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Abstract. Aligning a sequence to a walk in a labeled graph is a prob-
lem of fundamental importance to Computational Biology. For finding
a walk in an arbitrary graph with |E| edges that exactly matches a
pattern of length m, a lower bound based on the Strong Exponential
Time Hypothesis (SETH) implies an algorithm significantly faster than
O(|E|m) time is unlikely [Equi et al., ICALP 2019]. However, for many
special graphs, such as de Bruijn graphs, the problem can be solved in
linear time [Bowe et al., WABI 2012]. For approximate matching, the
picture is more complex. When edits (substitutions, insertions, and dele-
tions) are only allowed to the pattern, or when the graph is acyclic,
the problem is again solvable in O(|E|m) time. When edits are allowed
to arbitrary cyclic graphs, the problem becomes NP-complete, even on
binary alphabets [Jain et al., RECOMB 2019]. These results hold even
when edits are restricted to only substitutions. Despite the popularity of
de Bruijn graphs in Computational Biology, the complexity of approx-
imate pattern matching on de Bruijn graphs remained open. We inves-
tigate this problem and show that the properties that make de Bruijn
graphs amenable to efficient exact pattern matching do not extend to
approximate matching, even when restricted to the substitutions only
case with alphabet size four. Specifically, we prove that determining the
existence of a matching walk in a de Bruijn graph is NP-complete when
substitutions are allowed to the graph. In addition, we demonstrate that
an algorithm significantly faster than O(|E|m) is unlikely for de Bruijn
graphs in the case where only substitutions are allowed to the pattern.
This stands in contrast to pattern-to-text matching where exact match-
ing is solvable in linear time, like on de Bruijn graphs, but approximate
matching under substitutions is solvable in subquadratic O(n/m) time,
where n is the text’s length [Abrahamson, SIAM J. Computing 1987].
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1 Introduction

De Bruijn graphs are an essential tool in Computational Biology. Their role in
de novo assembly spans back to the 1980s [40], and their application in assem-
bly has been researched extensively since then [9,10,17,33,38,39,43,46]. More
recently, de Bruijn graphs have been applied in metagenomics and in the repre-
sentation of large collections of genomes [14,27,30,37,45] and for solving other
problems such as read-error correction [32,35] and compression [8,24]. Due to
the popularity of de Bruijn graphs in the modeling of sequencing data, an algo-
rithm to efficiently find walks in a de Bruijn graph matching (or approximately
matching) a given query pattern would be a significant advancement. For exam-
ple, in metagenomics, such an algorithm could quickly detect the presence of
a particular species within genetic material obtained from an environmental
sample. Or, in the case of read-error correction, such an algorithm could be
used to efficiently find the best mapping of reads onto a ‘cleaned’ reference de
Bruijn graph with low-frequency k-mers removed [32]. To facilitate such tasks,
several algorithms (often seed-and-extend type heuristics) and software tools
have been developed that perform pattern matching on de Bruijn (and general)
graphs [5,22,23,29,31,34,36,42).

The importance of pattern matching on labeled graphs in Computational
Biology and other fields has caused a recent surge of interest in the theoretical
aspects of this problem. In turn, this has led to many new fascinating algorithmic
and computational complexity results. However, even with this improved under-
standing of the theory of pattern matching on labeled graphs, our knowledge is
still lacking in many respects concerning specific, yet extremely relevant, graph
classes. An overview of the current state of knowledge is provided in Table 1.

Table 1. The computational complexity of pattern matching on labeled graphs

Exact matching Approximate matching
Easy | Solvable in linear time Solvable in O(|E|m) time
e Wheeler graphs [16] e DAGs: Substitutions/Edits to graph [29]
(e.g. de Bruijn graphs, e General graphs:
NFAs for multiple strings) Substitutions/Edits to pattern [6]

e de Bruijn graphs: Substitutions to pattern
-No strongly Sub-O(|E|m) alg. (this paper)
Hard | NO strongly sub-O(|E|m) Alg. | NP-Complete

e General graphs [13,19] e General graphs:
(including DAGs with Substitutions/Edits to vertex labels [6,26]
total degree <3) e de Bruijn graphs:

Substitutions to vertex labels (this paper)

For general graphs, we can consider exact and approximate matching. For
exact matching, conditional lower-bounds based on the Strong Exponential Time
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Hypothesis (SETH), and other conjectures in circuit complexity, indicate that
an O(|E|m!'~¢ + |E|*=¢m) time algorithm with any constant ¢ > 0, for a graph
with |E| edges and a pattern of length m, is highly unlikely (as is the ability to
shave more than a constant number of logarithmic factors from the O(|E|m) time
complexity) [13,19]. These results hold for even very restricted types of graphs,
for example, DAGs with maximum total degree three and binary alphabets. For
approximate matching, when edits are only allowed in the pattern, the problem
is solvable in O(|E|m) time [6]. If edits are also permitted in the graph, but
the graph is a DAG, matching can be done in the same time complexity [29].
However, the problem becomes NP-complete when edits are allowed in arbitrary
cyclic graphs. This was originally proven in [6] for large alphabets and more
recently proven for binary alphabets in [26]. These results hold even when edits
are restricted to only substitutions. The distinction between modifications to
the graph and modifications to the pattern is important as these two problems
are fundamentally different. When changes are made to cyclic graphs the same
modification can be encountered multiple times while matching a pattern with
no additional cost (see Section 3.1 in [26] for a detailed discussion). Furthermore,
algorithmic solutions appearing in [29,36,42] are for the case where modifications
are performed only to the pattern.

De Bruijn graphs are interesting from a theoretical perspective. Many graphs
allow for extending Burrows-Wheeler Transformation (BWT) based techniques
for efficient pattern matching. Sufficient conditions for doing this are captured
by the definition of Wheeler graphs, introduced in [16], and further studied in
[3,4,12,15,20]. De Bruijn graphs are themselves Wheeler graphs, hence on a
de Bruijn graph exact pattern matching is solvable in linear time. However,
the complexity of approximate matching in de Bruijn graphs when permitting
modifications to the graph or modifications to the pattern remained open [26].

We make two important contributions (see Table 1). First, we prove that
for de Bruijn graphs, despite exact matching being solvable in linear time, the
approximate matching problem with vertex label substitutions is NP-complete.
Second, we prove that a strongly subquadratic time algorithm for the approx-
imate pattern matching problem on de Bruijn graphs, where substitutions are
only allowed in the pattern, is not possible under SETH. This confirms the opti-
mality of the known quadratic time algorithms when considering polynomial fac-
tors. To the best of our knowledge, these are the first such results for any type
of Wheeler graph. Note that pattern-to-text matching (under substitutions) can
be solved in sub-quadratic O(n+/m) time, where n is the text’s length [2].

1.1 Technical Background and Our Results

Notation for Edges: For a directed edge from a vertex u to a vertex v we will
use the notation (u,v). Additionally, we will refer to u as the tail of (u,v), and
v as the head of (u,v).

Walks Versus Paths: A distinction must be made between the concept of a
walk and a path in a graph. A walk is a sequence of vertices vy, v, ..., v; such
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that for each ¢ € [1,t — 1], (v;,v;41) € E. Vertices can be repeated in a walk. A
path is a walk where vertices are not repeated. The length of a walk is defined
as the number of edges in the walk, t — 1, or equivalently one less than the
number of vertices in the sequence (counted with multiplicity). This work will
be concerning the existence of walks.

Induced Subgraphs: An induced subgraph of a graph G = (V| E) consists of
a subset of vertices V' C V, and all edges (u,v) € F such that u,v € V. This is
in contrast to an arbitrary subgraph of G, where an edge can be omitted from
the subgraph, even if both of its incident vertices are included.

de Bruijn Graphs: An order-k full de Bruijn graph is a compact representa-
tion of all k-mers (strings of length k) from an alphabet X of size o. It con-
sists of o¥ vertices, each corresponding to a unique k-mer (which we call as its
implicit label) in X*. There is a directed edge from each vertex with implicit
label s155...5;, € X* to the o vertices with implicit labels sps3...5p0, o € X.
We will work with induced subgraphs of full de Bruijn graphs in this paper.
We assign to every vertex v a label L(v) € X, such that the implicit label of
v is L(ug)L(ug)...L(ug—1)L(v) where uq,ug, ..., ug—1,v is any length k — 1 walk
ending at v. This is equivalent to the notion of a de Bruijn graph constructed
from k-mers commonly used in Computational Biology.

Strings and Matching: For a string S of length n indexed from 1 to n, we
use S[i] to denote the i*" symbol in S. We use S[i,j] to denote the substring
S[i)S[i+1]...5[4]. If j < i, then we take S[i, j] as the empty string. As mentioned
above, we will consider every vertex v as labeled with a single symbol L(v) € X. A
pattern P[1, m] matches a walk vy, va, ..., vy, iff P[i] = L(v;) for every i € [1,m].
With these definitions in hand, we can formally define our first problem.

Problem 1 (Approxzimate matching with vertex label substitutions). Given a ver-
tex labeled graph D = (V, E) with alphabet X' of size o, pattern P[1,m], and
integer § > 0, determine if there exists a walk in D matching P after at most §
substitutions to the vertex labels.

Theorem 1. Problem 1 is NP-complete on de Bruijn graphs with o = 4.

Theorem 1 is proven in Sect. 2. Intuitively, our reduction transforms a general
directed graph into a de Bruijn that maintains key topological properties related
to the existence of walks. The distinct problem of approximately matching a
pattern to a path in a de Bruijn graph was shown to be NP-complete in [31].
As mentioned by the authors of that work, the techniques used there do not
appear to be easily adaptable to the problem for walks. Our approach uses edge
transformations more closely inspired by those used in [28] for proving hardness
on the paired de Bruijn sound cycle problem.

Problem 2 (Approzimate matching with substitutions within the pattern). Given
a vertex labeled graph D = (V, E) with alphabet X of size o, pattern P[1,m],
and integer § > 0, determine if there exists a walk in D matching P after at
most § substitutions to the symbols in P.



The Complexity of Approximate Pattern Matching on de Bruijn Graphs 267

For Problem 2 we provide a hardness result based on SETH, which is fre-
quently used for establishing conditional optimality of polynomial time algo-
rithms [1,7,13,18,19,25]. We refer the reader to [44] for the definition of SETH
and for the reduction to the Orthogonal Vectors problem (OV), which is utilized
to prove Theorem 2.

Theorem 2. Conditioned on SETH, for all constants e > 0, there does not exist
an O(|E|m'=¢ + |E|'*"°m) time algorithm for Problem 2 on de Bruijn graphs
with o = 4.

Note that the order of the de Bruijn graphs used in ours proofs are ©(log” |V'|)
for Theorem 1 and ©(log |V|) for Theorem 2.

2 NP-Completeness of Problem 1 on de Bruijn Graphs

Our proof of NP-completeness uses a reduction from the Hamiltonian Cycle
Problem on directed graphs, which is the problem of deciding if there exists
a cycle through a directed graph that visits every vertex exactly once. It was
proven NP-complete even when restricted to directed graphs where the number
of edges is linear in the number of vertices [41]. To present the reduction, we
introduce the concept of merging two vertices. To merge vertices u and v, we
create a new vertex w. We then take all edges with either u or v as their head
and make w their new head. Next, we take all edges with either u or v as their
tail and make w their new tail. This makes the edges (u,v) and (v,u) (if they
existed) into self-loops for w. If two self-loops are formed, we delete one of them.
Finally, we delete the original vertices u and v.

<

#(v)  enc(Lv) $W enc(L(v))

#W enc(L(v) $W

= enc(L(u)) #V enc(L(v))

; f } $W enc(L(u)) #WV
@ E
U v u v $(u)

enc(L(u)) $" enc(L(u))

c

Fig.1. Gadget to remove cycles of Fig. 2. The transformation from edges
length 2 from the initial input graph. to paths used in our reduction.
v enc(L(v)) $W enc(L(v)) d’(:) M W enclLiv) 8% enclLiv) ¢(A»U) ‘Mi”)enc(L(w)) W enc(Liw)
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Fig. 3. Vertices with the same implicit label are merged while transforming D to D',
causing edges with shared vertices to become paths with shared vertices.
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2.1 Reduction

We start with an instance of the Hamiltonian cycle problem on a directed graph
where the number of edges is linear in the number of vertices. We can assume
there are no self-loops or vertices with in-degree or out-degree zero. To simplify
the proof, we first eliminate any cycles of length 2 using the gadget in Fig. 1.
We denote the resulting graph as D = (V, E) and let n = |V|.We assign each
vertex v € V a unique integer L(v) € [0,n — 1]. Let £ = [logn], bin(i) be
the standard binary encoding of ¢ using ¢ bits and ¥ = {$,#,0,1}. Define
enc(i) = (02/1)%*bin(i), W = |enc(i)|, and k = 3W.

We construct a new (de Bruijn) graph D’ = (V’, E’) as follows: Initially D’ is
the empty graph. For i = 0,1,...,n—1, for each edge (u,v) € E where L(v) = 1,
create a new path whose concatenatlon of vertex labels is #"Wenc(i)$"enc(i). The
vertex u will correspond with a new vertex ¢(u) at the start of this path, and
the vertex v will correspond with a new vertex ¢(v) at the end of this path.
The vertex ¢(v) has the implicit label enc(L(v))$"enc(L(v)). The vertex ¢(u) is
temporarily assigned the implicit label enc(L(u))$"enc(L(u)). See Fig. 2. We call
vertices with implicit labels of the form enc(L(-))$Wenc(L(-)) marked vertices.
We use the notation ¢((u,v)) to denote the path created when applying this
transformation to (u,v) € E. After the path ¢((u,v)) is created, vertices in V'
having the same implicit label are merged, and parallel edges are deleted (Fig. 3).
See Fig. 4 for a complete example. Finally, let § = 2¢(n — 1) and

P =#"enc(0)$"enc(0)#"enc(1)$"Venc(1)#"W . ..
#Wenc(n — 1)$"enc(n — 1)#%enc(0)$%enc(0).

We will show that there exists a walk in D" matching P with at most ¢ vertex
label substitutions iff D contains a Hamiltonian cycle.

Proof of Correctness

Lemma 1. The graph D' constructed as above is a de Bruijn graph.

Proof (Overview). Three properties must be proven: (i) Implicit labels are
unique, meaning for every implicit label at most one vertex is assigned that
label; (ii) No edges are missing, i.e., if the implicit label of y € V' is Sa for
some string S[1,k — 1] and symbol a € X, and there exists a vertex z € V'
with implicit label 5S[1,k — 1] for some symbol § € X, then (x,y) € E’; (iii)
Implicit labels are well-defined, in that every walk of length k£ — 1 ending at
a vertex € V' matches the same string (the implicit label of z); The most
involved of these is proving property (ii), which requires analyzing several cases.
The complete proof is given in the full version [21]. O

The correctness of the reduction remains to be shown. Lemmas 2—4 estab-
lish useful structural properties of D’, Lemma 5 proves that the existence
of a Hamiltonian Cycle in D implies an approximate matching in D’, and
Lemmas 6-9 demonstrate the converse.
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Fig. 4. (Left) A graph before the reduction is applied to it. (Right) The transformed
graph. Implicit labels for marked vertices are shown and the path directions are anno-
tated by arrows beside each path.

Lemma 2. Any walk between two marked vertices ¢(u) and ¢(v) containing no
additional marked vertices has length 4W . Hence, we can conclude any such walk
18 a path.

Proof (Overview). This is proven using induction on the number of edges trans-
formed. It is shown that for every vertex, a key property regarding the distances
to its closest marked vertices continues to hold after vertices on any newly cre-
ated path are merged. We defer the complete proof to the full version [21]. O

Lemma 3. For (ui,v1), (uz,v2) € E, unless u1 = ug or v = va, ¢((u1,v1))
and ¢((uz,v2)) share no vertices.

Proof. In the case where {u1,v1} N {uz,v2} = 0 (Fig. 5 left), every implicit
vertex label in ¢((uy,v1)) contains enc(L(uq)) or enc(L(vy)) (or both), and con-
tains neither enc(L(uz)) nor enc(L(vg)). Similarly, every implicit vertex label
in ¢((ug,v2)) contains enc(L(usz)) or enc(L(vse)) (or both) and contains neither
enc(L(uy)) nor enc(L(vy)). This implies that none of the implicit labels match
between the two paths, thus no vertices are merged. In the case where v; = uq
and u; # ve (Fig. 5, right), the implicit labels of vertices ¢((u1,v1)) not con-
taining enc(L(uq)) have # symbols in different positions than implicit labels
of vertices in ¢((u2,v2)) not containing enc(L(vs2)), and, since v; # vy, cannot
match the implicit labels of vertices in ¢((uz,v2)) containing enc(L(vq)). Ver-
tices in ¢((u1,v1)) with implicit labels containing enc(L(uq)) have # symbols in
different positions than implicit labels of vertices in ¢((ug,v2)) not containing
enc(L(uz)), and, since u; # ug, cannot match the implicit labels of vertices in
@¢((uz,v2)) containing enc(L(uz)). The case u; = vy and uz # vy is symmetric.
The case u; = vo and v; = us cannot happen since, by the use of our gadget in
Fig. 1, D cannot contain the edges (u1,v1) and (v1,u1). a
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Fig. 5. Examples where paths between marked vertex cannot share any vertex: (Left)
The case where {u1,v1} N {uz,v2} = 0. (Right) The case where vi = uz and u; # vs.

Lemma 4. There exists a path from a marked vertex ¢p(u) € V' to a marked
vertex ¢(v) € V' containing no other marked vertices iff (u,v) € E.

Proof (Overview). It is clear from construction that if (u,v) € D, then such a
path exists in D’. In the other direction, we utilize Lemmas 2 and 3 to show that
such a path existing without a corresponding edge would create a contradiction.
The complete proof is provided in the full version [21]. |

Lemma 5. If D has a Hamiltonian cycle, then P can be matched in D' with at
most O substitutions to vertex labels of D’.

Proof. To obtain a matching walk, follow the cycle corresponding to a solution
in D starting with the marked vertex in V'’ corresponding to the vertex in V
with label 0. By Lemma 4, each edge traversed in D corresponds to a path in
D’. While traversing these paths, modify the vertex labels in D’ corresponding
to the substrings bin(i) to match P. Assuming no conflicting substitutions are
needed, this requires at most 2¢(n — 1) substitutions.

It remains to be shown that no conflicting label substitutions will be nec-
essary. Consider the edges (u1,v1), (u2,v2) € F used in the Hamiltonian cycle
in D. We will never have u; = uy or v;1 = vy. Hence, by Lemma 3, the sets of
vertices on the paths ¢((u1,v1)) and ¢((ug,v2)) are disjoint. O

Lemma 6. If P can be matched in D' with at most § substitutions to vertex
labels of D', then all $’s in P are matched with non-substituted $’s in D' and
all #’s in P are matched with non-substituted #’s in D’. Consequently, we can
assume the only substitutions are to the vertex labels corresponding to bin(i)’s
within enc(i)’s.

Proof (Overview). We establish the existence of a long, non-branching path for
every marked vertex that can be traversed at most once when matching P. This,
combined with maximal paths of, $, #, and 0/1-symbols, all being of length W,
makes it so that ‘shifting’ P to match a portion of D forces the shift to occur
throughout the walk traversed while matching P. Utilizing the large Hamming
distance between shifted instances of two encodings, we can then show that not
matching all non-0/1 symbols requires more than ¢ substitutions. The complete
proof is provided in the full version [21]. O
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Post-substitution to vertex labels, we will refer to a vertex as marked
if there exists a walk ending at it that matches a string of the form
enc(L(u))$Wenc(L(u)), u € V. Note that this definition does not require all
length k£ — 1 walks ending at such a vertex to match the same string.

Lemma 7. If P can be matched in D' with at most § substitutions to vertex
labels of D', then no additional marked vertices are created due to vertex substi-
tutions.

Proof. Pre-substitution, only marked vertices have implicit labels of the form
S518W' Sy where S; and Sy contain no $ symbols. Hence, the only way that a
vertex could have a walk ending at it that matches a pattern of that form post-
substitution is if either it was originally a marked vertex, or some non-0/1-
symbols were substituted in D’. However, by Lemma 6 the latter case cannot
happen, and only originally marked vertices have walks ending at them matching
strings of the form S;$" S, post-substitution. O

Lemma 8. If P can be matched in D' with at most § substitutions to ver-
tex labels of D', then each originally marked vertexr in D' is wvisited exactly
once, except for an originally marked verter at the end of a path matching
enc(0)$"W enc(0) that is visited twice.

Proof. First, we show that all marked vertices, except the one with implicit label
enc(0)$" enc(0), are visited at most once. Pre-substitution, a marked vertex with
implicit label enc(i)$"enc(i) is at the end of a unique, branchless path of length
W matching enc(i). By Lemma 6, the only substitutions to this path made
while matching P are substitutions making it match enc(i’), ¢’ # . If this path
were modified to match enc(i’), i’ > 0, then the only way the marked vertex
could be visited twice while matching P is if after traversing the path, another
path matching $" is taken back to the start of this enc(i’) path. However, any
edges leaving this marked vertex are labeled with #, making this impossible.
By similar reasoning, the path matching enc(0) ending at a marked vertex is
visited at most twice. We now show that each marked vertex is visited at least
once. Suppose some marked vertex is not visited. By Lemma 7, no additional
marked vertices are created. Hence, a marked vertex ending a path matching
enc(i), ¢ > 0 is visited at least twice, or a marked vertex ending a path matching
enc(0) is visited at least three times, a contradiction. O

Lemma 9. If P can be matched in D' with at most § substitutions to vertex
labels of D', then D has a Hamiltonian cycle.

Proof. By Lemma 4, the paths between marked vertices traversed while match-
ing with P correspond to edges between vertices in D. Combined with marked
vertices being visited exactly once from Lemma 8 (except the marked vertex
ending a path matching enc(0)), the walk matched by P in D’ corresponds to a
Hamiltonian cycle through D beginning and ending at the vertex labeled 0. O
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This completes the proof of Theorem 1. To see that k = ©(log? |V’|), first
recall that |V is the number of vertices in the original graph, where we assumed
|E] = O(|V]). At most 4W|E| = O(k|V|) vertices are created in the reduction.
Also, the proof of Lemma 6 establishes that there is a unique set of at least
O(k) vertices for every marked vertex, each one corresponding to a vertex in
the original graph. Combining, we have that |V'| = ©(k|V|). By construction,
k = O(log?|V]), and since |V'| = O(k|V]), k = O(log® |V'|) as well.

3 Hardness for Problem 2 on de Bruijn Graphs

Reduction. The Orthogonal Vectors Problem is defined as follows: given two
sets of binary vectors A, B C {0,1}% where |A| = |B| = N, determine whether
there exists vectors a € A and b € B such that their inner product is zero.
Conditioned on SETH, a standard reduction shows that this cannot be solved
in time d®(M N2~¢ for any constant ¢ > 0 [44].

2 2

0
o 1 2 d 0 2 2 2
o fa(@l]) fa(@2)) faald))  fa(0) \ 2>.\e NP
1 R
0/ N Falaall)) Fa(as2) falasid)  fa(0) CN 2 FN PO
.;: : 2 22 2/ 2\.’_),/"2
(O TFa ) Fatan 2 Talantd)  a(0) 202
h alany alany alan A
1; 222 22
fa(0) fa(0) fa(0) fa(1)
length £ paths of 2's
merging position depends on
longest common suffix between
two vector gadgets
H/_/
Selection Selection Post-selection Synchronization
fan-in section merge section loop

Fig. 6. An illustration of the reduction from OV to Problem 2.

Let the given instance of OV consist of A, B C {0, 1}¢ where |A| = |B| = N =
2™ for some natural number m. Hence, we have [log(N + 1)] = log N + 1. This
will ease computation later. We also assume that d > log N. This is reasonable,
as if d <log N, then |A| and |B| would contain either all vectors of length d or
repetitions.

We will next provide a formal description of the graph D our reduction
creates from the set A = {a1,as,...,an} and the pattern P it creates from the
set B = {b1,ba, ...,bx }. The reader may find Fig. 6 helpful. The graph will consist
of four sections. We name these according to their function in the reduction: the
Selection fan-in, the Selection section, the Post-Selection merge section, and the
Synchronization loop.
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We start with the Selection fan-in. Let 2¢ be the smallest power of 2 such
that 2¢ > N + 1. The Selection fan-in consists of a complete binary tree with
2¢ leaves where all paths are directed away from the root. The root is labeled 0
and the children of every node are labeled 0 and 1, respectively.

The Selection section consists of N + 1 paths. We first define the map-
pings fa and fp from {0,1} to sequences of length four as f4(0) = 1100,
fa(l) = 1111, fp(0) = 0110, fp(1) = 0000. These mappings have the prop-
erty that du(fa(0), f(0)) = du(fa(0), f5(1)) = du(fa(1), f(0)) = 2 and
dr(fa(l), fe(1)) = 4, where dy(z,y) is the Hamming distance between strings
x and y. We make the *" path for 1 < i < N a path of 4(d + 1) vertices
with labels matching the string fa(a;[1]) fa(a;[2])...fa(ai[d]) f4(0). We make the
(N + 1)*" path have 4(d + 1) vertices and match the string fa(0)%fa(1). Let s;
denoted the start vertex of path i. We arbitrarily choose N + 1 leaves, [y, ls,...,
IN+1, from the Selection fan-in and add the edges (I;,s;) for 1 <i < N 4 1.

We define the implicit label size as k = [log(N +1)] +4(d+1) and £ = k—1.
To construct the Post-selection merge section, we start with N + 1 length ¢ — 1
paths, each matching the string 2¢. For every path in the Selection section, we
add an edge from the last vertex in the path to one of the paths matching 2¢.
This is done so that every path matching 2¢ in the Post-selection merge section
is connected to exactly one path from the Selection section. Next, we merge two
vertices if they have the same implicit label. This is repeated until all vertices
in the Post-selection merge section have a unique implicit label.

To construct the Synchronization loop we create a directed cycle with £+1 =
k vertices. One of these is labeled with the symbol 3, and the rest with the
symbol 2. Edges from each ending vertex in the Post-selection Merge section to
the vertex labeled 3 are then added. A final edge from the vertex labeled 3 to
the root of the binary tree in the Selection fan-in completes the graph, which we
denote as D.

Let t = 5d + [log(N + 1)]. To complete the reduction, we make the pattern

P = (2'3)" 2l s £ (b1 [1]) fp(01[2]) - .. fo(ba[d]) f5(1)
(213t 2MoeWADT fp(by 1)) f(b2[2)) . .. fo(b2[d]) f5(1)

(23)" 2MoeNH VT s (b [1]) £ (b [2]) - o (bx[d)) (1)

and the maximum number of allowed substitutions § = N [log,(N +1)] 4+ 2(d +
1)+ (@2d+4)(N —1).

We call substrings in P of the form fg(b;[1]) fe(b:[2]) ... fB(b:[d])f(1) and
paths in D matching strings of the form f4 (a;[1]) fa(a;[2])...fa(a;[d]) fa(0) vector
gadgets. Note that |E| = O(dN) and m = |P| = O(d?>N). Hence, an algorithm
for approximate matching running in time O(m|E|*=¢ +m!~¢|E]|) for some ¢ > 0
would imply an algorithm for OV running in time d®) N2~¢. This implies that
once the correctness of the reduction has been established, Theorem 2 follows.
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3.1 Proof of Correctness

Proofs of Lemma 10 and Lemma 11 are provided in the full version [21].
Lemma 10. The graph D 1is a de Bruijn graph.

Lemma 11. In an optimal solution, 3’s in P are matched with 3’s in D.

Lemma 12. In an optimal solution, vector gadgets in P are matched with vector
gadgets in D.

Proof. Suppose otherwise. By Lemma 11, this can only occur if some vector
gadget in P is matched against the Synchronization loop. This requires at least
4(d 4+ 1) substitutions. We can instead match the [log(N + 1)] 2’s preceding
the vector gadget in P with the Selection fan-in and the vector gadget in P
with the (N + 1)!* path in the Selection section. Due to dg(fa(0), f5(0)) =
di(fa(0), fe(1)) =2and d(fa(1), fe(1)) = 4, this requires [log(N+1)|+2d+4
substitutions in P. Since, log N < d < 2d we have log N < 2d — 1. Using that NV
is some power of 2, [log(N +1)] +2d+4 =log N + 1+ 2d 4+ 4 < 4d + 4. Hence,
the cost decreases by matching the vector gadget in P to a vector gadget in D
instead. O

Lemma 13. If there exists a vector a € A and b € B such that a-b =0, then
P can be matched to D with at most 6 substitutions.

Proof. Match the vector gadget for b in P with the vector gadget for a in the
Selection section of D. This costs 2(d + 1) substitutions. Match the remaining
N — 1 vector gadgets in P with the (N + 1) path in the Selection section,
requiring (2d+4)(N —1) substitutions in total. The total number of substitutions
of 2’s in P to match the Selection fan-in is N[log(N 4 1)]. Adding these, the
total number of substitutions is exactly d. The synchronization loop can be used
for matching all additional symbols in P without any further substitutions. O

Lemma 14. If P can be matched in D with at most § substitutions, then there
exists vectors a € A and b € B such a-b= 0.

Proof. By Lemma 12, we can assume vector gadgets in P are only matched
against vector gadgets in D. Suppose that there does not exist a pair of orthog-
onal vectors a € A and b € B. Then, which ever vector gadget in D we choose to
match a vector gadget in P to, matching the vector gadget requires at least 2d+4
substitutions. Hence, the total cost is at least (2d + 4)N + N[log(N + 1)] > 4,
proving the contrapositive of Lemma 14. ([l

4 Discussion

We leave open several interesting problems. An NP-completeness proof for Prob-
lem 1 on de Bruijn graphs when & = O(logn) and the alphabet size is constant is
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still needed. Additionally, we need to extend these hardness results to when sub-
stitutions are allowed in both the graph and the pattern, and when insertions and
deletions in some form are allowed in the graph and (or) the pattern. It seems
unlikely that adding more types of edit operations would make the problems
computationally easier, and we conjecture these variants are NP-complete on de
Bruijn graphs as well. It also needs to be determined whether Problem 1 is NP-
complete on de Bruijn graphs with binary alphabets, or whether the SETH-based
hardness results hold for Problem 2 on binary alphabets. A practical question
is whether these problems are hard for small § values on de Bruijn graphs (the
problem for general graphs was proven to W[2] hard in terms of ¢ in [11]). In
applications, the allowed error thresholds are quite small. Clearly, the problems
are slice-wise-polynomial with respect to ¢, i.e., for a constant ¢ it is solvable
in polynomial time via brute force, but are they fixed-parameter-tractable in §7
The reduction presented here (as well as the reductions in [6,26]) is based on
the Hamiltonian cycle problem, where a large § value is used. This makes the
existence of such a fixed-parameter-tractable algorithm a distinct possibility.
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