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ABSTRACT ARTICLE HISTORY
Displacement-based seismic design often requires nonlinear time history Received 7 May 2021
simulation of building responses which is computationally intensive. This Accepted 3 August 2021
technical note presents an artificial neural network (ANN) designed to gen-
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erate max inter-story drift for buildings with post-tensioned mass timber Artificial neural network:
(MT) rocking walls systems. This particular lateral system was selected max dynamic response
because it is an innovative system with limited physical design parameters, prediction; displacement-
making it an ideal candidate for ANN. The proposed model achieved sig- based seismic design; mass
nificantly higher computational efficiency than time history simulation, while timber building; CLT post-
maintaining similar level of accuracy. The proposed method could poten-  tensioned rocking wall

tially be used for automated design of MT rocking wall lateral systems.

1. Introduction

Mass timber building has emerged in recent years as a viable option for multi-story urban infill
archetype. With the advantage of lightweight and relatively lean on-site construction processes, mass
timber lateral systems are gaining traction among researchers for regions with high seismicity. One
new structural system that is believed to be able to provide performance and economy is post-
tensioned cross-laminated timber (CLT) rocking wall system. Similar to post-tensioned concrete
rocking wall system (Nazari, Sritharan, and Aaleti 2017), mass timber rocking wall mainly consists
of a monolithic mass timber panel with vertical post-tensioning (PT) elements anchored to the
foundation to provide self-centering ability. Supplemental energy dissipation devices (e.g., friction
damper, U-shaped flexural plate (UFP)) can also be added to the wall panel to provide additional
damping. Post-tensioned mass timber walls were studied by a handful of researchers in New Zealand
and North American (Akbas et al. 2017; Buchanan et al. 2008; Perez, Sause, and Pessiki 2007; Priestly
1991). Particularly, a series of static and dynamic tests of CLT rocking walls conducted in recent years
(Chen, Popovski, and Igbal 2020; Ganey et al. 2017; Moroder et al. 2018; Pei et al. 2019) demonstrated
the advantage and practicality of adopting such a lateral system for resilient multi-story wood
buildings. Mass timber rocking wall system has been used in real building projects in New Zealand
(Buchanan et al. 2008) and permitted in the U.S. (framework (Haselton et al. 2017a, 2017b; Jarrett et al.
2017; Zimmerman et al. 2017)).

Because mass timber rocking wall system has not been recognized by existing design codes (e.g.,
ASCE 2017, IBC 2018), an alternative performance-based seismic design (PBSD) approach must be
employed in practice. One of the most popular PBSD approaches for building design is the displace-
ment-based design, which focuses on controlling maximum inter-story drift. During this process, the
designer must be able to confidently predict building dynamic response using a numerical model.
Recently, serval numerical models were developed and validated (Massari, Savoia, and Barbosa 2017;
Pei et al. 2021) for mass timber rocking wall systems using shake table test data. While these models
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can simulate the max dynamic response with reasonable accuracy, they are very complicated and
computationally expensive for trial-and-error style displacement-based design. The main objective of
this study is to develop a generalized ANN model that can predict max inter-story drift of mass timber
rocking wall system with significantly higher efficiency than traditional time history integration
models.

ANN models have been widely recognized as powerful machine learning tools in civil engineer-
ing. Specifically, for dynamic response prediction, two types of machine learning tools were
explored in the existing literature. The first type focuses on a specific structure under a limited
number of earthquake ground motions (Jeng and Mo 2004; Nguyen et al. 2020; Sahoo and
Chakraverty 2018; Wang et al. 2009). These models used different machine learning methods
such as ANN, Recurrent neural network (RNN), Convolutional neural network (CNN), Long short-
term memory network (LSTM network) in order to achieve the best prediction outcome. For
example, Nguyen et al. (2020) developed an optimized ANN for dynamic response prediction for
short buildings under Chi-Chi 1999 earthquake, Jeng and Mo (2004) used multilayer perception
(MLP) networks with backpropagation algorithm for quick response estimations for prestressed
concrete bridge under 1940 EI Centro earthquake. Sahoo and Chakraverty (2018) proposed an
application of functional link neural networks (FLNNs) for structural response prediction of tall
buildings due to seismic loads. Wang et al. (2009) used the first 4 s of the dynamic response of
a bridge structure as training data for ANN to predict responses in the next 4 s under one
earthquake. After training, these models can achieve good accuracy but were not generalized.
The second type is more generalized as they were trained for prediction under different earth-
quakes, but they are mostly still structure-specific (Abd-Elhamed, Shaban, and Mahmoud 2018;
Lagaros and Papadrakakis 2012; Perez-Ramirez et al. 2019; Zhang et al. 2019; Zhang, Liu, and Sun
2020). For example, Lagaros and Papadrakakis (2012) conducted an ANN network scheme for non-
linear seismic response of 2-story reinforced concrete 3D buildings, Zhang et al. (2019), Zhang, Liu,
and Sun (2020) developed a deep LSTM network for nonlinear structural response prediction, and
further refined the model by taking the laws of physic as extra constraints. Abd-Elhamed, Shaban,
and Mahmoud (2018) used the Logical analysis of data (LAD) method for SDOF building and
compared the performance of LAD and ANN. Perez-Ramirez et al. (2019) utilized the Non-linear
autoregressive exogenous (NARX) network with Bayesian regularization for response prediction of
a 1:20 scaled 38-story residential building. In addition, some of these machine learning approaches
are computationally expensive.

In this study, A generalized ANN architecture is proposed for max response prediction for mass
timber rocking wall systems. This model is formulated to be highly efficient computationally while
using physical design parameters of the rocking wall system as input in order to facilitate the trail-and-
error style design process. The ANN was trained using simulated data generated from a test-validated
numerical model within a representative parameter space for realistic design conditions. The model is
intended to serve as a useful tool for initial design iterations in performance-based seismic design of
mass timber rocking wall systems where extremely fast estimation of max seismic response is
necessary.

2. Methodology

The objective of the proposed ANN is to enable fast prediction of inter-story drift response of a multi-
story building with a mass timber rocking wall system as shown in Fig. 1. Cross-laminated timber
(CLT) is a very popular panel product used in mass timber construction and can be used to form
rocking wall lateral systems. CLT rocking wall systems usually contain panelized CLT walls, vertical
post-tensioned elements anchored to the foundation, energy dissipation devices (e.g. U-shaped steel
plate (UFP), Resilient Slip Friction (RSF) joint). These supplemental damping devices typically are
attached to the boundary column and reduce drift demands while the system rocks at the edge of the
CLT rocking wall panel. Rocking wall system is typically balloon-framed into the building and carries
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Figure 1. CLT rocking wall conceptual configuration.

only lateral loads. A slotted shear key connection is responsible to transfer lateral load from
diaphragms to the wall without engaging the wall under gravity loads. A realistic example of a post-
tensioned CLT rocking wall can be found in Pei et al. (2019).

The objective of this study is to develop an ANN model for maximum displacement prediction for
mass timber rocking walls. The structure of an ANN model can be defined by its input and output
parameters, as well as the internal layered neural structure. Since this study was focused on maximum
drift response prediction, the output of the ANN is a single parameter, namely maximum inter-story
drift of the building during an earthquake. The input parameters contain two main categories, namely
the earthquake ground motion parameters, and rocking wall design parameters (see Fig. 1). The
structure of the ANN input/output parameters is listed in Table 1.

Note that some of the wall design input parameters are physical parameters such as wall height (i.e.,
building height) and aspect ratio, while other parameters are derived parameters from a physical
system, such as K0,;,K0,5, for energy dissipation devices (Baird et al. 2014). In a practical design
setting, those derived parameters can easily be calculated using the physical design parameters of these
devices, which will dictate the supplement damping of the design explicitly. In addition to the UFP
device contribution, the damping ratio used to generate the training dataset is randomly selected by
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Table 1. ANN input/output parameters.

Wall design input

EQ input Basic geometry Wood PT UFP
Sa@0.1s Spectrum acceleration at 0.1s Ny — story Eq; — elastic Fini/Fy — ratio of PT KOyz, — total
Sa@0.5s Spectrum acceleration at 0.5s number modulus of CLT initial force and initial stiffness
Sa@1s Spectrum acceleration at 1s m; —story mass AR —aspect ratio of  yield force of UFP
Sa@2s Spectrum acceleration at 2s wall
Sa@3s Spectrum acceleration at 3s hy - story height Ap — total area of PT  dy,z, ~ yielding
Sa@Tn Spectrum acceleration at Tn t - thickness of deformation
PGA Peak ground acceleration { - damping wall of UFP

045 ! Spectl"um acceleration of EQ1 ) ratIO

the program to ensure ANN robustness over a wide range of potential modeling cases for MT rocking
walls. For specific design cases, more detailed calculation of damping ratio of mass timber rocking wall
system can be found in other research (Isopescu and Gavriloaia 2015; Magalhaes, Brincker, and Cunha
2007; Mugabo, Barbosa, and Riggio 2019). In summary, the input/output configuration of the
proposed ANN is designed to create a direct connection between ground motion input, lateral system
design parameters, and dynamic displacement results. Similarly, instead of using the entire time
history of a ground motion record as input, only a few points on the response spectrum curve were
used. It will be demonstrated later that such a simple representation of the earthquake record will be
able to provide enough information for reasonable maximum drift approximation.

With the input and output layers defined, the rest of the ANN is setup with 2 hidden layers with
a dropout function (Serivastava et al. 2014) with a 10% drop rate, as is shown in Fig. 2. The number of
nodes in the hidden layers was 197 for the first layer and 196 for the second. These specific node
numbers were first selected based on experience and later optimized during training by applying
Genetic Algorithm (i.e., searching for the best node number combinations to provide the best
outcome). The ANN and training process were implemented using python Keras package from
Tensorflow platform (Frangois 2015).

Input layer Hidden layer Output layer
Hl Hl
Physical
parameters of — HZ H2
building
Max inter-
}’o story drift
Earthquake
parameters

Hy Hy

Dropout 0.1

Figure 2. Example ANN architecture.
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3. Training Data

The proposed ANN can be trained using dynamic response data (either real or simulated) of multi-
story mass timber building with the rocking wall lateral system. Since realistic response data for this
innovative system is currently not available, simulated data from time history integration was used in
this study. An earlier study (Pei et al. 2021) developed and validated a simplified numerical model for
PT mass timber rocking walls for balloon-framed building structures. In this model, building
diaphragms and the distributed seismic mass is modeled as lumped mass at each story, the rocking
walls are modeled as linear beam elements with a non-linear rotational spring at the base (see Fig. 3a).
The parameters for the non-linear rotational spring are calculated based on the location and size of the
PT and energy dissipation elements. The performance of non-linear hysteresis of the rotational spring
for a typical mass timber rocking wall is shown in Fig. 3b. The detailed derivation of this numerical
model can be found in Pei et al. (2021). For any PT rocking wall structure that can be represented by
the ANN parameters outlined in Table 1, a corresponding numerical model can also be built using this
simplified approach.

In order to make the proposed ANN framework general, training data was generated by randomly
drawing building designs from the following realistic ranges for design parameters shown in Table 2.
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Figure 3. (a) Dynamic equilibrium of the system. (b) Non-linear hysteresis of rotational spring.

Table 2. Input parameter ranges.

Parameters Range Comments

N 1-18 The max story number of wood buildings is 18 by IBC
m 8.75 t-350.17 t Total tributary floor mass to each rocking wall

hy 244 m-7.62 m Story height

4 0.01-0.20 Typical damping ratio for mass timber buildings

Ear 6.89Gpa-24.82Gpa Elastic modulus of CLT rocking wall panel

AR 1-10 Aspect ratio of rocking wall panel

t 7.62 cm-63.5 cm Typical thickness of 3-ply to double 11-ply CLT panel
Fini /Fy 0.05-0.9 Post tension ratio

At 32.3cm?-322.6cm’ Total area of PT cross-section

KOyupp 1.2kN/mm-383.2kN/mm Total initial stiffness of UFP device

dyup 0-254 mm

Yielding deformation of UFP device
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Figure 4. Histogram of training dataset (a) Fundamental period Tn of the building designs, (b) PGA of the ground motions used.

Since it is well known that seismic response of any building structure is closely related to the natural
period of the building, the natural period of the building design samples was filtered in order to
achieve an approximately uniform distribution between 0 and 3 s, representing the most realistic
building designs. Eventually, a total of 3243 building designs were included in the training database,
with the distribution of Tn is shown in Fig. 4a. This is well-representative of the possible height of mass
timber buildings, as it is very unlikely the natural period of an 18-story building (IBC height limit for
mass timber buildings) will be longer than 3 s.

The ground motion suite used to generate training dataset was adopted from the CUREE
Woodframe project (Fischer et al. 2001). A total of 20 earthquake ground motions were divided
into training and validation datasets as it is shown in Table 3. These ground motions were scaled to
different intensity levels. With different scaling factors applied to the training GMs, a total of 30

Table 3. Information of ground motions.

EQ Year Record ID Earthquake event Station PGA(g)

Training 1 1992 CM92for Cape Mendocino Fortuna 0.116
2 1992 CM92rio Cape Mendocino Rio Dell Overpass 0.385

3 1992 LD92dsp Landers Desert Hot Springs 0.529

4 1992 LD92yer Landers Yermo Fire Station 0.152

5 1989 LP89cap Loma Prieta Capitola 0.529

6 1989 LP89g03 Loma Prieta Gilroy Array #3 0.555

7 1989 LP89g04 Loma Prieta Gilroy Array #4 0417

8 1989 LP89gmr Loma Prieta Gilroy Array #7 0.226

9 1989 LP89hda Loma Prieta Hollister Diff. Array 0.279

10 1989 LP89wvc Loma Prieta Saratoga — W Valley Coll. 0.332

Validation 1 1994 NR94mul Northridge Beverly Hills 14145 mulhol 0416
12 1994 NR94cnp Northridge Canoga Park — Topanga Can 0.356

13 1994 NR94glp Northridge Glendale - Las Palmas 0.357

14 1994 NR94hol Northridge LA - Hollywood Stor FF 0.231

15 1994 NR94far Northridge LA - N Faring Rd 0.273

16 1994 NR94cec Northridge N. Hollywoord - Coldwater Can 0.271

17 1994 NR94gle Northridge Sunland - Mt Gleason Ave. 0.157

18 1987 SH87bra Superstition Hills Brawley 0.116

19 1987 SH87icc Superstition Hills El Centro Imp. Co. Cent. 0.258

20 1987 SH87pls Superstition Hills Plaster City 0.186
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Figure 5. Histogram of training data maximum drift.

ground motions were generated with the distribution PGA shown in Fig. 4b. It can be seen that
training data PGA ranges from 0 to 4 g, which covers most of the realistic hazard levels considered in
design. After conducting nonlinear time history simulation of the design samples under the scaled
ground motion suite, the maximum drifts from these analyses were extracted (histogram is shown in
Fig. 5). By pairing the input design and ground motion parameters with maximum drift output,
a training dataset for the proposed ANN was obtained. Note that the validation GMs were not used or
referenced in the training process. Those GMs will later be used as validation for the accuracy of the
trained ANN.

4. ANN Validation

Initially, this study aimed at training a single ANN model that can predict all design cases with
reasonable confidence. However, it was discovered that a single model across all the natural period
range will very likely become over-fit and biased towards certain Tn range. Thus, adjustment was
made to split the training into two ANN models that predict short period and long period systems
separately (the models were split at Tn = 2s). While more natural period segments may be more
accurate, this study adopted a two-segment model for the balance of accuracy and complexity. From
an implementation standpoint, once trained, these two models can be combined into a single algo-
rithm with a Tn assessment at the beginning, with very little impact on overall computational
efficiency.

Figure 6a shows the ANN prediction and the numerical simulated targets used for the training
validation process (using only training data set), the training RMSE (root mean square error) is 0.1552.
a total of 350 epochs used to improve the model accuracy, Fig. 6b shows the model loss function values
during the 350 epochs. The loss function of the ANN is MSE (mean square error).
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Figure 6. (a) Training performance, (b) Model loss during training.

Once the training of the ANN model was complete, five example rocking wall designs
(shown in Table 4) were used to evaluate ANN maximum drift outputs in a typical setting of
a displacement-based design analysis scenario. In Table 4, the demonstration of the five
example buildings is listed in 3 parts. The first part is the basic building parameters and
rocking wall configuration, such as story number (Ny), story mass (m), story height (h), CLT
rocking wall panel elastic modulus (Ec.7Ecrit), aspect ratio of rocking wall panel (AR),
thickness of the rocking wall panel (t,.;), natural period of the building (T,T,), spectrum
acceleration (S,S,) and damping ratio (§(). The second part is the information of the post-
tension bars, such as PT bar numbers (NprNpr), total cross area of PT bars (AprApt), post
tension ratio (Fi,iFui/F,/Fy), initial post tension force (Fi,iF;,;) and yielding stress of PT bars
(f,fy). The last part is the parameters of the UFP devices, such as number of UFP (NugNyp),
initial stiffness of UFP (KyrpKygp), width of the UFP plate (b,b,), thickness of the UFP plate
(t), radius of the UFP plate (D,D,), yielding force of the UFP (FyugFyup), yielding

Table 4. Information of example buildings.

Building information

Ex Nyt m [t] h [m] Ear [kN/mm] AR twan cm] Ty [s] Sa [g] 4
1 3 157.58 335 455.33 4 135 1.05 0.46 0.04
2 6 97.54 3.66 315.23 3 315 0.47 1.02 0.05
3 9 192.60 3.96 420.30 5 315 1.47 0.33 0.02
4 12 262.63 3.05 630.46 6 244 234 0.21 0.06
5 15 175.09 427 210.15 7 63.0 2.83 0.17 0.08
PT information

Ner Apr [cm?] Fini /Fy Fini [kN] f, [Mpa]
1 4 114 04 329.17 723.95
2 8 20.3 0.3 440.37 723.95
3 6 79 0.5 289.13 723.95
4 8 79 04 229.80 723.95
5 8 203 03 440.37 723.95
UFP information

Nugp Kurp[kN/mm] by [mm] ty [mm] Dy [mm] Fyup [kN] Ay [mm] fy Mpa]
1 6 4.77 114 10 92 40.75 9 723.95
2 12 552 102 19 95 140.12 5 723.95
3 36 2.08 114 13 159 39.70 18 723.95
4 36 4.71 102 19 178 75.06 15 723.95
5 30 9.35 127 25 203 145.96 15 723.95
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deformation of the UFP (Ay,pAy,s) and yielding stress of the UFP plate (fugf,). The 10
earthquakes in the validation set listed earlier were scaled to SLE, DBE, and MCE hazard levels
were used as seismic input. The design response spectrum for the test buildings is shown in
Fig. 7, representing hazard level near Seattle WA, with risk category 2 and site class C. A direct
comparison between the maximum drift distribution generated by ANN and by traditional
time history simulation was conducted. However, it is important to point out that the speed of
ANN model is on average 18305 times faster than time-history integration (i.e., ANN model
used 0.035 s to complete all analysis of the validation population (150 cases), while the
traditional time history simulation took 640 s).

In context of displacement-based design, it is important to ensure the maximum drift distribution
generated through ANN model will be similar to that from numerical simulation for all hazard levels
of interest. In Fig. 8, these resulted drift distributions from ANN and simulation were compared for all
example structures at all intensity levels. As it is shown in the figure, the simulated maximum drift data
from the proposed ANN model is very similar to that from numerical integration. A T-test was also
conducted for each case to compare the mean values (with p-values shown in the corresponding
figure), proving the mean value of these distributions are statistically similar at 5% significance level.
Considering the ability to conduct thousands of maximum displacement evaluation in a few second,
the proposed ANN model could be used as a fast assessment tool for initial displacement-based design
parameter selection for mass timber rocking walls.

5. Conclusions

In this study, an ANN model to compute the max drift response of mass timber buildings with
post-tensioned wood rocking wall lateral system was developed. This tool was developed as an
efficient alternative for time-consuming nonlinear time history analysis. The computational
efficiency of the ANN model is significantly higher than time-history simulation. By comparing
ANN output with a test-validated nonlinear rocking wall model, it is concluded that the model
is able to achieve a reasonable level of accuracy in a PBSD context. The feasibility of the
proposed ANN model here reveals a possibility of utilizing similar models for fast PBSD of
CLT rocking wall system.

The ANN model proposed also has significant limitations. First of all, it was trained using one
particular numerical model. The trained ANN will at best be as accurate as the model used to
generate training data. It is expected that the same training process can be applied to other data
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Figure 8. Comparison of maximum drift distributions.

including more advanced numerical models when they become available. Secondly, the ANN
model input parameters were fixed, which means the designer can only alter these pre-defined
parameters within the ranges covered by the training data set. Although the parameter ranges
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adopted in this study cover most practical designs, this remains an inherent limitation for this
data-driven method.
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