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Abstract

Anthropogenic climate change has affected the frequency and duration of extreme climate
events, including extreme heat events (EHE) and extreme cold events (ECE). How the
frequency and duration of both EHE and ECE have changed over time within both terrestrial
and marine environments globally has not been fully explored. Here, we use detrended daily
estimates of minimum and maximum temperature from the ERAS reanalysis over a 70-year
period (1950-2019) to estimate the daily occurrence of EHE and ECE across the globe. We
measure the frequency and duration of EHE and ECE by season across years and estimate
how these measures have changed over time. Frequency and duration for both EHE and
ECE presented similar patterns characterized by low spatial heterogeneity and strong
seasonal variation. High EHE frequency and duration occurred within the Antarctic during
the austral summer and winter and within the Arctic Ocean during the boreal winter. High
ECE frequency and duration occurred within the Nearctic and Palearctic during the boreal
winter and the Arctic Ocean during the boreal summer. The trend analysis presented
pronounced differences between frequency and duration, high spatial heterogeneity, espe-
cially within terrestrial environments, and strong seasonal variation. Positive EHE trends,
primarily in duration within marine environments, occurred during the boreal summer within
the mid-latitudes of the Northern Hemisphere and during the austral summer within the mid-
latitudes of the Southern Hemisphere. The eastern tropical Pacific contained positive EHE
and ECE trends, primary in duration during the boreal winter. Our findings emphasize the
many near-term challenges that extreme temperature events are likely to pose for human and
natural systems within terrestrial and marine environments, and the need to advance our
understanding of the developing long-term implications of these changing dynamics as
climate change progresses.
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1 Introduction

Anthropogenic climate change is affecting the frequency and duration of extreme climate
events (AghaKouchak et al. 2020; Diffenbaugh et al. 2017). These extreme events encompass
a variety of phenomena including extreme heat events (EHE) (Alexander et al. 2006; Coumou
and Robinson 2013; Fischer and Knutti 2015) and extreme cold events (ECE) (Walsh et al.
2001; Wheeler et al. 2011). There is evidence that exposure to EHE adversely affects human
populations (Anderson and Bell Michelle 2011; Battisti and Naylor 2009; Guo et al. 2017,
Mitchell et al. 2016) and natural systems within terrestrial (Harris et al. 2018; Maxwell et al.
2019) and marine environments (Garrabou et al. 2009; Wernberg et al. 2013). There is similar
evidence that ECE adversely affects human populations (Smith and Sheridan 2019) and
natural systems within terrestrial environments (Maxwell et al. 2019). For species in natural
systems, EHE and ECE can further the decline and extirpation of populations, increasing the
chances of extinction (Maron et al. 2015; Maxwell et al. 2019). EHE and ECE can also
promote the formation of novel ecosystems (Harris et al. 2018), generate enhanced selection
pressures (Grant et al. 2017; Gutschick and BassiriRad 2003), and change the phenology of
life history events (Cremonese et al. 2017; La Sorte et al. 2016).

How the frequency and duration of EHE has changed over time has been explored
primarily within terrestrial regions during the boreal and austral summers (Coumou and
Robinson 2013; Oswald 2018; Perkins-Kirkpatrick and Lewis 2020), but there are examples
that have considered other seasons of the year (Alexander et al. 2006). Within marine
environments, the primary focus has been on documenting “marine heatwaves” or extreme
warming in sea surface temperatures. Marine heatwaves have increased in frequency and
duration across the globe (Frolicher et al. 2018; Oliver et al. 2018). These events have
significantly affected the composition and structure of marine ecosystems (Smale et al.
2019). Sea surface temperatures tend to be higher and less variable on average compared to
air temperatures measured on the ocean’s surface (Cayan 1980). Research examining the
frequency and duration of ECE has focused primarily on cold-air outbreaks within the North
Hemisphere during the boreal winter (Kolstad et al. 2010; Kretschmer et al. 2018). In total,
how the frequency and duration of EHE and ECE have changed over time within both
terrestrial and marine environments globally has not been fully explored.

There are a number of climate indices that have been used to estimate the occurrence of
EHE (Fenner et al. 2019; Smith et al. 2013) and ECE (Smith and Sheridan 2018). These
indices are often context specific, and there is little consensus on the most appropriate
technique (McPhillips et al. 2018). Here, we define the occurrence of EHE and ECE using
a probabilistic framework that estimates the novelty of each event relative to historical
year-to-year variation in minimum and maximum temperature. We use detrended daily
measures of minimum and maximum temperature to estimate when and where conditions
significantly exceed historical variation over a 70-year period (1950 to 2019) during two
seasons of the year. The more unusual the event relative to historical variation, the more
likely it will adversely affect human and natural systems (Williams and Jackson 2007;
Williams et al. 2007). This approach provides a standardized method for assessing the
novelty of temperature extremes that minimizes the influence of global warming. We use
this approach to determine how the frequency and duration of EHE and ECE have changed
over time by season across the globe, and we identify the regions and seasons where these
events are likely to have the most significant effects on natural and human populations
now and into the future.
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2 Materials and methods

We compiled gridded climate data from the European Centre for Medium-Range Weather
Forecasts (ECMWEF) fifth generation atmospheric reanalysis of the global climate (ERAS)
(Hersbach et al. 2019b; Hoffmann et al. 2019). Key improvements provided by ERAS over its
predecessor includes broader data assimilation, improvements in global radiation budgets,
better representation of tropospheric circulation, enhanced spatial and temporal resolutions,
improved temporal consistency, and the ability to better resolve extreme events (Hersbach et al.
2019b). Reanalysis products rely on data assimilation where observations and model-based
forecasts are used to generate spatially comprehensive estimates of climate variables at regular
intervals over long time periods (Parker 2016). These characteristics are beneficial when
estimating global trends in the frequency and duration of temperature extremes. The chief
difference between reanalysis products and related climate observations is that the errors and
uncertainties associations with reanalysis products are often less well understood (Parker 2016).

For our analysis, we used the ERAS climate variable hourly air temperature at 2 m above the
surface gridded at a 31 km (0.28125° at the equator) spatial resolution over a 70-year period:
1950 to 1978 (Bell et al. 2020) and 1979 to 2019 (Hersbach et al. 2019a). We used hourly air
temperature to first extract the minimum and maximum temperature for each day and grid cell
over the 70-year period. To reduce the influence of warming trends on our analysis, we
detrended the 70-year time series of minimum and maximum temperature separately for each
day and grid cell using the Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN) procedure (Torres et al. 2011). CEEMDAN is a variant of the Ensemble
Empirical Mode Decomposition (EEMD) procedure (Wu and Huang 2009), which is a white
noise-assisted refinement of the Empirical Mode Decomposition (EMD) procedure (Huang
et al. 1998; Wu et al. 2007). EMD is a highly adaptive method that is well suited to decompose
non-stationary and non-linear time series. EMD has been broadly applied in climate research
and is an effective method for identifying the primary characteristics of global warming (Molla
et al. 2007). The EMD procedure partitions time series into intrinsic modes of oscillation
(Intrinsic Mode Functions; IMFs) based on the principle of local scale separation (Huang et al.
1998; Wu et al. 2007). The IMFs are extracted level by level until no complete oscillation can be
identified. EEMD consists of “sifting” an ensemble of white noise-added signal, and
CEEMDAN provides an exact reconstruction of the original signal and a better spectral
separation of the IMFs. The residuals that remain after the implementation of the IMF
partitioning procedure define a monotonic time series that can be used to detrend the original
data. In this case, we detrended the 70-year time series by subtracting the minimum temperature
CEEMDAN residuals (Fig. S1) from observed minimum temperature and the maximum
temperature CEEMDAN residuals (Fig. S2) from observed maximum temperature by day
within each grid cell. Factors that can limit the value of EMD as a detrended procedure include
end effects and the presence of high stochasticity in the time series (Stallone et al. 2020). The
CEEMDAN variant reduces the influence of end effects (Wu and Huang 2009) and is more
efficient in recovering signals from noisy data (Colominas et al. 2012).

We used the following method to estimate the occurrence of extreme heat events (EHE) and
extreme cold events (ECE) for each day and grid cell over the 70-year time series (Fig. S3).
We treated the detrended minimum and maximum temperature values as normally distributed
across years for each day and grid cell, an assumption that our data achieved in most cases
(Fig. S4). We estimated the probability density function for minimum and maximum temper-
ature using the mean and standard deviation calculated across years for each day and grid cell.
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EHE occurred when the probabilities for both minimum and maximum temperature on a given
day within a given grid cell were within the 0.025 quantile of the right tail (0.975—1.00) of the
two probability density functions (Fig. S3). ECE occurred when the probabilities for both
minimum and maximum temperature on a given day within a given grid cell were within the
0.025 quantile of the left tail (0.00-0.025) of the two probability density functions (Fig. S3).
This approach follows from previous studies where interannual climatic variation is used to
identify climatic novelty (La Sorte et al. 2018; Williams et al. 2007). Here, we used interannual
variation in the 70-year time series of detrended minimum and maximum temperature data to
determine when both minimum and maximum temperature achieved unusually high or low
levels. This approach tends to capture multiday EHE and ECE events that occur over large
geographic regions (see Appendix 1).

We summarized EHE and ECE for each year and grid cell using two measures. We applied
these measures to two seasons: an extended boreal summer or austral winter (May—September)
and an extended boreal winter or austral summer (November—March). The first measure
estimated the frequency of extreme events based on the proportion of days within each season
containing each event per year within each grid cell. The second estimated the duration of
sequential events within each season per year within each grid cell. For the first measure, we
calculated the proportion of days by season for each year and grid cell where an event
occurred. To provide a spatial summary, we averaged the proportion of days by season
containing each event across years for each grid cell. This approach identified grid cells that
had high numbers of extreme events across years. To summarize the time series for this
measure, we modeled the trend in the proportion of days for each event by season across years
using beta regression with a logit link function and an identity function in the precision model
(Ferrari and Cribari-Neto 2004; Simas et al. 2010). We removed zeros and ones using the
transformation (y (n — 1)+ 0.5) / n where y is the vector of proportions and 7 is the sample size
(Smithson and Verkuilen 2006). We selected beta regression because it is well suited to model
continuous proportions whose values occur in the standard unit interval (0, 1). The probability
density function of the beta distribution can take on a wide variety of different shapes,
providing the flexibility necessary to model continuous proportions across many settings.
Unlike traditional linear regression, beta regression enhances interpretability and inferential
quality (Ferrari and Cribari-Neto 2004).

Our second measure estimated the duration of each extreme event by season for each year
and grid cell based on the number of consecutive days containing EHE or ECE. For our
analysis, we extracted the maximum duration of EHE and ECE for each season, year, and grid
cell. This approach identified the longest extreme event that occurred during each year. We
selected the maximum because duration tended to be strongly right skewed. To provide a spatial
summary, we averaged the maximum duration of each event across years by season and grid
cell. To summarize the time series of this measure, we modeled the trend in maximum duration
for each event across years by season using Poisson regression (Lambert 1992). We selected
Poisson regression because our measure of duration (number of days) is a non-negative integer
that can be interpreted as a count. Applying traditional linear regression to count data often
violates the model’s assumptions, resulting in less robust inferences (Warton et al. 2016).

To provide a regional summary of our two measures, we calculated the median values from
our spatial summaries and trend analyses for each measure by season within seven biogeo-
graphical realms (Olson and Dinerstein 2002; Pielou 1979) and seven oceans (Flanders Marine
Institute 2018). Only grid cells within each realm and ocean where P < 0.05 were included in
the trendcalculations. We included +2 median absolute deviations with each median value,
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which approximates the 95% confidence interval, to provide a context to assess the level of
evidence for statistically significant differences.The seven biogeographical realms included the
Afrotropics, Antarctic, Australasia, IndoMalaya, Nearctic, Neotropics, and Palearctic. The
seven oceans included the Arctic, Indian, North Atlantic, North Pacific, South Atlantic, South
Pacific, and Southern Ocean.

We conducted all analysis in R, version 4.0.3 (R Development Core Team 2020). We
implemented the detrending analysis using the ceemdan function in the Rlibeemd library based
on the default parameters (Helske and Luukko 2018; Luukko et al. 2016). We implemented
beta regression using the betareg function in the betareg library (Cribari-Neto and Zeileis
2010), and Poisson regression using the glm function in the stats library.

3 Results
3.1 Spatial summary

The proportion of each season containing EHE and ECE presented variable patterns across
realms and oceans with limited variation between seasons (Figs. la—d, 2). Within terrestrial
environments, high EHE proportions occurred throughout the Antarctic during both seasons
and within the northern latitudes of the Nearctic and Palearctic, especially during the boreal
winter (Figs. 1a, 2a-b). High ECE proportions occurred within limited regions of each realm
during the boreal summer and across broad regions of the Nearctic and Palearctic during the
boreal winter (Figs. 1b, 2c—d). Within marine environments, high EHE proportions occurred
within the Arctic Ocean during the boreal winter and within the tropical eastern Pacific and
tropical Atlantic during both seasons (Figs. 1c, 2a—b). High ECE proportions occurred across
all oceans during both seasons, with the Arctic containing strong seasonal variation and high
ECE proportions during the boreal summer (Figs. 1d, 2c—d).

The maximum duration of EHE and ECE presented variable patterns across realms and
oceans with limited seasonal variation (Figs. 1e—h, 3). The results for duration largely mirrored
those found for proportion as outlined above. Within terrestrial environments, high EHE
durations occurred throughout the Antarctic during both seasons and within the northern
latitudes of the Nearctic and Palearctic, especially during the boreal winter (Figs. le, 3a-b).
High ECE durations occurred within limited regions of each realm during the boreal summer
and across broad regions of the Nearctic and Palearctic during the boreal winter (Figs. 1f, 3c—
d). Within marine environments, high EHE durations occurred within the Arctic Ocean during
the boreal winter and within the tropical eastern Pacific and tropical Atlantic during both
seasons (Figs. 1g, 3a—b). High ECE durations occurred across all oceans during both seasons,
with the Arctic containing strong seasonal variation and high ECE proportions during the
boreal summer (Figs. lh, 3c—d).

3.2 Trend analysis

Trends in the proportion of each season containing EHE and ECE presented variable patterns
across realms and oceans with strong seasonal variation (Figs. 4a—d, 5, 6). Within terrestrial
environments, significant increases in EHE proportions occurred within the Antarctic and
Australasia during both seasons and with the Neotropics and Palearctic during the boreal
summer (Figs. 4a, 5, 6). Significant increases in ECE proportions occurred within the
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Fig. 1 The median proportion (+2 median absolute deviations) of the boreal summer and boreal winter
containing extreme heat events and extreme cold events within a—b seven biogeographical realms and c—d
seven oceans summarized over a 70-year period (1950-2019). The median maximum duration (+2 median
absolute deviations) of extreme heat events and extreme cold events during the boreal summer and boreal winter
within e—f seven biogeographical realms and g—h seven oceans summarized over a 70-year period (1950-2019).
The seven biogeographical realms include the Afrotropics, Antarctic, Australasia, IndoMalaya, Nearctic, Neo-
tropics, and Palearctic. The seven oceans include the Arctic, Indian, North Atlantic, North Pacific, South Atlantic,
South Pacific, and Southern Ocean

Antarctic, Australasia, and Neotropics during both seasons, within the IndoMalaya and
Palearctic during the boreal summer, and within the Afrotropics during the boreal winter
(Figs. 4b, 5, 6). Within marine environments, significant increases in EHE proportions

Boreal summer Boreal winter

Extreme heat events

Extreme cold events

0.000 0.002 0.003 0.005 0.006 0.008 0.009 0.011 0.014 0.017 0.046
Proportion of season

Fig. 2 The average proportion of the a boreal summer and b boreal winter containing extreme heat events
summarized over a 70-year period (1950-2019). The average proportion of the ¢ boreal summer and d boreal
winter containing extreme cold events summarized over a 70-year period (1950-2019)
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Fig. 3 The average maximum duration (days) during the a boreal summer and b boreal winter of extreme heat
events summarized over a 70-year period (1950-2019). The average maximum duration (days) during the ¢
boreal summer and d boreal winter of extreme cold events summarized over a 70-year period (1950-2019)

occurred within the Indian Ocean and North Pacific during both seasons, within the North
Atlantic and North Pacific during the boreal summer, and South Atlantic and South Pacific
during the boreal winter (Figs. 4c, 5, 6). Significant increases in ECE proportions occurred
within the Arctic, Indian, South Atlantic, and Southern Ocean during both seasons, within the
North Pacific during the boreal summer, and South Pacific during the boreal winter (Figs. 4d,
5, 6).

Trends in the maximum duration of EHE and ECE during each season differed in many
cases from those outlined above for proportion of season (Figs. 4e-h, 7, 8). Within terrestrial
environments, significant increases in EHE duration occurred within the Antarctic during both
seasons and within Australasia during the boreal summer (Figs. 4e, 7, 8). Significant increases
in ECE duration occurred within the Antarctic during both seasons and within Australasia,
IndoMalaya, and Neotropics during the boreal summer (Figs. 4f, 7, 8). Within marine envi-
ronments, significant increases in EHE duration occurred within the Indian Ocean and North
Pacific during both seasons; within the North Atlantic and North Pacific during the boreal
summer; and the Arctic Ocean, South Atlantic, and South Pacific during the boreal winter (Figs.
4g, 7, 8). Significant increases in ECE proportion occurred within the Arctic, Indian, and
Southern Oceans during both seasons, within the North Pacific during the boreal summer, and
within the South Atlantic and South Pacific during the boreal winter (Figs. 4h, 7, 8).

4 Discussion
Our seasonal assessment of 70 years of detrended temperature data identified global patterns

and trends in the frequency and duration of extreme temperature events. Based on our spatial
summary, the frequency and duration of EHE and ECE presented similar patterns that
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Fig. 4 The median change in the proportion (+2 median absolute deviations) of the boreal summer and boreal
winter containing extreme heat events and extreme cold events within a—b seven biogeographical realms and c—d
seven oceans over a 70-year period (1950-2019). The median change in the maximum duration (+2 median
absolute deviations) of extreme heat events and extreme cold events during the boreal summer and boreal winter
within e—f seven biogeographical realms and g—h seven oceans over a 70-year period (1950-2019). Only grid
cells within each realm and ocean where P < 0.05 were included in the calculations (see Figs. 5, 6, 7, 8 ). The
seven biogeographical realms include the Afrotropics, Antarctic, Australasia, IndoMalaya, Nearctic, Neotropics,
and Palearctic. The seven oceans include the Arctic, Indian, North Atlantic, North Pacific, South Atlantic, South
Pacific, and Southern Ocean

contained limited spatial heterogeneity. High EHE frequency and duration occurred within the
Antarctic during both seasons and within the Arctic Ocean during the boreal winter. High ECE
frequency and duration occurred within the Nearctic and Palearctic during the boreal winter,
and the Arctic Ocean during the boreal summer. Our trend analysis, in contrast, presented

Boreal summer

Extreme heat events Extreme cold events A Proportion
— . = : (ratio year™ )

2OO00000000
cowmNOLPWN=

Fig. 5 The change in the proportion of the boreal summer containing a extreme heat events and b extreme cold
events over a 70-year period (1950-2019) estimated using beta regression (units are the ratio of the proportion of
extreme events observed to the proportion of extreme events not observed). P-values from the beta regression
trend estimates for ¢ extreme heat events and d extreme cold events
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Fig. 6 The change in the proportion of the boreal winter containing a extreme heat events and b extreme cold
events over a 70-year period (1950-2019) estimated using beta regression (units are the ratio of the proportion of
extreme events observed to the proportion of extreme events not observed). P-values from the beta regression
trend estimates for ¢ extreme heat events and d extreme cold events

pronounced differences between frequency and duration. The trend analysis was characterized
by high spatial heterogeneity, especially within terrestrial environments, and strong seasonal
differences, particularly between the Northern and Southern Hemispheres. Marine environ-
ments tended to contain more consistent positive EHE trends, especially with in the Southern
Hemisphere during the austral summer.

A combination of atmospheric mechanisms are often associated with the occurrence of
extreme temperature events. This includes mid-latitude blocking events within the Northern
Hemisphere that obstruct ambient westerly winds and associated synoptic weather systems.

Boreal summer
Extreme heat events Extreme cold events

A Max duration
(days year™")

Fig. 7 The change in the maximum duration of a extreme heat events and b extreme cold events during the
boreal summer over a 70-year period (1950-2019) estimated using Poisson regression. P-values from the Poisson
regression trend estimates for ¢ extreme heat events and d extreme cold events
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Fig. 8 The change in the maximum duration of a extreme heat events and b extreme cold events during the
boreal winter over a 70-year period (1950-2019) estimated using Poisson regression. P-values from the Poisson
regression trend estimates for ¢ extreme heat events and d extreme cold events

Atmospheric blocking can generate extended periods of extreme heat (Pfahl and Wernli 2012;
Rothlisberger et al. 2016) or extreme cold (Buehler et al. 2011; Sillmann et al. 2011; Whan
et al. 2016). A recurrent Rossby wave pattern may act to enhance the persistence of these
blocking events in the Northern Hemisphere (Rothlisberger et al. 2019). Atmospheric blocking
also occurs within the mid-latitude of the Southern Hemisphere (Mendes and Cavalcanti
2014), with Northern Hemisphere blocking events tending to be stronger (Lupo et al. 2019).
The strongest mid-latitude patterns in our analysis occurred with ECE during the boreal winter
within the Northern Hemisphere and with ECE during the austral winter within the Southern
Hemisphere. EHE tended to occur at high northern and southern latitudes. Specifically, EHE
occurred within Antarctica during the austral summer and winter and within the Arctic Ocean
during the boreal winter. Our trend analysis identified positive EHE trends, primarily in
duration within marine environments, within the mid-latitudes of the Northern Hemisphere
during the boreal summer, and within the mid-latitudes of the Southern Hemisphere during the
austral summer. These findings suggest that mid-latitude blocking events may act to enhance
the duration of extreme heat events within marine environments in the Northern and Southern
Hemispheres.

Our findings identified the tropical eastern Pacific as a region with high EHE frequency and
duration during both seasons. This outcome is likely related to the air-sea interactions of the El
Nino—Southern Oscillation (ENSO) whose sea surface temperature phases can affect surface
air temperatures over the tropical Pacific (Trenberth et al. 2002; Trenberth et al. 2005). The
ENSO alternates irregularly between warming (El Nifio) and cooling (La Nifia) of sea surface
temperatures in the tropical eastern Pacific. Current evidence points towards an increasing
frequency of extreme El Nifio and La Nifia events under climate change (Cai et al. 2014; Cai
etal. 2015; Wang et al. 2017). Our trend analysis identified increasing EHE and ECE durations
within this region, primarily during the boreal winter. In total, these findings highlight the role
of ENSO as factor promoting temperature extremes within the tropical eastern Pacific and the
potential for these events to increase in duration in the future.
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This study provides the first global assessment of ECE patterns and trends within both
terrestrial and marine environments. Our findings suggest that ECE frequency and duration are
greatest within the mid-latitudes, primarily in the North Hemisphere during the boreal winter.
How ECE is being affected by climate change globally has not been fully examined with most
studies exploring the patterns and causes of cold-air outbreaks within the mid-latitudes of the
Northern Hemisphere (Kolstad et al. 2010; Kretschmer et al. 2018). Our results point to ECE
trends that, compared to EHE, are spatially more heterogeneous and contain lower seasonal
variation between the Northern and Southern Hemispheres.

In summary, after accounting for the influence of global warming, we documented broad-
scale patterns in the frequency and duration of extreme temperature events across the globe.
Our trend analysis identified high spatial heterogeneity and strong seasonal variation, with
marine environments often presenting more consistent positive trends, especially in the
Southern Hemisphere. These results provide the basis to explore the implications of extreme
temperature events for human populations (AghaKouchak et al. 2020) and natural systems
(Bailey and van de Pol 2016) across terrestrial and marine environments. Our findings
emphasize the many near-term challenges that temperature extremes are likely to pose for life
on the planet and the need to advance our understanding of the developing long-term
implications of these changing dynamics as climate change progresses.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10584-021-03094-0.
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