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Abstract. In this short note, we prove a central limit theorem for a type
of replica overlap of the Brownian directed polymer in a Gaussian random
environment, in the low temperature regime and in all dimensions. The
proof relies on a superconcentration result for the KPZ equation driven
by a spatially mollified noise, which is inspired by the recent work of
Chatterjee [14].
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1. Introduction

1.1. Main result. Let η(t, x) be a spacetime white noise on R+ ×Rd, and
φ ∈ C∞c (Rd) be a non-negative, compactly supported, smooth function.
Define the generalized Gaussian process ξ by

(1.1) ξ(t, x) = ∫
Rd
φ(x − y)η(t, y)dy.

So ξ is white in time with the spatial covariance function

(1.2) R(x) = ∫
Rd
φ(x + y)φ(y)dy, x ∈ Rd.

Let B be a standard Brownian motion that is independent of η, starting from
the origin. We assume that B and η are defined on a common probability
space (Ω,F ,P), and let E and E denote the expectations with respect to B
and η respectively.

The Brownian directed polymer in the random environment ξ was intro-
duced in [36]. We briefly describe it as follows. For each realization of the
noise ξ, fixed β > 0 and T > 0, define the point-to-line polymer measure P̂T
on C[0, T ] as the Wiener measure tilted by the Radon-Nikodym derivative

eβ ∫
T

0 ξ(s,Bs)ds− 1
2β

2R(0)T

ZT
,

where ZT is the partition function

(1.3) ZT = E[eβ ∫
T

0 ξ(s,Bs)ds− 1
2β

2R(0)T
].
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The expectation with respect to the polymer measure P̂T is denoted by ÊT .
In other words, for any bounded F ∶ C[0, T ]→ R, we have

ÊT [F (B)] = Z−1
T E[eβ ∫

T
0 ξ(s,Bs)ds− 1

2β
2R(0)TF (B)].

For any t ≥ 0, define the overlap of the polymer endpoint at time t as
Ê⊗2
t [R(B1(t) −B2(t))]

= Z−2
t E⊗2

[eβ ∫
t

0 [ξ(s,B1(s))+ξ(s,B2(s))]ds−β2R(0)tR(B1(t) −B2(t))],

where B1,B2 are two independent copies of Brownian motions, and Ê⊗2
t is

the expectation with respect to P̂⊗2
t .

For each T ≥ 0, we define the replica overlap up to time T as

(1.4) OT = ∫

T

0
Ê⊗2
t [R(B1(t) −B2(t))]dt,

and we will consider the so-called low temperature regime. It is well-known
that as T →∞,

(1.5) 1
T

logZT → −γ(β)

almost surely, where γ(β) ≥ 0 is some constant, see [36, Proposition 2.6]. The
low temperature regime is defined as the set of those β such that γ(β) > 0, see
[16, Definition 2.1, p. 27]. Note that the partition function defined in (1.3)
is normalized so that EZT ≡ 1, therefore the γ(β) obtained above actually
equals to the difference between the quenched and annealed free energy.

It is a popular topic in the study of directed polymers to consider different
notions of strong and weak disorder regimes. For our model and under the
assumption of 0 ≤ R(⋅) ∈ L1(Rd), we expect that the low temperature regime
is {β > 0} in d = 1,2 and {β > βc} in d ≥ 3 for some critical βc > 0. Actually,
it follows from [30, Theorem 1.3] that the low temperature regime in d = 1
is {β > 0}. In d = 2, it was shown in [29] for a discrete model that the low
temperature regime in d = 2 is also {β > 0}, so it is natural to expect that the
same holds in our continuous setting, see a similar discussion in [30, Remark
1.5]. Since this is not the focus of this note, we do not attempt to follow
the proof of [29] in the discrete setting to establish this for our model. The
phase transition in d ≥ 3 is well-known, see e.g. the work of [31].

By a semimartingale decomposition, see (2.1) and (2.4) below, we have
EOT = −2β−2E logZT ≈ 2β−2γ(β)T, for T ≫ 1.

In other words, the mean of the replica overlap grows linearly in T , in the
low temperature regime. Now we can state the main result, which is on the
random fluctuations of OT around EOT :

Theorem 1.1. In the low temperature regime, we have
1
√
T
(OT −EOT )⇒ N(0,8γ(β)β−4

)
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in distribution, as T →∞.

1.2. Motivation. The directed polymer in random environment is a popular
subject in probability and statistical physics, and a prototype model in the
study of disordered physical systems. Here we will not attempt to review the
large body of literature and only refer the readers to the monograph [16],
the introduction of [8] and the references therein. Our interest in the replica
overlap defined in (1.4) are twofold.

(i) Quantities of the form (1.4) are closely related to the localization
phenomenon, which has been extensively studied, see [17, 18, 19, 20, 8, 9,
15, 7, 37] and the references therein. In the low temperature regime, OT
grows linearly with T , which can already be taken as a sign of localization.
It shows that, in a time averaged sense, Ê⊗2

t [R(B1(t) −B2(t))] is strictly
positive, which implies that, since R(⋅) is fast-decaying, the endpoints of the
two independent samples from P̂t must be “close to each other”. We refer to
[16, Chapter 5, page 76-77] for an interpretation of OT as a “replica overlap”.
Another form of replica overlap may be defined as

(1.6) OT = ∫

T

0
Ê⊗2
T [R(B1(t) −B2(t))]dt,

where the average is taken with respect to a fixed Gibbs measure and is
arguably more natural. It is well-known that OT and OT appear in different
contexts, one through Itô calculus and the other through Malliavin calculus,
see [17] for a nice discussion. Under certain assumptions, one can also
show that EOT grows linearly with T , see e.g. [17, Proposition 2.3] and [7,
Equation (1.7)] and the references cited there. See also [9] for some relevant
result along the line of concentration of OT /T . To us, it seems very natural to
consider the next order fluctuations, beyond the linear growth. The present
note studies the fluctuations of OT , which turns out to be Gaussian. We are
curious whether the same holds for OT . We present some further discussions
on the implications of our result in Section 4.

(ii) The free energy of the directed polymer is given by logZT , the fluc-
tuations of which are expected to be sub-diffusive in all dimensions. It is
related to the solution to the KPZ equation, driven by ξ and started from a
constant initial data, see (3.3) below. In d = 1, the fluctuation exponent for
logZT is expected to be 1/3, which was proved for several models in the 1+1
KPZ universality class, see e.g. [34, 2, 6, 11] and the reviews [21, 33]. In
dimensions higher than one, the exponent is unknown, while the variance is
again expected to grow sublinearly, which is the so-called superconcentration
in [13]. We will show in Theorem 2.3 that the variance of logZT , hence also
the solution to the KPZ equation, behaves sublinearly, as T ≫ 1. Previous
results on the same type of superconcentration can be found in the recent
paper [14] and the references therein. To us, a somewhat natural way of
deriving and quantifying the superconcentration phenomenon is to express
logZT using a semimartingale decomposition: since Z itself is a positive
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martingale, we have logZT =MT −
1
2⟨M⟩T , where M is a continuous martin-

gale and ⟨M⟩ is its quadratic variation. It turns out that the overlap OT is
just β−2⟨M⟩T , see (2.2) below. A simple argument invoking (1.5) and the
martingale central limit theorem directly shows that MT /

√
T is asymptoti-

cally Gaussian, in the low temperature regime. Therefore, the central limit
theorem for (⟨M⟩T −E⟨M⟩T )/

√
T is actually a necessary condition for the

superconcentration of logZT −E logZT , and one would expect that a detailed
understanding of the Gaussianity coming from (⟨M⟩T −E⟨M⟩T )/

√
T could

help with quantifying the superconcentration phenomenon. This has been
our original motivation to study the fluctuations of OT = β−2⟨M⟩T . It turns
out that ⟨M⟩T can be written as an additive functional of a Markov process
{ρ(t, ⋅)}t≥0, which takes values in the space of probability measures on Rd.
For each t ≥ 0, ρ(t, ⋅) is the endpoint distribution of the polymer path under
P̂t, an object that has been extensively studied. In [27], we considered the
problem on a torus, and showed that {ρ(t, ⋅)}t≥0 has a unique invariant mea-
sure and converges exponentially fast to it in an appropriate Fortet-Mourier
metric. Then by solving the Poisson equation corresponding to the generator
of the process and performing another martingale decomposition, we showed
that (⟨M⟩T −E⟨M⟩T )/

√
T satisfies a central limit theorem. Nevertheless,

when it is on a torus, the variance of logZT grows linearly: Var logZT ∼ T ,
so there is no complete cancellation between MT and 1

2[⟨M⟩T − E⟨M⟩T ].
Some further attempts have been made in [25] to increase the size of the
torus with time and to quantify the superconcentration phenomenon in d = 1,
leading to optimal exponents in certain regimes, without covering the case of
the whole space though. We are curious if one can study the aforementioned
additive functional directly, by establishing a certain mixing property of the
process {ρ(t, ⋅)}t≥0. At this point, it is worth mentioning the recent works of
[8, 12, 5], where the probability space is compactified to study the evolution
of the process {ρ(t, ⋅)}t≥0.

As mentioned previously, the proof of Theorem 1.1 relies on proving the
superconcentration of logZT . Similar results have been obtained in [1, 26, 13]
for different models. Our approach follows [14], and a crucial input is an
estimate on the spatial variations of the solution to the KPZ equation, see
Proposition 3.2 below. This is a version of the “subroughness” defined in [14],
and provides an (sub-optimal) upper bound on the fluctuations of the spatial
increments of the solution to the KPZ equation, see Remark 3.3. By the local
averaging trick of Benjamini-Kalai-Schramm [10], the superconcentration
follows from Talagrand’s L1 −L2 bound, see [35] and [13, Chapter 5].

The rest of the note is organized as follows. In Section 2, we prove the
main result assuming the superconcentration of logZT , which is shown in
Section 3. Some further discussions are carried out in Section 4.

Acknowledgements. We thank Erik Bates and Sourav Chatterjee for com-
ments on the draft and two anonymous referees for a careful reading of the
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2. Proof of the main result

The partition function ZT defined in (1.3) is a positive martingale, and
the following semi-martingale decomposition of logZT is well-known:

(2.1) logZT =MT −
1
2
⟨M⟩T .

Here

(2.2)
MT = ∫

T

0
Z−1
t dZt = β ∫

T

0 ∫
Rd
ρ(t, y)ξ(t, y)dydt,

⟨M⟩T = ∫
T

0
Z−2
t d⟨Z⟩t = β

2
∫

T

0 ∫
R2d

ρ(t, y)ρ(t, y′)R(y − y′)dydy′dt.

The ρ(t, ⋅) here is the endpoint density of the directed polymer under P̂t, i.e.,

(2.3) ρ(t, x) = Z−1
t E[eβ ∫

t
0 ξ(s,Bs)ds− 1

2β
2R(0)tδ(Bt − x)].

From (1.4) and (2.2), we know that

(2.4) ⟨M⟩T = β
2
OT .

The proof of Theorem 1.1 relies on the following lemmas.

Lemma 2.1. 1
TMT → 0 in the L2-sense, as T →∞.

Proof. We have EM2
T = E⟨M⟩T = −2E logZT , so by [36, Proposition 2.5], we

have
1
T 2 EM2

T = −
2
T 2 E logZT → 0

which completes the proof. ◻

Lemma 2.2. In the low temperature regime, as ε→ 0, we have

(εMT /ε2)T≥0 ⇒ (σWT )T≥0

in C[0,∞) with σ =
√

2γ(β) > 0, where W is a standard Brownian motion.

Proof. Since (εMT /ε2)T≥0 is a family of continuous, square integrable martin-
gales, it suffices to consider the quadratic variation. We write it explicitly:

ε2
⟨M⟩T /ε2 = ε2β2

∫

T /ε2

0
dt∫

R2d
ρ(t, y)ρ(t, y′)R(y − y′)dydy′.

First, by combining (1.5) and Lemma 2.1, we have
1
T
⟨M⟩T =

−2
T
(logZT −MT )→ 2γ(β)
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in probability. Thus, we have the convergence of finite dimensional distri-
butions of the process (ε2⟨M⟩T /ε2)T≥0 as ε → 0. It remains to show the
tightness. For any t ≥ s, we have

ε2
[⟨M⟩t/ε2 − ⟨M⟩s/ε2] = ε2β2

∫

t/ε2

s/ε2
d`∫

R2d
ρ(`, y)ρ(`, y′)R(y − y′)dydy′.

Since R(x) ≤ R(0), we have

ε2
[⟨M⟩t/ε2 − ⟨M⟩s/ε2] ≤ β2R(0)(t − s),

which implies tightness, see e.g. [28, Theorem VI.4.12, p. 358]. The proof is
complete. ◻

The following result plays a crucial role in establishing the Gaussian
fluctuations of the replica-overlap.

Theorem 2.3. There exists C > 0 such that

Var logZT ≤
CT

logT
for T ≥ 2.

The proof of Theorem 2.3 is presented in Section 3. We first use it to
complete the proof of the main result.
Proof of Theorem 1.1. Thanks to (2.4) and (2.1) we can write

1
√
T
(OT −EOT ) =

1
β2
√
T
(⟨M⟩T −E⟨M⟩T )

=
−2

β2
√
T
( logZT −E logZT ) +

2
β2
√
T
MT

=I1 + I2.

By Theorem 2.3, we have I1 → 0 as T →∞. Applying Lemma 2.2, we have
I2 ⇒ N(0,4σ2β−4

),

with σ2 = 2γ(β), which completes the proof. ◻

3. Superconcentration of KPZ

Suppose that u solves the stochastic heat equation driven by ξ, starting
from constant,

(3.1)
∂tu =

1
2

∆u + βuξ, t > 0, x ∈ Rd,

u(0, x) ≡ 1,

and define h(t, x) = logu(t, x), which solves the KPZ equation

(3.2)
∂th =

1
2

∆h + 1
2
∣∇h∣2 + βξ −

1
2
β2R(0), t > 0, x ∈ Rd,

h(0, x) ≡ 0.
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Recall that ξ is smooth in the spatial variable. Thus, for each t > 0 and fixed
realization of the noise, u(t, ⋅) and h(t, ⋅) are actually smooth functions, and
the solutions here are understood as strong solutions. The product between
u and ξ in (3.1) is in the Itô sense. Since ξ is stationary and the initial data is
constant, it is straightforward to check that, for each t > 0, {u(t, x)}x∈Rd is a
stationary random field. Using the Feynman-Kac formula and the invariance
of the law of ξ under the time reversal transformation and spatial shifts, we
conclude that, for each t > 0, x ∈ Rd,

(3.3) u(t, x)
law
= Zt.

Therefore, Theorem 2.3 is equivalent with

(3.4) Varh(t, x) ≤ Ct

log t
for some C > 0 independent of t ≥ 2. The sublinear growth of the variance is
called superconcentration [13], so our goal is to show that the height function,
evolving according to the KPZ equation, superconcentrates. Our proof is
inspired by the recent work of Chatterjee [14], in which he made the crucial
observation that the superconcentration is equivalent with what he called
the “subroughness”.

3.1. Talagrand’s L1−L2 bound. The first tool we need is the concentration
inequality by Talagrand. Recall that ξ is constructed from the space-time
white noise η through a spatial convolution (1.1), where φ is a smooth
kernel. Let D denote the Malliavin derivative with respect to η, and define
H = L2(R+ × Rd) and use ⟨⋅, ⋅⟩ to denote its inner product. For smooth
random variable X, which is measurable with respect to (η(s, y))s≥0,y∈Rd , we
write

DX = (Ds,yX)s≥0,y∈Rd ,

which is an H−valued random variable. For any p ≥ 1, we use ∥ ⋅ ∥p to
represent the norm of Lp(Ω).

We will show that the Malliavin derivative of the KPZ solution h(t, x)
(or the free energy logZt) is explicitly related to the polymer density, see
(3.10) below. This is not surprising: for the discrete polymer model with
the underlying random environment given by i.i.d. random variables on
the lattice, the derivative of logZt with respect to the random variable at a
given lattice point is precisely the probability of the polymer path passing
through that point. The only reason we use the language of Malliavin calculus
here is because our random environment is constructed from the spacetime
white noise. The usage will be minimal though – besides the following
proposition which has a well-known discrete counterpart, see [13, Theorem
5.1], we only need the following fact in the proof of Lemma 3.5 below: if
X = ∫

∞
0 ∫Rd f(s, y)η(s, y)dyds for some f ∈ H, then Ds,yX = f(s, y). For a

detailed introduction to Malliavin calculus, we refer to [32, Chapter 1].
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Proposition 3.1. Assume X is a smooth random variable measurable with
respect to (η(s, y))s≥0,y∈Rd, and As,y is a function such that

∥Ds,yX∥2 ≤ As,y for all s ≥ 0, y ∈ Rd.
Then, we have

(3.5) VarX ≤ C ∫
∞

0 ∫
Rd

A2
s,y

1 + log As,y

∥Ds,yX∥1

dyds,

where C > 0 is a universal constant.

Proof. First, we have the following variance representation (see e.g. [23,
Equation (4.6)])

VarX = ∫
∞

0
e−tE[⟨DX,PtDX⟩]dt,

where Pt is the Ornstein-Uhlenbeck semigroup, associated with η. Then we
write the inner product explicitly and interchange the order of integration:

E⟨DX,PtDX⟩ = ∫
∞

0 ∫
Rd

E[Ds,yXPtDs,yX]dyds.

This leads to

VarX = ∫
∞

0 ∫
Rd
(∫

∞

0
e−tE[Ds,yXPtDs,yX]dt)dyds.

For each y, s, we claim that

(3.6) ∫

∞

0
e−tE[Ds,yXPtDs,yX]dt ≤ C

A2
s,y

1 + log As,y

∥Ds,yX∥1

,

from which the conclusion of the proposition follows. The proof of (3.6) now
follows verbatim [13, Proof of Theorem 5.1]. ◻

3.2. Spatial increments of KPZ. The goal of this section is to show the
following version of “subroughness”, which provides an upper bound on the
spatial variations of the height function h(t, ⋅). Similar estimates have been
derived in [24, Lemma 5.3].

Proposition 3.2. We have

E∣h(t, x) − h(t, y)∣2 ≤ β2R(0)∣x − y∣2 for all t > 0, x, y ∈ Rd.

Proof. By the mild formulation of the KPZ equation (3.2), we have

h(t, x) =
1
2 ∫

t

0 ∫Rd
qt−s(x − y)∣∇h(s, y)∣

2dyds

+ β ∫
t

0 ∫Rd
qt−s(x − y)ξ(s, y)dyds −

1
2
β2R(0)t.

Here qt(x) = (2πt)−d/2e−∣x∣
2/(2t) is the standard heat kernel.
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Taking the expectation on both sides, we obtain

Eh(t, x) = 1
2 ∫

t

0 ∫Rd
qt−s(x − y)E[∣∇h(s, y)∣2]dyds −

1
2
β2R(0)t

Since h(s, ⋅) is stationary in the x variable (for each s ≥ 0), we denote
f(s) = E[∣∇h(s, y)∣2], then the above identity becomes

(3.7) Eh(t, x) = 1
2 ∫

t

0
f(s)ds −

1
2
β2R(0)t.

On the other hand, recalling (2.1), we have

(3.8) Eh(t, x) = E logZt = −
1
2

E⟨M⟩t = −
1
2
β2
∫

t

0
g(s)ds,

where
g(s) ∶= ∫

R2d
E[ρ(s, y)ρ(s, y′)]R(y − y′)dydy′,

which is a non-negative, continuous function, bounded by R(0). Combining
(3.7) and (3.8), we have

β2R(0)t − β2
∫

t

0
g(s)ds = ∫

t

0
f(s)ds, t ≥ 0,

which implies that f(t) = β2[R(0) − g(t)]. In particular, we have

0 ≤ f(t) ≤ β2R(0).

By the second moment bound on ∇h(t, ⋅), we have

E∣h(t, x) − h(t, y)∣2 ≤ β2R(0)∣x − y∣2.

The proof is complete. ◻

Remark 3.3. The estimate derived in Proposition 3.2 is sub-optimal for
∣x−y∣≫ 1. For example, in d = 1, it is expected that E∣h(t, x)−h(t, y)∣2 ∼ ∣x−y∣
in the stationary regime: when ξ is a 1+1 spacetime white noise, the invariant
measure for h is a two-sided Brownian motion which attains such a bound. For
a colored noise which decorrelates sufficiently rapidly, there is an interesting
conjecture in [3, Conjecture 3] along the same line. The above proof does not
exploit the spatial mixing property of ∇h(t, ⋅), thereby leads to a sub-optimal
estimate.

3.3. The Benjamini-Kalai-Schramm trick. In this section, we adapt
the standard Benjamini-Kalai-Schramm trick [10] to complete the proof of
Theorem 2.3. From now on, we abuse the notations and also let ∥φ∥∞, ∥φ∥1
represent the L∞(Rd) and L1(Rd) norm of φ.

Let BM = [−M,M]d be the box centered at the origin withM to be chosen
later (eventually to be large). Define

hM(t) =
1
∣BM ∣

∫
BM

h(t, x)dx,
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with ∣BM ∣ = (2M)d. To estimate Var logZt = Varh(t,0), we write h(t,0) =
h(t,0) − hM(t) + hM(t), and use the estimate

(3.9) Var logZt ≤ 2Var[h(t,0) − hM(t)] + 2Var[hM(t)].

Then Theorem 2.3 is a direct consequence of the following two lemmas.

Lemma 3.4. We have

Var[h(t,0) − hM(t)] ≤ R(0)β2dM2 for all t, M > 0.

Lemma 3.5. We have

Var[hM(t)] ≤
2Cβ2∥φ∥∞∥φ∥1t

2 + log (2d∥φ∥∞∥φ∥−1
1 ) + d logM

for all t > 0, M ≥ 1,

where C is the constant appearing in Proposition 3.1.

Proof of Theorem 2.3. It suffices to apply the above two lemmas in (3.9)
and pick M = tα, where α ∈ (0,1/2) can be arbitrary. ◻

Proof of Lemma 3.4. First, because h(t, ⋅) is stationary in the x variable,
we have E[h(t,0) − hM(t)] = 0. Hence, by triangle inequality we have

Var[h(t,0) − hM(t)] = ∥h(t,0) − hM(t)∥22

≤ (
1
∣BM ∣

∫
BM

∥h(t,0) − h(t, x)∥2dx)
2
.

Applying Proposition 3.2, we have

Var[h(t,0) − hM(t)] ≤ R(0)β2
(

1
∣BM ∣

∫
BM

∣x∣dx)

2
≤ R(0)β2dM2.

◻

Proof of Lemma 3.5. Recall that, by the Feynman-Kac formula we get the
following representation for the solution of (3.1):

u(t, x) = E[ exp{β ∫
t

0
ξ(t − `, x +B`)d` −

1
2
β2R(0)t}].

We write the exponent in the above display explicitly:

∫

t

0
ξ(t − `, x +B`)d` = ∫

t

0 ∫Rd
φ(x +Bt−` − y)η(`, y)dyd`.

Fix a realization of the Brownian motion B, we have

Ds,y (∫

t

0
ξ(t − `, x +B`)d`) = φ(x +Bt−s − y), s ∈ [0, t], y ∈ Rd.
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From here by a standard argument we get the formula for the Malliavin
derivative of h(t, x), with respect to η:

(3.10)
Ds,yh(t, x) =Ds,y logu(t, x) = u(t, x)−1

Ds,yu(t, x)

=
βE[eβ ∫

t
0 ξ(t−`,x+B`)d`φ(x +Bt−s − y)]

E[eβ ∫
t

0 ξ(t−`,x+B`)d`]
.

From the above expression, it is clear that
(3.11) 0 ≤ Ds,yh(t, x) ≤ β∥φ∥∞,
and for all t > 0, x ∈ Rd and s ∈ [0, t], we have

(3.12) ∫
Rd
Ds,yh(t, x)dy = β∥φ∥1.

To apply Proposition 3.1, we first estimate

Ds,yhM(t) = ∣BM ∣
−1
∫
BM

Ds,yh(t, x)dx.

By the stationarity of h(t, ⋅) in the spatial variable and (3.12), we have

(3.13)
∥Ds,yhM(t)∥1 =

1
∣BM ∣

∫
BM

∥Ds,yh(t, x)∥1dx

=
1
∣BM ∣

∫
BM

∥Ds,y−xh(t,0)∥1dx ≤
1
∣BM ∣

β∥φ∥L1(Rd).

For the L2(Ω) norm, we have

E∣Ds,yhM(t)∣2 ≤
1
∣BM ∣

∫
BM

E∣Ds,yh(t, x)∣2dx.

By (3.11), we further derive

(3.14) E∣Ds,yhM(t)∣2 ≤
β∥φ∥∞
∣BM ∣

∫
BM

EDs,yh(t, x)dx.

Let

As,y ∶= {
β∥φ∥∞
∣BM ∣

∫
BM

EDs,yh(t, x)dx}
1/2

By (3.14) we have ∥Ds,yhM(t)∥2 ≤ As,y.
Applying Proposition 3.1, we have

VarhM(t) ≤ C ∫
t

0 ∫Rd

A2
s,y

1 + log As,y

∥Ds,yhM (t)∥1

dyds.

By (3.13), we have
As,y

∥Ds,yhM(t)∥1
=

As,y
1
∣BM ∣ ∫BM

∥Ds,yh(t, x)∥1dx

= {
β∥φ∥∞∣BM ∣

∫BM
∥Ds,yh(t, x)∥1dx

}

1/2
≥

√

∥φ∥∞∥φ∥−1
1 ∣BM ∣.
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This, in turn implies

VarhM(t) ≤
C

1 + 1
2 log (∥φ∥∞∥φ∥−1

1 ∣BM ∣)
∫

t

0 ∫Rd
A2
s,ydyds.

On the other hand, from the definition of As,y, we have

∫

t

0 ∫Rd
A2
s,ydsdy =β∥φ∥∞∣BM ∣

−1
∫

t

0 ∫Rd
(∫

BM

∥Ds,yh(t, x)∥1dx)dyds

=β∥φ∥∞∣BM ∣
−1
∫

t

0 ∫Rd
(∫

BM

∥Ds,y−xh(t,0)∥1dx)dyds

=β2
∥φ∥∞∥φ∥1t,

where in the last “=” we have used (3.12). The proof is complete. ◻

4. Further discussion

The approach here should also apply to other polymer models, including
the ones in the discrete setting and the one with a 1 + 1 spacetime white
noise. A challenging problem is to study the other overlap OT defined in
(1.6), and perhaps a more modest question is actually to provide a different
proof of Theorem 1.1, without using the superconcentration of logZT . In
particular, one would like to understand that, in the following expression,

OT = ∫

T

0
R(ρ(t, ⋅))dt, with R(f) ∶= ∫

R2d
f(y)f(y′)R(y − y′)dydy′,

where the mixing comes from and how it leads to the Gaussian fluctuations of
OT −EOT . Recall that ρ was defined in (2.3) and is the endpoint distribution
of the directed polymer of length t. In a recent preprint [22], for the continuum
directed polymer in the 1 + 1 spacetime white noise, the following result
was derived: for each t > 0, the random density ρ(t, ⋅) has a unique mode,
denoted by xt, and after a shift by xt, the following weak convergence on
C(R) holds:

(4.1) {ρ(t, xt + x)}x∈R ⇒ {
e−B(x)

∫R e
−B(x′)dx′

}

x∈R
, as t→∞.

Here B is a two-sided 3d-Bessel process with diffusion coefficient 1, see [22,
Theorem 1.5] for more details. It is clear that R(ρ(t, ⋅)) =R(ρ(t, xt + ⋅)), so,
in light of (4.1), one may expect that R(ρ(t, ⋅)) converges in distribution as
t → ∞, and for large t, R(ρ(t, ⋅)) mostly depends on the recent history of
the random environment. This type of evidence of mixing is consistent with
our result.

On the other hand, we expect that for any two initial distributions µj ,
j = 1,2 of densities ρj(0, ⋅), the respective processes ρj(t, ⋅) satisfy

E∫
Rd
∣ρ1(t, x) − ρ2(t, x)∣dx→ 0, as t→∞.
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This is closely related to [4, Theorem 4.4] which deals with a stationary
version of the polymer measure in 1 + 1 dimension. To study the mixing
property of {ρ(t, ⋅)}t≥0, or more precisely, the randomly shifted one such as
{ρ(t, xt + ⋅)}t≥0 in (4.1), or the overlap process {R(ρ(t, ⋅))}t≥0 which factors
out the spatial shift, is an important question, the answer to which we believe
is closely related to the localization behaviors of the polymer paths.

References
[1] K. Alexander and N. Zygouras, “Subgaussian concentration and rates of convergence

in directed polymers” Electronic Journal of Probability, 18:1-28, 2013. 4
[2] G. Amir, I. Corwin, and J. Quastel, “Probability distribution of the free energy of the

continuum directed random polymer in 1+1 dimensions”, Comm. Pure Appl. Math.,
64 (2011), 466-537. 3

[3] Y. Bakhtin and K. Khanin, “On global solutions of the random Hamilton-Jacobi
equations and the KPZ problem”, Nonlinearity 31 (2018), pp. R93-R121. 9

[4] Y. Bakhtin and L. Li, “Thermodynamic limit for directed polymers and stationary
solutions of the Burgers equation”, Communications on Pure and Applied Mathematics
72.3 (2019): 536-619. 13

[5] Y. Bakhtin and D. Seo, “Localization of directed polymers in continuous space”,
Electronic Journal of Probability, 2020;25. 4

[6] M. Balázs, J. Quastel, and T. Seppäläinen, “Fluctuation exponent of the
KPZ/stochastic Burgers equation”, J. Amer. Math. Soc., 24 (2011), 683-708. 3

[7] E. Bates, “Full-path localization of directed polymers”, Electronic Journal of Proba-
bility 26 (2021): 1-24. 3

[8] E. Bates and S. Chatterjee, “The endpoint distribution of directed polymers”. The
Annals of Probability 48.2 (2020): 817-871. 3, 4

[9] E. Bates and S. Chatterjee, “Localization in Gaussian disordered systems at low
temperature”, The Annals of Probability 48.6 (2020): 2755-2806. 3

[10] I. Benjamini, G.Kalai and O. Schramm, “First passage percolation has sublinear
distance variance”, Ann. Probab. 31(4), 1970-1978 (2003). 4, 9

[11] A. Borodin, I. Corwin, and P. Ferrari, “Free energy fluctuations for directed polymers
in random media in 1+1 dimension”, Comm. Pure Appl. Math., 67 (2014), 1129-1214.
3

[12] Y. Bröker and C. Mukherjee, “Localization of the Gaussian multiplicative chaos in the
Wiener space and the stochastic heat equation in strong disorder”, Annals of Applied
Probability, 29(6) (2019), pp. 3745–3785. 4

[13] S. Chatterjee, “Superconcentration and Related Topics”, Springer, 2014. 3, 4, 7, 8
[14] S. Chatterjee, “Superconcentration in surface growth”. arXiv preprint arXiv:2103.09199

(2021). 1, 3, 4, 7
[15] S. Chatterjee, “Proof of the path localization conjecture for directed polymers”.

Communications in Mathematical Physics 370.2 (2019): 703-717. 3
[16] F. Comets, “Directed polymers in random environments”. Springer., 2017. 2, 3
[17] F. Comets and M. Cranston, “Overlaps and pathwise localization in the Anderson

polymer model”, Stochastic Processes and their Applications 123.6 (2013): 2446-2471.
3

[18] F. Comets and Vu-Lan Nguyen, “Localization in log-gamma polymers with boundaries”,
Probability Theory and Related Fields 166.1 (2016): 429-461. 3

[19] F. Comets, T. Shiga, and N. Yoshida, “Directed polymers in a random environment:
path localization and strong disorder”, Bernoulli 9.4 (2003): 705-723. 3

[20] F. Comets and N. Yoshida, “Localization transition for polymers in Poissonian
medium”, Communications in Mathematical Physics 323.1 (2013): 417-447. 3



14 YU GU, TOMASZ KOMOROWSKI

[21] I. Corwin, “The Kardar–Parisi–Zhang equation and universality class”, Random
matrices: Theory and applications, 1 (2012), p. 1130001. 3

[22] S. Das and W. Zhu. “Localization of the continuum directed random polymer”, arXiv
preprint arXiv:2203.03607 (2022). 12

[23] M. Duerinckx and F. Otto, “Higher-order pathwise theory of fluctuations in stochas-
tic homogenization”. Stochastics and Partial Differential Equations: Analysis and
Computations volume 8, pages 625-692 (2020). 8

[24] A. Dunlap, C. Graham and L. Ryzhik, “Stationary solutions to the stochastic Burgers
equation on the line”. Communications in Mathematical Physics 382.2 (2021): 875-949.
8

[25] A. Dunlap, Y. Gu and T. Komorowski, “Fluctuations of the KPZ equation on a large
torus”. arXiv preprint arXiv:2111.03650 (2021). 4

[26] B. Graham, “Sublinear variance for directed last-passage percolation”, Journal of
Theoretical Probability, 25(3):687-702, 2012. 4

[27] Y. Gu and T. Komorowski, “KPZ on torus: Gaussian fluctuations”. arXiv preprint
arXiv:2104.13540 (2021). 4

[28] J. Jacod and A. N. Shiryaev, “Limit theorems for stochastic processes.” Second edition.
Grundlehren der mathematischen Wissenschaften, 288, Springer-Verlag, Berlin, 2003.
6

[29] H. Lacoin, “New bounds for the free energy of directed polymers in dimension 1+1
and 1+2”, Communications in Mathematical Physics 294.2 (2010): 471-503. 2

[30] H. Lacoin, “Influence of spatial correlation for directed polymers”, The Annals of
Probability 39.1 (2011): 139-175. 2

[31] C. Mukherjee, A. Shamov and O. Zeitouni, “Weak and strong disorder for the stochastic
heat equation and continuous directed polymers in d ≥ 3”. Electronic Communications
in Probability, 21, (2016) 1-12. 2

[32] D. Nualart, “The Malliavin calculus and related topics”, Vol. 1995. Berlin: Springer,
2006. 7

[33] J. Quastel and H. Spohn, “The one-dimensional KPZ equation and its universality
class”, J. Stat. Phys., 160 (2015), 965-984. 3

[34] T. Seppäläinen, “Scaling for a one-dimensional directed polymer with boundary
conditions”, Ann. Probab. 40, 19?73 (2012). 3

[35] M. Talagrand, “On Russo’s approximate zero-one law”, Ann. Probab. 22, 1576-1587
(1994) 4

[36] S. Tindel and C. Rovira, “On the Brownian directed polymer in a Gaussian random
environment”. J. Funct. Anal. 222 (2005), 178-201. 1, 2, 5

[37] V. Vargas, “Strong localization and macroscopic atoms for directed polymers”, Proba-
bility theory and related fields 138.3-4 (2007): 391-410. 3

(Yu Gu) Department of Mathematics, University of Maryland, College Park,
MD 20742, USA

(Tomasz Komorowski) Institute of Mathematics, Polish Academy of Sciences,
ul. Śniadeckich 8, 00-656, Warsaw, Poland. Institute of Mathematics, UMCS,
pl. Marii Curie-Sklodowskiej 1 20-031 Lublin


	1. Introduction
	1.1. Main result
	1.2. Motivation
	Acknowledgements

	2. Proof of the main result
	3. Superconcentration of KPZ
	3.1. Talagrand's L1-L2 bound
	3.2. Spatial increments of KPZ
	3.3. The Benjamini-Kalai-Schramm trick

	4. Further discussion
	References

