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Highlights

e Sedimentary microcharcoal records from across Southern Africa were aggregated
and analyzed to understand the spatial scale of fire and its relationship to climate

e Microcharcoal records after 2000 BP show a notable increase in fire that is not
accounted for by shifting climate conditions

e This increase in fire corresponds with the advent of food production in Southern
Africa

e Stronger signals in eastern grasslands may reflect the capacity of those ecosystems
to sustain repeated firing and grazing

Abstract

Globally, fire is a primary agent for modifying environments through the long-term coupling of
human and natural systems. In southern Africa, control of fire by humans has been
documented since the late Middle Pleistocene, though it is unclear when or if anthropogenic
burning led to fundamental shifts in the region’s fire regimes. To identify potential periods of
large-scale anthropogenic burning, we analyze aggregated Holocene charcoal sequences
across southern Africa, which we compare to paleoclimate records and archaeological data.
We show climate-concordant variability in mid-Holocene fire across much of the
subcontinent. However, increased regional fire activity during the late Holocene (~2,000 BP)
coincides with archaeological change, especially the introduction and intensification of food
production across the region. This increase in fire is not readily explained by climate
changes, but rather reflects a novel way of using fire as a tool to manage past landscapes,
with outcomes conditioned by regional ecosystem characteristics.
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Introduction

Fire is a key determinant of ecosystem function worldwide (Bowman et al., 2009). Many
ecosystems today (e.g., savannas and grasslands in tropical areas that could support
forests) are a legacy of long-term fire activity and are unlikely to persist in its absence (Bond
et al., 2005; Bowman et al., 2011), requiring consideration of fire history for their
management (Keeley et al., 2011). In addition to natural sources of ignition, humans apply
fire to modify environments across a range of ecological conditions and socioeconomic
configurations (Butz, 2009; e.g. Codding et al., 2014; Nigh and Diemont, 2013; Roos et al.,
2018). Burning vegetation can produce short-term gains such as flushing out game or
clearing space for agricultural activities, and can also result in delayed benefits by improving
the condition of the underlying soil, inducing vegetation growth, and influencing the kinds of
organisms that recolonize burned areas. By mediating the climatic and biotic factors that
determine primary productivity, anthropogenic burning can act as a means of augmenting
productivity and/or mitigating risk in uncertain environments, while simultaneously
influencing the character and resilience of ecosystems.

There has been considerable attention paid to the role of humans influencing fire regimes
and the scale of their impact on ecosystems (Archibald et al., 2012; Bond and Zaloumis,
2016; Bowman et al., 2011). Human use of fire for landscape modification is an adaptation
that potentially developed deep in the past (Brown et al., 2009; MacDonald et al., 2021);
however, disentangling the signals of past fire used for resource management from
naturally-occurring fire is difficult (Bowman et al., 2011; Scherjon et al., 2015). This is
especially true in southern Africa, which has one of the longest records of human-
environment interactions in the world (Pyne, 2015). Ethnohistoric accounts attest to the use
of fire by indigenous pastoralist communities (Pooley, 2014) within the last few hundred
years, and it has long been assumed that prehistoric human populations would also have
used fire to improve the productivity of their environments (Deacon, 1993; Huffman, 2007),
but evidence for intentional landscape burning deeper in time is lacking.

With this in mind, we present data from the Holocene of southern Africa to address this long-
standing problem in the history of human-environment interactions. Charcoal influx in
sedimentary sequences from across the subcontinent provides evidence of broad-scale
burning, while summed probabilities of radiocarbon determinations from archaeological
contexts indicate relative changes in the intensity of human activity. Paleoclimate
reconstructions drawn from multiple proxies are used to identify coeval patterning in aridity,
allowing us to compare periods of fire-prone conditions in southern Africa with the record of
past fire activity.

Climatological, Ecological and Archaeological Context

The diverse environments of present-day southern Africa are shaped by contrasting rainfall
regimes (Fig 1A). Precipitation in much of eastern and central southern Africa is controlled
by advection of moisture from the Indian Ocean, bringing monsoon rains concentrated in the
austral summer months (the summer rainfall zone or SRZ), while the southwest has a
Mediterranean climate featuring winter rainfall brought by south Atlantic westerlies (the
winter rainfall zone or WRZ) (Tyson, 1986). In the boundary between these two regions, and



extending along a narrow strip of the southern coastline, is a mixed regime where rainfall is
distributed more evenly throughout the year (the year-round zone or YRZ). Over millennial
timescales, the SRZ and WRZ are typically out of phase, such that wetter conditions in one
area often coincide with drier conditions in the other (Chase et al., 2017). Although the
spatial extents of the different rainfall zones have likely varied through time and there is
growing awareness of climatic variability within these regions (Chase et al., 2020), these
general distinctions are thought to have persisted since the Pliocene (Lehmann et al., 2016).
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Figure 1: Locations of sediment cores (open circles) and radiocarbon determinations from
archaeological sites (black dots) in southern Africa. A) rainfall seasonality expressed as the
percentage of rainfall occurring during southern hemisphere winter months (June-August),
B) contemporary vegetation biomes, with heavy black line showing approximate extent of
Greater Cape Floristic Region. Core labels correspond with S| Table 1. Data: (Abatzoglou et

al., 2018; Rutherford et al., 2006)

These climate regimes contribute to striking differences in vegetation that have implications
for the likelihood of ignition and the availability of suitable fuels for fire (Fig 1B). Many of the
plant communities in southern Africa are fire-adapted and require burning to limit the
expansion of forests and maintain the structure of meta-communities (Bond et al., 2003;
Thuiller et al., 2007). The eastern half of southern Africa is dominated by Savanna and
Grassland biomes. While ignition in this region is more likely during the dry season, burning
is typically fuel-limited, and larger fires coincide with build-up of burnable biomass during
wetter time periods (Daniau et al., 2013). The western and southern coasts and adjacent
inland areas along the Cape Fold mountain ranges are home to the Greater Cape Floristic
Region (GCFR), a phytogeographic region distinguished by hyperdiverse fynbos,
renosterveld, and succulent karoo plant communities (Bergh et al., 2014). Fire in the region
is limited at one end of the aridity spectrum by low fuel connectivity and biomass, and on the
other by low susceptibility to ignition, with the most fire prone vegetation communities
existing between these two extremes (Gillson et al., 2020). Burning in fynbos systems is not
necessarily fuel-limited (van Wilgen, 2009), and relationships between vegetation age
structure and fire size are complex. In general, larger fires in the GCFR tend to correlate with
drought conditions, though seasonality varies across the region (Kraaij and Van Wilgen,
2014).

In addition to the influences of climate and vegetation, there is also an extensive history of
anthropogenic fire in southern Africa. Intentional use of fire by humans is documented from
the late middle Pleistocene by the presence of in-situ hearths (Deacon, 1995), heat-treated
stones (Brown et al., 2009), and charred food remains (Larbey et al., 2019; Wadley et al.,



2020). In a review of ethnographic cases, Scherjon et al. (2015) demonstrated that foraging
populations use fire in a number of different ways, including manipulating vegetation and
fauna, hunting, communication, and so on. Such activities may have intentional and
unintentional consequences for the ecosystems they inhabit (Bird et al., 2020). Food
production practices arrived from the north beginning in the late Holocene. In summer rainfall
regions, incoming farmers introduced a mixed economy that included cultivation of crops
(principally sorghum and millets), keeping of domestic animals, iron smelting, and settled
village life (Mitchell and Whitelaw, 2005; Parkington and Hall, 2010). In winter rainfall regions
of the west, domesticated grains could not be grown without irrigation, so farming was
limited to pastoralism. The appearance of domesticated species in faunal assemblages,
dating to around 2000 BP (Coutu et al., 2021; Sealy and Yates, 1994), is also associated
with archaeological signals including ceramics and new stone tool technologies (Lander and
Russell, 2018), isotopic evidence for dietary change (Sealy, 2010), and genetic signals
among descendant populations for lactase persistence and known pastoralist lineages (Uren
et al., 2016). The relative timing of these signals is debated, and their expression is not
monolithic across southern Africa; however, in most cases this period is marked by the
introduction of domestic stock-keeping, a practice that has been associated with novel
human-environment interactions (Smith and Zeder, 2013). In pastoralist systems today, fire
is used principally to clear unwanted vegetation or pests, improve the quality of forage, and
reduce the risk of dangerous wildfires (Butz, 2009), and historic accounts indicate that
similar practices were in use in southern Africa at the time of European contact (Pooley,
2014; Skead, 2009).

In this study, we seek to explore the drivers of fire in southern Africa and the role, if any, of
past human ecosystem management. Fire activity attributed to anthropogenic sources
should occur independently of shifts in local conditions that might produce similar patterning
without human intervention (Bird and Cali, 1998; Thompson et al., 2021). Given the
contrasting range of conditions for fire across southern Africa, especially the anti-phase
relationship between precipitation in the western and eastern sub-regions, we expect that
combined archives of fire activity will fail to show a coherent signal when fire systems are
controlled predominantly by climate. Likewise, we expect few instances where signals in the
western and eastern areas demonstrate a coordinated increases or decreases in fire activity
under a climate-driven scenario. Here, we focus on the Holocene, which encompasses a
long period of forager and a known shift in land use and subsistence practices with the
advent of farming in southern Africa ~2000 BP (Mitchell, 2002).

Materials and Methods

Microcharcoal analyses standardization approach

Sedimentary microcharcoal analysis was used in this study to assess the history of fire
activity in southern Africa. Charred particles are produced through incomplete combustion of
organic matter. These are transported away from points of combustion by wind or water and
collect in sedimentary basins. Sequential sediment deposition in these basins produce
laminar sedimentary records, which are then sampled using various methods (e.g. coring,
section sampling, etc.). Charcoal recovered from sedimentary records provides direct
evidence of biomass burning over time.

Charcoal quantities are typically reported as a range of metrics, including influx,
concentration, charcoal/pollen ratios, gravimetrics, image analysis, size classification etc.



Previous charcoal syntheses (Power et al., 2008) reveal that values from individual
sedimentary-based charcoal sample range over 13 orders of magnitude. A protocol has
been established for transforming and standardizing individual charcoal records. The
protocol includes: (1) rescaling the values using a minimax transformation, (2) transforming
and homogenizing the variance using the Box-Cox transformation, and (3) rescaling values
once more to z-scores (see S| Appendix 1 for full details).

Charcoal data from lacustrine and terrestrial sources was obtained from the Global Charcoal
Database (www.paleofire.org), National Centers for Environmental Information
(www.ncei.noaa.gov), and additional published sources (Chase et al., 2015b; Neumann et
al., 2011; Quick et al., 2016). These are distributed in two clusters: one in the southwest
corner of South Africa, the other more widely spread in the northeast (Fig 1). Data were
transformed and standardized using the paleofire software package (Blarquez et al., 2014)
for the R statistical computing platform (R Development Core Team, 2017).

Radiocarbon analysis

To assess human occupation history, summed probability distributions (SPDs) were
generated using radiocarbon determinations from archaeological surveys and excavations.
These methods use the frequency of dated cultural materials recovered by archaeologists as
a model for the depositional history of these kinds of materials overall (e.g., Riris and Arroyo-
Kalin, 2019). Assuming that the record is not systematically biased by sampling, processing,
preservation, visibility, etc. at the scale of observation, this method provides broad
indications of the relative intensity of human activity over time.

Radiocarbon determinations were drawn from the Southern African Radiocarbon Database
(https://c14.arch.ox.ac.uk/sadb), a collection of data from previously published sources
(Loftus et al., 2019). In our study, analyses were limited to data from the last 10000 years
from Eswatini, Lesotho, and South Africa (n=1845). Analyses were undertaken using the
rcarbon v1.3 software package (Bevan et al., 2019) for the R statistical computing platform
(R Development Core Team, 2017). We follow contemporary best practices to estimate
sensitivity to parameter choices and characterize uncertainty and potential sources of bias,
with details provided in SI Appendix 2.

Results

Composite microcharcoal records are an indicator of the relative degree of fire activity
among the depositional environments under study (Power et al., 2008). Experimental studies
have shown that while the frequency of larger charred particles is usually indicative of local
fire events, smaller particles (e.g. <100um) are more reflective of extralocal or regional
trends in “background” fire activity (Whitlock and Anderson, 2003). We used 27 sedimentary
sequences from 25 sampling sites for building composites, derived from lacustrine/estuarine
cores and rock hyrax (Procavia capensis) midden (hyraceum) deposits (Table S1). These
are distributed in two clusters: one in the west (mostly inside the WRZ/YRZ and the GCFR),
the other in the east (inside the SRZ and the Grassland/Savanna biomes; see Fig 1). These
clusters provide a convenient point of distinction because, as discussed above, there are
notable differences in the climate, vegetation, and archaeological histories of the eastern
and western parts of the subcontinent.



When records from across southern Africa are aggregated (Fig 2A), they show a peak in
charcoal influx in the early mid-Holocene (~8,200) years ago, followed by short-term
fluctuations over the next ~6,000 years, with higher degrees of uncertainty around most
peaks. For example, the period between 7000 and 5000 BP has a median value close to
zero, with confidence intervals extending between +0.5z and -0.5z. This suggests
contrasting values are contributing to the aggregate picture during this period. There is an
increase in fire activity just before 2,000 years ago, after which fire activity is persistently
higher than average. Separating this sample into eastern and western subsets (Fig 2B-C),
the two records are divergent through much of the mid-Holocene (Fig 2D). Notably, higher
levels of fire activity in the west between 7000 and 5000 BP contrast with lower levels in the
east, consistent with climatic and environmental differences between these two regions and
helping to explain the uncertainty during this period in the aggregate record. Increases in fire
activity during the early and late Holocene persist in both records, though the eastern subset

is especially anomalous.
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Figure 2: Holocene composite charcoal influx (z) for A) southern Africa, B) eastern subset,
C) western subset, and D) difference plot between eastern and western subsets. Solid lines
in A, B, and C indicate median composite influx values with LOWESS smoothing (250 half-
width); envelopes indicate 95% confidence intervals. Dark red line in A shows number of
sites contributing to the charcoal influx record over time (see Fig S1 for sample density).
Light grey area in all plots indicates onset of novel subsistence strategies, defined here
using the earliest dated archaeological instances of domesticated stock (Lander and Russell,
2018).

These shifts in fire activity can be further illustrated by exploring the spatial distribution of
charcoal influx at the individual sampling sites across southern Africa (Fig 3). To do this, we
calculated transformed z-scores for microcharcoal abundances in each dated record within
those sites (see S| Appendix 1 for details). These z-scores were then plotted in 2000-year
intervals according to direction and degree of deviation from 0. It is important to clarify that
negative and positive values are not indicative of absence or presence, but that the influx is
less or more than that recovered on average from that site during the base period (10,000 —
200 BP).
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Figure 3 Maps of southern Africa at 2000-year intervals showing distribution of positive (red)
and negative (blue) microcharcoal influx z-scores associated with recorded samples. Size of
point indicates deviation from mean standardized value of 0. Samples plotted semi-
transparently using a 0.1 degree jitter to show multiple records from the same site (darker

shade indicates more overlap).



The mapping exercise shows interregional coherence in the earliest period (10- 8k BP) that
is replaced by a shift toward more fire activity in the west relative to the east, especially
between 6 and 4k BP. This trend is reversed between 4 and 2k BP, with marginally
increased fire activity in the east and a decline in the west. The final time window (2,000 —
200 BP) shows the greatest distribution of positive fire records; of sites with records from this
period (N = 24), 82.5% indicate positive influx and 62.5% show net positive anomalies.
Using a two-sample Kolmogorov-Smirnov test between influx values before 2,000 BP (n =
591) and after 2,000 BP (n = 320) suggests that the pattern seen in the map is not an artifact
of improved sampling resolution over time (D = 0.124, p = 0.003). Additional one-sample
tests were used to evaluate the significance of deviations between the influx scores in each
time window and the standard normal distribution. Only the 2k — 200 BP window (D = 0.096,
p = 0.012) featured a significant positive shift (u = 0.13). It follows that the late Holocene
trend is not just localized to a single region in southern Africa, but is reflecting increases in
fire activity within regions and between them.

The observed changes in fire occurrence during the last 10,000 years, and their periodic
coordination across southern Africa, cannot readily be explained by changes in climate using
currently available records. In the east, where nearly half of our charcoal samples occur, the
early-to-mid Holocene fire record follows closely with aridity indices derived from pollen
sequences (Fig 4B) (Chevalier and Chase, 2016). This implies more fire when there is
greater moisture availability, consistent with a fuel-limited fire regime (Daniau et al., 2013).
However, an increase in aridity is indicated over the last 2,000 years that would be expected
to drive a decrease in fire, in direct contrast to the substantial increase observed in charcoal
influx (Chevalier and Chase, 2016). In the west, there is an emerging picture of regional
heterogeneity in Holocene climate patterns, consistent with spatially varying influences of
Atlantic and Indian Ocean systems (Chase and Quick, 2018). However, paleoclimate
records sampled across this part of the subcontinent show no clear signal of changing
climate conditions consistent with fire regime change around 2000 years ago (Fig 4D-F).

Increased evidence for fire could reflect a large-scale shift in human activity, such as a
change in the overall population or a behavior that is associated with increased burning.
Changes in the density of probabilities from archaeological radiocarbon determinations are
increasingly used as a proxy for human activity (Riris and Arroyo-Kalin, 2019; Timpson et al.,
2014). This method rests on assumptions about the sampling, visibility, and preservation of
datable archaeological materials, and is subject to known biases in the radiocarbon
calibration process (discussed in more detail in SI Appendix 2). Like the microcharcoal
record, the collection of radiocarbon data in southern Africa is uneven in time and space;
however, it is presently the most coherent dataset available for identifying broad trends in
the intensity of human activity at regional and subcontinental scales. Summed probability
distributions (SPD) were generated using 1845 determinations from 514 unique sites across
southern Africa (Fig 1). The overall trend shows increases through time (Fig 4G black line),
with similar patterning visible in counts of dated archaeological sites over time (Fig 4H).
However, the rate of change is notably different between eastern and western areas (Fig 4G
blue and red lines). The former shows an exponential rise over time, with growth rates
increasing during the late Holocene, while the latter features more gradual growth over the
Holocene that becomes effectively static over the last 2000 years.
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Figure 4 Comparison of (A) composite charcoal from eastern southern Africa, (B) pollen-
derived aridity index from the southern SRZ (Chevalier and Chase, 2016), (C) composite
charcoal from western southern Africa (D-F) hyraceum nitrogen isotope concentrations from
sites across the GCFR (Chase et al. 2013; Chase et al., 2011; Chase et al. 2020), and G)
summed probabilities of radiocarbon determinations from all southern Africa (black), SRZ
(blue), and GCFR (red), and H) counts of all dated archaeological sites (black bars) and
sites associated with pastoralism (white bars) from southern Africa. Light grey area in all
plots indicates onset of novel subsistence strategies, defined here using the earliest dated
archaeological instances of domesticated stock (Lander and Russell, 2018).

Discussion

Southern Africa's contrasting climate configurations allow for demonstration of human
influence on systems where fire has consistently been a primary force shaping the
environment. Evidence for fire activity aggregated across the subcontinent shows
fluctuations during the mid-Holocene that align with predominant climate regimes that enable
ignitions and control fuel availability. Increases in the years around and after 2000 BP
deviate from this trend (Figure 2A), coinciding with the new subsistence strategies through
the region that brought fundamental changes to human-environment interactions (Bousman,
1998; Lander and Russell, 2018; Sealy, 2010). Our study provides empirical evidence for a
widespread connection between food production and novel fire regimes in southern Africa.
At the same time, the contributions to this pattern differ between eastern and western
regions, suggesting subtleties in the ecological scales of human impacts (Power et al.,
2018), and we consider these below.

In grasslands and savannas of eastern southern Africa, changes in microcharcoal deposition
show clear distinctions between periods of greater or lesser fire activity. During the last 2000
years, increased fire activity occurs in contrast to prevailing climate-fire dynamics,
suggesting an alternative driver is generating more microcharcoal than would be expected
from natural ignitions alone. This increase coincides with a positive rate of change in proxies
for human activity such as radiocarbon summed probability distributions and site counts, in
accord with established associations between human presence and fire activity (Marlon et
al., 2013). These increases in evidence for fire and human activity also coincide with the
advent and proliferation of new methods of food production; here, mixed farming practices.
We argue this patterning in the late Holocene microcharcoal record is explainable as the
outcome of a feedback loop in a coupled natural-human system (Liu et al., 2007), where
burning produces outcomes that enable or encourage additional burning. Burning in these
environments maintains the distribution of palatable grasses, reduces the encroachment of
woody species and, outside of arid areas, may increase above-ground productivity (Little et
al., 2015; Oluwole et al., 2008; Trollope et al., 2014). Since grasses in many environments
can be burned regularly (~1-4 years) (Morris et al., 2021; Oluwole et al., 2008), human
managers are able to exert substantial control over the distribution of resources across the
landscape, enabling longer-term residence and more concentrated human activity (Bird et
al., 2020; Boivin et al., 2016), and further increasing the benefit of, and capacity for, burning
activity. These effects presumably would have been familiar to early farmers whose
practices originated in northern areas and dispersed along grassy corridors (Chritz et al.,
2015), and such regimes may have been further augmented by fire used to clear land for
planting.



In the western areas of southern Africa, the aggregate microcharcoal record also indicates a
modest increase in fire activity during the late Holocene, but transitions in this record
throughout the Holocene are less clear when compared with the eastern areas. The GCFR
has many fire-dependent species, and there has been plenty of speculation concerning the
role of anthropogenic fire in the maintenance of vegetation community structure (Bond et al.,
2003; Deacon, 1993; Pyne, 2015). However, if a process of intensive burning and grazing
were initiated in the west, it is questionable whether it would be sustainable for long periods
of time. Most fynbos-dominated habitats consist of low-nutrient vegetation and are unlikely to
have supported high densities of large herbivores. While consumption of fynbos by grazers
is typically limited to post-fire growth (Luyt, 2005), sustainable fire return intervals are
typically less frequent in fynbos systems (~10-20 years for fynbos, ~3-7 years for
renosterveld) (Kraaij and Van Wilgen, 2014; Rebelo et al., 2006). Renosterveld communities
were more widespread in the past (Rouget et al., 2006), and it has been suggested on the
basis of historical records that they may have had a grassier character as well (Rebelo et al.,
2006; cf. Forbes et al., 2018), providing more grazing opportunities than present vegetation
distributions. However, there is evidence to suggest that fire coupled with grazing in
renosterveld can diminish palatable species, converting grazing lawns into unpalatable
shrubland (Radloff et al., 2014). This would imply that the use of fynbos or renosterveld for
grazing livestock may have required more nuanced management dependent on place-
specific conditions, potentially limiting the feedback capacity for an incoming food production
system and making it more difficult to distinguish from natural fire regimes in a microcharcoal
record. The complex interrelationships between climate, vegetation, and fire, and their
influence on different forms of economic organization, deserve additional attention.

In addition to differences in vegetation responses to anthropogenic firing when compared to
eastern areas, there is also greater variability within the western areas in terms of rainfall
seasonality and vegetation community structure that might influence the magnitude of
changes in the aggregate microcharcoal record. This can be illustrated by contrasting the
Eilandvlei and Verlorenvlei sampling sites, both of which are coastal lakes considered to lie
within the GCFR (Bergh et al., 2014). Eilandvlei is located on the southern coast in the YRZ,
receiving 900-1000 mm of rain per annum. This site also lies within a fynbos-forest mosaic
that is generally less susceptible to burning due to lower probability of ignition (MacPherson
et al., 2019). Verlorenvlei is situated on the semi-arid western coast, receiving 200-250 mm
of rain per annum, and vegetation consists principally of Sandplain and Mountain fynbos as
well as Strandveld succulent karoo. During the last 2000 years, Verlorenvlei shows signals
like many other western sites, with a modest increase in the number of positive fire
anomalies (S| Fig 2). Eilandvlei, on the other hand, stands out with high ratio of negative
anomalies during this period, consistent with pollen evidence showing increasingly wet
conditions in its more forested environment (Quick et al., 2018). As opposed to the eastern
half of the subcontinent, where areas with climatic and vegetation differences are mostly
unified by consistent rainfall seasonality and a grassy component, the diverse climate and
vegetation arrangements across the GCFR are less likely to exhibit a uniform fire response
through time when aggregated. More sampling across this region would be helpful for
disentangling fire signals, particularly among the different vegetation communities of the
GCFR (e.g. forest-fynbos mosaic vs. succulent karoo) and across the WRZ/YRZ divide.

Prior to 2000 years ago, the southern African record of fire activity and its connections to
humans and climate are less clear. A peak in the composite charcoal record occurs before 8



kya (Fig 2A), a pattern that occurs in both subsets and is also observed across sub-Saharan
Africa more broadly (Marlon et al., 2013). The coincidence of these fire signals across
seasonal rainfall zones is suggestive of a coordinating process. A potential explanation for
this is the 8.2k climate anomaly (Alley and Agustsdattir, 2005), a global cooling event which
may have accentuated fire-positive conditions across southern Africa (Chase et al., 2015a;
Voarintsoa et al., 2019). Fluctuations in the composite microcharcoal record during the mid-
Holocene are likely an outcome of western and eastern climate regimes exerting contrasting
influences through time (Fig 2A-C). When broken down into sub-regions, these exhibit an
antiphase relationship consistent with the overall climatology. These factors suggest climate
was likely a driving factor throughout the early to mid-Holocene, but other factors could also
contribute to changes in fire activity during this period. Charred traces of geophytes (e.g.
Moraea spp., Watsonia spp.) found in Middle and Later Stone Age archaeological deposits
in southern Africa (Liengme, 1987; Wadley et al., 2020) suggest a long-term role in
subsistence (Marean 2010). Connections between fire and geophyte productivity have been
used to argue that earlier populations may have used fire to increase the abundance and
predictability of these resources (Botha et al., 2020; Deacon, 1993). If this kind of
manipulation of vegetation were occurring, though, it is difficult to detect in the composite
microcharcoal record. This may speak to the relative densities of forager populations and
scales of burning activities practiced by foragers compared to food producers (Nikulina et al.,
2022; Roos et al., 2018; Scherjon et al., 2015).

In summary, it has long been presumed that fire was used to manage the landscapes of
southern Africa in the past. While our analysis shows various couplings between climate and
fire activity in southern Africa during the Holocene, we argue that an increase in fire activity
during the last 2000 years, particularly in eastern areas, is likely associated with the spread
of food production. However, the character of local vegetation and its constraints on the
benefits realized from anthropogenic burning contribute to the patterning observed in the
record. The result is a signal is not uniform across southern Africa, and likely to be different
still in other ecosystems through which food production dispersed. These interrelationships
between vegetation, climate, and fire are fundamental both for evaluating narratives of
human history and for understanding the role of past human activity in shaping present day
ecosystems.
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