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Abstract. In this paper, we study the free energy of the directed poly-
mer on a cylinder of radius L with the inverse temperature β. Assuming
the random environment is given by a Gaussian process that is white in
time and smooth in space, with an arbitrary compactly supported spatial
covariance function, we obtain precise scaling behaviors of the limiting
free energy for high temperatures β ≪ 1, followed by large L≫ 1, in all
dimensions. Our approach is based on a perturbative expansion of the
PDE hierarchy satisfied by the multipoint correlation function of the
polymer endpoint distribution. For the random environment given by
the 1 + 1 spacetime white noise, we derive an explicit expression of the
limiting free energy.
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1. Introduction

1.1. Main result. The random polymer model studied in this paper is
associated with the following stochastic heat equation (SHE) on the d-
dimensional torus TdL of size L > 0, i.e.,

(1.1) ∂tu =
1
2

∆u + βuV (t, x), t > 0, x ∈ TdL.

The d dimensional torus is the product of d copies of TL, understood as
the interval [−L2 ,

L
2 ] with identified endpoints. The random potential V is a

Gaussian noise that is white in time and smooth in the spatial variable, and
we assume

(1.2) E [V (t, x)V (s, y)] = δ(t − s)R(x − y), (t, x), (s, y) ∈ R ×TdL.

Throughout the paper we assume R(⋅) belongs to C∞0 (Rd) - the space of
smooth and compactly supported functions. It is a fixed non-negative
function that does not depend on the parameter L. We consider the case
when L is so large that the support of R(⋅) is contained within TdL, and it is
normalized so that ∫Rd R(z)dz = 1. The parameter β > 0, referred to as the
inverse of temperature, controls the strength of the noise.
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Suppose u(0, x) = δ(x), then Zt = ∫Td
L
u(t, x)dx is the partition function of

a (point to line) directed polymer model, as can be seen from the Feynman-
Kac representation

(1.3) Zt = EB exp{β ∫
t

0
V (s,Bs)ds −

1
2
β2R(0)t} ,

where EB is the expectation with respect to the standard Brownian motion
B on TdL starting from the origin and independent of the noise V (t, x). It is
well-known, see e.g. [23, Theorem 2.5], that the following limit exists

(1.4) γL(β) = lim
t→∞

1
t

logZt = lim
t→∞

1
t
E logZt,

and is the thermodynamic limit of the free energy of the directed polymer.
The γL(β) depends on the particular choice of the spatial covariance function
R(⋅). Here we are interested in extracting the universal behaviors in the
high temperature regime of β → 0, followed by L →∞. Define the Fourier
transform of R(⋅) by

(1.5) R̂(ξ)= ∫
Rd
R(x)e−i2πξ⋅xdx for any ξ ∈ Rd.

Since R(⋅) is a covariance function, we have R̂(ξ) ≥ 0 for all ξ. The Fourier
coefficients of the L-periodic version of R, with the size L of the torus
satisfying suppR(⋅) ⊂ [−L/2, L/2]d, are given by R̂ (nL), n ∈ Z

d.
Here is the main result of the paper:

Theorem 1.1. Fix any L > 0. Then,

(1.6) γL(β) = γ(2)L β2 + γ(4)L β4 +O(β6), as β ≪ 1,
with

γ
(2)
L = − 1

2Ld
, γ

(4)
L = − 1

8π2L2d−2 ∑
0≠n∈Zd

1
∣n∣2

R̂2 (n
L
) .

In addition,

(1.7)

lim
L→∞

γ
(4)
L = − 1

24
, d = 1,

lim
L→∞

L2

logL
γ
(4)
L = − 1

4π
, d = 2,

lim
L→∞

Ldγ
(4)
L = − 1

8π2 ∫Rd
∣ξ∣−2R̂2(ξ)dξ, d ≥ 3.

1.2. Context. The study of directed polymers in random environments is
an active area in probability and statistical physics. The interests are in the
transversal displacements of the polymer endpoint, the fluctuations of the
free energy, the localization behaviors of the sample paths etc. We refer to
the monograph [15] for a general introduction to the subject. The partition
function of the directed polymer is naturally connected to the heat equation
with a random potential, through the Feynman-Kac representation as (1.3).
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After the Hopf-Cole transformation, it is related to the Kardar-Parisi-Zhang
(KPZ) equation, which is a default model for interface growth subjected to
random perturbations, see the reviews [16, 36] on the recent developments
on the 1+1 KPZ universality class.

Besides studying the directed polymers on the free space where the sample
paths are spread out without any constraint, there have been many recent
developments on understanding how the underlying geometry or the boundary
conditions affect the large scale behaviors of the polymer measure and the
associated SHE and KPZ problem, see e.g. [18, 35, 20, 17, 13, 4, 5] and the
references therein. In this paper, we consider the polymers confined to a
cylinder and study the high temperature behaviors of the limiting free energy.
Our study is partly motivated by the results in [30, 7, 33, 34], where the same
problem has been considered in the whole space. If we denote the limiting
free energy by γ∞(β) in this case, it has been shown in the aforementioned
works, for a large class of discrete models and as β → 0,

(1.8) 1
β4 γ∞(β)→ −

1
24
, in d = 1,

and

(1.9) β2 log γ∞(β)→ −π, in d = 2.

The limiting constants − 1
24 and −π are universal as they do not depend on the

specific distributions of the underlying random environment. Compare to the
expansion in (1.6), we see some similarity in d = 1. It is worth emphasizing
that the free energy defined in (1.4) is actually the difference between the
quenched and annealed free energies considered in those works. This is only a
matter of convention: if we define the partition function by EBeβ ∫

t
0 V (s,Bs)ds,

then the quenched free energy is t−1 logEBeβ ∫
t

0 V (s,Bs)ds, and the annealed
free energy is 1

2β
2R(0), so their difference is precisely t−1 logZt with Zt

defined as in (1.3). It is well-known that the free energy is associated to the
localization properties of the polymer paths, and is related to the overlap
fraction of two replicas, see e.g. the discussion in [15, Chapter 5 and 6].
Therefore, the study of γL(β) for small β sheds light on the localization
properties of the polymer paths in high temperature regimes.

Another motivation comes from the replica method used to compute the
free energy. In [12, 11], the authors considered the same problem of directed
polymers on a cylinder. For the environment of a 1+1 spacetime white noise,
using the Bethe ansatz method, they derived the expansions of the ground
state energy E(n,β,L) of the Delta Bose gas in d = 1

Hn =
1
2

n

∑
i=1
∇2
i + β2 ∑

1≤i<j≤n
δ(xi − xj).
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In [12, Equation (49)], it says that

E(n,β,L) = −( β
2

2L
+ β

4

24
)n + c2n

2 + c3n
3 + . . . ,

for some explicit c2, c3, . . .. If the replica method gives the right answer here,
then the coefficient of the O(n) term, which is −( β

2

2L +
β4

24 ), should be γL(β)
in the case of R(⋅) = δ(⋅). We will show in Section 4 below, in this particular
case, γL(β) can be written as an explicit integral, see (4.2). Performing a
small β expansion leads to

1
β6 (γL(β) +

β2

2L
+ β

4

24
)→ γ(6) ≠ 0, as β → 0,

see (4.4). This shows that the high order terms are missing in the replica
method calculation. For the problem on the whole space, the replica method
actually leads to the correct answer [26, 14, 9, 2, 38, 39, 21]. At the end
of [12], the authors mentioned that “another interesting extension of the
present work would be to consider more general correlations of the noise” and
“one could try to extend the approach to higher dimension as the relation
between the directed polymer problem and the quantum Hamiltonian is valid
in any dimension”. Our work can be viewed as a preliminary step along this
direction, in which we obtain the high temperature expansions of the limiting
free energy, for general covariance functions and in all dimensions.

Our approach is based on a formula that relates γL(β) with the replica
overlap of the polymer measure. The idea is to perform a semi-martingale
decomposition of logZt, see e.g. [15, Chapter 5]. After taking the expectation,
the only contribution to t−1 logZt comes from the drift and can be expressed
as a time average of the overlap fraction of two replicas. On the cylinder, the
polymer endpoint distribution converges exponentially fast to the stationary
distribution, see the proofs in [23, 37] and the related results for stochastic
Burgers equation [40]. The overlap fraction of two replicas is simply related
to the two-point correlation function of the stationary distribution. In this
way, the limiting free energy can be written explicitly as an integral involving
the two-point correlation function of the stationary distribution and the
spatial covariance function of the random environment, see (2.2) below.

On the cylinder, the stationary distribution of the polymer endpoint is
related to that of the KPZ equation (modulo a constant) and to the stochastic
Burgers equation. It is well-known that for the 1 + 1 spacetime white noise,
the stationary distribution of the KPZ equation is the Brownian bridge
[8, 19, 24, 25]. Using this connection and Yor’s formula for the density of
exponential functionals of Brownian bridge [41], the limiting free energy can
be written down explicitly in this case, see Proposition 4.1 in Section 4. For
the noise with a general covariance structure, which is the main interest of this
paper, there are no explicit formulas of the invariant measure. We proceed in
a different way, using a partial differential equation (PDE) hierarchy satisfied
by the n−point correlation functions of the stationary distribution, see (2.6)
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below. The PDE hierarchy was derived in [22] on the whole space, and it
admits a stationary solution on the cylinder. An asymptotic expansion in
β2 on the level of the hierarchy leads to the corresponding expansion of the
limiting free energy. The approach is surprisingly simple, and we can actually
obtain the expansion in β2 up to any order, see the discussion in Section 4.2
below.

The same approach does not apply to the problem on the whole space. As
t goes to infinity, the polymer endpoint spreads to infinity, hence there is
no equilibrium. Nevertheless, the replica overlap is invariant under the shift
of the polymer endpoint. By embedding the endpoint distribution into an
abstract space, which factors out the spatial shift, significant progress has
been made recently on the localization properties of the endpoint distribution,
see [6, 3, 10]. In this case, the limiting free energy can be expressed as the
solution of a variational problem, generalizing (2.2) in a sense.

We mention two recent papers on a nonlinear version of (1.1) on torus
[28, 27], where the dissipation rate was studied, i.e., how fast u(t, x) decays
to zero. Among other interesting results, a stronger version of (1.4) was
estabilished in the linear setting, see [27, Theorem 1.3].

The rest of the paper is organized as follows. In Section 2, we prove some
preliminary results on the endpoint distribution of the directed polymer
and derive the PDE hierarchy satisfied by the n−point correlation functions.
Section 3 is devoted to the asymptotic analysis of the PDE hierarchy and
the proof of the main theorem. In Section 4, we discuss the case of the 1 + 1
spacetime white noise and some further extensions.

Acknowledgements. Y.G. was partially supported by the NSF through
DMS-1907928/2042384. T.K. acknowledges the support of NCN grant
2020/37/B/ST1/00426. We thank Bernard Derrida for interesting com-
ments on the draft.

2. Endpoint distributions of directed polymers and a PDE
hierarchy

With u solving (1.1) started from the initial data, that is given by a
non-trivial Borel measure, define

(2.1) ρ(t, x) = u(t, x)
∫Td

L
u(t, x′)dx′

,

which is the quenched density of the endpoint distribution of polymer of
length t. We emphasize that ρ(t, x) actually depends on β and we have kept
the dependence implicit in our notation. Since we are interested in the high
temperature regime, i.e. β ≪ 1, throughout the rest of the paper we assume
β ∈ (0,1).
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We first prove some results on ρ(t, ⋅) and its relation to the free energy
γL(β), some of which were obtained in [23].

LetM1(TdL) be the space of Borel probability measures on TdL and Z+ be
the set of non-negative integers. Denote by D(TdL) and Dc(TdL) the respective
spaces of all Borel measurable and continuous densities on the torus TdL.

Proposition 2.1. {ρ(t, ⋅)}t≥0 is anM1(TdL)-valued Markov process. In fact,
for any t > 0 it takes values in Dc(TdL). The process has a unique invariant
measure π that is supported on Dc(TdL).

Let % be a Dc(TdL)-valued random variable with the distribution given by
π, then the free energy can be expressed as

(2.2) γL(β) = −
1
2
β2∫

(Td
L)2

R(x − y)E[%(x)%(y)]dxdy.

In addition, {%(x) ∶ x ∈ TdL} is a continuous trajectory, stationary random
field. For any n ∈ Z+ we have

(2.3) C∗(n,R,L) ∶= E[ sup
x∈Td

L

%(x)n] < +∞.

Proof. Throughout the proof, we use C to denote a generic constant that
may depend on n,R(⋅), L, but not on β ∈ (0,1), and may change from line
to line.

The fact that the Markov process {ρ(t, ⋅)}t≥0 has a unique invariant mea-
sure that is supported on the space of positive, continuous densities on TdL
has been proved in [23, Theorem 2.3]. The expression of the free energy in
(2.2) was given in [23, Equation (2.22)].

To show the stationarity of the field {%(x) ∶ x ∈ TdL}, we start from the flat
initial data u(0, x) ≡ 1 so that ρ(0, x) ≡ L−d. By [23, Theorem 2.3], we have
ρ(t, ⋅)⇒ %(⋅) in distribution on C(TdL), as t→∞. Note that, for each fixed
t > 0, the field {ρ(t, x) ∶ x ∈ TdL} is stationary, and this in turn implies the
stationarity of %.

Estimate (2.10) is a consequence of [23, Lemma 4.9]. ◻

Throughout the rest of the paper, we assume that % is sampled from π.
For any n ≥ 1 and x1∶n = (x1, . . . , xn) ∈ (TdL)

n, define the n−point correlation
function of the stationary random field %(x):

(2.4) Qn(x1∶n) = Qn(x1, . . . , xn) = E[
n

∏
j=1

%(xj)].

By Proposition 2.1, we have

(2.5) sup
x1∶n∈(Td

L)n
Qn(x1∶n) ≤ C(n,R,L),
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and Qn(⋅) is a continuous function jointly in all its variables on (TdL)n. Again
to simplify the notations, we have kept the dependence of Qn on β and
L implicit. Also note that since %(⋅) is stationary and ∫Td

L
%(x)dx = 1, we

actually have Q1(x) ≡ L−d.
Here is the main result of this section

Proposition 2.2. For any n ≥ 1, Qn ∶ (TdL)n → R+ is a smooth function,
and the sequence {Qn}n≥1 solves the following PDE hierarchy: for any n ≥ 1,
(2.6)

1
2

∆Qn + β2 ∑
1≤i<j≤n

R(xi − xj)Qn

=β2n∫
Td

L

Qn+1(x1∶n, xn+1)
n

∑
i=1
R(xi − xn+1)dxn+1

− β2n(n + 1)
2 ∫

Td
L×T

d
L

Qn+2(x1∶n, xn+1, xn+2)R(xn+1 − xn+2)dxn+1dxn+2.

Proof. To show (2.6), we make use of a dynamic version proved in [22].
Define

Qn(t,x1∶n) = E[
n

∏
j=1

ρ(t, xj)],

with ρ(t, x) given by (2.1). Then [22, Theorem 1.1] shows that {Qn}n≥1
satisfies the following hierarchy: for any n ≥ 1, T > 0, and f ∈ C∞((TdL)n),
(2.7)

⟨f,Qn(T )⟩ = ⟨f,Qn(0)⟩ + ∫
T

0
⟨1
2

∆f,Qn(t)⟩dt + β2
2
∑
k=0
∫

T

0
⟨fk,Qn+k(t)⟩dt,

where
f0(x1∶n) = f(x1∶n) ∑

1≤i<j≤n
R(xi − xj),

f1(x1∶n, xn+1) = −nf(x1∶n)
n

∑
i=1
R(xi − xn+1),

f2(x1∶n, xn+2) =
1
2
n(n + 1)f(x1∶n)R(xn+1 − xn+2),

and the brackets ⟨⋅, ⋅⟩ in (2.7) are the corresponding L2 inner product. Assume
ρ(0, ⋅) is sampled from the invariant measure π, then we have

Qn(t,x1∶n) = Qn(x1∶n), for all t ≥ 0, n ≥ 1,

so (2.7) actually becomes

(2.8) ⟨1
2

∆f,Qn⟩ + β2
2
∑
k=0
⟨fk,Qn+k⟩ = 0,
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which is the weak formulation of (2.6). Let

F (x1∶n) ∶= β2{n∫
Td

L

Qn+1(x1∶n, xn+1)
n

∑
i=1
R(xi − xn+1)dxn+1

− n(n + 1)
2 ∫

Td
L×T

d
L

Qn+2(x1∶n, xn+1, xn+2)R(xn+1 − xn+2)dxn+1dxn+2(2.9)

− ∑
1≤i<j≤n

R(xi − xj)Qn(x1∶n)}.

The function F is continuous and, substituting f ≡ 1 into (2.8), we conclude
that

∫
(Td

L)n
F (x1∶n)dx1∶n = 0.

Therefore the Poisson equation 1
2∆Q̃n = F has a unique, up to a constant,

solution Q̃n that belongs to any Sobolev space W 2,p((TdL)n), p ∈ [1,+∞) -
consisting of functions with two generalized derivatives that are Lp integrable.
The function Qn − Q̃n is harmonic on (TdL)n, in the weak sense, therefore,
by the Weyl lemma, see e.g. [32, Theorem 2.3.1, p. 42], it is harmonic in the
strong sense. As a result Qn ∈ W 2,p((TdL)n) for any p ∈ [1,+∞) and n ≥ 1.
Hence also F ∈W 2,p((TdL)n). This, by an application of the apriori estimates,
allows us to conclude that in fact Qn ∈W 4,p((TdL)n) for any p ∈ [1,+∞) and
n ≥ 1. Using a bootstrap argument, we can conclude that Qn ∈ C∞((TdL)n)
for any n ≥ 1. Since Qn are smooth functions, we know that they are classical
solutions to (2.6), which completes the proof. ◻

The next result is on the sample path properties of %. We first introduce
some notation: let

D∞(TdL) ∶=D(TdL) ∩C∞(TdL)

= {f ∶ TdL → R ∶ 0 ≤ f ∈ C∞(TdL),∫Td
L

f(x)dx = 1}.

Corollary 2.3. The field {%(x) ∶ x ∈ TdL} has smooth realizations, i.e. the
invariant measure π is supported on D∞(TdL). In addition, for any n ∈ Z+
and multiindex α = (α1, . . . , αd) with αj ∈ Z+, j = 1, . . . , d, there exists a
constant C = C(n,α,R, d,L) such that

(2.10) E[ sup
x∈Td

L

∣∂α%(x)∣n] ≤ C(n,α,R,L).

Proof. Since the covariance functions Qn(⋅) are smooth, [1, Theorem 2.2.2, p.
27] implies that ∂α%(x) exists for each x in the L2(π) sense. An application
of [29, Theorem 1.4.1, p. 31] allows us to conclude that in fact the derivative
field has a.s. continuous modification for each multiindex α. This proves the
existence of smooth realizations of the field {%(x) ∶ x ∈ TdL}.
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It remains to show (2.10). Note that it suffices to prove a weaker statement:
that for any n ∈ Z+ and multiindex α = (α1, . . . , αd) with αj ∈ Z+, j = 1, . . . , d
we have
(2.11) C∗,w(n,α,R,L) ∶= E[∣∂α%(x)∣n] < +∞.
The latter is a simple consequence of the existence of an appropriate derivative
of the function Qn. Note that by stationarity the right hand side does not
depend on x ∈ TdL.

To prove that (2.11) implies (2.10), observe that by the Sobolev embedding
there exists a deterministic constant C such that
(2.12) sup

x∈Td
L

∣∂α%(x)∣n ≤ C∥%∥n
Wk,p(Td

L)

for all realizations of %(⋅), provided k > d/p + ∣α∣. Here ∣α∣ = ∑dj=1 αj and
∥%∥Wk,p(Td

L)
= ∑∣α∣≤k ∥∂α%∥Lp(Td

L)
is the Sobolev norm. The estimate (2.10) is

then a consequence of (2.12) and (2.11). �

By (2.2), the free energy can be expressed in terms of the two-point
correlation Q2:

(2.13) γL(β) = −
1
2
β2∫

(Td
L)2

R(x1 − x2)Q2(x1, x2)dx1dx2.

Thus, to obtain the asymptotics of γL(β) in the high temperature regime
of β → 0, it reduces to studying the asymptotic behaviors of Q2 as β → 0.
For β = 0, the polymer measure degenerates to the Wiener measure, and
the Brownian motion on TdL has the unique stationary distribution given
by the uniform measure, in which case the n−point correlation function Qn
equals to L−nd. The following lemma provides preliminary estimates on the
difference between Qn and L−nd for β ≪ 1.

Denote L2
0((TdL)n) the space of square integrable functions on (TdL)n with

zero mean, i.e.

L2
0((TdL)n) = {f ∈ L2((TdL)n) ∶ ∫(Td

L)n
f(x1∶n)dx1∶n = 0} .

Define
(2.14) Q̄n = Qn −L−nd.

Lemma 2.4. For any n ≥ 2, we have
(2.15) ∥Q̄n∥L2((Td

L)n)
= O(β2), as β → 0.

Proof. For any n, we rewrite (2.6) as 1
2∆Qn = β2F , where F is a smooth

function in L2
0((TdL)n), given by (2.9). Since ∫(Td

L)n
Qndx1∶n = 1, we have

Q̄n ∈ L2
0((TdL)n), which implies

Q̄n = 2β2∆−1F,



10 YU GU, TOMASZ KOMOROWSKI

where ∆−1 is the inverse of ∆, which is a bounded operator from L2
0((TdL)n)

to L2
0((TdL)n). It remains to use the fact that ∥F ∥L2((Td

L)n)
is bounded

uniformly in β ∈ (0,1) to complete the proof. ◻

Recall that γL(β) is related to Q2 through (2.13) and we have assumed
∫Td

L
R(x)dx = 1, the above lemma gives the leading order of γL(β)

γL(β) +
β2

2Ld
= O(β4), as β → 0.

3. Proof of Theorem 1.1

We start from the equation satisfied by Q2

(3.1)

1
2

∆Q2 + β2R(x1 − x2)Q2

=2β2∫
Td

L

Q3(x1, x2, x3)[R(x1 − x3) +R(x2 − x3)]dx3

− 3β2∫
Td

L×T
d
L

Q4(x1, x2, x3, x4)R(x3 − x4)dx3dx4.

In light of Lemma 2.4, we rewrite the equation for Q2 in terms of Q̄2 (see
(2.14)), stated in the following lemma
Lemma 3.1. We have

(3.2) 1
2

∆Q̄2 =
β2

L2d (
1
Ld
−R(x1 − x2)) + β2Eβ(x1, x2),

where Eβ(x1, x2) is a smooth function in L2
0(TdL ×TdL) such that

(3.3) ∥Eβ∥L2(Td
L×T

d
L)
= O(β2).

Proof. It is straightforward to check that

Eβ(x1, x2) =2∫
Td

L

Q̄3(x1, x2, x3)[R(x1 − x3) +R(x2 − x3)]dx3

− 3∫
Td

L×T
d
L

Q̄4(x1, x2, x3, x4)R(x3 − x4)dx3dx4 −R(x1 − x2)Q̄2(x1, x2).

Since ∫Td
L
R(x)dx = 1, we have ∫Td

L×T
d
L
Eβdx1dx2 = 0 from the equation (3.2).

Then we only need to invoke Lemma 2.4 to complete the proof. ◻

Define gL ∶ TdL ×TdL → R as the unique solution in L2
0(TdL ×TdL) to

(3.4) 1
2

∆gL =
1
L2d (

1
Ld
−R(x1 − x2)).

We have gL(x1, x2) = GL(x1 − x2) with GL ∶ TL → R solving

(3.5) ∆GL(x) =
1
L2d (

1
Ld
−R(x)), x ∈ TdL.

Using gL, we can refine Lemma 2.4 when n = 2.
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Lemma 3.2. We have

∥Q̄2 − β2gL∥L2(Td
L×T

d
L)
= O(β4), as β → 0.

Proof. By (3.2) and (3.4), we know that f = Q̄2 − β2gL is the solution to
1
2

∆f = β2Eβ ,

with ∫Td
L×T

d
L
fdx1dx2 = 0. Using (3.3), we can apply the same argument as

for Lemma 2.4 to complete the proof. ◻

Now we can complete the proof of the main theorem.
Proof of Theorem 1.1. Recall that

γL(β) = −
1
2
β2∫

Td
L×T

d
L

R(x1 − x2)Q2(x1, x2)dx1dx2.

We can rewrite the above in the form

γL(β) = −
1
2
β2∫

Td
L×T

d
L

R(x1 − x2)L−2ddx1dx2 −
1
2
β4∫

Td
L×T

d
L

R(x1 − x2)gL(x1, x2)dx1dx2

− 1
2
β4∫

Td
L×T

d
L

R(x1 − x2)(β−2Q̄2(x1, x2) − gL(x1, x2))dx1dx2.

Applying Lemma 3.2 and using the fact that

∫
Td

L×T
d
L

R(x1 − x2)gL(x1, x2)dx1dx2 = Ld∫
Td

L

R(x)GL(x)dx,

we immediately derive that

γL(β) = −
β2

2Ld
− 1

2
β4Ld∫

Td
L

R(x)GL(x)dx +O(β6).

By (3.5), we have that the Fourier coefficients of G equal

ĜL(n) = ∫
Td

L

GL(x)e−i2πn⋅x/Ldx =
R̂(n/L)

4π2∣n∣2L2d−2 , n /= 0,

with R̂(⋅) defined in (1.5), and ĜL(0) = 0. By the Parseval identity, we
obtain

∫
Td

L

R(x)GL(x)dx =
1
Ld
∑
n≠0

ĜL(n)R̂(n/L) = ∑
n≠0

R̂(n/L)2

4π2∣n∣2L3d−2

which completes the proof of (1.6).
In d = 1, R̂(nL)→ R̂(0) = 1, as L→∞, which implies

γ
(4)
L = − 1

8π2 ∑
n≠0
∣n∣−2R̂(n

L
)2 → − 1

8π2 ∑
n≠0
∣n∣−2 = − 1

24
.
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In d = 2, we divide the summation into two parts:

γ
(4)
L = − 1

8π2L2
⎛
⎝ ∑

0≠∣n∣<δL
+ ∑
∣n∣≥δL

⎞
⎠
∣n∣−2R̂(n

L
)

2
=∶ A1 +A2,

where δ > 0 is a constant to be sent to zero after sending L →∞. For the
second part, we have

L2A2 = −
1

8π2L2 ∑
∣n/L∣>δ

∣n
L
∣
−2
R̂(n

L
)

2
→ − 1

8π2 ∫∣ξ∣>δ
∣ξ∣−2R̂(ξ)dξ, as L→∞.

For the first part, we write it as

L2A1 = −
1

8π2 ∑
0≠∣n∣<δL

∣n∣−2 + 1
8π2 ∑

∣n∣<δL
∣n∣−2 (1 − R̂(n

L
)

2
) =∶ C1 +C2.

Since R is smooth and R̂(0) = 1, we have

lim
δ→0

lim sup
L→∞

C2
logL

= 0.

For C1, by an elementary calculation we have

lim
δ→0

lim
L→∞

C1
logL

= − 1
4π
,

and this completes the proof of the case in d = 2.
In d ≥ 3, we have

Ldγ
(4)
L = − 1

8π2Ld
∑
n≠0
∣n
L
∣
−2
R̂(n

L
)

2
→ − 1

8π2 ∫Rd
∣ξ∣−2R̂(ξ)2dξ, as L→∞.

The proof is complete. ◻

4. Discussions

4.1. Spacetime white noise. In this section, we consider the case when
d = 1 and the random potential is a 1+1 spacetime white noise, in which case
R(⋅) = δ(⋅). Define h(t, x) = β−1 logu(t, x), which is the formal solution to the
KPZ equation, see (4.10) below. By the results in [8, 19, 24, 25], we know that
the invariant measure for the process {h(t, x) − h(t,0) ∶ x ∈ TL}t≥0 is given
by the law of the Brownian bridge B0,L(⋅) with B0,L(0) = B0,L(L) = 0. Here
for the notational convenience, we extend the Brownian bridge periodically
and also view it as a process on TL. For the polymer endpoint density, if we
write it as

ρ(t, x) = u(t, x)
∫TL

u(t, x′)dx′
= eβ(h(t,x)−h(t,0))

∫TL
eβ(h(t,x′)−h(t,0))dx′

,
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it is immediate to conclude that the invariant measure is given by the law of
random densities on TL

%(x) = eβB0,L(x)

∫
L

0 eβB0,L(x′)dx′
.

The random field {%(x) ∶ x ∈ TL} is stationary, therefore, the limiting free
energy in (2.2) (with R(⋅) = δ(⋅)) reduces to

(4.1)

γL(β) = −
1
2
β2∫

T2
L

R(x − y)E[%(x)%(y)]dxdy

= − 1
2
β2∫

TL

E[%(x)2]dx = −1
2
β2LE[%(0)2]

= − 1
2
β2LE(∫

L

0
eβB0,L(x)dx)−2.

The random variable ∫
L

0 eβB0,L(x)dx appears frequently in physics and math-
ematical finance, and we refer to [31] for an extensive discussion. Its density
function can be written explicitly, see [41, Proposition 6.2, p. 527], using
which we obtain the following proposition:

Proposition 4.1. In the case of a 1 + 1 spacetime white noise, we have
(4.2)

γL(β) = −
β6L

4π
exp{ 2π2

β2L
}∫

∞

0

(ey − e−y)
(ey/2 + e−y/2)6

exp{− 2y2

β2L
} sin( 4πy

β2L
)dy.

For fixed β > 0, we have

(4.3) γL(β)→ −
β4

24
, as L→∞.

For fixed L > 0, we have

(4.4) γL(β) = −
β2

2L
− β

4

24
− 1781β6L

840
+O(β8), as β → 0.

Proof. First, by the scaling property of the Brownian bridge

∫
L

0
eβB0,L(x)dx

law= L∫
1

0
eβ
√
LB0,1(x)dx.

To simplify the notation, define Yλ = ∫
1

0 e
λB(x)dx, so it remains to compute

EY −2
λ . Denote the density of Yλ by fλ(z), by [41, Proposition 6.2, p. 527]

we have
(4.5)

fλ(z) =
4

πλ2z2 exp{− 4
λ2z
+ 2π2

λ2 }∫
∞

0
exp{−2y2

λ2 −
4 cosh y
λ2z

}( sinh y) sin(4πy
λ2 )dy.
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Using the above density formula, we have

EY −2
λ = ∫

∞

0
z−2fλ(z)dz =

4
πλ2 exp{2π2

λ2 }∫
∞

0
exp{− 4

λ2z
} 1
z4(4.6)

× (∫
∞

0
exp{−2y2

λ2 −
4 cosh y
λ2z

}( sinh y) sin(4πy
λ2 )dy)dz.

Changing variables z′ = (zλ2)−1 we get

EY −2
λ =

4λ4

π
exp{2π2

λ2 }∫
∞

0
z2 exp{−4z}(4.7)

× (∫
∞

0
exp{−2y2

λ2 − 4z cosh y}( sinh y) sin(4πy
λ2 )dy)dz.

Note that

∫
∞

0
z2 exp{−4z(1 + cosh y)}dz = 1

32(1 + cosh y)3
.

Hence, we get

EY −2
λ =

λ4

8π
exp{2π2

λ2 }∫
∞

0

sinh y
(1 + cosh y)3

exp{−2y2

λ2 } sin(4πy
λ2 )dy

= λ
4

2π
exp{2π2

λ2 }∫
∞

0

(ey − e−y)
(ey/2 + e−y/2)6

exp{−2y2

λ2 } sin(4πy
λ2 )dy.(4.8)

Recall that

γL(β) = −
β2

2L
EY −2

β
√
L

Combining with (4.8), we complete the proof of (4.2).
To show (4.3), by the fact that sinx

x → 1 as x→ 0, we conclude that

EY −2
λ = 2λ2(c + o(1)), where(4.9)

c ∶= ∫
∞

0

y(ey − e−y)
(ey/2 + e−y/2)6

dy,

with the o(1) term going to zero as λ→∞. It is an elementary calculation
to compute the value c = 1

24 , which completes the proof.
To show (4.4), we can directly start from the expression

γL(β) = −
β2

2L
E(∫

1

0
eβ
√
LB0,1(x)dx)

−2
.

For fixed L, it is clear that γL(⋅) is a smooth function in β, so one can
compute explicitly the derivatives of γL at β = 0 to obtain (4.4). Since it is a
straightforward calculation, we do not provide the detail here. ◻
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4.2. Asymptotic expansion of the invariant measure. From the proof
of Theorem 1.1, it is clear that the expansion in (1.6) can be extended
to an arbitrary high order. We only kept the first two terms since their
expressions are more explicit. Our expansion is based on the the two-point
correlation function Q2, because that is what the limiting free energy depends
on. It actually corresponds to an expansion of the invariant measure % in
the parameter β. Below we sketch the heuristic connections.

Suppose that d ≥ 1 and R is a smooth and compactly supported function.
Define h(t, x) = 1

β logu(t, x), which is the solution to the KPZ equation

(4.10) ∂th =
1
2

∆h + 1
2
β∣∇h∣2 + V − 1

2
R(0)β.

We can write the polymer endpoint distribution in terms of h as

(4.11) ρ(t, x) = u(t, x)
∫Td

L
u(t, x′)dx′

= eβh(t,x)

∫Td
L
eβh(t,x′)dx′

= eβ(h(t,x)−h̄(t))

∫Td
L
eβ(h(t,x′)−h̄(t))dx′

.

Here h̄(t) = L−d ∫Td
L
h(t, x)dx is the average of h(t, x). Thus, an expansion of

the stationary distribution of h(t, ⋅)− h̄(t) in β would lead to a corresponding
expansion of %. For β ≪ 1, we approximate (4.10) by the Edwards-Wilkinson
equation

∂th =
1
2

∆h + V.

There are no stationary invariant probability measures for the above equation
on the torus, as a result of the growth of the zero mode. If we remove the
zero mode and consider the following equation

(4.12) ∂th̃ =
1
2

∆h̃ + V − V̄,

where V̄ (t) = L−d ∫Td
L
V (t, x)dx, then as a Markov process it admits a station-

ary distribution with an explicit density. Replacing h(t, x) − h̄(t) in (4.11)
by the stationary solution h̃, i.e. the one where the initial data is sampled
from the invariant distribution, we obtain the first order approximation of
the stationary measure %. It is straightforward to check that the two-point
correlation function of the stationary solution to (4.12) is directly related to
the solution to (3.4).

To make the above argument rigorous, one needs to control the error in
the approximation of the KPZ equation by the Edwards-Wilkinson equation.
For us, it seems more convenient to do it on the level of Q2 through the PDE
hierarchy (2.6), where we may borrow analytic tools.
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