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Abstract. Co-linear chaining has proven to be a powerful heuristic for
finding near-optimal alignments of long DNA sequences (e.g., long reads
or a genome assembly) to a reference. It is used as an intermediate
step in several alignment tools that employ a seed-chain-extend strat-
egy. Despite this popularity, efficient subquadratic-time algorithms for
the general case where chains support anchor overlaps and gap costs are
not currently known. We present algorithms to solve the co-linear chain-
ing problem with anchor overlaps and gap costs in Õ(n) time, where
n denotes the count of anchors. We also establish the first theoretical
connection between co-linear chaining cost and edit distance. Specifi-
cally, we prove that for a fixed set of anchors under a carefully designed
chaining cost function, the optimal ‘anchored’ edit distance equals the
optimal co-linear chaining cost. Finally, we demonstrate experimentally
that optimal co-linear chaining cost under the proposed cost function can
be computed orders of magnitude faster than edit distance, and achieves
correlation coefficient above 0.9 with edit distance for closely as well as
distantly related sequences.
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1 Introduction

Computing an optimal alignment between two sequences is one of the most fun-
damental problems in computational biology. Unfortunately, conditional lower-
bounds suggest that an algorithm for computing an optimal alignment, or edit
distance, in strongly subquadratic time is unlikely [3,10]. This lower-bound indi-
cates a challenge for scaling the computation of edit distance to high-throughput
sequencing data. Instead, heuristics are often used to obtain an approximate
solution in less time and space. One such popular heuristic is co-linear chain-
ing. This technique involves precomputing fragments between the two sequences
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that closely agree (in this work, exact matches called anchors), then determining
which of these anchors should be kept within the alignment (see Fig. 1). Tech-
niques along these lines are used in long-read mappers [6,12,15,16,24,25,27] and
generic sequence aligners [2,5,14,19,23]. We will focus on the following problem
(described formally in Sect. 2): Given a set of n anchors, determine an optimal
ordered subset (or chain) of these anchors.

Several algorithms have been developed for the co-linear chaining [1,17,28,31]
and even more in the context of sparse dynamic programming [8,9,18,20,22,33].
Solutions with different time complexities exist for different variations of this
problem. These depend on the cost-function assigned to a chain and the types of
chains permitted. Solutions include an algorithm running in O(n log n log log n)
time for a simpler variant of the problem where anchors used in a solution must
be non-overlapping [1]. More recently, Mäkinen and Sahlin gave an algorithm
running in O(n log n) time where anchor overlaps are allowed, but gaps between
anchors are not considered in the cost-function [17]. None of the solutions intro-
duced thus far provide a subquadratic time algorithm for variations that use
both overlap and gap costs. However, including overlaps and gaps into a cost-
function is a more realistic model for anchor chaining. For example, consider
a simple scenario where minimizers [26] are used to identify anchors. Suppose
query and reference sequences are identical, then adjacent minimizer-anchors will
likely overlap. Not allowing anchor overlaps during chaining will lead to a penalty
cost associated with gaps between chained anchors despite the two strings being
identical. Therefore, depending on the type of anchor, there may be no reason
to assume that in an optimal alignment the anchors would be non-overlapping.
At the same time, not penalizing long gaps between the anchors is unlikely to
produce correct alignments. This is why both anchor overlaps and gap costs
are supported during chaining in widely-used aligners, e.g., Minimap2 [13,15],
Nucmer4 [19]. This work’s contribution is the following:

– We provide the first algorithm running in subquadratic, ˜O(n) time for chain-
ing with overlap and gap costs1. Refinements based on the specific type
of anchor and chain under consideration are also given. These refinements
include an O(n log2 n) time algorithm for the case where all anchors are of
the same length, as is the case with k-mers.

– When n is not too large (less than the sequence lengths), we present an
algorithm with O(n · OPT + n log n) average-case time where OPT is the
optimal solution value. This provides a simple algorithm that is efficient in
practice.

– Using a carefully designed cost-function, we mathematically relate the opti-
mal chaining cost with a generalized version of edit distance, which we call
anchored edit distance. This is equivalent to the usual edit distance with the
modification that matches performed without the support of an anchor have
unit cost. A more formal definition appears in Sect. 2. With our cost function,
we prove that the optimal chaining cost is equal to the anchored edit distance.

1
˜O(·) hides poly-logarithmic factors.
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– We empirically demonstrate that computing optimal chaining cost is orders
of magnitude faster than computing edit distance, especially in semi-global
comparison mode. We also demonstrate a strong correlation between optimal
chaining cost and edit distance. The correlation coefficients are favorable when
compared to suboptimal chaining methods implemented in Minimap2 and
Nucmer4.
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A T T C A T A T C G A T T

A T T C A G A T A T C G A

A T T C A T A T C G A T T

Fig. 1. (Left) Anchors representing a set of exact matches are shown as rectangles.
The co-linear chaining problem is to find an optimal ordered subset of anchors subject
to some cost function. (Right) A chain of overlapping anchors.

2 Concepts and Definitions

For a given pair of strings S1 and S2, an anchor interval pair ([a..b], [c..d]) signifies
an exact match between S1[a..b] and S2[c..d]. For an anchor I, we denote these
values as I.a, I.b, I.c, and I.d. Here b − a = d − c and S1[a + j] = S2[c + j] for
all 0 ≤ j ≤ b−a. We say that the character match S1[a+ j] = S2[c+ j], 0 ≤ j ≤
b−a, is supported by the anchor ([a..b], [c..d]). Maximal exact matches (MEMs),
maximal unique matches (MUMs), or k-mer matches are some of the common
ways to define anchors. Maximal unique matches [7] are a subset of maximal
exact matches, having the added constraint that the pattern involved occurs
only once in both strings. If all intervals across all anchors have the same length
(e.g., using k-mers), we say that the fixed-length property holds.

Our algorithms will make use of dynamic range minimum queries (RmQs).
For a set of n d-dimensional points, each with an associated weight, a ‘query’
consists of an orthogonal d-dimensional range. The query response is the point in
that range with the smallest weight. Using known techniques in computational
geometry, a data structure can be built in O(n logd−1 n) time and space, that
can both answer queries and modify a point’s weight in O(logd n) time [4].

2.1 Co-linear Chaining Problem with Overlap and Gap Costs

Given a set of n anchors A for strings S1 and S2, we assume that A already con-
tains two end-point anchors Aleft = ([0, 0], [0, 0]) and Aright = ([|S1| + 1, |S1| +
1], [|S2|+1, |S2|+1]). We define the strict precedence relationship ≺ between two
anchors I ′ := A[j] and I := A[i] as I ′ ≺ I if and only if I ′.a ≤ I.a, I ′.b ≤ I.b,
I ′.c ≤ I.c, I ′.d ≤ I.d, and strict inequality holds for at least one of the four
inequalities. In other words, the interval belonging to I ′ for S1 (resp. S2) should
start before or at the starting position of the interval belonging to I for S1 (resp.
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S2) and should not extend past it. We also define the weak precedence relation
≺w as I ′ ≺w I if and only if I ′.a ≤ I.a, I ′.c ≤ I.c and strict inequality holds
for at least one of the two inequalities, i.e., intervals belonging to I ′ should start
before or at the starting position of intervals belonging to I, but now intervals
belonging to I ′ can be extended past the intervals belonging to I. The aim of
the problem is to find a totally ordered subset (a chain) of A that achieves the
minimum cost under the cost function presented next. We specify whether we
mean a chain under strict precedence or under weak precedence when necessary.

Cost Function. For I ′ ≺ I, the function connect(I ′, I) is designed to indicate
the cost of connecting anchor I ′ to anchor I in a chain. The chaining problem
asks for a chain of m ≤ n anchors, A′[1], A′[2], . . ., A′[m], such that the following
properties hold: (i) A′[1] = Aleft, (ii) A′[m] = Aright, (iii) A′[1] ≺ A′[2] ≺ . . . ≺
A′[m], and (iv) the cost

∑m−1
i=1 connect(A′[i],A′[i + 1]) is minimized.

We next define the function connect. In Sect. 4, we will see that this definition
is well motivated by the relationship with anchored edit distance. For a pair of
anchors I ′, I such that I ′ ≺ I:

– The gap in string S1 between anchors I ′ and I is g1 = max(0, I.a− I ′.b− 1).
Similarly, the gap between the anchors in string S2 is g2 = max(0, I.c−I ′.d−
1). Define the gap cost g(I ′, I) = max(g1, g2).

– The overlap o1 is defined such that I ′.b − o1 reflects the non-overlapping
prefix of anchor I ′ in string S1. Specifically, o1 = max(0, I ′.b − I.a + 1).
Similarly, define o2 = max(0, I ′.d − I.c + 1). We define the overlap cost as
o(I ′, I) = |o1 − o2|.

– Lastly, define connect(I ′, I) = g(I ′, I) + o(I ′, I).

The same definitions are used for weak precedence, only using ≺w in the place
of ≺. Regardless of the definition of connect, the above problem can be trivially
solved in O(n2) time and O(n) space. First sort the anchors by the component
A[·].a and let A′ be the sorted array. The chaining problem then has a direct
dynamic programming solution by filling an n-sized array C from left-to-right,
such that C[i] reflects the cost of an optimal chain that ends at anchor A′[i].
The value C[i] is computed using the recursion: C[i] = minA′[k]≺A′[i]

(

C[k] +
connect(A′[k],A′[i])

)

where the base case associated with anchor Aleft is C[1] =
0. The optimal chaining cost will be stored in C[n] after spending O(n2) time.
We will provide an O(n log4 n) time algorithm for this problem.

2.2 Anchored Edit Distance

The edit distance problem is to identify the minimum number of operations (sub-
stitutions, insertions, or deletions) that must be applied to string S2 to transform
it to S1. Edit operations can be equivalently represented as an alignment (a.k.a.
edit transcript) that specifies the associated matches, mismatches and gaps while
placing one string on top of another. The anchored edit distance problem is as
follows: given strings S1 and S2 and a set of n anchors A, compute the optimal
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edit distance subject to the condition that a match supported by an anchor has
edit cost 0, and a match that is not supported by an anchor has edit cost 1.

The above problem is solvable in O(|S1||S2|) time and space. We can assume
that input does not contain redundant anchors, therefore, the count of anchors
is ≤ |S1||S2|. Next, the standard dynamic programming recursion for solving the
edit distance problem can be revised. Let D[i, j] denote anchored edit distance
between S1[1, i] and S2[1, j], then D[i, j] = min(D[i − 1, j − 1] + x,D[i − 1, j] +
1,D[i, j − 1] + 1), where x = 0 if S1[i] = S2[j] and the match is supported by
some anchor, and x = 1 otherwise.

2.3 Graph Representation of Alignment

It is useful to consider the following representation of an alignment of two strings
S1 and S2. As illustrated in Fig. 2, we have a set of |S1| top vertices and |S2|
bottom vertices. There are two types of edges between the top and bottom
vertices: (i) A solid edge from ith top vertex to the jth bottom vertex. This
represents an anchor supported character match between the ith character in S1

and the jth character in S2; (ii) A dashed edge from the ith top vertex to the jth
bottom vertex. This represents a character being substituted to form a match
between S1[i] and S2[j] or a character match not supported by an anchor. All
unmatched vertices are labeled with an ‘x’ to indicate that the corresponding
character is deleted. An important observation is that no two edges cross.

In a solution to the anchored edit distance problem every solid edge must be
‘supported’ by an anchor. By ‘supported’ here we mean that the match between
the corresponding characters in S1 and S2 is supported by an anchor. In Fig. 2,
these anchors are represented with rectangles above and below the vertices. We
use M to denote a particular alignment. We also associate an edit cost with
the alignment, denoted as EDIT (M). This is equal to the number of vertices
marked with x in M plus the number of dashed edges in M.

S1

S2

x

xxx

xx

Fig. 2. The graph representation of an alignment. Solid edges represent anchor-
supported character matches, dashed edges represent substitutions and unsupported
matches, and x’s represent deletions. We use M to denote an alignment. Here
EDIT (M) = 7, the total number of x’s and dashed edges.
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3 Our Algorithms

Theorem 1. The co-linear chaining problem with overlap and gap costs can be
solved in time ˜O(n). In particular, in time O(n log2 n) for chains with fixed-
length anchors; in time O(n log3 n) for chains under weak precedence; and in
time O(n log4 n) for chains under strict precedence.

The proposed algorithm still uses the recursive formula given in Sect. 2.1.
However, it uses range minimum query (RmQ) data structures to avoid having
to check every anchor A[k] where A[k].a < A[i].a. We achieve this by considering
six cases concerning the optimal choice of the prior anchor. We use the best of
the six distinct possibilities to determine the optimal C[i] value. This C[i] value
is then used to update the RmQ data structures. For the strict precedence case,
some of the six cases require up to four dimensions for the range minimum
queries. When only weak precedence is required, we reduce this to at most three
dimensions. When the fixed-length property holds (e.g., k-mers), we reduce this
to two dimensions.

Algorithm for Chains Under Strict Precedence. The first step is to sort
the set of anchors A using the key A[·].a. Let A′ be the sorted array. We will next
use six RmQ data structures labeled T1a, T1b, T2a, T2b, T3a, T3b. These RmQ data
structures are initialized with the following points for every anchor: For anchor
I ∈ A′: T1a is initialized with the point (I.b, I.d − I.b), T1b with (I.d, I.d − I.b),
T2a with (I.b, I.c, I.d), T2b with (I.b, I.d), T3a with (I.b, I.c, I.d, I.d−I.b), and T3b

with (I.b, I.d, I.d − I.b). All weights are initially set to ∞ except for I = Aleft,
where the corresponding points are given weight 0. We then process the anchors
in sorted order and update the RmQ data structures after each iteration. On the
ith iteration, for j < i, we let C[j] be the optimal co-linear chaining cost of any
ordered subset of A′[1], A′[2], ..., A′[j] that ends with A′[j]. For i > 1, RmQ
queries are used to find the optimal j < i by considering six different cases. We
let I = A′[i], I ′ = A′[j], and C[I ′] = C[j].

The query for each RmQ structure is determined by the different inequalities
relating I.a, I.b, I.c, and I.d to previous anchors in the case considered. For
example, in Case 1.a (Fig. 3), it can be seen that I ′.b < I.a and I.a − I ′.b <
I.c− I ′.d, making I ′.b ∈ [0, I.a− 1] and I ′.d− I ′.b ∈ [−∞, I.c− I.a], motivating
the query input [0, I.a−1]× [−∞, I.c−I.a]. At the same time, the values stored
in these RmQ structures are determined by the expression for the co-linear
chaining cost in that case, C[I ′] + I.c − I ′.d − 1. Note that the values stored
in each RmQ structure depend only on previously processed anchors and are
combined with the values I.a, I.b, I.c, and I.d for the current anchor I being
processed to obtain the appropriate cost. Hence, for T1a we store values of the
form C[I ′] − I ′.d and combine this with I.c to obtain the cost. The other cases
can be similarly analyzed.
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I ′.a I ′.b

I ′.c I ′.d

I.a I.b

I.c I.d

I.a I.b

I.c I.d

I ′.a I ′.b

I ′.c I ′.d

I ′.a I ′.b

I ′.c I ′.d

I.a I.b

I.c I.d

Fig. 3. (Left) Case 1.a. Colinear chaining cost is C[I ′] + g2 = C[I ′] + I.c − I ′.d − 1.
(Middle) Case 2.a. Chaining cost is C[I ′] + g1 + o2 = C[I ′] + I.a − I ′.b + I ′.d − I.c.
(Right) Case 3.a. Chaining cost is C[I ′] + o2 − o1 = C[j] + I ′.d − I.c − (I ′.b − I.a).

1. Case: I ′ disjoint from I.
(a) Case: The gap in S1 is less or equal to gap in S2 (Fig. 3 (Left)). The range

minimum query (query input) is of the form: [0, I.a−1]× [−∞, I.c− I.a].
Let the query response (weight) from T1a be v1a = min{C[I ′] − I ′.d :
(I ′.b, I ′.d−I ′.b) ∈ [0, I.a−1]× [−∞, I.c−I.a]} and let C1a = v1a+I.c−1.

(b) Case: The gap in S2 is less than gap in S1. The range minimum query is of
the form [0, I.c−1]× [I.c−I.a+1,∞]. Let the query response from T1b be
v1b = min{C[I ′]− I ′.b : (I ′.d, I ′.d− I ′.b) ∈ [0, I.c− 1]× [I.c− I.a+1,∞]}
and let C1b = v1b + I.a − 1.

2. Case: I ′ and I overlap in only one dimension.
(a) Case: I ′ and I overlap only in S2 (Fig. 3 (Middle)). The range minimum

query is of the form [0, I.a−1]× [0, I.c]× [I.c, I.d]. Let the query response
from T2a be v2a = min{C[I ′] − I ′.b+ I ′.d : (I ′.b, I ′.c, I ′.d) ∈ [0, I.a− 1] ×
[0, I.c] × [I.c, I.d]} and let C2a = v2a + I.a − I.c.

(b) Case: I ′ and I overlap only in S1. Since the anchors are sorted on A[·].a,
this can be done with a two dimensional RmQ structure. The range mini-
mum query is of the form [I.a, I.b]×[0, I.c−1]. Let the query response from
T2b be v2b = min{C[I ′] + I ′.b − I ′.d : (I ′.b, I ′.d) ∈ [I.a, I.b] × [0, I.c − 1]}
and let C2b = v2b + I.c − I.a.

3. Case: I ′ and I overlap in both dimensions.
(a) Case: Greater overlap in S2 (Fig. 3 (Right)). Here, |o1 − o2| = o2 − o1 =

I ′.d−I.c−(I ′.b−I.a). The range minimum query is of the form [I.a, I.b]×
[0, I.c] × [I.c, I.d] × [I.c − I.a + 1,∞]. Let the query response from T3a

be v3a = min{C[I ′] − I ′.b + I ′.d : (I ′.b, I ′c, I ′.d, I ′.d − I ′.b) ∈ [I.a, I.b] ×
[0, I.c] × [I.c, I.d] × [I.c − I.a + 1,∞]} and let C3a = v3a + I.a − I.c.

(b) Case: Greater or equal overlap in S1. Here, |o1 − o2| = o1 − o2 = I ′.b −
I.a − (I ′.d − I.c). If o1 ≥ o2 > 0, I ′.b ∈ [I.a, I.b], and I ′.a ∈ [0, I.a], then
I ′.c ∈ [0, I.c]. Hence, the range minimum query is of the form [I.a, I.b] ×
[I.c, I.d] × [−∞, I.c − I.a]. Let the query response from T3b be v3b =
min{C[I ′] + I ′.b − I ′.d : (I ′.b, I ′.d, I ′.d − I ′.b) ∈ [I.a, I.b] × [I.c, I.d] ×
[−∞, I.c − I.a]} and let C3b = v3b − I.a + I.c.

Finally, let C[i] = min(C1a, C1b, C2a, C2b, C3a, C3b) and update the RmQ
structures accordingly (see full version [11] for details and pseudocode). Every
RmQ structure T has the query method T .RmQ() which takes as arguments
an interval for each dimension. It also has the method T .update(), which takes
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a point and a weight and updates the point to have the new weight. The four-
dimensional RmQ structures for Case 3.a require O(log4 n) time per query and
update, causing an overall time complexity that is O(n log4 n). We defer the mod-
ifications for weak precendence and fixed-length anchors to the full version [11].

4 Proof of Equivalence

Theorem 2. For a fixed set of anchors A, the following quantities are equal:
the anchored edit distance, the optimal co-linear chaining cost under strict prece-
dence, and the optimal co-linear chaining cost under weak precedence.

The optimal co-linear chaining cost is defined using the cost function
described in Sect. 2.1. An implication of Theorems 1 and 2 is that if only the
anchored edit distance is desired (and not an optimal strictly ordered anchor
chain), there exists a O(n log3 n) for computing this value.

Theorem 2 will follow from Lemmas 1 and 2.

Lemma 1. Anchored edit distance ≤ optimal co-linear chaining cost under weak
precedence ≤ optimal co-linear chaining cost under strict precedence.

Proof. The second inequality follows from the observation that every set of
anchors ordered under strict precedence is also ordered under weak precedence.
We now focus on the inequality between anchored edit distance and co-linear
chaining cost under weak precedence. Starting with an anchor chain under weak
precedence, A[1], A[2], . . . with associated co-linear chaining cost x, we provide
an alignment with an anchored edit distance that is at most x. This alignment is
obtained using a greedy algorithm that works from left-to-right, always taking
the closest exact match when possible, and when not possible, a character sub-
stitution or unsupported exact match, or if none of these are possible, a deletion.
We now present the details.

Greedy Algorithm. Assume inductively that all symbols in S1[1,A[i].b] and
S2[1,A[i].d] have been processed, that is, either matched, substituted, or deleted
(represented by check-marks in Figs. 4, 5 and 6). The base case of this induction
holds trivially for Aleft. We consider the anchor A[i + 1] and the possible cases
regarding its position relative to A[i]. Symmetric cases that only swap the roles
of S1 and S2 are ignored. To ease notation, let I ′ = A[i] and I = A[i + 1].

1. Case I ′.b ≥ I.b and I ′.d ≥ I.c (Fig 4): To continue the alignment, delete the
substring S2[I ′.d+1, I.d] from S2. This has edit cost I.d−I ′.d. We can assume
both intervals of I ′ are not nested in intervals of I, hence connect(I ′, I) =
o1 − o2 = I ′.b − I.a − I ′.d + I.c ≥ I.c + I.b − I.a − I ′.d = I.d − I ′.d.

2. Case I ′.b ≥ I.b and I ′.d < I.c (Fig 4): Delete the substring S2[I ′.d + 1, I.d]
from S2, with edit cost I.d− I ′.d. Also connect(I ′, I) = o1 + g2 = I ′.b− I.a+
I.c − I ′.d ≥ I.c + I.b − I.a − I ′.d = I.d − I ′.d.
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Fig. 4. Cases in Proof of Lemma 1. The � symbol indicates symbols processed prior to
considering I. (Left) Case I ′, b ≥ I.b and I ′.d ≥ I.c (Right) I ′.b ≥ I.b and I ′.d < I.c.

3. Case I.b > I ′.b, I.a ≤ I ′.b, I.c ≤ I ′.d (Fig. 5): Supposing wlog that o1 > o2,
delete S2[I ′.d+1, I ′.d+o1 −o2], and match S1[I ′.b+1, I.b] and S2[I ′.d+o1 −
o2 + 1, I.d]. This has edit cost o1 − o2 and connect(I ′, I) = o1 − o2.

4. Case I.b > I ′.b, I.a ≤ I ′.b, I.c > I ′.d (Fig. 5): We delete S2[I ′.d + 1, I ′.d +
o1 + g2] and match S1[I ′.b + 1, I.b] with S2[I ′.d + o1 + g2 + 1, I.d]. This has
edit cost o1 + g2 and connect(I ′, I) = o1 + g2.

5. Case I.a > I ′.b, I.c > I ′.d (Fig. 6): Supposing wlog g2 ≥ g1, match
with substitutions or unsupported exact matches S1[I ′.b + 1, I ′.b + g1] and
S2[I ′.d + 1, I ′.d + g1]. Delete the substring S2[I ′.d + g1 + 1, I.c − 1]. Finally,
match S1[I.a, I.b] and S2[I.c, I.d]. The edits consist of g1 of substitutions or
unsupported exact matches and g2 − g1 deletions, which is g2 edits in total.
Also, connect(I ′, I) = max{g1, g2} = g2.

Continuing this process until Aright, all symbols in S1 and S2 become
included in the alignment. ��

Fig. 5. Cases in Proof of Lemma 1. (Left) Case I.b > I ′.b, I.a ≤ I ′.b, I.c ≤ I ′.d.
(Right) Case I.b > I ′.b, I.a ≤ I ′.b, I.c > I ′.d.

We delay the details of Lemma 2’s proof to Sect. 4.1.

Lemma 2. For a set of anchors A, optimal chaining cost under strict precedence
≤ anchored edit distance.

Proof. We start with an arbitrary alignment M supported by A. We will show in
Lemma 3 how to obtain a subset B ⊆ A totally ordered under strict precedence
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and supporting an alignment M′ where EDIT (M′) ≤ EDIT (M). We will then
show in Lemma 4 that the edit cost of M′ is greater or equal to the edit cost
of the alignment MG given by the greedy algorithm on B. Finally, in Lemma 5
we show that the co-linear chaining cost of B is equal to the edit cost of MG.
Combining, we have EDIT (M) ≥ EDIT (M′) ≥ EDIT (MG) = the co-linear
chaining cost on B ≥ optimal co-linear chaining cost under strict precedence for
A. The result follows from the fact that EDIT (M) equals the anchored edit
distance when M is an optimal alignment for A. ��

4.1 Details of Lemma 2 Proof

We apply Algorithm (i) followed by Algorithm (ii) to convert a supporting set
of anchors A for M into the totally ordered subset of anchors B supporting
M′. Note that these algorithms are only for the purpose of the proof. Moving
forward, we call an edge e = (S1[h], S2[k]) contained but not supported by I if
h ∈ [I.a, I.b] or k ∈ [I.c, I.d] and h − I.a 
= k − I.c. We define for e the two
edges e′ = (S1[h], S2[I.c+h− I.a]) and e′′ = (S1[I.a+ k− I.c], S2[k]), which are
supported by I.

Algorithm (i). Algorithm for Removing Incomparable Anchors. Let I
and I ′ be two incomparable anchors under weak precedence (Fig. 6). The anchor
that has the rightmost supported solid edge will be the anchor we keep. Suppose
wlog it is I. Working from right-to-left, starting with that rightmost edge, for
any edge e that is contained but not supported by I, we replace e with the
rightmost of e′ and e′′. Note that at least one side of every edge supported by
I ′ is within an interval of I. Hence, all edges supported by I ′ are eventually
replaced. We then remove I ′. This algorithm is repeated until a total ordering
under weak precedence is possible.

Algorithm (ii). Algorithm for Removing Anchors with Nested Inter-
vals. Consider two anchors I and I ′ where wlog I ′ has an interval nested in one
of the intervals belonging to I. Let eR be the rightmost edge supported by I.
Working from right-to-left, we replace any edge e to the left of eR that is con-
tained but not supported by I with the rightmost of e′ and e′′. Next, working
from left-to-right, we replace any edge e to the right of eR that is contained but
not supported by I with the leftmost of e′ and e′′. These procedures combined
will replace all edges supported by I ′ with those supported by I. We repeat this
until there are no two nested intervals amongst all remaining anchors. Finally,
remove all anchors that do not support any edge. We call such an anchor chain
where every anchor supports at least one edge minimal.
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Fig. 6. (Left) Case I.a > I ′.b, I.c > I ′.d. (Right) Anchors I and I ′ are incomparable.
The current alignment is shown with black solid and dashed edges. To remove I ′ we
sweep from right-to-left, replacing edges not supported by I with edges supported
by I. Here, e = (S1[h], S2[k]) is not supported by I and will be replaced with e′ =
(S1[h], S2[I.c + h − I.a]) (in red), which is supported by I.

Lemma 3. EDIT (M′) ≤ EDIT (M).

Proof. For Algorithm (i), suppose we are replacing an edge e not supported by
the anchor I, the anchor we wish to keep. Suppose wlog that e′ is the rightmost
of e′ and e′′, so we replace e with e′. Because the edge immediately to the right
of e is also aligned with I, deleting S2[k] and matching S2[I.c + h − I.a], does
not require modifying any additional edges. If e was a solid edge the edit cost
is unaltered, since the total number of deletions and matches is unaltered. If e
was a dashed edge, replacing e with e′ converts a substitution or unsupported
exact match at S2[k] to a deletion, and removes a deletion at S2[I.c + h − I.a],
decreasing the edit cost by 1. The same arguments hold for Algorithm (ii) when
we replace edges from right-to-left. In Algorithm (ii) when we process edges from
left-to-right, since any edges to left of the edge e being replaced are supported
by I, replacing e with the leftmost of e′ and e′′ does not require modifying any
additional edges. Again, if e is solid, the edit cost is unaltered, and if e is dashed,
the edit cost is decreased by 1. ��

Lemma 4. The greedy algorithm described in the proof of Lemma 1 produces
an optimal alignment for a ‘minimal’ anchor chain under strict precedence.

Proof. Similar to proof of Lemma 3 (see full version [11]). ��

Lemma 5. For an anchor chain under strict precedence, the edit cost of the
alignment produced by the greedy algorithm described in the proof of Lemma 1 is
equal to the chaining cost.

Proof. This follows from induction on the number of anchors processed, using
the same arguments used in the proof of Lemma 1. However, only I ′.b = I.b
needs to be considered in Cases 1 and 2 leading to equality in these cases. ��

5 Implementation

In multi-dimensional RmQs, O(nlogd−1 n) storage requirement and irregular
memory access during a query can limit their efficacy in practice [4]. We can
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take advantage of two observations to design a more practical algorithm. First,
if sequences are highly similar, their edit distance will be relatively small. Hence
the anchored edit distance, denoted in this section as OPT , will be relatively
small for MUM or MEM anchors. Second, if the sequences are dissimilar, then
the number of MUM or MEM anchors, n, will likely be small. These observa-
tions allow us to design an alternative algorithm (Algorithm 1) that requires
O(n) worst-case space and O(n · OPT + n log n) average-case time over all pos-
sible inputs where n ≤ max(|S1|, |S2|), i.e., the number of anchors is less than
the longer sequence length (proof is deferred to full version [11]). This property
always holds when the anchors are MUMs and is typically true for MEMs as
well. This makes the algorithm presented here a practical alternative.

As before, let A be the initial (possibly unsorted) set of anchors, but with
Aleft = A[1] and Aright = A[n]. We assume wlog |S1| ≥ |S2|. We begin by
sorting anchor set A by the component A[·].a and making a guess for the optimal
solution, B (Algorithm 1). The value B is used at every step to bound the range
of A[·].a values that need to be examined. This bounds the number of anchors
that need to be considered (on average). If C[n] is greater than our current guess
B after processing all n anchors, we update our guess to B2 · B.

Input: n anchors A and parameters B1 and B2.
Output: C[1, n] s.t. C[i] is optimal co-linear chaining cost for any

ordered subset of A[1, i] ending at A[i].
Let A′[1], ... A′[n] be the set of anchors A sorted on A[·].a;
Initialize array C of size n to 0 and B ← B1;
do

j ← 1;
for i ← 1 to n do

while A′[i].a − A′[j].a > B do
j ← j + 1;

end
C[i] ← min{C[k] + connect(A′[k],A′[i]) | j ≤ k < i and A′[k] ≺
A′[i]};

end
Blast ← B ;
B ← B2 · B;

while C[n] > Blast;
return C[1, n]

Algorithm 1: O(OPT · n + n log n) average-case algorithm.

Extending the above pseudo-code to enable semi-global chaining, i.e., free
anchor gap on both ends of reference sequences, is also simple. In each i-loop,
the connection to anchor Aleft must be always considered, and for last iteration
when i = n, j must be set to 1. Second, a revised cost function must be used
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when connecting to either Aleft or Aright where a gap penalty is used only for
anchor gap over the query sequence. The experiments in the next section use an
implementation of this algorithm.

6 Evaluation

There are multiple open-source libraries/tools that implement edit distance com-
putation. Edlib (v1.2.7) [29] uses Myers’s bit-vector algorithm [21] and Ukko-
nen’s banded algorithm [30], and is known to be the fastest implementation cur-
rently. In this section, we aim to show that: (i) the proposed algorithm as well as
existing chaining methods achieve significant speedup compared to computing
exact edit distance using Edlib, and (ii) in contrast to existing chaining methods,
our implementation consistently achieves high Pearson correlation (> 0.90) with
edit distance while requiring modest time and memory resources.

We implemented Algorithm 1 in C++, and refer to it as ChainX. The code is
available at https://github.com/at-cg/ChainX. Inputs are a target string, query
strings, comparison mode (global or semi-global), anchor type preferred, i.e.,
maximal unique matches (MUMs) or maximal exact matches (MEMs), and a
minimum match length. We include a pre-processing step to index target string
using the same suffix array-based algorithm [32] used in Nucmer4 [19]. Chaining
costs computed using ChainX for each query-target pair are provably-optimal.

Existing Co-linear Chaining Implementations. Co-linear chaining has
been implemented previously as a stand-alone utility [2,23] and also used
as a heuristic inside widely used sequence aligners [5,15,19]. Out of these,
Clasp (v1.1), Nucmer4 (v4.0.0rc1) and Minimap2 (v2.22-r1101) tools are avail-
able as open-source, and used here for comparison purpose. Unlike our algorithm
where the optimization problem involves minimizing a cost function, these tools
execute their respective chaining algorithms using a score maximization objective
function. Clasp, being a stand-alone chaining method returns chaining scores in
its output, whereas we modified Minimap2 and Nucmer4 to print the maximum
chaining score for each query-target string pair, and skip subsequent steps. To
enable a fair comparison, all methods were run with single thread and same min-
imum anchor size 20. Accordingly, ChainX, Clasp and Nucmer4 were run with
MUMs of length ≥20, and Minimap2 was configured to use minimizer k-mers of
length 20. For these tests, we made use of an Intel Xeon Processor E5-2698 v3
processor with 32 cores and 128 GB RAM. All tools were required to match only
the forward strand of each query string. ChainX and Clasp are both exact solvers
of co-linear chaining problem, but use different gap-cost functions. Clasp only
permits non-overlapping anchors in a chain, and supports two cost functions
which were referred to as sum-of-pair and linear gap cost functions in their
paper [23]. We tested Clasp with both of its gap-cost functions, and refer to
these two versions as Clasp-sop and Clasp-linear respectively. Both the versions
solve co-linear chaining using RmQ data structures, requiring O(n log2 n) and
O(n log n) time respectively. Both require a set of anchors as input, therefore, we

https://github.com/at-cg/ChainX
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supplied the same set of anchors, i.e., MUMs of length ≥20 as used by ChainX.
Minimap2 and Nucmer4 use co-linear chaining as part of their seed-chain-extend
pipelines. Both Minimap2 and Nucmer2 support anchor overlaps in a chain, as
well as penalize gaps using custom functions. However, both these tools employ
heuristics (e.g., enforce a maximum gap between adjacent chained anchors) for
faster processing which can result in suboptimal chaining scores.

Runtime and Memory Comparison. We downloaded the same set of query
and target strings that were used for benchmarking in Edlib paper [29]2. These
test strings, ranging from 10 kbp to 5000 kbp in length, allowed us to compare
tools for end-to-end global sequence comparisons as well as semi-global com-
parisons at various degrees of similarity levels. To test end-to-end comparisons,
the target string had been artificially mutated at various rates using mutatrix
(https://github.com/ekg/mutatrix), whereas for the semi-global comparisons, a
substring of the target string had been sampled and mutated. Table 1 presents
runtime and memory comparison of all tools. Columns of the table are organized
to show tools in three categories: edit distance solver (Edlib); optimal co-linear
chaining solvers (ChainX, Clasp-sop, Clasp-linear); and heuristic implementa-
tions (Nucmer4, Minimap2). We make the following observations here. First,
chaining methods (both optimal and heuristic-based) are significantly faster
than Edlib in most cases, and we see up to three orders of magnitude speedup.
Second, within optimal chaining methods, Clasp-sop’s time and memory con-
sumption increases quickly with increase in count of anchors, which is likely due
to irregular memory access and storage overhead of its algorithm that uses a
2d-RmQ data structure. Finally, we note that Minimap2 and Nucmer4 are often
faster than exact algorithms during global string comparisons due to their fast
heuristics.

All tools (except Edlib) use an indexing step such as building a k-mer hash
table (Minimap2) or computing suffix array (ChainX, Clasp-sop, Clasp-linear,
Nucmer4). Indexing time was excluded from reported results, and was found to
be comparable. For instance, in the case of semi-global comparisons, ChainX,
Nucmer4, Minimap2 required 590 ms, 736 ms, 236 ms for index computation
respectively.

Correlation with Edit Distance. We checked how well the chaining cost (or
score) correlates with edit distance. We use absolute value of Pearson correlation
coefficients for a comparison. In this experiment, we simulated 100 query strings
within three similarity ranges: 90–100%, 80–90% and 75–80%. Table 2 shows the
correlation achieved by all the tools. Here we observe that ChainX and Clasp-sop
are more consistent in terms of maintaining high correlation across all similarity
ranges. Between the two, ChainX was shown to offer superior scalability in terms
of runtime and memory usage (Table 1). Hence, ChainX can be useful in practice
when good performance and accuracy is desired across a wide similarity range.

2 https://github.com/Martinsos/edlib/tree/master/test data.

https://github.com/ekg/mutatrix
https://github.com/Martinsos/edlib/tree/master/test_data
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Table 1. Runtime and memory usage comparison of edit distance solver Edlib and co-
linear chaining methods ChainX, Clasp, Nucmer4 and Minimap2. Runtime is measured
in milliseconds across the columns, and memory usage (Mem) is noted in MBs. In
this experiment, ChainX, Clasp-sop, Clasp-linear and Nucmer4 used maximal unique
matches (MUMs) of length ≥20 as input anchors, while Minimap2 used fixed-length
minimizer k-mers of size 20.

Similarity No. of
MUMs

Edlib ChainX Clasp-sop Clasp-linear Nucmer4 Minimap2

Time (Mem) Time (Mem) Time (Mem) Time (Mem) Time (Mem) Time (Mem)

Semi-global pairwise sequence comparisons, sequence sizes 104 × 5 ∗ 106

99% 67 190 (17) 2.0 (57) 1.8 (57) 0.9 (57) 1.8 (60) 1.9 (75)

97% 160 642 (17) 2.9 (57) 4.8 (57) 1.8 (57) 4.1 (60) 2.3 (75)

94% 176 1165 (17) 3.0 (57) 5.9 (57) 2.1 (57) 3.2 (60) 1.6 (75)

90% 135 2168 (17) 5.6 (57) 4.7 (57) 2.0 (57) 5.5 (60) 1.9 (75)

80% 28 2360 (17) 4.2 (57) 2.5 (57) 2.2 (57) 3.4 (60) 4.3 (75)

70% 3 4297 (17) 3.7 (57) 2.2 (57) 2.3 (57) 5.5 (60) 1.1 (75)

Global pairwise sequence comparisons, sequence sizes 106 × 106

99% 7012 949 (8) 47.2 (24) 1236.8 (1800) 182.8 (257) 68.7 (26) 193.5 (35)

97% 15862 1308 (8) 490.4 (24) 5363.7 (8742) 765.4 (1278) 87.8 (26) 179.0 (36)

94% 18389 2613 (8) 677.9 (24) 11737.1 (20501) 1021.0 (1694) 113.5 (27) 116.9 (34)

90% 14472 6233 (8) 851.5 (24) 5110.3 (8277) 115.3 (27) 121.8 (26) 94.8 (33)

80% 2964 12506 (8) 158.8 (24) 504.8 (572) 133.7 (24) 148.9 (26) 69.5 (32)

70% 195 29602 (8) 136.5 (23) 140.6 (23) 139.6 (23) 167.3 (26) 55.6 (32)

Table 2. Absolute Pearson correlation coefficients of chaining costs (or scores) com-
puted by various methods with the corresponding edit distances. 100 query strings were
simulated and matched to the target string within each similarity range.

Seq. sizes Similarity Correlation coefficient

ChainX Clasp-sop Clasp-linear Nucmer4 Minimap2

Semi-global sequence comparisons

104 × 5 ∗ 106 90%–100% 0.996 0.994 0.986 0.968 0.995

104 × 5 ∗ 106 80%–90% 0.975 0.976 0.786 0.864 0.958

104 × 5 ∗ 106 75%–80% 0.927 0.915 0.732 0.733 0.808

Global sequence comparisons

106 × 106 90%–100% 0.999 0.997 0.994 0.991 0.999

106 × 106 80%–90% 0.998 0.998 0.922 0.955 0.996

106 × 106 75%–80% 0.992 0.993 0.871 0.907 0.952

Table 3. Effect of anchor pre-computation method on the performance of ChainX.
Total runtime to do 100 pairwise semi-global sequence comparisons (sequence size:
104 × 5 ∗ 106) is measured in seconds, and correlation (corr.) with the corresponding
edit distances is computed using Pearson correlation coefficient.

Similarity Using MUMs Using MEMs

len ≥ 20 len ≥ 10 len ≥ 7 len ≥ 20 len ≥ 10 len ≥ 7

Time (corr.) Time (corr.) Time (corr.) Time (corr.) Time (corr.) Time (corr.)

90%–100% 7.2 (0.996) 2.9 (0.997) 3.5 (0.997) 5.1 (0.996) 8.1 (0.997) 2652 (0.998)

80%–90% 4.5 (0.975) 5.6 (0.992) 3.2 (0.992) 4.5 (0.975) 7.4 (0.993) 5413 (0.995)

75%–80% 5.3 (0.927) 5.9 (0.977) 1.9 (0.977) 5.0 (0.927) 10.9 (0.987) 9221 (0.992)
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Effect of Anchor Type and Minimum Match Length. How many anchors
are given as input will naturally affect the performance and output quality
of a chaining algorithm. We tested runtime and correlation with edit distance
achieved by ChainX while varying the anchor type (MUMs/MEMs) and mini-
mum match-length lmin parameter (Table 3). When MUMs are used as anchors,
we observe good scalability, and lowering lmin from 20 to 10 improves the cor-
relation, but the correlation saturates afterwards. This is because very short
exact matches will unlikely be unique and won’t be selected as MUMs. How-
ever, when MEMs are used as anchors, correlation continues to improve with
decreasing minimum length parameter, however, runtime grows exponentially.
Excessive count of anchors improves the correlation but then anchor chaining
becomes computationally demanding.
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