PSDoodle: Fast App Screen Search via Partial Screen Doodle

Soumik Mohian
Computer Science and Engineering Department
University of Texas at Arlington
Arlington, Texas, USA
soumik.mohian@mavs.uta.edu

ABSTRACT

Searching through existing repositories for a specific mobile app
screen design is currently either slow or tedious. Such searches are
either limited to basic keyword searches (Google Image Search) or
require as input a complete query screen image (SWIRE). A promis-
ing alternative is interactive partial sketching, which is more struc-
tured than keyword search and faster than complete-screen queries.
PSDoodle is the first system to allow interactive search of screens
via interactive sketching. PSDoodle is built on top of a combination
of the Rico repository of some 58k Android app screens, the Google
QuickDraw dataset of icon-level doodles, and DoodleUINet, a cu-
rated corpus of some 10k app icon doodles collected from hundreds
of individuals. In our evaluation with third-party software develop-
ers, PSDoodle provided similar top-10 screen retrieval accuracy as
the state of the art from the SWIRE line of work, while cutting the
average time required about in half.

CCS CONCEPTS

«Software and its engineering — Software prototyping; Search-
based software engineering; - Human-centered computing
— Interaction techniques.

KEYWORDS

Sketch-based image retrieval, SBIR, user interface design, sketching,
GUI, design examples, deep learning

ACM Reference Format:

Soumik Mohian and Christoph Csallner. 2022. PSDoodle: Fast App Screen
Search via Partial Screen Doodle. In IEEE/ACM 9th International Conference
on Mobile Software Engineering and Systems (MOBILESoft °22), May 17—
24, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3524613.3527816

1 INTRODUCTION

Searching through existing repositories for a specific mobile app
screen design is currently either slow or tedious. Currently such
searches are either limited to traditional keyword searches (e.g., via
Google’s image search) or require as input a complete query screen
image (i.e., via the SWIRE line of work [16, 27]) and are therefore
slow and do not support well an interactive or iterative search style.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MOBILESoft °22, May 17-24, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9301-0/22/05.

https://doi.org/10.1145/3524613.3527816

Christoph Csallner
Computer Science and Engineering Department
University of Texas at Arlington
Arlington, Texas, USA
csallner@uta.edu

Having an effective and efficient search engine for mobile app
screens can benefit many key software engineering tasks, including
requirements gathering, understanding current market trends, ana-
lyzing features, providing inspiration to developers, and as a bench-
mark for evaluation [10, 14]. Given the wide-spread and increasing
use of mobile apps in a “mobile first” world and the resources spent
on developing them [13, 18], such a screen search engine could have
a large positive impact on many software developers and users. We
are particularly focused on software developers with little to no
UI/UX/design background. These users may only have a vague
idea of the screen contents and are looking for inspiration from
professional screen designs.

Several screen repositories exist, including websites such as
Dribbble! and Behance?. Another repository is the Rico dataset cu-
rated from Android apps at runtime [8]. Searching through this vast
collection and finding desired example screens currently requires
extensive effort via keyword-based search (e.g., for screen color,
theme, date, and location) through several websites [26]. Moreover,
novice users often fail to formulate good keyword queries and
therefore do not get the intended search results [14].

Several researchers have proposed using visual, e.g., image- or
sketch-based search methods because they are easy to use and
fast to adopt [34]. For software development sketches are a nat-
ural fit, as sketches are a common form of visual representation,
especially during early software development phases such as Ul
prototyping [5, 6, 21, 25, 33].

PSDoodle is the first approach that supports interactive and iter-
ative sketch-based screen search. PSDoodle uses a digital drawing
interface with support for touchscreen devices of different reso-
lutions and provides ease of use for the mouse. Using a digital
drawing interface enables live search and user interaction. PSDoo-
dle also does not suffer from the processing delays of paper-based
approaches with their offline processing steps.

Figure 1 gives an overview of a sample PSDoodle search, starting
in row 1 with the user sketching a “hamburger”-style menu icon in
the top left corner. Each of PSDoodle’s top-5 result screens contains
a hamburger menu icon at about the sketched location. The second
row shows the result of the user adding the doodle of a custom
image below the hamburger icon, followed by two rows adding one
more UI element doodle each.

PSDoodle employs deep learning to identify UI elements from
drawing strokes. PSDoodle fetches real-world Ul examples from
the Rico [8] dataset based on UI element type, position, and ele-
ment shape. It retrieves Ul screens from the first UI element query
element. PSDoodle updates the search result with the addition or
removal of a Ul element in the sketch.

!https://dribbble.com/, accessed January 2022.
2https:/ /www.behance.net/, accessed January 2022.

https://doi.org/10.1145/3524613.3527816
https://doi.org/10.1145/3524613.3527816
https://doi.org/10.1145/3524613.3527816
https://dribbble.com/
https://www.behance.net/

MOBILESoft *22, May 17-24, 2022, Pittsburgh, PA, USA Soumik Mohian and Christoph Csallner

nxZeoe

= rcBAvERNTV

1"f

MLVOWS RCBAGNNONS FCBRAIVPLS LVEWESRAN B

<

face_changer_video_1.mp4

Drawing Time
2s

IMG_02245(.mpa

a SI0e080507-50mpa

Haier
EsaqsosP

E Sign in or Subscribe for ratings

Price & Shop

Slide08 06.07-50.mpa

video 3gp

March 29,2017

T i

(<}
=

ok A N
McVay Eager to Begin Work with 0Bs in Build your Profile
Offseason Program

Drawing Time
) ' 37s

® v

Mercedes Benz to launch C43 AMG in India on
December 14

Nicolas Dupont-Aignan face & Jean-
Jacques Bourdin en direct

[i

Drawing Time & Ay

(CH HEROES $356 Iron Man Duddy
v

\ T S
e I {
g g v UPERHERO TYCOON (FGTEE\

\ } Ss Voungsters Real Madrid could target for oo

the future: Dele Al
/\/\/\A/\/ 500k

el save Up to 99%
Dush &

o sore .
[} $9:24 MBS & et cuar s g 0

nlenoxaseea 3wiDss
myDQ

The myDQ Mobile App

BUD BUD BUD w =
(&R S8R SR oum ' came

program has ended.

THANK YOL Welcome to Charty Miles!®

Drawing Time
N . 14s

Figure 1: The second app screen search one of the study participants performed on PSDoodle (after finishing a 7-minute
tutorial). Each row shows a user query sketch (1st column) after adding one more Ul element, followed by PSDoodle’s top-5 (out
of 58Kk) search results (in order). For each of these four queries, several of the result screens contain the sketched Ul elements at
about the sketched location. Drawing time contains all time from the user starting to work on the new UI element to the user
indicating the new UI element sketch is finished. In each row PSDoodle returned the top-10 (ranked) result screens within
2 seconds (which includes a roundtrip from the user’s machine to the AWS-hosted PSDoodle).

At the same time PSDoodle provides search accuracy on par with time PSDoodle retrieved and displayed the Rico target screen in its
state-of-the-art full-screen sketch approaches. We compared PS- top-10 search results. A user usually spent an average of 107 sec-
Doodle to state-of-the-art approaches by recruiting and observing onds and drew an average of 5.5 elements during the process. This
10 participants who used PSDoodle for the first time. We displayed a compared favourably with the most closely related tool SWIRE [16],
Ul screenshot from Rico and instructed the participant to draw until which took 246 seconds to complete a sketch and took an average

the Rico screen appears in PSDoodle’s top search results. 88% of the

PSDoodle: Fast App Screen Search via Partial Screen Doodle

of 21.1 icon elements in each query drawing. To summarize, this
paper makes the following major contributions.

e PSDoodle is the first tool that provides an interactive iterative
search-by-sketch screen search. It is freely available online
at: http://pixeltoapp.com/PSDoodle/

e In our comparison with the state-of-the-art SWIRE line of
work, PSDoodle achieved similar top-10 search accuracy
while requiring less than 50% of the time.

o All of PSDoodle’s source code, processing scripts, training
data, and experimental results are available under permissive
open-source licenses [23, 24].

2 BACKGROUND

Due to their wide use, we focus on Android apps and their com-
mon Ul elements. Rico contains 72k unique app screens, collected
from 9.3k Android apps from 27 app categories of the Google Play
store [8]. Rico ran (via ERICA [9]) each of these Android apps on
modified Android classes to efficiently capture both screenshots
and each screen’s runtime Ul view hierarchy. Rico thereby provides
for each screenshot each Ul element’s Android class name, textual
properties, x/y coordinates, and visibility.

A common challenge is understanding apps’ custom UI elements
(e.g., a clickable custom image used as an alternative implementa-
tion of a standard Android icon). To understand an Ul element’s
intent beyond its Android class name, Liu et al. clustered 73k Rico
screen elements by image similarity, the similarity of an element’s
surrounding text snippets, and similar code-based patterns [22].
This yielded 25 UI component types (e.g.: checkbox, icon, image,
text, text button), 197 text button concepts (e.g.: no, login, ok), and
135 icon classes (e.g.: add, menu, share, star), with which Liu et al.
labeled all screen elements in Rico.

2.1 SWIRE: Offline Full-screen Search

Most closely related to our work is SWIRE [16]. SWIRE collected
3.8k low-fidelity full-screen Rico screen sketches from 4 experi-
enced Ul designers given a pre-defined drawing convention. Specif-
ically, SWIRE instructs users to sketch each image as a crossed-out
square (square borders plus diagonals) or as a square filled with a
mountain outline. SWIRE users also represent any text with (a part
of) the same 3-word template (Lorem ipsum dolor) or by squiggly
lines. SWIRE trained a deep neural network on 1.7k Rico sketch-
screenshot pairs created by 3 designers, yielding a top-10 screen
retrieval accuracy of 61% (i.e., in 61% of cases the screenshot corre-
sponding to the fourth designer’s query sketch was one of SWIRE’s
top-10 search result screenshots).

SWIRE reflects a traditional paper-based design style. Users
sketch with pen on paper inside an Aruco marker frame [11] to
streamline subsequent de-noising, camera angle correction, and
projection correction. To change a sketch the user will likely have to
start over. Even scanning or taking a snap once plus the subsequent
processing steps requires significant time. Recent SWIRE follow-up
work reported a top-10 accuracy of 90.1% [27]. While using different
processing steps, at a high level it followed SWIRE’s paper-based
design style and thus faces similar challenges for interactive search.

MOBILESoft ’22, May 17-24, 2022, Pittsburgh, PA, USA

2.2 Google QuickDraw & DoodleUINet

Google’s Quick, Draw! (“QuickDraw”) offers some 50M doodles of
345 everyday categories, from “aircraft carrier” to “zigzag” [12, 19].
QuickDraw doodles were sketched by anonymous website visitors,
who were only given a one-word description of the thing to sketch.
For each element category this yielded sketches performed in a
wide variety of drawing styles. Given this diverse training set,
QuickDraw achieved solid doodle recognition accuracy for a wide
range of sketching styles (e.g., earlier work reported some 70% top-1
doodle recognition accuracy [31]). Internally QuickDraw represents
each doodle as a stroke sequence. Each stroke is a drawing from
a start-touch to an end-touch event (e.g., mouse button press and
un-press), represented by a sequence of straight lines.

B 2 oy T TTa 2. —
) < X)) (V) \ —
Nl e NEdp Tl 1 N o
Avatar Back Cancel Checkbox Dropdown Forward Left Arrow Menu
N 4 _ (" 1 ‘R’\\/\ /; 2 N i ’—/k
y _ N 2 D) 7% ¥ _—
Play Plus Search Setting Share Slider Squiggle Switch

Figure 2: PSDoodle’s DoodleUINet icons (1 sample per class).

DoodleUlNet offers some 11k crowdworker-created doodles of
16 common Android UI element categories [23]. Figure 2 visualizes
DoodleUlINet’s 16 UI element categories, spanning Android built-in
element types (e.g., checkbox) and custom-designed images (e.g.,
avatar). DoodleUINet doodles are stored in QuickDraw’s format
but do not overlap with QuickDraw’s doodle categories. In contrast
to QuickDraw’s flexible doodle recognition, the current version of
DoodleUlINet focuses on a single drawing style per element category
(“stylized”), which it achieved by briefly presenting crowdworkers
a stylized target image of the element they should sketch. (For ex-
ample, in DoodleUINet a UI element to reach “settings” currently
always looks like a gear symbol.) Some 10k DoodleUINet sketches
are labeled “correct” (or similar-looking to the target image accord-
ing to manual review) and some 1k are labeled “incorrect”.

3 OVERVIEW AND DESIGN

Figure 3 gives an overview of PSDoodle’s architecture. PSDoodle
offers a drawing interface (bottom left) and recognizes a stroke
sequence as an Ul element via a deep neural network trained on
DoodleUINet and QuickDraw doodles. After recognizing a new UI
element, PSDoodle looks up the top-N matching screens in its dic-
tionary of Rico screen hierarchies via PSDoodle’s similarity metric
based on Ul element shape, position, and occurrence frequency.

3.1 Rico Screens & UI Element Labels

While the Rico paper mentions 72k screens, its dataset contains
66,261 screens. Given our Ul element based search, PSDoodle cannot
distinguish between screens with few UI elements (e.g., between
two screens that only show a single large image). We thus exclude
a Rico screen if the entire screen consists of a single text area (2,384
screens), a single image (561), single text plus single image (502),
single webview (2,367), webview covering most of the screen area
(1,433), or has no hierarchy information (888). (While a webview

http://pixeltoapp.com/PSDoodle/

MOBILESoft *22, May 17-24, 2022, Pittsburgh, PA, USA

e
S— S— S—
Rico Screen | Create o Rico Rico
Hierarchies Dictionary Dictionary Screenshots
—
S— I
Google
- CNN + LSTM
Quick Draw Icon class and PSDoodle
— > position Similarity
f— Metric
Doodle
UlINet
—
Query Doodle Top-N
Stroke Screens
\/\

Figure 3: PSDoodle answers user queries via an offline-
trained icon-level stroke-sequence recognizer and an offline-
created hierarchy dictionary of 58k Rico screens.

may contain an arbitrary webpage, Rico contains no information
about this webpage.) This yields 58,126 Rico screens in PSDoodle.

For 3,317 Rico screens we noticed and fixed several inaccura-
cies in Liu et al’s labeling of UI elements as “input” or “image”.
Table 1 summarizes these fixes as 47 patterns. For example, we
found that if Liu et al. labeled a UI element of Android class App-
CompatCheckBox as an “input” then that UI element really looks
like a “checkbox”.

3.2 Query Language: Stylized + Flexible Doodles

While our long-term goal is to support every user and their pre-
ferred query styles (i.e., via an arbitrary mix of individual sketching
styles, keywords, and structured query languages), PSDoodle fo-
cuses on sketch-only screen search. Specifically, PSDoodle combines
the stylized DoodleUlINet sketch style with the flexible QuickDraw
sketch style. QuickDraw has already validated that supporting both
many categories and flexible drawing styles is possible using the
QuickDraw representation and classification PSDoodle has adapted.
So migrating PSDoodle to support more Ul element categories and a
flexible drawing style is mostly a matter of collecting more training
samples (and retraining PSDoodle’s neural net).

A key challenge not addressed by QuickDraw is sketching deeply
nested composite structures, which is common in app screens (e.g.,
a list of images plus text pairs in a container that is just one part
of the screen). PSDoodle supports sketching such screens via its
sequence-of-elements style. Specifically, the PSDoodle doodle clas-
sifier recognizes one Ul element at a time. So once a user starts
sketching a new doodle, PSDoodle treats each stroke as belonging
to that UI element doodle, until the user indicates the UI element
sketch is done. In that style it does not matter if the user first
sketches a container or one of its (nested) UI elements, PSDoodle
recognizes each separately and treats them as separate elements,
allowing arbitrarily deeply nested container structures.

Figure 4 shows how PSDoodle presents its query language to its
users (as a “cheatsheet”). At the individual UI element level, Doo-
dleUINet [23] is a good fit for Android screen search as (according
to the number of element labels inferred by Liu et al. [22]) Doo-
dleUINet covers several of the most popular UI elements in Rico.
Specifically, 11/16 of the stylized DoodleUINet doodles look like the
corresponding Ul elements grouped and labeled by Liu et al. The

Soumik Mohian and Christoph Csallner

@<®®»=E > O «

1. Icons Avatar Back Camera Cancel Envelope Forward Home Left Arrow

=Op> QB L«

Menu Plus Play Search Setting Share Star

2. Non-supported
Icons

%)) |:> Reprelscg:tation

Replace with

M O =@ -0

Checkbox Container Dropdown Slider Switch

3. Non-Iconic Ul
Elements

4. Replace All W Squiggle
Text with Lines
VA%%
5.TextButton Squiggle [= NSNS
is Lines || Square
6. Replace Image lea = >
with B! A Drawing
Representation
7. Create —0 ﬂ
Hierarchy Supported Container | > it @
Icons/
of Elements D Eloments D

Figure 4: PSDoodle’s query language, as presented to users.

other five either match SWIRE'’s language (squiggly line) or appear
to be reasonable representations of common app concepts (drop-
down, left arrow, slider, and switch). In addition to DoodleUINet,
we reviewed the QuickDraw categories, looking for doodles that
could be used to cover additional Ul elements. We thereby identified
7 QuickDraw classes (Figure 5 shows one sample each) that in our
subjective judgement were a good match for UI sketching.

Camera Cloud Envelope House Jail window Square Star

— N < N 1A
\ " A \ X | \/ >

Figure 5: PSDoodle’s QuickDraw icons (one sample per class).

Besides the relatively close doodle-to-screen similarity of sev-
eral classes (e.g., a sketched “menu” icon looks quite similar to
an on-screen menu icon), PSDoodle follows SWIRE’s approach of
using a few placeholder elements to represent text and arbitrary
images. For text PSDoodle uses a squiggly line (as SWIRE) and for
an arbitrary image we use QuickDraw’s “jailwindow”. Furthermore,
PSDoodle uses QuickDraw’s cloud to represent a default (other-
wise not directly-supported) icon and QuickDraw’s square as a
container.

Taken together, PSDoodle thereby covers the most common Ul
elements in Rico (in order) as follows (bold is from DoodleUINet,
italic from QuickDraw): Container, image, icon (a small interactive
image), text, text button, web view, input, list item, switch (a
toggle element), map view, slider, and checkbox. Rico further
sub-categorized the most popular icon types (#3 in the above list)
as back, followed by (in order) menu, cancel (close), search, plus
(add), avatar (user head-shot type image), home, share, setting,

PSDoodle: Fast App Screen Search via Partial Screen Doodle

MOBILESoft ’22, May 17-24, 2022, Pittsburgh, PA, USA

Container’s Android Class

Element’s Android Class

New Label

CheckedTextView, AppCompatCheckedTextView, AppCompatCheckBox, PreferenceCheckbox, CheckboxChoice, Checkbox
AppCompatCheckBox, CheckableImageView, Ani- CheckboxTextView, CenteredCheckBox, StyledCheckBox, CheckBut-
mationCheckBox, CheckableImageButton, Check- ton, AppCompatCheckBox, CheckBox, CheckBoxMaterial

Box, ColorableCheckBoxPreference

RangeSeekBar, SeekBar

RangeSeekBar, TwoThumbSeekBar, EqSeekBar, PriceRangeSeekBar, ~Slider

VideoSliceSeekBar, SliderButton

RatingBar

RatingWidget, RatingSliderView, RatingView, Rating Star

SwitchCompat, Switch

SwitchCompat, CustomThemeSwitchButton, BetterSwitch, La- Switch

beledSwitch, CustomToggleSwitch, CheckSwitchButton, Custom-
Switch, MySwitch, SwitchButton, Switch

n/a CustomSearchView, SearchEditText, CustomSearchView, Search- Search

BoxButton

Table 1: 47 patterns of fixes we have applied to “input” and “image” labels Liu et al. have applied to Rico UI elements on 3,317
screens. If Liu et al. labeled an element “input” or “image” and the element’s type is a second column Android class or its direct
container is a first column Android class, then we replace the label with the right column.

star, edit, more, refresh, forward, and play. PSDoodle further sup-
ports camera, dropdown, envelope, and left arrow.

Some popular UI elements can be treated as compound elements
that can be composed of other more basic ones. PSDoodle supports
one such case, i.e., the Android text button as “text” inside a “square”.
If a squiggle is inside a square and the square has no other nested
UI elements then PSDoodle merges these two elements into a single
(compound) element.

3.3 Ul Element Doodle Recognition

Undo Strokes Current predictions:

Oback0.0%

8

Icon done

Retrieved
Success fully

Figure 6: PSDoodle drawing UI, under which PSDoodle shows
its current top-N Android search result screens (omitted).

Users draw on PSDoodle’s website via mouse or touch events.
Users can undo or redo strokes and remove the last element doodle
(Figure 6 top left). Each time the user adds a stroke to the current
doodle, PSDoodle shows its current top-3 UI element predictions

(top right). A user can pick any of these three (and tap “Icon done”)
or continue editing the current Ul element doodle. Once the user
taps “Icon done”, PSDoodle adds the sketched UI element to its
search query, issues the query, and updates the display of its top-N
Android search result screens.

To recognize a single UI element from strokes, we trained a deep
neural network using QuickDraw’s network architecture [31], i.e.,
a 1-D convolutional neural network (CNN) layer (48 filters, kernel
size 5) followed by a 1-D CNN layer (kernel size 5, 64 filters), a
1-D CNN layer (kernel size 3, 96 filters), 3 Bi-LSTM layers, and a
fully-connected layer.

We used DoodleUlINet (some 600 doodles labeled “correct” for
each of the 16 classes) plus a random 600-doodle sample of each of
our 7 QuickDraw classes. We used transfer learning [32] to pre-train
the CNN layers for 23 QuickDraw classes outside our 7 QuickDraw
classes. We then split our 23 classes into training and test sam-
ples (80%/20%) and trained the network for 24,893 steps, which
yielded an accuracy of 94.5% on the test data (which is similar to
the 94.2% accuracy a recent study achieved with 7-class QuickDraw
subset [2]).

To map an input stroke to QuickDraw’s stroke-5 format [12],
PSDoodle normalizes input stroke int locations to floats. Specifically,
in the stroke-5 format [12] each user input stroke is a sequence of
points where each point is a tuple (Ax, A y, p1, p2, p3). Here p1 to
p3 are binary sketch states after the current vertex (touching the
canvas, raised from the canvas, done). Ax and Ay are integer pixel
distances we normalize to floats (maintaining, among others, the
number of vertices between input and normalized image).

3.4 Searching Screens for UI Element Doodles

After the user adds (or removes) a UI element, PSDoodle displays
Rico screens that are similar to the current (partial) user screen
sketch. PSDoodle scores each of the 58k Rico screens based on how
closely the screen matches the query doodles’ presence, position,
and shape. A key challenge is that a sketch is an abstract represen-
tation that is geometrically relatively far apart from its real-world
counterpart. A Ul element doodle thus will likely not be in the exact
scale and position as it should appear on a Ul screen. A similarity

MOBILESoft *22, May 17-24, 2022, Pittsburgh, PA, USA

metric based on exact matching is thus likely to fail in sketch-based
screen search.

DO

g L Full
4 . “>.Screen

Scale-3 N

Figure 7: PSDoodle’s 3 levels of Ul element search granularity.

To address the issue, PSDoodle matches doodles (as recognized
by the neural network after merging compound elements) with
screen elements at different levels of screen resolution, starting at
a fine-grained level but then backing up to more coarse-grained
matches. Specifically, PSDoodle’s fine granularity scale-1 divides
the canvas into 24 equal-sized rectangles (6 rows of 4 tiles each),
scale-2 groups these into 6 rectangles (3 rows of 2 tiles), and finally
scale-3 is a single rectangle. Figure 7 gives an overview of the
different scale levels and how moving to a higher level widens the
search area for a Ul element match.

Besides PSDoodle’s 3-level matching of a UI element’s screen
location, PSDoodle also matches the number of Ul elements of a
given class and takes into account how rare a UI element is within
all screens. PSDoodle thus boosts the score of a rarer UI element as
its presence may be more significant to the user. PSDoodle computes
the inverse document frequency (IDF) of each UI element type in
the 58k Rico screens (where a Ul element type’s IDF is larger if it
appears on fewer screens).

For fast screen retrieval, PSDoodle maintains a dictionary of
Rico’s 58k (“original”) screens. This dictionary maps each of PS-
Doodle’s 24 UI element types to a list of screens, where each screen
lists for each of its tiles the percentage of the tile’s area (A,) being
covered by how many (C,) instances of that Ul element type. Algo-
rithm 1 summarizes PSDoodle’s screen similarity scoring as pseudo
code. The algorithm iterates through the query sketch’s UI element
doodles, one element class at a time (e.g., starting with all of the
query sketch’s squiggly line doodles taken as a group). For each
element doodle group, the algorithm looks up the Rico screens that
contain at least one instance of the doodle group’s element type
(Line 3). For each matching Rico screen, we then iterate over the
screen’s scale-1 tiles that contain the given doodle type (Line 5) .

For each such original Rico screen tile that contains the doodled
Ul element type there are now three cases. First, if the original
screen tile matches a tile of the doodle group then we have a scale-1
match and compute the percentage of that tile’s area (A4) being
covered by how many (C;) doodles of that Ul element type (Line 8).
Then we compute the difference in the tile’s area coverage percent-
ages between doodles and original screen elements (Line 9) and
the difference in how many doodles vs how many original screen

Soumik Mohian and Christoph Csallner

Algorithm 1 scores screens by how closely they match the query
doodles’ size and location; p1, p2, p3, A4y, and C,, are hyperparam-
eters; A4 and Ac are Ul element area- and count-differences [0..1].

1: res « {} // Score per original screen
2: for doodles in sketch do // Doodles of same type
3: for screen in dict|class(doodles)] do // Screen + tiles
4 zZ «— p3 // Screen’s score
5 for tile in tiles(screen) do // Scale-1 tile
6: (Ap, Co) < elemAreaAndCount(screen|tile])

7: if tile in tiles(doodles) then // Overlaps doodles
8: (Ag,Cyq) « elemAreaAndCount(doodles[tile])
9: Ap — 1—-|Ag — Ao| // Tile area: doodle vs orig
10: Ac « max(0,1—C X |Cq —Co|) // Counts
11: z—z+(p1 xﬁxﬂ)+(AW><AdxAAxAc)

Co Cy
12: else if tile in neighbor(tiles(doodles)) then
13: z<—z+(p2><ﬂ)
Co

14: end if

15: end for
16: res[screen] « res[screen] + (z x idf[class(doodles)])
17: end for

18: end for

19: sort(res) // Retrieved screens by score

elements are in that tile (Line 10). We add the resulting tile score to
its screen’s overall score (Line 11).

In the second case (Line 12), the screen tile containing a Ul
element of the doodle group’s class does not overlap with any tile
of the doodle group. In this case PSDoodle backs up to its scale-
2 search and checks if this screen tile overlaps with any direct
neighbor tiles of the doodle group’s tiles. If this is the case the
screen gets a smaller score boost. Finally, if there is neither a scale-1
nor a scale-2 match, then the screen’s score remains unchanged.

3.5 Hyperparameter Optimization

Algorithm 1 mentions five hyperparameters, three for the scale
levels (p1, p2, p3) plus A,, for the weight difference and C,, for
the occurrence difference. To find optimal values for these hyper-
parameters we collected 30 sketches from 5 computer science grad-
uate students.

The collected sketches represent 30 different Rico screens that
have at least two PSDoodle-supported icons. None of these screen-
shots or sketches were used for the tool evaluation. An exhaustive
search with GridSearchCV of scikit-learn [3] to get a high score and
top-rank for the target screen yielded the optimized values p; = 39,
pa=8,p3=9, Ay =04, and C,, = 11.

A closer look at the hyper-parameters indicates that they give
more weights to scale-1 matches compared to the other two scales.
With 24 girds, a scale-1 match implies higher location similarity,
which we intuitively expect to yield a higher screen score.

4 EVALUATION

We evaluated PSDoodle’s recognition accuracy of partial UI element
doodles, its top-10 retrieval accuracy of partial screen sketches, and
its screen retrieval time using the following research questions.

PSDoodle: Fast App Screen Search via Partial Screen Doodle

MOBILESoft ’22, May 17-24, 2022, Pittsburgh, PA, USA

Table 2: Strokes per doodle in PSDoodle’s data sets (left) and its partial doodle recognition trained on 80% classifying the other
20% (the test doodles) (right): 1st stroke at which PSDoodle ranks a doodle’s correct class first (top-1) and within the top-3;
W = test doodles PSDoodle classifies wrongly at the last/all strokes; W* = after retraining from scratch adding samples that
remove the outer boundary of avatar, cancel, checkbox, plus; m = median; 1 = min; h = max; SD = standard deviation; cnt = count.

Category Strokes in 100% 20% | 1st stroke to top-1 W [%] W*[%] 1st stroke to top-3 W (%] W*[%]

avg m 1 h SD| cnt|{avg m 1 h SD Ist all Ist all javg m 1 h SD Ist all Ist all
Camera 35 3 1 9 1.1 143 23 2 1 5 0.7 6 4 13 8 1.8 2 1 5 038 1 1 1 1
Cloud 14 1 1 24 14| 154 1.1 1 1 3 04 12 10 4 3 1.1 1 1 3 04 3 2 1 1
Envelope 21 2 1 9 11 145 19 2 1 9 11 7 6 6 6 1.3 1 1 4 0.6 0 0 0 0
House 35 3 1 23 22 135 2.1 2 1 5 09 11 9 1 1 20 2 1 10 11 3 2 1 1
Jail-win 58 5 2 20 17| 143 | 34 3 2 8 1.1 7 6 1 1 29 3 1 8 1.2 2 1 1 0
Square 1.3 1 1 4 0.7 | 147 1.1 1 1 3 03 2 2 2 1 1.1 1 1 3 03 1 1 1 1
Star 14 1 1 10 1.0 148 1.1 1 1 4 05 1 1 1 1 1.1 1 1 2 03 0 0 0 0
Avatar 38 4 1 8 0.8 | 136 29 3 1 7 0.9 9 8 2 2123 2 1 6 0.7 1 1 0 0
Back 1.1 1 1 12 0.7 122 1.0 1 1 2 02 3 2 5 3 1.0 1 1 2 01 0 0 4 3
Cancel 3.1 3 2 12 05 127 2.6 3 1 5 06 25 21 3 2 2.2 2 1 4 0.6 2 1 1 1
Checkbox 28 2 1 51 26| 134 | 23 2 1 10 14 13 13 4 1 1.7 1 1 7 11 3 2 1 1
Drop-dwn 45 3 2 43 33 133 28 2 2 6 1.0 3 2 5 3 19 2 1 5 07 2 2 2 2
Forward 1.1 1 1 17 0.8 | 122 1.0 1 1 1 0.0 0 0 2 2 10 1 1 1 0.0 0 0 1 0
Leftarrow 22 2 1 10 08| 123 20 2 1 4 05 13 12 3 2 19 2 1 4 0.6 5 5 1 1
Menu 32 3 2 16 1.1 126 20 2 1 3 04 0 0 3 2 1.8 2 1 3 04 0 0 0 0
Play 1.7 1 1 15 1.2 127 1.4 1 1 2 05 5 4 9 3 1.3 1 1 3 05 2 1 3 1
Plus 31 3 2 11 07| 120 22 2 1 6 0.9 8 8 12 8 1.8 2 1 4 08 2 2 3 3
Search 23 2 1 13 1.0 122 20 2 1 3 03 2 2 9 7 19 2 1 3 04 1 1 3 2
Setting 5.6 2 1 61 71 111 3.1 2 1 34 40 11 7 5 5 2.5 2 1 24 24 1 0 1 1
Share 70 7 1 23 1.1 117 | 37 3 2 13 13 3 1 5 3128 3 2 7 0.8 1 1 1 0
Slider 26 3 1 19 1.0 134 19 2 1 4 038 4 4 2 2 16 2 1 4 0.6 1 1 1 1
Squiggle 13 1 1 52 25| 14411 1 1 4 04 3 1 0 010 1 1 4 03 1 1 0 0
Switch 31 2 1 16 1.6 | 137 23 2 1 6 1.0 6 4 6 5 16 1 1 5 038 0 0 1 1

RQ1 Can PSDoodle recognize partial UI element sketches?

RQ2 Can PSDoodle achieve similar top-10 accuracy as state-
of-the-art screen search approaches?

RQ3 At a similar accuracy level, how many UI elements did
participants sketch in PSDoodle compared to state-of-the-art
complete-screen sketch approaches?

RQ4 At a similar accuracy level, can PSDoodle retrieve screens
faster than state-of-the-art approaches?

Following the most closely related work [16, 27], we evaluated
screen search performance by measuring top-k (screen) retrieval
accuracy. We thus showed a participant a target screen to sketch and
measured where in the result ranking the target screen appears. Top-
k retrieval accuracy is the most common metric for sketch-based
image retrieval tasks and correlates with user satisfaction [17].

Specifically, we evaluated screen search (in RQ2, RQ3, and RQ4)
with 30 “target” Rico screens, which we selected as follows. To
ensure the target Rico screens contain at least some Ul elements
PSDoodle supports, we removed from Rico’s 58k screens those that
contain less than two PSDoodle-supported Ul elements, yielding
50,113 screens. From these 50k we randomly picked 30 screens, of
which 26 were also in the SWIRE dataset.

We recruited 10 Computer Science students (all ages under 30).
None of the participants had any formal UI/UX design training. All
participants had heard about mobile app development principles

before the study. For diversity, we recruited 5 participants (1 female,
4 male) without plus 5 (2 female, 3 male) with some prior mobile
app development experience. Each student was compensated with
USD 10 and used PSDoodle for the first time.

For the experiment, we used PSDoodle’s regular setup as a web-
site hosted on an Amazon AWS EC2 general purpose instance
(t2.large) with two virtual CPUs and 8 GB of RAM. Each participant
interacted with PSDoodle over the internet from their personal
machine (i.e., a laptop or desktop computer). Each participant first
spent an average of 9 minutes on the PSDoodle’s interactive tutorial,
which covers PSDoodle’s visual language, how and where to draw,
how to access the cheat sheet (Figure 4), how to see the search re-
sults, and when to stop the search (http://pixeltoapp.com/toollns/).

After the tutorial each user was instructed to sketch at least 3
screens. The PSDoodle website recorded their drawings, drawing
time, and query results. Throughout the experiments, we observed
participants’ performance via screen sharing but did not otherwise
interact with them (e.g., to coach them on how to use PSDoodle).
All records are available in the PSDoodle repository.

4.1 ROQ1: Recognizing Partial Icon Doodles

Table 2 compares the number of per-doodle strokes in PSDoodle’s
data sets with the number of strokes PSDoodle takes to correctly
classify a doodle. For the latter Table 2 lists two criteria, ranking the

http://pixeltoapp.com/toolIns/

MOBILESoft *22, May 17-24, 2022, Pittsburgh, PA, USA

correct class first (middle columns) and ranking the correct class
in the top-3 (right columns). In the experiments participants often
kept sketching until PSDoodle ranked the correct class top-1 but
sometimes stopped sketching after selecting the correct class from
the top-3 predictions the PSDoodle UI provides after each stroke.

For both criteria (top-1 and top-3), users can often transmit their
intent to PSDoodle with fewer than a doodle’s full set of strokes.
For example, while the average avatar doodle contains 3.8 strokes,
PSDoodle ranks avatar top-1 on average after 2.9 strokes and top-
3 after just 2.3 strokes. Several other classes have similarly large
reductions in average stroke counts.

Stroke 1 Stroke 2 Stroke 3 Stroke 4 Stroke 5 Stroke 6 Stroke 7

™

Container 100% Checkbox 100%

/]

Container 91% Checkbox 100%

Checkbox 9% j m

Container 95% Dropdown 100% Dropdown 100%
Checkbox 4% Square 91%

D

Switch 63% Dropdown 100%
Dropdown 37%

o @ 40 L & L &

Plus 86% Share 91% Share 100% Share 100% Share 100% Share 100%

Switch 5% Setting 9% f f
\
f Sy
N =

Container 4%
Back 52% Star 47% Share 93% Share 100% Share 100% Share 100% Share 100%

© e // f f
Forward 23% Forward31% Switch 7%
Play 4% Plav 8%

(7) Q ® %

Setting 24% Search100% plus 98%
Cloud 22% Search 2%
Avatar 22%

T+ 0

Slider 22% Plus 80% Plus 100%
Squiggle 15% Left Arrow 13%
Jail icon 12% Checkbox 4%

(1)

|
<

(2)

L

(3)

Envelope 1%

!

(4)
Container 100%

Figure 8: Two random samples (from the 20% of doodles) from
4 categories. Below each incremental stroke is PSDoodle’s
confidence for its current top predictions. For 6 of these 8
doodles PSDoodle reached the correct prediction before the
last stroke, allowing the user to communicate their intent
without finishing the doodle.

To visualize PSDoodle performance on concrete examples, Fig-
ure 8 displays PSDoodle’s current prediction after each stroke of
8 randomly sampled drawings from 4 categories. For example, in
the fifth row PSDoodle ranks the doodle’s correct class top-1 after
only two strokes of the doodle’s six total strokes. Such an early
correct classification allows the user to quickly move on to the next
doodle, thereby saving time and receiving query results faster.

We also inspected a random sample of 35 of the 192 test set
sketches PSDoodle misclassified after the last stroke. Among these
35 samples we found four patterns, i.e., being an outlier due to

Soumik Mohian and Christoph Csallner

SR

N
S k‘}‘) stroke-3 Stroke-s

Checkbox Avatar
Redundant strokes | Unusual shapes Unusual stroke sequence | 12beled labeled
for Cancel Envelope Search

Figure 9: Test set drawings the network misclassified.

using a large number of strokes (compared to the doodle class’s
average) for 7/35 samples, using unusual strokes (such as a squiggle
during drawing using more vertices compared to the class’s vertex
average) or stroke sequence for 10/35 samples, deviation from the
class’s common shape (14/35), and resembling another category
(4/35). Figure 9 shows examples of these four categories.

4.2 RQ2: Top-10 Screen Search Accuracy

For this experiment participants were instructed to sketch with
the goal of using PSDoodle to retrieve a given Rico “target” screen.
We then measured how quickly this target Rico screen appeared in
PSDoodle’s top-10 search results. We asked participants to use the
tool at least 3 times, with 4 users attempting one additional sketch
each, yielding 34 screen sketches of 30 Rico screens. For these 34
sketches, 30 times the target Ul screen appears in the top-10 results,
yielding a top-10 accuracy of 88.2%. (Since PSDoodle shows rows
of result screens similar to Google’s image search, top-1 accuracy
is less relevant.) PSDoodle’s top-10 accuracy is significantly higher
than SWIRE’s and remains similar to a recent SWIRE follow-up
work by Sain et. al [27], which reported 90.1% top-10 accuracy for
SWIRE sketches.

We manually checked each case where PSDoodle failed to rank
the target screen in the top-10. Figure 10 shows excerpts of two such
screens. In both the Rico hierarchy does not contain the correct
label of a user-drawn icon. Such cases could be reduced by further
improving Rico’s UI element clustering and classification. Another
case stems from human error (i.e., participant 9 in Table 3) because
the user selected the wrong doodle category from PSDoodle’s top-
3 prediction. Such human errors may become less common once
users become more experienced with using PSDoodle.

4.3 ROQ3: Search With Partial-screen Sketches

In addition to recognizing partial Ul element sketches, PSDoodle
also supports an iterative search style where a user refines the
search results one Ul element at a time. As the SWIRE-style ap-
proaches process complete-screen sketches, this research question
quantifies the difference in Ul elements a user has to draw to per-
form a successful screen search. Answering this question is made
easier by the earlier experiment yielding a similar top-10 accuracy
for PSDoodle and the most-accurate SWIRE-style approach.

In the 30 target Rico screens participants used, the average Ul
element count was 21.1 with a median of 19 (low 14, high 35, and
standard deviation 5.4). SWIRE instructs users to sketch all screen
elements, so a SWIRE sketch has a similar number of UI elements.
In the participants’ 34 PSDoodle sketches of these 30 screens the

PSDoodle: Fast App Screen Search via Partial Screen Doodle

L 8.8 8.4 4
Shahi aloo gobi

m Suktara Pereira
r = = 2

Feed Saved recipes What's cocking Videos & more

Rico has no information of Star Icon

New Episode
CHINA| TV
Shuttle Love Millennium

KOREA | TV
Healer

Rico has no information of Avatar lcon

Figure 10: PSDoodle fails to rank these two target screens
(excerpted) in its top-10 search results, due to their Rico hier-
archy having no information about an icon drawn by a user.

average Ul element count was significantly lower at 5.5 with a
median of 5 (low 3, high 9, and standard deviation 1.8).

We also tested how the most-accurate SWIRE-style approach
would perform on the partial screen sketches our participants pro-
duced with PSDoodle, by training their network to the reported
90.1% top-10 and 67% top-1 accuracy for SWIRE sketches [27].
We thus converted our 34 participant sketches from QuickDraw’s
sequence-of-stroke format to SWIRE-style black/white bitmaps
(and included them in the PSDoodle repository). We removed the 8
participant sketches that used jail-window, as SWIRE uses a differ-
ent placeholder for images. For all resulting 26 query sketches, the
SWIRE follow-up failed to fetch the target screen in the top-10.

4.4 ROQ4: Interactive and Fast Screen Retrieval

In our experiments we told participants to search via sketching
for 3 minutes and stop sketching if the target screen appears in
PSDoodle’s top-10 result. We recorded how long each search session
took. SWIRE reports that the sketching alone of each SWIRE sketch
of a Rico screen took an average of 246 seconds.

Table 3 lists the total time of the search and sketch session for
each of the experiment’s 34 sessions, together with the final rank
of the target Rico screen in PSDoodle’s search results. Total sketch
and search times per search session varied from 30 to 259 seconds.
While achieving similar top-10 accuracy, most of these session
times were significantly shorter than the 246 second average of

MOBILESoft ’22, May 17-24, 2022, Pittsburgh, PA, USA

Table 3: Time (seconds) a participant (P) took to iteratively
sketch a target screen and retrieve result screens. The final
target screen ranking (r) was top-10 accurate in 88% of cases.

P | Target1 | Target2 | Target3 | Target4
t r t r t r t r

1| 55 2] 51 1| 134 8 - -
2] 86 3] 259 7 | 206 3 - -
3] 134 3] 97 4| 63 2 - -
4| 85 5| 75 1| 64 5 - -
5 | 202 3] 60 1| 105 14491 - -
6 | 127 2] 119 1| 109 9 - -
7| 44 2] 98 1| 38 10 | 39 1
8 | 168 10 | 248 1] 103 11 73 5
91158 31| 46 61| 97 31 | 40 3
10 | 30 8 | 138 1| 147 1| 158 6

SWIRE for sketching only. Most of PSDoodle’s session times were
also significantly shorter than the 180 seconds target provided to
participants.

PSDoodle is deployed in AWS and supports interactive search. In
our experiments there was less than 2s delay between the user sub-
mitting a search query (e.g., by pressing “icon done”) to the update
of the top-10 result screens on the user’s PSDoodle website. Be-
sides communication to and from AWS, the main time components
were sketch recognition (below 0.1s) as well as screen similarity
calculation and screen ranking (below 1s).

4.5 High-level Feedback from Participants

Two of our 10 participants opted out of our post-evaluation survey,
leaving us with 8 completed surveys. In one question we asked how
participants prefer to sketch. Three preferred touch to sketch on
a larger device such as an iPad, two preferred sketching on paper
and taking a picture with their phone, two wanted to use a mouse
to sketch on a non-touch device, one wanted to touch to sketch on
a smaller device such as a smartphone, and none wanted to scan
a paper-based sketch. Overall participants preferred device-based
over paper-based sketching by 3:1.

In another question we asked participants to choose from three
sketch-based search tool options. Two participants voted for an
approach that shows its search result only after finishing a complete
screen (containing all the Ul elements that the screen should have
in the app). The other six participants preferred a search tool that
shows live search results (i.e., search results that update when
adding or removing a UI element). None of the participants picked
the third option, a tool that only shows its results after sketching a
partial screen containing several icons.

4.6 Relaxing PSDoodle’s Query Language

In informal but more concrete feedback, participants explained how
they sometimes struggled with the four PSDoodle’s icon classes
whose shapes include outer boundaries such as avatar’s “outer ring”.
These classes were avatar, cancel, checkbox, and plus. While some
participants preferred to sketch such icons without these outer

MOBILESoft *22, May 17-24, 2022, Pittsburgh, PA, USA

boundaries, PSDoodle’s training data sets contained only few such
samples.

To address this issue, after the experiments with participants
we created additional samples from PSDoodle’s existing samples,
by identifying and removing these outer boundaries. Table 2 lists
the test doodles the version of PSDoodle used with participants
classified wrongly (W) both after the last stroke and after each
stroke. Retraining the doodle classifier after adding these samples
yielded better recognition performance (W*). The new classifier
performed worse on Camera and Search (and to a lesser degree on
Back, Dropdown, Forward, Menu, Play, Plus, Share, and Switch).

Overall recognition accuracy improved from 94.5% to 94.9%
(while keeping recognition speed the same), but is most notably
9% better for avatar (the class that study participants had the most
trouble with). Among the 186 UI elements in the participants’ 34
final screen sketches, the retrained network detected 18 UI elements
with fewer strokes (while requiring more strokes for 8 UI elements).

5 RELATED WORK

In sketch-based image retrieval (SBIR), computer vision techniques
try to find the similarity in the sketch-image pair based on their
features when a user draws an unpolished representation of the
image. Earlier studies extract hand-engineered features (edge-map,
Histogram of Oriented Gradients, Histogram of edge local orienta-
tion) [7, 15] to find the similarity between the pair. Deep Leaning
achieves state-of-the-art performance in several computer vision
applications with Convolutional Neural Network [20, 29]. The suc-
cess also draws researchers to employ deep neural networks for
SBIR [30, 35]. Deep Neural Network(DNN) uses sketch-image pair
for training two different networks(one for sketch and one for im-
age). During the training phase, DNN encodes the image-sketch
duo to low-dimensional feature vectors with a target to reduce the
distance for similar pairs and maximize for non-similar pairs. For
query, it encodes the sketch and then uses the nearest neighbor
technique to query similar examples from the dataset.

Searching design from visual input (image, sketch) recently gain-
ing attention due to the success of DNN and the creation of large-
scale datasets. SWIRE [16] uses a deep neural network model to
retrieve relevant Ul examples from input sketches. VINS [4] UI
image (wireframe, high-fidelity) retrieves UI screenshots from high-
fidelity wire-frame design.

In a follow-up to SWIRE, sketching begins with a coarse-level
representation of a real-world object, followed by more fine details.
Rather than considering a sketch as a flat structure, they use the
hierarchical structure to pair it with a photo. Two nodes of the
deep neural network are fused to form the next hierarchy level
by interacting and matching features between image and sketch
pair. They calculated bounding boxes of the individual connected
components of the SWIRE drawings to identify interest regions. A
cross-modal co-attention part of the network attends to matching
interest regions in a sketch and image pair. By leveraging the hi-
erarchical traits and mutual attention between the interest region,
they achieved state-of-the-art performance in the SWIRE dataset.

Successful integration of sketch in the software development pro-
cess requires a large-scale Ul dataset and utilization of the dataset
in the deep learning model. While some freehand drawings of user

Soumik Mohian and Christoph Csallner

interface elements are available [1, 16, 28], these sketches are avail-
able as “static” pixel-based images of the final sketch.

SWIRE [16] collected 3,802 offline sketches of 2,201 screens
from 23 app categories of the Google Play store. While the SWIRE
dataset is very valuable, it “only” contains an offline snapshot of
each final Ul drawing. And drawings are not tagged with the UI
element present in them. UISketch [28] introduced the first large-
scale dataset of 17,979 hand-drawn sketches of 21 UI element cate-
gories collected from 967 participants. 69.38% of UISketch are digital
sketches. The drawings are now publicly available in raw-pixel for-
mat with no stroke information.

6 CONCLUSIONS

Searching through existing repositories for a specific mobile app
screen design is currently either slow or tedious. Such searches are
either limited to basic keyword searches (Google Image Search)
or require as input a complete query screen image (SWIRE). A
promising alternative is interactive partial sketching, which is more
structured than keyword search and faster than complete-screen
queries. PSDoodle is the first system to allow interactive search
of screens via interactive sketching. PSDoodle is built on top of
a combination of the Rico repository of some 58k Android app
screens, the Google QuickDraw dataset of icon-level doodles, and
DoodleUlINet, a curated corpus of some 10k app icon doodles col-
lected from hundreds of individuals (mainly crowd-workers). In
our evaluation with third-party software developers, PSDoodle pro-
vided similar accuracy as the state of the art from the SWIRE line
of work, while cutting the average time required about in half. All
of PSDoodle’s source code, processing scripts, training data, and
experimental results are available under permissive open-source
licenses.

ACKNOWLEDGMENTS

Christoph Csallner has a potential research conflict of interest
due to a financial interest with Microsoft and The Trade Desk.
A management plan has been created to preserve objectivity in
research in accordance with UTA policy. This material is based
upon work supported by the National Science Foundation (NSF)
under Grant No. 1911017.

REFERENCES
[1] Biniam Adefris. 2020. Sketch2Code. https://www.kaggle.com/biniamad/
sketch2code
[2] Melanie Andersson, Arvola Maja, and Sara Hedar. 2018. Sketch Classification

with Neural Networks: A Comparative Study of CNN and RNN on the Quick, Draw!

data set. Master’s thesis. Uppsala University.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,

Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaél

Varoquaux. 2013. API design for machine learning software: experiences from

the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining

and Machine Learning. 108-122.

[4] Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif
Seif El-Nasr. 2021. VINS: Visual Search for Mobile User Interface Design. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1-14.

[5] Pedro Campos and Nuno Jardim Nunes. 2007. Practitioner tools and workstyles
for user-interface design. IEEE software 24, 1 (Jan. 2007), 73-80.

[6] Adam S. Carter and Christopher D. Hundhausen. 2010. How is user interface
prototyping really done in practice? A survey of user interface designers. In Proc.
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 207-211.

[3

https://www.kaggle.com/biniamad/sketch2code
https://www.kaggle.com/biniamad/sketch2code

PSDoodle: Fast App Screen Search via Partial Screen Doodle

7]

oo

]

9]

[10]

[12]

[13

[14]

[15]

[16

[17]

(18]

Abdolah Chalechale, Golshah Naghdy, and Alfred Mertins. 2004. Sketch-based
image matching using angular partitioning. IEEE Transactions on Systems, Man,
and Cybernetics-part a: systems and humans 35, 1 (2004), 28—41.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset for
building data-driven design applications. In Proc. 30th Annual ACM Symposium
on User Interface Software and Technology (UIST). ACM, 845-854.

Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016. ERICA: Interaction
mining mobile apps. In Proc. 29th Annual Symposium on User Interface Software
and Technology (UIST). ACM, 767-776.

Claudia Eckert and Martin Stacey. 2000. Sources of inspiration: a language of
design. Design studies 21, 5 (2000), 523-538.

Sergio Garrido-Jurado, Rafael Muiioz-Salinas, Francisco José Madrid-Cuevas,
and Manuel Jesis Marin-Jiménez. 2014. Automatic generation and detection of
highly reliable fiducial markers under occlusion. Pattern Recognition 47, 6 (2014),
2280-2292.

David Ha and Douglas Eck. 2017. A neural representation of sketch drawings.
arXiv preprint arXiv:1704.03477.

Theodore D Hellmann and Frank Maurer. 2011. Rule-based exploratory testing
of graphical user interfaces. In 2011 Agile Conference. IEEE, 107-116.

Scarlett R Herring, Chia-Chen Chang, Jesse Krantzler, and Brian P Bailey. 2009.
Getting inspired! Understanding how and why examples are used in creative
design practice. In Proceedings of the SIGCHI conference on human factors in
computing systems. 87-96.

Rui Hu and John Collomosse. 2013. A performance evaluation of gradient field
hog descriptor for sketch based image retrieval. Computer Vision and Image
Understanding 117, 7 (2013), 790-806.

Forrest Huang, John F. Canny, and Jeffrey Nichols. 2019. Swire: Sketch-based user
interface retrieval. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. ACM.

Scott B Huffman and Michael Hochster. 2007. How well does result relevance pre-
dict session satisfaction?. In Proc. 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 567-574.

Gasmi Ines, Soui Makram, Chouchane Mabrouka, and Abed Mourad. 2017. Evalu-
ation of mobile interfaces as an optimization problem. Procedia computer science
112 (2017), 235-248.

[19] Jonas Jongejan, Henry Rowley, Takashi Kawashima, Jongmin Kim, and Nick

[20]

Fox-Gieg. 2016. Quick, Draw!
March 2022.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classifi-
cation with deep convolutional neural networks. In Proc. 26th Annual Conference
on Neural Information Processing Systems (NIPS). NIPS, 1106-1114.

https://quickdraw.withgoogle.com/ Accessed

[21]

[22

[23]
[24]

[25]

[26

[27]

[28

[29]

'S
=

[31

[32

[33

[34

[35

MOBILESoft ’22, May 17-24, 2022, Pittsburgh, PA, USA

James A. Landay and Brad A. Myers. 1995. Interactive sketching for the early
stages of user interface design. In Proc. ACM SIGCHI Conference on Human Factors
in Computing Systems (CHI). ACM, 43-50.

Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning design semantics for mobile apps. In Proc. 31st Annual
ACM Symposium on User Interface Software and Technology (UIST). 569-579.
Soumik Mohian and Christoph Csallner. 2021. DoodleUlINet: Repository for Doo-
dleUINet Drawings Dataset and Scripts. https://doi.org/10.5281/zenodo.5144472
Soumik Mohian and Christoph Csallner. 2022. soumikmohianuta/PSDoodle: PS-
Doodle Repository for the Publication. https://doi.org/10.5281/zenodo.6339717
Mark W. Newman and James A. Landay. 1999. Sitemaps, storyboards, and spec-
ifications: A sketch of Web site design practice as manifested through artifacts.
Technical Report UCB/CSD-99-1062. EECS Department, UC Berkeley.

Daniel Ritchie, Ankita Arvind Kejriwal, and Scott R Klemmer. 2011. d. tour:
Style-based exploration of design example galleries. In Proc. 24th annual ACM
Symposium on User Interface Software and Technology (UIST). 165-174.
Aneeshan Sain, Ayan Kumar Bhunia, Yongxin Yang, Tao Xiang, and Yi-Zhe Song.
2020. Cross-modal hierarchical modelling for fine-grained sketch based image
retrieval. In Proc. 31st British Machine Vision Virtual Conference (BMVC).

Vinoth Pandian Sermuga Pandian, Sarah Suleri, and Prof Dr Matthias Jarke. 2021.
UlSketch: A Large-Scale Dataset of UI Element Sketches. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1-14.

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In arXiv:1409.1556.

Jifei Song, Qian Yu, Yi-Zhe Song, Tao Xiang, and Timothy M Hospedales. 2017.
Deep spatial-semantic attention for fine-grained sketch-based image retrieval. In
Proc. IEEE International Conference on Computer Vision. 5551-5560.

Tensorflow. 2020. Recurrent Neural Networks for Drawing Classifica-
tion. https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/
sequences/recurrent_quickdraw.md

Lisa Torrey and Jude Shavlik. 2009. Transfer learning. In Handbook of Research on
Machine Learning Applications and Trends: Algorithms, Methods, and Techniques.
IGI Global, 242-264.

Yin Yin Wong. 1992. Rough and ready prototypes: Lessons from graphic design.
In Proc. ACM SIGCHI Conference on Human Factors in Computing Systems (CHI),
Posters and Short Talks. ACM, 83-84.

Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: using GUI
screenshots for search and automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology. 183-192.

Sasi Kiran Yelamarthi, Shiva Krishna Reddy, Ashish Mishra, and Anurag Mittal.
2018. A zero-shot framework for sketch based image retrieval. In Proceedings of
the European Conference on Computer Vision (ECCV). 300-317.

https://quickdraw.withgoogle.com/
https://doi.org/10.5281/zenodo.5144472
https://doi.org/10.5281/zenodo.6339717
https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/recurrent_quickdraw.md
https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/recurrent_quickdraw.md

	Abstract
	1 Introduction
	2 Background
	2.1 SWIRE: Offline Full-screen Search
	2.2 Google QuickDraw & DoodleUINet

	3 Overview and Design
	3.1 Rico Screens & UI Element Labels
	3.2 Query Language: Stylized + Flexible Doodles
	3.3 UI Element Doodle Recognition
	3.4 Searching Screens for UI Element Doodles
	3.5 Hyperparameter Optimization

	4 Evaluation
	4.1 RQ1: Recognizing Partial Icon Doodles
	4.2 RQ2: Top-10 Screen Search Accuracy
	4.3 RQ3: Search With Partial-screen Sketches
	4.4 RQ4: Interactive and Fast Screen Retrieval
	4.5 High-level Feedback from Participants
	4.6 Relaxing PSDoodle's Query Language

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

