However, the presence of
nonlinearities in the model does not necessarily guarantee a nonlinear response to external inputs.
The latter strongly depends on the time scale separation between the participating variables as it
occurs in other types of responses (e.g., to oscillatory inputs) where the mechanisms depend on the
cell’s autonomous transient dynamics [18]. The stronger the time scale separation (the larger τ1), the
stronger the nonlinear amplification of the voltage response to time-dependent inputs. Consistent
with this, Fig. 8-c1 shows that the peaks-and-troughs profiles for the nonlinear system and τ1 = 10
is more symmetric and spans a smaller range than the profile for τ1 = 100 (Fig. 8-b1), while the
peaks-and-troughs profiles for the corresponding linear systems are similar (Fig. 8-b2 and -c2). In
addition, Var(Pη) is smaller and flatter for τ1 = 10 (Fig. 8-c1) than for τ1 = 100 (Fig. 8-c2).
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Figure 8: Effects of the model nonlinearities on the variability (across trials) in response to linear systems to

piecewise constant inputs with normally distributed amplitudes. Trials consist of different permutations (1000) of the

same set of constant pieces {ηk}Nk=1. The piecewise constant inputs Iη have ∆ = 1, N = 1000. The piecewise linear

model is given by (3)-(4). Left and middle. The color dots indicate the peaks-and-troughs patterns for all trials reorganized

so that the corresponding values of ηk from which they originate are ordered in a monotonically increasing manner. All dots

for a given piece correspond to the same value of ηk. < Pη > (blue) is the mean value of the reordered peaks-and-troughs

patterns for each linear piece. < Pη,step > (green) is the peaks-and-troughs pattern corresponding to the (ordered) input

function Iη,step. Right. Comparison of Var(Pη) between the linear (red) and piecewise linear model (blue). a. We used the

following parameter values: C = 1, gL = 0.5, g1 = 0, gc = 0.1 and vc = 0.5. b. We used the following parameter values:

C = 1, gL = 0.5, τ1 = 100, g1 = 1, gc = 0.1 and vc = 0.5. c. We used the following parameter values: C = 1, gL = 0.5,

τ1 = 10, g1 = 1, gc = 0.1 and vc = 0.5.
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3.4 The variability in the response to piecewise constant inputs requires
constant pieces with arbitrarily distributed amplitudes, but not amplitude ran-
domness

So far we have used PWC input functions with normally distributed amplitudes (Fig. 3-a) motivated
by the fact that in the limit of ∆→ 0, Iη approaches white noise. Earlier in the paper we have shown
that the ability of PWC inputs to capture the resonant properties of a given cell depends on the
multiple ways the receiving cell’s autonomous transient dynamics are activated by the different initial
conditions resulting from the transition between different linear pieces, while randomness does not
play any significant role in this process. Here we extend these ideas to the cells’ response variability.
To this end, we use fully deterministic distributions of amplitudes within some range as described in
Section 2.2.2 leaving the choice of the subset of permutations (number of trials) for each protocol
as the only source of uncertainty in the input signal.

Figs. 9, S2 and S3 show that for the three types of deterministic distributions presented in Fig. 3,
the PWC inputs uncover the voltage oscillatory properties of receiving cells (top panels) and show
the same type of variability as the responses to the normally distributed PWC inputs discussed
above (bottom panels). The differences are in the details. The main observed differences (by
inspection) are in the responses to the P cells (panels a2) where the VarPη profiles are denser for
the equispaced than for the bell-shaped-like PWCs and differences in the values of D for the latter
are reflected in the peaks-and-troughs distributions in the VarPη profiles. A more detailed analysis
is beyond the scope of this paper.

3.5 The activation of the autonomous transient dynamics by the piecewise
constant inputs with small ∆ evokes the steady-state oscillatory properties
of the receiving cells, and not their transient oscillatory properties

Along the previous sections, we have shown a number of examples where both the impedance
amplitude Z(f) and the voltage PSD profiles of cells receiving PWC inputs with small durations ∆
exhibit resonance, independently of whether the corresponding autonomous systems are a node
(no intrinsic oscillations) or a focus (intrinsic damped oscillations). The impedance amplitude profile
Z(f) of a system captures its steady-state response to oscillatory inputs. For linear systems, it is the
magnitude of the complex-valued coefficient of the particular solution to the system (see Appendix
A.2) forced by a sinusoidal function. In this calculation, the transient component of the solution
to the forced system (the solution to the corresponding homogeneous system) is ignored. The
resonance frequency fres, the peak frequency of Z(f), is different from the natural frequency fnat
(the frequency of the transient damped oscillations). The latter is computed from the eigenvalues
for the homogeneous system (see Appendices A.1 and A.2, and also [16, 21]), which controls the
autonomous transient dynamics.

On the other hand, the dynamic mechanisms of generation of resonance involve the autonomous
transient dynamics as uncovered by using dynamical systems tools [17, 18]. Most significantly, the
interplay of the input frequency (whose inverse is a measure of the input time scale) and the cell’s
intrinsic time scale determines the direction of motion of the response limit cycle trajectory in the
phase-space. For the resonance frequency, this interaction of time scales produces the limit cycle
trajectory with the maximal amplitude in the v direction. This mechanism does not rely on the cell’s
eigenvalues and eigenvectors (autonomous steady-state dynamics) and it underlies the resonant
responses of both N- and F-cells.

Because white noise has a constant PSD, both the Z and the V PSD profiles have the same
frequency-dependent properties. This extends to PWC inputs with small enough values of ∆ (e.g.,
Figs. 2a2 to -c2, Figs. 9- and S2- to S3-a1 to -b1), but not necessarily for large values of ∆ (e.g.,
Figs. 2a2 to -c2, insets). Fig. 9-b1 (see also Figs. S2- to S3-b1) shows that both the Z and the V
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PSD profiles peak at fres when fnat = 0 (the receiving cell is a node). For these parameter values
there is a clear separation between the cell’s response to the oscillatory input and the autonomous
intrinsic dynamics (captured by fnat). In Fig. 9-c1 (see also Figs. S2-c1 to S3-c1) the V PSD profile
seems to be superimposed to the Z profile, but because fres and fnat are very close, it is not clear
whether the V PSD profile peaks at fres, fnat or in between. For the parameter values in Fig. 10-a1
the separation between fres and fnat is bigger and the V PSD profile clearly peaks around fres and
far away from fnat for ∆ = 1.

a1 b1 c1

a2 b2 c2

Figure 9: Piecewise constant inputs with arbitrarily ordered, but equispaced (non-randomly) distributed amplitudes

capture the oscillatory properties of the target cells and the variability resulting from the autonomous transient

dynamics. The piecewise constant inputs Iη and Iη,step have constant pieces with equispaced distributed amplitudes (equal

amplitude differences) in the interval [−2, 2] with ∆ = 1 (total time = 1000000 ms for row 1 and total time = 1000 ms for

each trial for row 2. Similar results (with less resolution) are obtained for a smaller number of pieces for row 1 (total time

= 10000 ms). Trials consist of different permutations (1000) of the same set of constant pieces {ηk}Nk=1. a. g1 = 0. b.

g1 = 0.2. c. g1 = 1. We used the additional parameter values: C = 1, gL = 0.1 and τ1 = 100. Top. Impedance amplitude

(Z) and (rescaled) power spectra density (PSD) profiles for the sample V trace for the responses to Iη (random) and Iη,step
(ordered). The PSD profiles were rescaled so that the maxima of the PSD and Z profiles coincide. Bottom. The color

dots indicate the peaks-and-troughs patterns for all trials reorganized so that the corresponding values of ηk from which they

originate are ordered in a monotonically increasing manner. All dots for a given piece correspond to the same value of ηk.

< Pη > (blue) is the mean value of the reordered peaks-and-troughs patterns for each linear piece. < Pη,step > (green) is

the peaks-and-troughs pattern corresponding to the (ordered) input function Iη,step.

In contrast, Figs. 10-b show more complex responses for ∆ = 50. The duration of the constant
pieces ∆ determines an input time scale that interacts with the cell’s intrinsic time scale to produce
the V response. This is true for all values of ∆, but for small values of ∆ the corresponding fre-
quencies (1000/∆) are very large, away from the resonant frequency band, and the response time
to each constant input piece very small. As ∆ increases, the interaction between time scales is
stronger and felt for the lower frequencies. For example, in Figs. 10-b for ∆ = 50, the V PSDs show
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resonances occurring at multiples of 1000/∆ = 20. The shape of these resonant patterns reflects
the properties of the autonomous transient dynamics rather than the properties of the correspond-
ing Z profiles. In Figs. 10-b1, the sequence of PSD peaks decreases, while in Figs. 10-b2, the
sequence of PSD peaks increases and the maximum of these peaks (save the maximum at f = 0)
occurs roughly at fnat. This reflects the stronger oscillatory responses evoked by each constant
piece due to their autonomous transient dynamics.

∆ = 1 ∆ = 50

a1 b1i b1ii

a2 b2i b2ii

Figure 10: Cell’s responses to piecewise constant inputs with normally distributed amplitudes and different con-

stant piece durations. The piecewise constant inputs Iη have a total time equal to 1,000,000. a. ∆ = 1. b ∆ = 50. Top.

2D linear cell having a focus (F) and resonance with well separated values of fnat and fres. We used the following parameter

values: C = 1, gL = 0.3, g1 = 1.3 and τ1 = 60. Bottom. 2D linear cells having a focus (F) and resonance with similar

values of fnat and fres We used the following parameter values: C = 1, gL = 0.2, g1 = 2 and τ1 = 10. Left and Middle.

Superimposed Z and voltage PSD profiles. The dashed vertical lines indicate fres (right) and fnat (left). Right. Sample

voltage trace (blue). The gray curve is a caricature of Iη .

In summary, the autonomous transient dynamics plays a role in shaping the V response PSD
patterns, but these patterns transition from reflecting the stationary properties of the V response
to oscillatory inputs, captured by the Z profile, to the intrinsic properties of the receiving cell as ∆
increases.

4 Discussion

Neuronal systems are subject to fluctuations either intrinsically or externally [23–32, 82, 83], which
have been modeled as random Gaussian white or colored noise [39]. Cells subject to variable inputs
have been shown to exhibit a number of non-expected behaviors (see Introduction for more details
and references), including oscillatory voltage responses and resonances, and they also exhibit vari-
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ability across trials. These phenomena result from the dynamic, often non-trivial interplay of the
cell’s intrinsic properties and the properties of the noise. While variable inputs are ubiquitous, in
particular in neuronal systems [24, 39, 84], several aspects of the dynamic mechanisms governing
these interactions are not well understood. In particular, it is not well understood what aspects of
the cell’s intrinsic dynamics play a role in each of these interactions, what properties of the variability
are necessary, if at all, and how the two are integrated to produce these behaviors. Linear systems
receiving Gaussian white noise can be solved analytically [75–77], but, in general, the resulting for-
mulas provide limited mechanistic information. Nonlinear systems are generally not amenable to
analytical solutions.

The investigation of dynamical systems primarily focuses on stationary solutions [85–87] and the
properties of the transient behavior are less explored or even overlooked. Attractor networks are a
key concept in neural computation [88–94] and have been proposed to capture a variety of cognitive
process (e.g., working memory, navigation). Recently, transient dynamics have been argued to be
important for neuronal processing and the encoding of information [95–101].

In previous work we showed that the cell’s autonomous transient dynamics (the cell’s transient
voltage response to constant inputs, which is uncovered by the voltage response to abrupt changes
between two constant inputs) play a significant role in the mechanistic explanation of the generation
of resonance in linear and non-linear systems in response to oscillatory inputs [17, 18]. Even for
linear systems for which the impedance amplitude and phase profiles can be computed analytically,
the resulting formulas do not explain why and under what circumstances resonance emerges in
systems that do not display intrinsic oscillations (i.e., systems having only real eigenvalues). We
developed a dynamical systems approach to show that the cell’s response to oscillatory inputs can
be thought of as a continuous sequence of transient voltage responses to constant inputs equal to
the value of the input at a given time. The response trajectory for each input frequency tracks the
cyclic motion of the voltage nullcline in the extended phase-plane diagram (technically, the projec-
tion of a surface in the three-dimensional space) and this evolution is governed by the properties of
the autonomous transient dynamics. The resonant frequency corresponds to the optimal balance
between the effective time scale at which the system transiently reacts to constant inputs and the in-
put frequency. This could be captured by approximating the sinusoidal inputs by piecewise constant
(PWC) functions with short-duration pieces and computing the sequence of (property joined) volt-
age response trajectories to these PWC inputs. Because in general these trajectories do not reach
a close enough vicinity of the equilibrium for each constant piece, knowledge of the steady-state
properties of the unforced target cell (eigenvalues and eigenvectors) does not inform the generation
of resonance. We reasoned that similar ideas could shed light on the issues raised in the previous
paragraph.

In this paper we set out to investigate the mechanisms of generation of oscillations and variability
in response to PWC inputs Iη with short-duration constant pieces and variable amplitudes. For each
constant piece, the autonomous transient dynamics are able to develop, but the voltage response
does not reach a close vicinity of the corresponding steady-state. For randomly distributed ampli-
tudes η, the PWC inputs provide an approximation to Gaussian white noise [78]. However, although
our results have implications for systems subject to random Gaussian noise, we are not making
precise statements about the transition from the responses to the deterministic PWC inputs to the
responses to stochastic Gaussian noise inputs as the duration of the constant pieces approaches
zero. This requires more research and is beyond the scope of this paper.

We showed that oscillatory behavior can be generated in response to additive PWC inputs Iη in
both linear and nonlinear systems, independently of whether the stable equilibria of the unperturbed
systems are foci or nodes. These results persisted when the amplitudes of the constant pieces
were not randomly distributed, but chosen following a deterministic rule. For linear systems, this
captures earlier results described in [76] for Gaussian white noise (see also [79] for two-dimensional
linear cells with foci). However, the dynamic mechanisms of generation of oscillations and their
dependence on the autonomous transient dynamics, in particular for cells having a node were not
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known. To understand the effects of the nonlinearities on the oscillatory voltage response we used
a piecewise linear model (PWL) developed in [17] that mimics the voltage-dependences present
in neuronal models in the voltage nullclines (for the current-balance equation). We showed that
the oscillatory voltage response is amplified by the nonlinearities. This nonlinear amplification is
consistent with previous work on resonance (for sinusoidal inputs) [17] and can be also explained in
terms of the interaction between autonomous transient dynamics and the input properties. The PWL
model has two regimes, the linear regime, in the vicinity of the fixed-point, and the nonlinear regime
for voltage values higher than the “breaking point" determining the boundary between the two PWL
input pieces (see Fig. 5-b). The nonlinear regime is in itself linear with respect to a virtual fixed-point,
which is different from the actual fixed-point (the origin in Fig. 5-b). For each constant input piece
for which the response trajectory crosses to the nonlinear regime, this trajectory is able to reach
larger voltage values as compared to the linear model for the same input. This is because the slope
of the voltage nullcline in the nonlinear regime is larger (less negative) than the slope in the linear
regime, and therefore the trajectory for transient voltage response to the corresponding constant
input is able to jump to higher values as compared to the linear regime. This clearly depends on
the properties of the PWL model, in particular on the slope of the “broken" linear piece, which we
chose to be larger (less negative) than the linear piece in the linear regime (see Fig. 5-b). Other
slopes may lead to attenuation of the voltage response. Following similar ideas, we showed that the
voltage response to multiplicative conductance-based synaptic inputs is attenuated as compared to
the underlying model with additive noise. In this case, the “broken" piece is more negative than the
linear one (see Fig. 5-c). This has mechanistic implications for the experimental results discussed
in [102], comparing the voltage responses of current- and conductance-based synaptic fluctuations.
A more detailed explanation requires the use of high-frequency Poisson-distributed synaptic-like
inputs. We analyze this in more detail in a companion paper [103].

The effect of the autonomous transient dynamics on the response variability to Iη is already ap-
parent in the simple illustrative example in Figs. 1-c to -e. The voltage response variability emerges
as the result of the transition between regimes corresponding to different constant pieces. The
variability is minimal for the response to Iη,step (Figs. 1-c1 to -e1) where the constant pieces are
arranged by increasing amplitude and the variability increases as the constant pieces are permuted
(Figs. 1-c2 to -e2) since the transient voltage response for each constant piece regime depends on
the initial conditions for that regime. These, in turn, depend on the value of the participating vari-
ables at the end of the previous regime, which is different for different trials (different permutations
of the order of the constant pieces). To clarify these ideas we designed protocols where the set
of amplitudes η was the same for all trials and each trial used a different permutation of this set.
We then rearranged the voltage response peak-and-trough profiles Pη in increasing order of input
amplitudes η. In this way, we were able to compare the different voltage responses to the same
input amplitude across trials. We used both randomly distributed amplitudes and deterministic dis-
tribution of amplitudes. For each input amplitude ηk, the variability in Pηk across trials was the result
of the multiple different ways the target cell reacts to the input ηk. Again, this is due to the differ-
ences in the initial conditions for that regime, which in turn depend on the values of the participating
variables at the end of the previous regime. This variability was strongly affected by the properties
of the target cells and their ability to produce overshoots and damped oscillations in response to
abrupt changes in constant inputs, which in turn depends on the model parameters, which con-
strain these responses. This interpretation is strengthened by the fact that the variability patterns
remained qualitatively the same when we relaxed the requirement that the amplitudes are randomly
distributed and we used permutations of the same deterministic distribution for each protocol. Al-
though it was not the full overshoot or the damped oscillations that affected the voltage response,
but rather the initial portion to these responses, the particular dependence on the model parame-
ters remains. In other words, cells that exhibit stronger autonomous transient dynamics show more
variability. In this sense, this is consistent with the results for one-dimensional OU processes and it
is intuitive for higher-dimensional OU processes, however, it is not directly clear from the complex
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covariance formulas. For nonlinear processes, analytic computations are not possible and therefore
the method we developed allows to make predictions based on the knowledge of the autonomous
transient dynamics and the structure of the input. Our results further predict that the variability would
be reduced if the input functions involve gradual rather than abrupt transitions.

These predictions and the predictions about the oscillatory properties of cells in response to
PWC inputs could be tested experimentally in vitro using current clamp techniques or in vivo using
optogenetic tools [104–106]. In the first case, variability in response to PWC inputs is expected
to be well correlated with appropriate metrics for the autonomous intrinsic dynamics measured
in response to constant inputs. Obtaining these correlations in the second case could be more
challenging, but still possible by using the appropriate tools to measure the response membrane
potentials.

Time-dependent inputs can be approximated by a discrete sequence of short-duration constant
pieces (e.g., Fig. 1-a) and therefore the sequence of the properly joined transient solutions to these
constant pieces (Figs. 1-c to -e) provides an approximation to the system’s voltage response to
the original (time-dependent) inputs. The short duration of the constant pieces does not allow for
the corresponding steady-state solutions to develop and therefore the information about the input
is encoded by the transient trajectories. Complex odors (different types of stimuli at different con-
centrations) and their representations have been proposed to operate in a similar way [95, 101].
A potentially more involved experimental test or application of the ideas presented in this paper is
the presentation of complex odors consisting of sequences of different permutations of a number
of “basic odors" [95, 101]. Variability in the responses is expected across trials and an increase in
the variability patterns is expected as the “intensity" of these odors increase. However, odor repre-
sentations in the olfactory research is a network phenomenon and therefore additional research is
needed to extend our results to include network effects.

Our results have also implications for the understanding of the emergence of variability in neu-
ronal systems [107] and dynamical systems in general, and in the absence of noise. In the simple
systems we used here, variability emerges as the result of the interaction between the system’s au-
tonomous transient dynamics and a set of deterministic inputs where the only source of uncertainty
is the choice of the subset of all possible PWC functions with the same set of constant piece ampli-
tudes. Key for this variability to emerge are the abrupt transitions between constant piece regimes
and the sensitivity to initial conditions of the autonomous transient dynamics. In higher-order net-
works, this can be evoked by the network internal dynamics without the need of external inputs.
Therefore our results have implications for the encoding of information in general and for these re-
sulting from expansions or quenching of variability [3, 108]. More research is needed to establish
in these networks how variability is affected by the node and connectivity parameters. Finally, if
variability encodes the autonomous transient dynamics of the target cells, then decoding methods
should be able to infer these dynamics. These also require more research.
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A Intrinsic and resonant oscillatory properties of 2D linear sys-
tems

Consider {
x′ = a x+ b y +Ain e

i ω t,
y′ = c x+ d y

(10)

where a, b, c and d are constants, ω = 2πf/1000 > 0 is the input frequency and Ain ≥ 0 is the
input amplitude. The prime sign represents the derivative with respect to t. The units of t are ms
and the units of f are Hz.

A.1 Intrinsic oscillations

The characteristic polynomial for the corresponding homogeneous system (Ain = 0) is given by

r2 − (a+ d) r + (a d− b c) = 0. (11)

The eigenvalues are given by

r1,2 =
a+ d±

√
(a− d)2 + 4bc

2
, (12)

and the natural (intrinsic) frequency of the (damped) oscillations (in Hz if t has units of ms) is given
by

fnat =

√
−(a− d)2 − 4bc

4π
1000 (13)

assuming (a− d)2 + 4bc < 0.
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A.2 Resonance and the impedance amplitude profile

The impedance amplitude profile Z(ω) for system (10)-(11) is the magnitude

Z(ω) =

√
d2 + ω2

(a d− b c− ω2)2 + (a+ d)2 ω2
(14)

of the complex valued coefficient of the particular solution to the system

Z(ω) =
(−d+ i ω)

(−a + i ω) (−d+ i ω)− b c
. (15)

For 1D system, these quantities are given, respectively, by

Z(ω) =
1√

a2 + ω2
(16)

and

Z(ω) =
1

(−a + i ω)
. (17)

The resonance frequency fres (in Hz if t has units of ms) is the frequency at which Z reaches its
maximum

fres =

√
−d2 +

√
b2 c2 − 2 a b c d− 2 d2 b c

2π
1000. (18)

A.3 Response to constant inputs

The equilibrium solution to system (10) for a constant input Ain (i.e., ω = 0) is given by

x̄ = − Ain d

ad− bc
and ȳ =

Ain c

ad− bc
. (19)

The eigenvectors are given by

z1,2 = [b (r1,2 − a)]T . (20)

The solution satisfying the initial conditions [x(0) y(0)]T = [x0 y0]T is given by[
x
y

]
= c1

[
b

r1 − a

]
er1t + c2

[
b

r2 − a

]
er2t +

[
x̄
ȳ

]
(21)

where

c1 =
b (y0 − ȳ)− (x0 − x̄) (r2 − a)

b (r1 − r2)
and c2 =

−b (y0 − ȳ) + (x0 − x̄) (r1 − a)

b (r1 − r2)
(22)

For 1D systems (b = 0),

x̄ = −Ain
a

(23)

and

x =

(
x0 −

Ain
a

)
eat − Ain

a
, (24)

where x(0) = x0
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B Ornstein-Uhlenbeck (OU) Process

B.1 One-dimensional OU process

The 1D OU process [75] is described by the following linear stochastic differential equation

X ′ = −aX + I + ση(t) (25)

where a > 0, I and σ are constants and η(t) is zero-mean and δ-correlated Gaussian white noise.
The parameter a is the inverse of the time constant and measure the strength by which the system
reacts to perturbations. The parameter σ measures the intensity of the noise. The quotient I/α is
the asymptotic mean.

Using standard methods [76, 77] one can compute the solution satisfying X(0) = x0, which is
the sum of a deterministic function with the form (24) and an integral of a deterministic function with
respect to a Wiener process. The solution is normally distributed with mean and variance given,
respectively by

E[X(t)] =

(
X0 −

I

a

)
e−at +

I

a
(26)

and

V ar[X(t)] =
σ2

2a
(1− e−2at). (27)

B.2 Higher-dimensional OU process

The multivariate OU process [75] is described by the following linear stochastic differential equation

X ′ = AX +B + ΣH(t) (28)

where X is an n-dimensional vector, A is an n × n matrix, B is an n-dimensional vector, Σ is an
n ×m matrix and H is a vector of independent zero-mean and δ-correlated Gaussian white noise
components. Using standard methods [76,77] one can compute the solution satisfying X(0) = x0.
The solution is normally distributed. The mean is given by

E[X(t)] = [ eAt −B ]A−1B + eAtX(0), (29)

and the covariance matrix is given by

Cov[X(t)] =

∫ t

0

eAsΣΣT eA
T s. (30)

Under certain conditions, the covariance matrix corresponding to the stationary solutions reads

Cov[X(t)] = − ΣΣT

2Tr(A)
− [A− Tr(A)I] ΣΣT [A− Tr(A)I]T

2Tr(A) det(A)
. (31)
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Supplementary Material

Figure S1: Piecewise constant inputs with arbitrarily ordered, but uniformly (non-randomly) distributed amplitudes

capture the transient dynamics of the target cells. The piecewise constant inputs Iη have ∆ = 5 (total time = 10000 ms, N

= 2000). The parameter values are the same as in Figs. 1 and 2. Row 1. Power spectra density (PSD) profiles for the sample

V trace. Row 2. Impedance amplitude (Z) profiles for the sample V trace. a. Passive cell (fnat = fres = 0). We used the

following paramete.r values: C = 1, gL = 0.25. b. 2D linear system exhibiting an overshoot in response to step-constant

inputs ((fnat = 0, fres ∼ 9Hz). We used the following parameter values: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100. c. 2D

linear system exhibiting damped oscillations in response to step-constant inputs (fnat ∼ fres ∼ 8Hz). We used the following

parameter values: C = 1, gL = 0.05, g1 = 0.3, τ1 = 100. Notice different values of ∆ as shown in the legends.
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a1 b1 c1

a2 b2 c2

Figure S2: Piecewise constant inputs with arbitrarily ordered, but bell-shaped (non-randomly) distributed ampli-

tudes capture the oscillatory properties of the target cells and the variability resulting from the autonomous transient

dynamics. The piecewise constant inputs Iη and Iη,step have constant pieces with (non-random) bell shapped distributed

amplitudes in the interval [−2, 2] with ∆ = 1 (total time = 1000000 ms for row 1 and total time = 1000 ms for each trial

for row 2. Similar results (with less resolution, variance = 1.5) are obtained for a smaller number of pieces for row 1 (total

time = 10000 ms). Trials consist of different permutations (1000) of the same set of constant pieces {ηk}Nk=1. a. g1 = 0.

b. g1 = 0.2. c. g1 = 1. We used the additional parameter values: C = 1, gL = 0.1 and τ1 = 100. Top. Impedance

amplitude (Z) and (rescaled) power spectra density (PSD) profiles for the sample V trace for the responses to Iη (random)

and Iη,step (ordered). The PSD profiles were rescaled so that the maxima of the PSD and Z profiles coincide. Bottom. The

color dots indicate the peaks-and-troughs patterns for all trials reorganized so that the corresponding values of ηk from which

they originate are ordered in a monotonically increasing manner. All dots for a given piece correspond to the same value of

ηk. < Pη > (blue) is the mean value of the reordered peaks-and-troughs patterns for each linear piece. < Pη,step > (green)

is the peaks-and-troughs pattern corresponding to the (ordered) input function Iη,step.
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Figure S3: Piecewise constant inputs with arbitrarily ordered, but bell-shaped (non-randomly) distributed ampli-

tudes capture the oscillatory properties of the target cells and the variability resulting from the autonomous transient

dynamics. The piecewise constant inputs Iη and Iη,step have constant pieces with (non-random) bell shapped distributed

amplitudes in the interval [−2, 2] with ∆ = 1 (total time = 1000000 ms for row 1 and total time = 1000 ms for each trial for

row 2. Similar results (with less resolution, variance = 1) are obtained for a smaller number of pieces for row 1 (total time

= 10000 ms). Trials consist of different permutations (1000) of the same set of constant pieces {ηk}Nk=1. a. g1 = 0. b.

g1 = 0.2. c. g1 = 1. We used the additional parameter values: C = 1, gL = 0.1 and τ1 = 100. Top. Impedance amplitude

(Z) and (rescaled) power spectra density (PSD) profiles for the sample V trace for the responses to Iη (random) and Iη,step
(ordered). The PSD profiles were rescaled so that the maxima of the PSD and Z profiles coincide. Bottom. The color

dots indicate the peaks-and-troughs patterns for all trials reorganized so that the corresponding values of ηk from which they

originate are ordered in a monotonically increasing manner. All dots for a given piece correspond to the same value of ηk.

< Pη > (blue) is the mean value of the reordered peaks-and-troughs patterns for each linear piece. < Pη,step > (green) is

the peaks-and-troughs pattern corresponding to the (ordered) input function Iη,step.
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