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A B S T R A C T

The High Altitude Water Cherenkov (HAWC) gamma-ray observatory observes atmospheric showers produced
by incident gamma rays and cosmic rays with energy from 300 GeV to more than 100 TeV. A crucial phase in
analyzing gamma-ray sources using ground-based gamma-ray detectors like HAWC is to identify the showers
produced by gamma rays or hadrons. The HAWC observatory records roughly 25,000 events per second, with
hadrons representing the vast majority (> 99.9%) of these events. The standard gamma/hadron separation
technique in HAWC uses a simple rectangular cut involving only two parameters. This work describes the
implementation of more sophisticated gamma/hadron separation techniques, via machine learning methods
(boosted decision trees and neural networks), and summarizes the resulting improvements in gamma/hadron
separation obtained in HAWC.
1. Introduction

Technological advances have enabled the expansion of the study of
the cosmos to wavebands outside the small window in the optical re-
gion. The most energetic astrophysical sources emit radiation primarily
in the gamma-ray band. One of the crucial issues in using ground-based
detectors to study gamma-ray sources at Very High Energy (50 GeV–
100 TeV) and Ultra-High Energy (100 TeV–100 PeV) is that the vast
majority (> 99.9%) of air showers detected come from cosmic rays,
rather than gamma rays.

Ground-based gamma-ray observatories detect the passage of sec-
ondary particles produced after a primary particle impinges on an
atmospheric nucleus, leading to the generation of an Extensive Air
Shower (EAS). Using ground level data, EAS properties can be char-
acterized via a set of parameters, and then used to deduce the nature
of the primary particle. While gamma-ray induced showers contain
mainly positrons, electrons, and gamma rays,1 hadron-induced showers
contain muons from the decay of secondary charged pions and kaons.
These muons, typically created with high transverse momentum, result
in hadronic showers being more spread out, with a multi-core structure,
compared to gamma-ray-induced showers, which are more compact,
with a single-core structure [1].

Machine Learning Techniques (MLT) are a set of statistical and
computer algorithms that can be used to build complex, non-linear,
models from data, to tackle a broad range of tasks, including some
in gamma-ray astronomy. On the specific task of gamma/hadron sep-
aration (hereafter simply G/H separation), ground-based gamma-ray
observatories like HEGRA [2], MAGIC [3], H.E.S.S. [4], VERITAS [5],
ARGO-YBJ [6], and LHAASO-WCDA [7], among others, have reported
excellent results using such techniques.

1.1. The HAWC observatory

The High-Altitude Water Cherenkov (HAWC) [8] gamma-ray ob-
servatory is a second-generation ground-based instrument located on
the northern slope of the Sierra Negra volcano in the state of Puebla,
Mexico, at an altitude of 4,100 meters above sea level. Like its pre-
decessor, Milagro [9,10], HAWC is based on the water Cherenkov
technique. It consists of an array of 300 water Cherenkov detectors,
each made of a cylindrical metal structure, 7.3 meters in diameter

1 Though they may contain some muons, their numbers are small.
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and 5 meters high, containing 180,000 liters of purified water and
four photomultiplier tubes (PMTs) at the bottom. The PMTs detect
Cherenkov light generated by the secondary particles of the EAS as they
traverse the water. The HAWC software trigger requires 28 PMT hits
within a 150 ns time window, which results in roughly 25,000 events
being recorded every second [11]. The direction of the primary particle
is reconstructed using the PMT timing information, while the shower
core is computed using the charge on the PMTs. Thus, by measuring
the detected charge and time at the PMTs, HAWC can reconstruct the
characteristics of the EAS [12].

Because HAWC detects >99.9% charged cosmic-ray (hadron) events,
the level of background must be significantly reduced in order to
perform gamma-ray observations with HAWC. The current method
of G/H separation used by the HAWC collaboration applies a simple
rectangular cut to the data, involving only two parameters. Cuts on
these two parameters define a rectangular region containing, prefer-
entially, gamma-ray events. Generally speaking, this is not an optimal
classification strategy because the boundary between gamma-like and
hadron-like events is not defined by the actual distribution of the two
types of events. In addition, the performance of the two parameters
depends on the size of the observed shower (they are more sensitive
for large events), so determining their optimum combination is not
straightforward. A non-linear classification method should, in principle,
provide a more effective discriminator.

This paper describes the implementation of two new G/H separation
methods in HAWC, using MLT; one based on Boosted Decision Trees
(BDT) and another using Neural Networks (NN). The performance of
the new techniques is compared with previously used HAWC cuts
[13,14].

The outline of the paper is as follows: Section 2 gives an overview
of the key parameters generated from HAWC data, which are used as
inputs in our G/H separation models. Section 3 describes the HAWC
data used in our study, both Monte Carlo (MC) simulated data, as well
as real data on three astrophysical sources. Section 4 describes the
G/H separation models discussed in the paper, including the current
(standard) methods used by HAWC, as well as our two new proposed
techniques. Section 5 describes how we build the different models,
including details on determining the optimal cuts for each method. Sec-
tion 6 reports the performance of the various methods, comparing them
via MC and real data. We conclude, in Section 7, with a discussion of
the overall performance of the models, along with possible implications

regarding the future improvements of our results.
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Table 1
Definition of the (10) fraction hit bins () and (12) ebin bins; the latter
represents the logarithm of the lower energy bound, log10(𝑒𝑁𝑁/GeV), for
each bin.
 Range (%) ebin

0 4.4–6.7 2.50
1 6.7–10.5 2.75
2 10.5–16.2 3.00
3 16.2–24.7 3.25
4 24.7–35.6 3.50
5 35.6–48.5 3.75
6 48.5–61.8 4.00
7 61.8–74.0 4.25
8 74.0–84.0 4.50
9 84.0–100.0 4.75

5.00
5.25

2. HAWC G/H separation parameters

Among the many parameters generated by the HAWC experiment
for each event, we considered those that could help to characterize the
nature of the EAS, ultimately settling on seven, which we used as inputs
in our G/H separation algorithms. These parameters broadly fall into
three classes: those related to the energy of the event, those sensitive to
the muon content of the shower, and those connected to the shower’s
lateral development, via the lateral charge distribution function.

2.1. Energy parameters

Two official gamma-ray energy estimators are currently used in
HAWC: one based on charge density and the second using a neural
network [14]. In both estimators, the HAWC data are grouped in a
2D binning scheme consisting of a fraction hit bin, , and an energy
bin, ebin. The  bin is defined as fHit = nHit/nCh, where nHit is
the number of PMTs activated during the event within 20 ns of the
shower front, and nCh is the total number of PMTs in operation at the
time. The energy bin (ebin) used in this work is given by the neural
network energy estimator 𝑒𝑁𝑁 [14]. We use ten2  bins and twelve
quarter-decade energy bins, starting from 316 GeV (see Table 1).

2.2. Muon content parameters

Typically, the muons present in a hadronic cascade are produced
at a considerable distance from both the shower axis and one another.
In the HAWC detector, these lead to strong signals in widely-separated
PMTs. Two HAWC parameters can be used to try to identify them:

• LIC is the log transformation of the inverse of the compactness
parameter, an empirical parameter originally developed by the
Milagro Collaboration [10], as described in Abeysekara et al.
2017 [13]:

𝐿𝐼𝐶 = log10
1

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠
= log10

𝐶𝑥𝑃𝐸40
𝑛𝐻𝑖𝑡

,

where 𝐶𝑥𝑃𝐸40 is the charge measured in the PMT with the largest
effective charge far (> 40 m) from the shower core. When a muon
passes near a PMT, the resulting charge (and, thus, LIC) will be
large (see Figure 3 of Pretz et al. 2015 [15]), indicating that the
shower is more likely produced by a hadron. Since gamma ray
showers contain few, if any, muons, they are characterized by a
small LIC value.

2 Note that the  = 0 bin is currently not being used in standard HAWC
analyses, as it has low sensitivity with the standard G/H classifiers. We
nevertheless report on it here, to study the behavior of our machine learning
algorithms over the full range.
3

• disMax measures the physical distance, in meters, between the
two brightest PMTs. Hadronic showers are expected to have large
values of disMax, while gamma-ray showers are characterized by
small values.

2.3. Lateral development parameters

In gamma-ray showers, most secondary particles are generated close
to the shower axis. Thus, HAWC registers their signals near this axis,
with a smooth decrease with distance from the core. Three HAWC
parameters can be used to describe the lateral development of the
shower:

• PINC (Parameter for IdeNtifying Cosmic rays) is a parameter
that quantifies the smoothness of the lateral charge distribution
function (LDF) (see Figure 4 of Abeysekara et al. 2017 [13]).
Gamma-ray showers are characterized by having PMTs with a
high charge near the core, and a smoothly decreasing LDF. By
contrast, hadronic showers typically contain several clumps of
charges caused by widely-separated muons, thus leading to a
‘‘wrinkled" LDF. PINC, in essence, is the 𝜒2 of the difference
between the effective log charge of each PMT hit (𝑞𝑖) and the ex-
pected mean value (⟨𝑞⟩) computed by averaging all PMTs within
an annulus, 5 m in width, centered on the core of the air shower
containing the PMT hit.

𝑃𝐼𝑁𝐶 = 1
𝑁

𝑁
∑

𝑖=0

[

log10(𝑞𝑖) − ⟨log10(𝑞𝑖)⟩
]2

𝜎2

Here 𝜎 is the uncertainty in 𝑞, based on a study of gamma shower
data from the Crab [13], and 𝑁 is the number of annuli.

• LDFChi2 is the reduced chi-square obtained from fitting the LDF,
with the expected shape given by the NKG function [16]:

𝑁𝐾𝐺 = 𝐴 𝜌𝑠−3 (1 + 𝜌)𝑠−4.5,

where 𝜌 is the distance from the shower axis (𝑟𝑎𝑥𝑖𝑠) at the observa-
tion level, in units of the Molière radius3 (𝜌 = 𝑟𝑎𝑥𝑖𝑠∕𝑅𝑚), A is the
amplitude, and 𝑠 the shower age. Because the charge distribution
is more homogeneous in a gamma-ray shower, than a hadronic
one [17], the model fits better in gamma-ray events than hadronic
ones.

• LDFAmp is the logarithm of the amplitude obtained from the
LDF fit. Gamma-ray and hadronic events in a given fraction hit
bin  are expected to have different values of LDFAmp because
of differences in the lateral distributions of gamma vs. hadron
events.

3. Data sets

3.1. Monte Carlo data

The Monte Carlo (MC) simulations of HAWC data are generated
using a set of standard software packages (e.g., CORSIKA,4 GEANT45),
in combination with HAWC-specific simulations that model the PMT
response. CORSIKA 7.4 [18] was used to simulate extensive air showers
initiated by high energy particles in the atmosphere, using the QGSJET-
II-04 and FLUKA hadronic interaction models. GEANT4 [19] was used
to simulate the passage of the shower particles through the HAWC
detector.

Nine species of primary particles were simulated: eight atomic
nuclei6 (MC background), along with gamma rays (MC signal). Ap-
proximately 23 million signal and 13 million background events were

3 𝑅𝑚 = 124 m at HAWC.
4 https://www.iap.kit.edu/corsika/.
5 https://geant4.web.cern.ch.
6 H, He, C, O, Ne, Mg, Si, and Fe.

https://www.iap.kit.edu/corsika/
https://geant4.web.cern.ch
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generated, using a power-law energy spectrum with a spectral index
of −2.0 between 5 GeV and 500 TeV, uniformly on the sky within a
zenith angle below 60◦. The choice of a relatively hard spectrum results
in increased statistics at higher energies at a considerable savings in
computing time. For analyses which simulate the transit of a specific
astrophysical source (e.g., the Crab Nebula, with a spectral index of
−2.63), our simulated events must be weighted by energy and location.
The number of simulated events we used was found to be sufficient for
previous studies carried out by the HAWC Collaboration, such as the
application of neural networks to estimate the primary particle energy
in HAWC [14].

3.2. Real HAWC data on astrophysical sources

In order to test our classification models on real data, we selected
all available HAWC data from June 2015 to December 2017 (∼ 837
ive days). We explored three different sources: the Crab Nebula, and
he extra-galactic sources Markarian 421 and Markarian 501.

rab
The Crab is the remnant of the historical supernova explosion,

ecorded by Chinese astronomers in 1054. One of the most famous
strophysical objects,7 the Crab is detected across the electromagnetic
pectrum [20] and its brightness and relatively steady flux at TeV
nergies have made it the definitive reference/calibration source for
ll TeV instruments.

arkarian 421 and 501
Markarian 421 and 501 (hereafter Mrk 421 and Mrk 501) are two

elatively nearby (< 150 Mpc) Active Galactic Nuclei (AGN) of the
lazar variety (i.e., with jets of accelerating particles pointed towards
ur line of sight) [21]. They have been known to emit at very high
nergy (> 100 GeV) for decades, and they routinely experience out-
ursts during which they become even brighter than the Crab. HAWC
etects them at high significance, and indeed, monitors them daily for
ny unusual activity [22].

.3. Real HAWC data as background data

A one-day random sample of real HAWC data (slightly larger than
he MC background sample) is also used as background in determining
he HAWC standard cuts 4.1, and as an option in training background
or MLT. In Section 6.1, we compare results using real vs. simulated
ackground data.

. G/H separation models

The goal of the G/H separation task is to keep a majority of gamma-
ay events while rejecting most hadron events. We define 𝜉𝛾 as the
raction of gamma-ray events passing the G/H selection, in other words,
he fraction of gamma-ray events correctly classified. Conversely, we
efine 𝜉ℎ as the fraction of hadron events passing the G/H selection
ut, and thus being misclassified. Thus, our aim is to achieve a gamma
fficiency (𝜉𝛾 ) close to 1 while keeping the hadron misidentification
ate (𝜉ℎ) near 0.
Fig. 1 shows the Receiver Operating Characteristic (ROC) curves

23] for three of the shower parameters described in Section 2. These
urves, obtained from our MC simulations, illustrate the effect that
arying thresholds in the different parameters have on the resulting
alues of 𝜉𝛾 and 𝜉ℎ.
In the high energy bin (upper curves), the PINC and LDFChi2 param-

ters have a similar response, with a good (high) 𝜉𝛾 and an excellent
low) 𝜉ℎ. Both perform significantly better than LIC at high energy.

7 Also known as M1, the first entry in the famous catalog of astronomical
bjects compiled by Charles Messier in the 18th century.
4

In the lower energy bin, all three parameters have roughly the same
G/H performance, significantly worse than at high energy. Although
PINC and LDFChi2 are highly correlated (they are both based on the
LDF of the gamma shower, see Appendix B), they report different
information, so we keep them both; at low energy, their performance
differs more than at high energy. Lower  bins typically have worse
G/H performance because the shower has fewer PMTs participating in
the event measurement.

In order to improve on the performance of any individual pa-
rameter, one can combine them, for example, by applying cuts on
several parameters simultaneously [24]. Indeed, the current official
G/H separation method in HAWC uses a simple 2 parameter cut, as
described in Section 4.1.

Other more sophisticated approaches include using a likelihood ra-
tio method to combine several parameters [17], or using MLT, as imple-
mented successfully in the HEGRA [2] and H.E.S.S. [4] observatories,
among others.

In Section 4.2, we describe the implementation, in HAWC, of two
ew G/H separation methods using MLT, which combine the various
nput parameters described in Section 2, to produce a single output
value indicating the likely nature of the primary particle.

4.1. The standard cut (SC) in HAWC

Building on the experience with Milagro, where a cut on a single
parameter was used successfully for G/H separation [10], the HAWC
collaboration first implemented a similar single parameter cut, based on
the compactness parameter [8] (as defined in Section 2). Subsequently,
a cut on a second parameter was found to improve the performance.
Rectangular cuts on these two variables as a function of the one-
dimensional bins defined by , we refer to as the 1D standard cut
(SC1D). Similarly, the current official, or standard cut (SC), in HAWC
involves selecting only events in a rectangular region defined by the
same two parameters: PINC and LIC (see Section 2), as given by the
xpression:

𝐿𝐼𝐶 < 𝐶𝐿) & (𝑃𝐼𝑁𝐶 < 𝐶𝑃 ),

here 𝐶𝐿 and 𝐶𝑃 are the LIC and PINC parameter thresholds, respec-
ively.
Events within this region are classified as gammas, while those

utside are labeled as hadrons. The major difference between SC1D and
he two-dimensional SC cut is that for SC, the thresholds (𝐶𝐿 and 𝐶𝑃 )
epend on both the fraction of PMTs activated during the event and
he reconstructed primary particle energy; thus, each (, ebin) bin has
specific threshold for each parameter.

.2. Machine learning techniques

In recent years, the use of computer algorithms to automatically
uild complex models based solely on data has been gaining ground
n a range of fields, including gamma-ray astronomy. These Machine
earning Techniques (MLT) not only have the advantage of automating
and thus speeding up) repetitive tasks, but also have the potential
or yielding new insights that may only be revealed as the computer
rocesses (or ‘‘learns" from) large quantities of data.
MLT fall under two broad categories: supervised and unsupervised.

he former use ‘‘labeled" data to train algorithms (e.g., classification),
hich can then be used to predict the labels/categories of new (un-
abeled) data; the latter, by contrast, are applied to unlabeled data,
llowing the algorithms themselves to uncover hidden structures in the
ata (e.g., via clustering) .
In this work, we apply supervised learning methods to the classifi-

ation task of distinguishing between gamma rays (signal) and hadrons
background). Among the large number of machine learning algo-
ithms, we focus on two of the most successful ones: Boosted Decision
rees (BDT) [4,17], and Neural Networks (NN) [2,25]. We briefly
escribe these two algorithms, along with their inputs in the following
aragraphs.
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c

d

Fig. 1. ROC curves of the PINC (red), LIC (green) and 𝐿𝐷𝐹𝐶ℎ𝑖2 (blue) parameters. These curves show the separation power of each parameter individually as a function of a
ut, in two different bins; higher 𝜉𝛾 at a given 𝜉ℎ is preferred. The performance of the three parameters is better for the upper curves of the ( = 7, ebin 4.5), bin containing
31.6–56.2 TeV events, than the lower curves for the ( = 3, ebin 3.00) bin for 1.00–1.78 TeV. This reflects the fact that it is harder to discriminate gamma rays from hadrons in
the low energy bins (with fewer struck PMTs) than in high energy ones.
Boosted decision trees (BDT)
Traditional decision trees are a simple, non-parametric flowchart-

like model, that use a series of binary sequential decision nodes to split
ata into branches, ultimately sorting them into leaf nodes [26]. They
are extensively used to tackle problems of classification (e.g., signal vs.
background).

Despite their advantages, simple decision trees have a number of
drawbacks, including the high variance problem, where a slight change
in the data can result in a significant change in the final model; in
addition, a simple binary split often leads to a lack of smoothness in
the model [26]. To overcome these problems, an ensemble of trees can
be combined, to ultimately produce a more powerful, boosted, model: as
more trees are added, the model ‘‘learns" from the errors of the existing
trees, and thus improves.

In this work, we use a Gradient boosting algorithm for our BDT
model [27], as implemented in the xgboost python package.8 We use
500 trees, a low learning rate9 of 0.1, to avoid large jumps around the
minimum error, and a maximum tree depth of 5 nodes. For each tree,
we use only a random 60% selection for each individual tree,10 to avoid
over-fitting. The minimum value of loss reduction (error) for splitting
the leaf node in each tree is set to 1. These parameters are advertised
as likely to avoid overtraining. We verified this by checking that the
output distributions in testing is consistent with the training output
distributions.

Neural networks (NN)
Neural Networks (NN) are non-linear algorithms that use a collec-

tion of artificial neurons to attempt to mimic a human brain [28].
Artificial neurons, like their biological counterparts, are composed of
dendrites, which collect input information, a nucleus, which combines
and generates a signal, and finally, an axon, that sends the informa-
tion to the output. The mathematical model consists of three blocks:

8 https://xgboost.readthedocs.io/en/stable/.
9 This learning rate affects how model weights are updated, based on the

estimated error at each stage.
10 That is, 30% of the total sample.
5

input parameters; a synapse function, combining the input information
(i.e., a sum); and an activation function defining the output, sometimes
restricting it to a specific range (e.g., sigmoid, tanh, linear). Thus, NN
generally can be described as having three types of layers: an input
layer, a set of hidden layers, and an output layer. The number of
neurons in the input layer equals the number of input parameters. The
number of hidden layers may vary, with each having any number of
neurons. Typically, the neurons of the input and output layers follow
a linear model (i.e., a sum as synapse function and a linear activation
function, 𝑦 =

∑

𝑤𝑖 𝑥𝑖).
Our NN models were trained using the Toolkit for MultiVariate data

Analysis (TMVA), a ROOT-integrated software package that provides a
user-friendly environment for processing and evaluating MLT in high-
energy physics [29]. We used a multilayer Perceptron with a 7:10:10:1
architecture.11 The first layer has one neuron per input parameter. The
two hidden layers have ten neurons each and a sigmoid activation func-
tion. Finally, the output layer has one neuron, giving the probability
that an event is a gamma ray.

5. Building the models

Both the BDT and NN models have the potential advantage over
the cuts described in Section 4.1 of combining several number of input
parameters, to produce a more powerful classifier. Ultimately, however,
the effectiveness of the new classifier will depend on the discriminating
power of each individual parameter, as well as the correlations among
them. Seven parameters were selected as inputs for our BDT and NN
algorithms, as described in Section 2.

In building a model based on MLT, one commonly requires three
stages: training, verification, and testing [30]. The first and second
stages typically work together to build the model, while the last stage is
used to evaluate the performance and stability of the model. Each stage
has an independent event sample; the purpose is to avoid memorizing
the events instead of learning generalizable features. We chose to

11 Several architectures were tested, but this one provided the best
performance at a reasonable computational cost.

https://xgboost.readthedocs.io/en/stable/
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Fig. 2. Q factor as a function of a cut on PINC and LIC, for ( = 3, ebin 3), containing 1.00–1.78 TeV. The plot illustrates the performance of the classification scheme, as a
unction of the chosen thresholds (𝐶𝑃 and 𝐶𝐿). A higher Q implies a better G/H separation. The optimal cut is the point with the highest Q value. In this specific bin, this is
ound at 𝐶𝐿 = −1.202 and 𝐶𝑃 = 2.195 (indicated by the dashed lines), which retains 59.7% of gamma-ray events, while rejecting 93.8% of hadron events, resulting in a Q factor
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plit our simulation data into two equal sets: 50% for training and
erification and 50% for the testing stage. Thus, the algorithms use only
alf of the data to build a mathematical model that can recognize the
ifferences between gamma-ray events and charged cosmic rays, while
he remaining 50% of the events are used to quantify the performance
f the models. The output value for our models was defined in all cases
s 1 for gamma-ray events, and 0 or −1 for hadrons, for the NN or BDT
model, respectively.

Unfortunately, there is no clear answer to the question ‘‘what is
the best model?’’; each has its pros and cons. Both the NN and BDT
show a good performance in classification; however, their training is
slow. The NN response calculation is somewhat faster than the BDT
(though neither significantly affects event reconstruction time). The
BDT is more robust at ignoring weak variables but is more vulnerable
to overtraining. Rather than training separate models in each { and
ebin} bin, the data were grouped into three containers and NN and
BDT models were trained on these larger groups:  = 0 − 2 (low),
 = 3 − 5 (medium) and  = 6 − 9 (high). This grouping allowed us
to include more training samples per model; the use of two different
(albeit correlated) energy-related input parameters (see Section 2.1),
allowed our models to better interpolate over the relatively large range
of  bins covered by each of these containers, as suggested in [31].

Nevertheless, the cuts applied on the model output were chosen
separately for each (, ebin) pair, as described in the next section.

Optimizing the cuts

Although our models are designed for the classification task, they
still allow us the freedom to choose the specific cuts that will determine
the separation between the signal and background classes. In this work,
we set a goal of removing as much background as possible while
keeping at least 50% of the signal. Section 3 describes the data set
used to determine the cuts for each model. In order to define the
best cut, we quantify the expected significance enhancement via the
Q factor (described below). Sections 5.1 and 5.2 describe how we
use this information to choose the specific cuts for the SC and MLT
models, respectively; in both cases the final cuts are optimized for each
individual bin.
 1

6

Q factor
The quality factor, Q, of a given selection cut is a parameter com-

monly used in ground-based gamma-ray astronomy (e.g., Milagro [10],
VERITAS [17]) to measure the expected increase in the significance of
an astrophysical source, after making the cut. Thus, optimizing the Q
factor predicts the best way to classify the events. We use a Gaussian
approximation to the Poisson significance improvement, assuming each
bin contains a sufficiently large number of events. The Q factor is thus
defined as

𝑄 =
𝜉𝛾
√

𝜉ℎ
. (1)

5.1. Standard cuts

The SC involves finding optimal cuts for two parameters, separately,
for each bin. First, 𝜉𝛾 is computed using many candidate cuts on PINC
and LIC, using the MC signal data. Next, 𝜉ℎ is computed for these cuts
using the real background set. Finally, the Q factor is calculated with
Eq. (1), as a function of the candidate 𝐶𝑃 and 𝐶𝐿 cuts. Fig. 2 shows the
esults obtained for the ( = 3, ebin 3.0) bin, with energy between 1.00
nd 1.78 TeV. The optimal cut values are those giving the maximum
factor, with the proviso that at least 50% of the gamma-ray events
re retained. This process is repeated for each (, ebin) bin. Not all bin
ombinations contain enough data to determine the cuts, since  and
he particle energy are correlated; therefore, the cuts are not computed
f the sample has less than 500 events.

.2. Machine learning techniques

After the training and verification stages, the BDT and NN model
utputs give the probability that an event is a gamma ray: if the output
alue is close to 1, there is a high probability that the event is a gamma,
hile an output close to 0 (or −1 for BDT), means the model predicts
t is likely a background event. Fig. 3 shows the distribution of the
N output using the events of the  = 3 bin, with energy between
.00–1.78 TeV using signal and background MC events, as well as the
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Fig. 3. The probability distribution of the NN output for signal and background MC
ample using the events of the  = 3 with energy between 1.00-1.78 TeV, normalized
y the number of events in each sample. The Q factor is plotted in green as a function
f the cutoff on the NN output. In this specific bin, the optimal cutoff is 0.98 (dark
ashed line), where it retains 63.9% of gamma-ray events and rejects 96.1% of hadron
vents, giving a maximum Q factor of 3.25.

orresponding Q factor as a function of threshold on the NN output.
he optimal cut (0.98) for the model is the one with the maximum Q
actor. As in the case of the SC, the process is repeated for each {,
bin} bin to find the optimal cuts for the NN and BDT models.

. Testing stage

The testing stage is used to evaluate and compare the models. We
irst test the models using samples of simulated events of known types,
alculating the predicted efficiencies and Q factors (Section 6.1). Next,
e applied our G/H separation models to real data, in order to obtain
he actual significances of known gamma-ray sources; specifically, we
ooked at three well-known sources: the Crab, Markarian 421, and
arkarian 501 (Section 6.2).

.1. Testing on MC data

Our sample of signal events was taken from the MC simulation of
amma-ray showers (see Section 3.1), and is used in the training of all
odels (SC and MLT models).
For our background events, we chose two different samples; the

irst, from the set of background events in our MC simulation of hadron
howers (see Section 3.1). In addition, however, we used a set of
andomly selected real data events (which are known to be mostly
harged cosmic rays) from a single day.
The SC model used MC signal and real data background samples

or training. The MLT models were trained on MC signal and MC
ackground events. The MC simulation agrees with real data (both
ignal and background) for all the discrimination variables [32]. We
hose to train with MC background because we obtained slightly worse
C testing results when training with real data.12.
Having used half of our MC sample of events for the training & ver-

fication stages, we used the remaining half of our MC data sample for
he testing stage. In order to compare the performance of all methods,
e compute the Q factor for each {, ebin} bin for each G/H separation
odel, using the optimal cutoff in each case. We checked that the

12 We also found that the NN produced significantly worse results on real
rab signals in upper  bins when trained with real data. See further discussion
n Appendix A.
7

models were not overtrained by verifying that the model outputs on
MC testing were compatible with the training outputs.

Once we have fixed the optimal cuts for each bin, we then evaluate
the predicted performance on the Crab by using the testing sample,
weighted appropriately to simulate transits of the Crab. Based on the
MC results, the NN and BDT have better performance than the SC on
the first six  bins, while the SC is better for the rest of the bins. Fig. 4
hows the value of the predicted Q factor of the three models for two
bins (3 and 6). The bottom of the figures show the comparison of

he MLT versus SC. For the  = 3 bin, the SC is the worst of the
/H separation models, with the NN and BDT showing an average
mprovement over the SC of 12% and 30%, respectively. On the other
and, for the  = 6 bin, the SC reports better results than the MLT at
energies above 56.2 TeV (ebin = 4.75).

The SC1D (see Section 4.1) is the original G/H separation technique
used by HAWC13 [13]. The SC1D cuts, on PINC and compactness (and
thus LiC), were optimized for each  bin using a year of early Crab
signal and background data. In the initial publication, G/H separation
was not attempted for  = 0. Fig. 5 shows 𝜉𝛾 and 𝜉ℎ as a function of
bin. The SC1D cuts were (by definition) different for each  bin. For

this comparison, we applied the 2D cuts separately to each {, ebin})
bin, then combined the ebins belonging to each individual  bin. The
MLT reports a higher 𝜉𝛾 at large  bins. The fraction of mis-classified
hadrons in the 2D models is lower in the first four  bins than for SC1D,
because these 2D models reject more background events. Thus, Fig. 5
implies that the 2D models generally have a greater predicted Q factor,
according to the MC testing comparison.

6.2. Testing on real data

In order to carry out tests on real data, we first applied our models to
remove hadron events, and then proceeded to construct sky maps, using
the official HAWC software in the standard way, as described in [13],
with a power law spectrum of index −2.7, and a pivot energy of 7 TeV.

The G/H separation method was used to obtain the Crab signifi-
cance to show the actual performance of the various methods (rather
than the predicted one, based on the MC testing set), in order to
compare them. In this analysis, 67 2D bins with a significance at the
source position of > 3𝜎 are used14. For the rest of the bins (53),
the maps are not included because they have too few counts or are
dominated by background so that the signal is overshadowed by the
noise [14]. Fig. 6 shows the results for the  = 3 and  = 6 bins of
the 2D G/H separation models. In the specific case of  = 3, the results
follow the same behavior as the testing with simulation; the MLTs show
an improvement over the SC. However, in the case of  = 6, the models
have similar results except for energies greater than 56.2 TeV (ebin
4.75), where the SC is better.

In order to determine the significance as a function of the  bin,
we combine all ebins, thus summarizing the performance of each G/H
separation model per bin. Table 2 reports the significance at the Crab
location for each G/H separation method; the next three columns
contain the fractional significance improvement of the 2D G/H sepa-
ration models over the older SC1D; and the last two columns show the
comparison between MLT and SC cuts. The last two rows report the
combined significance using all 67 bins ( = 0 − 9), and the official
bins only ( = 1 − 9). For most bins, the 2D models provide better
results than SC1D. BDT improves the Crab significance compared to
SC1D by 19% for the official bins, while the SC and NN improve, by
9% and 8%, respectively. The BDT improves over SC in every  bin,
while the NN improves in over half. Adding  = 0 gives only a slight
improvement, even with MLT methods, suggesting that this low bin
requires a different approach if a useful signal is to be extracted from
it.

13 Though now mostly superseded by the 2-D SC model, SC1D continues
to be useful for analyses of weak or low-energy sources because it uses a less
restrictive data selection than needed for applying improved energy estimators.
14 Of these, four bins belong to the  = 0.
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Fig. 4. The top panel of (a) and (b) show the Q factor for each 2D G/H separation model for the  = 3 and  = 6 bins, respectively, using the MC test sample. In most ebins
f (a), the MLT models have better results, as reflected by the bigger Q factor, but in the case of (b), the SC shows better results at higher energies. The bottom panel of both
igures shows the ratio of the Q factors for MLT models, divided by the SC. For  = 3, the MLT increase Q by around 10% to 30%.
Fig. 5. The gamma-ray and hadron efficiencies (top) using the MC test sample for the various classification methods: SC1D, SC, NN, and BDT. The lower panel shows the Q factor
or each fit bin.
We also summarize the Crab performance as a function of the energy
ebin). The flux points were obtained for the Crab in quarter-decade
nergy bins, using the method described in [14]. We repeated it for
ach G/H separation model, using a log-parabola model to fit the
pectrum (see Fig. 7). Table 3 reports our results, which are similar
o the  bin projection. The 2D models give the best G/H separation in
ost bins. MLT gives better results than SC at low energies, but above
1.6 TeV (ebin = 4.50), the SC generally has better performance.
Table 4 and Table 5 report the significance for Mrk 421 and Mrk

01 for each  bin and for the combination of all bins (0–9 and 1–
). The MLT results for Mrk 421 are consistent with those seen in the
rab in bins where both are significantly detected. MLT has similar
mprovement over SC for 421 as for the Crab, but all 2D methods
ave smaller fractional improvement over SC1D than for the Crab.
owever, for Mrk 501 the NN results are worse than for SC or SC1D.
8

The performance of the SC is better than SC1D (though again not as
much as for the Crab), while the BDT improvement over SC on this
source is comparable to that seen for the Crab analysis. It is difficult to
assess trends by bin for Mrk 501, because the source is not as strongly
detected as Mrk 421 or the Crab.

7. Discussion and conclusions

The current G/H separation method used by HAWC is based on a
simple rectangular cut involving only two parameters. However, the
sensitivity of high energy observatories depends strongly on their abil-
ity to reject hadrons, because these overshadow the gamma-ray signal
coming from astrophysical sources by several orders of magnitude. To
improve on the performance of current methods, we must combine the
information of additional parameters. We investigated new methods
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Fig. 6. The significance at the Crab position using the 2D models for  = 3 (a) and  = 6 (b) are shown in the top panel. The curves show a similar behavior to those in Fig. 4,
ith the MLT showing a better performance than SC for  = 3 in the most ebins, while in the  = 6, the results of SC are similar or higher, as can be seen from the ratio of the
odels, shown in the bottom panel of each figure.
Fig. 7. The Crab spectrum obtained with the SC1D (red), SC (black), NN (dark blue), and BDT (light blue) using the same method described in Abeysekara et al. [14]. The dashed
lines show the spectral model fit with a log-parabola for each G/H model.
using MLT to improve the G/H separation over the official standard
cuts (SC and SC1D). We focus on two techniques, Neural Networks
(NN) and Boosted Decision Trees (BDT), which have proven to be
highly effective in a range of applications (including in VHE gamma-ray
astronomy [4,5]).

The machine learning models were trained and tested on the stan-
ard HAWC MC data, simulating an astrophysical source with energy
pectrum and declination similar to the Crab. These methods were
ompared, using simulated data, with the HAWC official cuts (SC1D
nd SC, see Fig. 5), with the MLT models resulting in a hadron rejection
imilar to the SC for low  bins, but a higher 𝜉𝛾 at high  bins.
We then tested the models using real data. From Fig. 4, MC predicts

that NN and BDT models have a greater Q factor than SC in the  = 3
in, and this is borne out in practice, based on the observed significance
or the Crab (using real HAWC data) presented in Fig. 6. Similarly, for
he  = 6 bin, SC has a better performance in the high-energy bin (ebin).
A summary of our Crab results is shown in Tables 2 and 3, where

it is clear that all the 2D models have better performance than SC1D
9

(cuts binned in  only). This is of interest because SC1D was tuned on
Crab data and real background, while SC and MLT use MC signal. The
BDT is the best overall G/H separation model, with an improvement
of ∼ 10% over the best-present-practice SC and ∼ 19% over SC1D.
While BDT improves over SC in all  bins, the improvements were
not as prominent in the higher ebins as in the lower bins, perhaps
because of limited MC statistics at high energy or residual simulation
modeling issues. All of the 2D models would have benefited from larger
background samples for tuning the bin cuts, as in some upper bins fewer
than 100 background events passed the cuts. It is worth noting that the
MLT models had the SC variables as inputs but were unable to improve
on SC in most high-energy ebins.

The models were also applied to two additional astrophysical
gamma-ray sources: Mrk 421 and Mrk 501, two well-known extra-
galactic objects with different energy spectra and declination than the
Crab, for which all cuts had been tuned. The BDT gave an excellent
performance in most  bins, and the overall improvement in  (1-9)
with respect SC1D is 8% and 16% on Mrk 421 and 501, respectively.
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Table 2
Crab significance using each G/H separation method. Three columns show the differ-
ence, in %, of the significances between the 2D Models and the SC1D cuts ( 2𝐷𝑀𝑜𝑑𝑒𝑙−𝑆𝐶1𝐷

𝑆𝐶1𝐷
).

he last two columns show the improvement of the MLT models over the SC cuts. The
ast two rows show the results from merging maps that belong to the  bins 1–9 and
–9.



Significance Difference in % between

SC NN BDT NN BDT
SC1D SC NN BDT & & & & &

SC1D SC1D SC1D SC SC

0 – 15.2 14.7 16.0 – – – −3 5
1 26.9 27.6 27.5 28.22 3 2 5 0 2
2 37.8 44.1 44.6 46.4 17 18 23 1 5
3 59.2 62.4 66.1 72.0 5 12 22 6 15
4 70.6 69.7 76.3 76.2 −1 8 8 10 9
5 67.3 71.3 69.7 80.1 6 4 19 −2 12
6 52.3 61.5 48.3 66.0 18 −8 26 −21 7
7 39.1 47.7 49.2 50.3 22 26 28 3 5
8 27.6 32.8 35.1 34.8 19 27 26 7 6
9 28.2 28.7 31.3 31.3 2 11 11 9 9

1–9 144.0 155.7 156.9 170.7 8 9 19 1 10
0–9 – 156.3 157.5 171.3 – – – 1 10

Table 3
Crab significance using each G/H separation method for the energy bin (ebin). The first
column gives the lower bound for each bin (log (𝑒𝑁𝑁/GeV)).
ebin Significance

SC1D SC NN BDT

2.50 12.1 12.4 12.3 12.6
2.75 31.2 32.5 34.0 34.6
3.00 52.2 54.7 56.9 58.4
3.25 64.4 65.3 65.6 72.9
3.50 70.1 71.1 74.0 79.5
3.75 60.3 66.5 58.6 74.6
4.00 46.2 54.6 59.0 62.3
4.25 36.3 41.5 45.0 44.3
4.50 26.7 36.0 30.6 32.9
4.75 15.7 21.8 23.0 21.5
5.00 8.4 13.9 11.3 10.1
5.25 1.9 3.0 4.8 4.4

Table 4
Similar to Table 2 but for Mrk 421.



Significance Difference in % between

SC NN BDT NN BDT
SC1D SC NN BDT & & & & &

SC1D SC1D SC1D SC SC

0 – 8.46 8.28 8.40 – – – −2 −1
1 11.9 13.2 12.5 13.0 11 5 10 −5 −1
2 16.2 16.2 15.6 16.6 0 −4 2 −3 2
3 19.0 18.9 19.9 21.2 −1 4 11 5 12
4 21.6 19.5 21.9 20.7 −10 2 −4 12 6
5 16.5 15.0 15.5 17.6 −9 −6 7 4 18
6 9.7 9.3 8.4 11.0 −4 −13 13 −9 18
7 4.2 5.6 7.2 6.9 34 72 65 28 23
8 – – – – – – – – –
9 – – – – – – – – –

1–9 35.9 35.3 36.0 38.6 −2 0 8 2 10
0–9 – 36.0 36.6 39.3 – – – 2 9

Crab Improvements
1–9 8 9 19 1 10

The NN had similar performance to SC1D on the two Markarians, while
the 2-dimensional standard cut (SC) only slightly improved over SC1D
(by less than one sigma) in Mrk 501 and was worse for Mrk 421. This
may be due to the differences in source declination or energy spectrum,
compared to the Crab, which extends to higher energy and transits
nearly overhead at HAWC. But in the case of SC, it also could reflect
some differences between using real Crab photon signal for SC1D and
the MC photon signal used in tuning SC (and MLT).
10
Table 5
Similar to Table 2 but for Mrk 501.



Significance Difference in % between

SC NN BDT NN BDT
SC1D SC NN BDT & & & & &

SC1D SC1D SC1D SC SC

0 – – – – – – – – –
1 3.4 3.8 4.2 4.6 12 25 36 11 21
2 4.5 2.9 3.1 3.7 −36 −32 −17 6 29
3 4.7 5.3 4.5 4.2 14 −5 −10 −16 −21
4 5.1 5.1 6.2 4.4 0 20 −14 20 −14
5 4.1 3.8 4.3 5.7 −9 4 38 15 51
6 3.8 5.0 2.0 5.7 31 −47 50 −59 14
7 1.6 2.2 2.5 2.9 43 60 85 12 30
8 2.6 2.7 2.3 2.9 3 −10 12 −13 8
9 – – – – – – – – –

1–9 10.3 10.6 10.2 11.9 4 0 16 −4 12

Crab Improvements
1–9 8 9 19 1 10

The BDT consistently improved the observed significance over
present state of the art SC by 10%, 10%, and 12% for the Crab,
Mrk 421, and Mrk 501, respectively. The NN results reflect less of an
improvement over SC: 1%, 2%, and -4% respectively. The BDT does
not seem to be strongly dependent on the differences in the strength,
declination, or spectra of the sources. However, for most present HAWC
analyses, the gains shown by the BDT are not felt to be large enough to
be worth adding the corresponding additional systematic uncertainty.

General experience in the High Energy Physics (HEP) community
has been that BDT often outperforms neural nets. BDT is also typically
more robust to weak or correlated variables, because of the algorithm’s
explicit focus on incremental variable selection. A significant part of
BDT’s advantage may be simply having more free parameters. The
neural network energy estimator [14] has 479 parameters, while the
3 NN models together have 670 parameters. The SC works with 134
parameters and the BDT, with 1500 trees, has up to 90K parameters.
Because of lower weights on later trees and the automated leaf pruning,
the effective number of parameters might be considerably lower, but
the BDT has at least an order of magnitude more parameters than
the NN. Despite its larger size, the BDT generalized better from the
training sample than the NN, so it is unlikely that the MC sample
size intrinsically limited the smaller NN model. But larger background
samples (particularly at high energy) might well have further improved
the bin-by-bin cut optimization and performance of MLT, and possibly
of the SC as well.

The MLT are powerful algorithms that help to improve the recog-
nition between gamma rays and hadrons. In this paper, we show an
improvement in three known sources. However, the performance of
these models in other sources with different characteristics (e.g. those
reported in the third HAWC catalog [33]) is yet to be determined.
On the other hand, the field of MLT is vast, and includes many more
models than the ones explored here. For example, Convolutional Neural
Networks could be explored that can be trained with weakly supervised
learning [34], where the primary goal would be to build a model with
pure Crab data that avoids the discrepancy between training and testing
data [35].
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Appendix A. MC vs. data background

A surprise in our study was that training MC signal against MC
background produced better results than training against our real data
background sample. This is despite the real data sample having more
events, including in the highest energy bins. One would expect to do
better with real background. In general we had slightly better results in
MC testing when using MC background, for both NN and BDT. But on
real Crab data, the NN performance was significantly worse in the top 
bins using event data background. However, the BDT Crab results were
similar when trained with either background. We looked into various
possible explanations.

One might wonder whether this could be caused by problems in
correctly simulating the distributions of discriminating variables. We
had studied these variables before beginning training of the models,
and published results [32] showing that we saw no significant problems
with the simulation matching data compared to real data around the
Crab nebula, at least until upper bins where real data necessarily runs
out of statistics. Our comparisons included both a background region,
and a background-subtracted signal region. Further, one would have
expected both ML methods to be similarly affected by any MC vs data
discrepancy.

Adding the interpolation energy variables fHit and 𝑒𝑁𝑁 improved
C testing results by a few %. While we had been thinking of them
11
Table B.6
Comparison of relative importance of input variables during training using MC
background, for NN and BDT. The variables which are clearly more important are
denoted in bold. The results are shown for each of the 3 trained models, labeled by
the  range covered.
NN BDT

 0–2  3–5  6–9  0–2  3–5  6-9

PINC PINC PINC LDFChi2 PINC PINC
LDFChi2 LDFChi2 LDFChi2 LiC LiC LDFAmp
fHit LiC LDFAmp PINC LDFAmp LDFChi2
𝑒𝑁𝑁 disMax fHit fHit LDFChi2 LiC
LiC fHit disMax LDFAmp fHit fHit
disMax 𝑒𝑁𝑁 LiC 𝑒𝑁𝑁 disMax disMax
LDFAmp LDFAmp 𝑒𝑁𝑁 disMax 𝑒𝑁𝑁 𝑒𝑁𝑁

as interpolation variables, the MLT can treat them as discriminating
variables. The upper tail of the fHit distribution (the highest  bins),
hile similar between MC signal and MC background, differed between
C background and data background. This reflects differences in the
umber of available PMTs in simulation compared to data. The MC
ttempted to sample appropriately over long-term detector evolution,
hile we used only a single data run to form the MLT training data
ackground sample. Again, one would have naively expected this to
ffect BDT and NN similarly, but we believe it affected NN more (see
ppendix B).
In the original ML interpolation publication [31], the interpolation

as on a signal theory parameter, with the background (randomly)
orced to have exactly the same distribution. Using measured values,
e could not force the distributions to be identical and restrict the
nergy variables to interpolation, leading to some sensitivity to the
istributions of the interpolation variables. However, the choice to
rain with MC background added some robustness, since signal and
ackground were generated with the same PMT availability. Using data
s background requires care to ensure a compatible detector setup
etween the data selected, and that in the signal MC.

ppendix B. Correlation and variable importance effects

It is considered good practice in MLT to reduce, if possible, the
imensionality (number of input variables) in a model. One possibility
s eliminating one of a pair of heavily correlated variables. In our
imulations, PINC and LDFChi2 are highly correlated in both signal
nd background (see Fig. B.8). Fig. B.9 shows some of the correlations
among variables in MC samples.

To test whether the largest correlation was inhibiting ML perfor-
mance, we trained a BDT after removing PINC; the BDT performance
was a few percent worse instead of better. This is consistent with
experience in HEP that BDT is often successful using collections of
correlated variables. However, when we trained a NN removing LD-
FChi2 or PINC, its performance is somewhat worse in some bins and
somewhat better in others, and NN generally seemed more sensitive to
removal of specific variables than BDT. We would tend to attribute this
to the correlations making backpropagation more difficult in NN. BDT
optimizes rather differently, by raising weights of mis-classified events
to purify leaves.

Table B.6 shows the relative importance of the input variables in
training on MC data. The NN ordering is based on summed weights
applied to the inputs (after linearly normalizing all variables into a
range of [−1,1]). The BDT orders variables by the number of times trees
use them to define splits. NN and the BDT both rank PINC and LDFChi2
as among the most important variables, but the algorithms appear to
use the inputs rather differently, perhaps because NN emphasizes func-
tional dependence, while BDT emphasizes classification more directly.
For the High  bin, the BDT ranks fHit a bit higher than NN does, but it
is a low-priority variable for both, at least for MC background training.

Differences in correlation effects and variable importance is our
best guess as to why difference of the fHit distribution between real
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Fig. B.8. The linear correlation matrix for signal (a) and background (b) of each input parameter of the MLT models using MC training set.
Fig. B.9. The event distribution of two input parameters using simulation training data set for signal and background.
ata background and MC signal was interpreted differently by the
wo ML methods (BDT seemed to ignore this difference, but NN lost
erformance). Using MC for both background and signal had the virtue
f consistent energy distributions and fHit (PMT availability), and in
act demonstrated improvements over the SC trained on MC signal and
eal data background. However, using fHit and 𝑒𝑁𝑁 as interpolation
variables may have made ML methods more vulnerable compared to
SC.
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