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Abstract

The late Holocene was a period of cultural change along the west coast of South Africa, with widespread
archaeological evidence for shifts in settlement patterns and economic activity. With these changes we expect
variability in the movement patterns of resident populations. In this proof-of-concept paper, we use lithic
assemblages from Spring Cave near Verlorenvlei to evaluate changes in mobility during the late Holocene.
These assemblages are dominated by bipolar-reduced quartz, which is notoriously difficult to assess using
geometric approaches given high levels of fragmentation and variability in product dimensions. We use
measures of curvature on cortical pieces to estimate original nodule size, and then use this to calculate the cortex
ratio, a measure of mobility. Ratios indicate differences in mobility and place use through time that mirror
carlier observations about shifts in land use. These observations warrant more extended analysis of other late
Holocene contexts throughout the west coast.
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Introduction

Mobility plays a key role in human adaptation both past and present (Kelly 2013; Meekan et al. 2017). The
capacity to move affords humans opportunities to exploit wider pools of resources, maintain broader social
networks, and avoid local hazards. Conversely, the decision not to move in response to changing social and
ecological circumstances may necessitate other actions to prevent misfortune (Gould 1991). Changes in human
mobility are strongly linked with environment and population dynamics, and such transitions are frequently
associated with shifts in subsistence practices and social organization (Ruff et al. 2015). Demonstrating such
changes is therefore important for developing human evolutionary narratives (Braun et al. 2021).

During the late Holocene, the west coast of South Africa saw a series of dramatic changes in the lifeways of
local human populations. A well-resolved archaeological record shows evidence for major shifts in subsistence
practices (Dewar and Orton 2013; Jerardino et al. 2013; Lander and Russell 2018; Sadr 2015; Sealy and van der
Merwe 1988; Smith 2009), including an intensification of coastal foraging and the introduction of domesticated
stock, occurring in rapid succession. These changes would likely result in reorganizations of ecological
relationships within the region, including those mediated by mobility.

Identifying shifts in past mobility can be accomplished in many ways, but the record of stone artifacts provides
one of the most ubiquitous and continuous records of human activity. Stone artifacts and their attributes can
reflect the organization of technology around human lifeways at different scales (Nelson 1991; Clarkson 2008;
Barton and Riel-Salvatore 2014). For example, refitting of stone artifacts provides an avenue for investigating
human movements by showing the physical separation of parts of an original stone nodule, indicating which
parts of a reduction sequence are immediately discarded and which are transported (e.g., Close 2000). Refitting
can provide important information about ethnographic scale movements but can be difficult to implement at
large scales or applied to long time periods. Alternative approaches capitalize on the accumulative, time-
averaged nature of assemblages to show shifts in settlement patterns and occupational intensity (Rezek et al.
2020). This includes measures like the cortex ratio that utilize the geometric properties of stone nodules (e.g.,
surface area and volume; Dibble et al. 2005), indicating whether flaked material has been added to, or subtracted
from, a given assemblage, thus suggesting movement of components of a lithic reduction sequence (Douglass et
al. 2008; Douglass 2010; Davies 2016; Lin et al. 2015). Because measures like the cortex ratio do not rely on
formal types and work on a range of raw materials, they can be applied widely and used to make comparisons
between different technocomplexes (Ditchfield et al. 2014; Phillipps 2012; Holdaway and Davies 2019; Lin et
al. 2016; Reeves 2019; Shaw et al. 2019).

Many late Holocene assemblages from the west coast feature high numbers of debitage and informal tools
(Orton 2006, 2013; Jerardino et al. 2021), which makes measures like the cortex ratio valuable for identifying
shifting land use patterns in the late Holocene of the west coast. However, assemblages from this part of South
Africa are dominated by quartz reduced using bipolar reduction, which creates unique challenges to the
application of the method. Here, we present a proof-of-concept analysis of geometric attributes from quartz
lithic assemblages from Spring Cave at Verlorenvlei, an estuary on the west coast of South Africa near Elands
Bay (Fig 1). Using a lens clock (two-legged spherometer) to assess curvature from cortical fragments (Douglass
et al. 2021), we reconstruct the size of nodules used to produce each assemblage. With this information, we
derive the expected surface area for the assemblages under study and compare these values with observed
cortical surface to assess relative degree of addition or subtraction of surface area from the assemblages. We
interpret these results in terms of differences in mobility between the respective archaeological study locations.
These findings present a unique complement to existing information about land use and mobility in the late
Holocene and suggest the need for more extensive investigation of similar archaeological contexts within the
west coast of South Africa.

Background
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Verlorenvlei is an estuarine lake at the mouth of the Verlorenvlei River (alt. Verloren River) at Elands Bay (Fig
1). The Atlantic coastline north and south of the vlei is mainly sandy beaches with occasional rocky sandstone
outcrops. Moving eastward from the shore, the area immediately around Verlorenvlei comprises linear coastal
dunes flanked by strandveld vegetation communities. Further inland, the strandveld gives way to low,
undulating sandveld fynbos punctuated with sandstone inselbergs, eventually rising to the foothills of the
Cederberg Mountains where the main tributaries originate.

The vlei itself is approximately 13km long and about 1.5km at its widest extent, and an important freshwater
habitat on the semi-arid west coast. Local paleoenvironment reconstructions suggest a complex interaction
between climate and sea level influencing the foraging habitats of the surrounding area. Fossil wood charcoal
assemblages from Elands Bay Cave suggests that early Holocene conditions were generally wetter than present,
with vegetation communities sharing similarities to present day conditions on the foothills to the east (Cowling
et al. 1999). Wetter conditions at this time are also suggested by various lines of faunal evidence, including size
clines in dune molerats (Bathyergus suillus) and the presence of hedgehog (Erinaceus frontalis) (Klein and
Cruz-Uribe 2016). Sediment cores from Klaarfontein Springs containing pollen and other biomarkers indicate a
shift after 4000 BP, when the influence of marine incursions into the vlei reduced and conditions overall became
more arid (Carr et al. 2015).

The period between 8000 and 4500 BP at Verlorenvlei is noteworthy for the sparseness of the record, a pattern
first identified in the long sequence from Elands Bay Cave (Parkington 1980). Few sites in the area contain
occupation layers dating to this period, and those that do indicate ephemeral occupations (Jerardino et al. 2013).
After 4500 years ago, the archaeological record underwent several notable changes. Deposition rates at multiple
occupation sites increase during the period between 4500 and 3000 BP, with many showing a wide range of
material culture and food waste (Parkington 2016). Toward the end of this period, and increasingly between
3000 — 2000 BP, numerous shell middens appeared along the coast, larger than any previously recorded marine
shell aggregates by several orders of magnitude (Jerardino 1996, 1998). The appearance of these middens
coincides with an apparent decline in evidence for human activity at inland sites (Jerardino et al. 2013), though
many inland sandveld sites remain undated and understudied (Parkington et al. 2020). These middens show
variability between them in size and composition but are noteworthy for their generally larger size than previous
or later shell aggregates, and for the overwhelming presence of black mussels (Choromytilus meridionalis)
contributing to their matrices.

Debate persists as to how the signals of change occurring during this part of the late Holocene are reflective of
shifts in settlement patterns. The presence of large coastal middens with a concurrent decline of evidence for
occupation at inland sites is suggestive of a period of intensive use of marine resources and a re-orientation of
human activity around coastal environments, potentially in response to increasing population densities
(Jerardino et al. 2013; Jerardino 2021). In terms of mobility, this would suggest more residential occupations
with fewer long-distance relocations to inland areas. Conversely, the middens may be viewed as a product of
field processing necessitated by regular movement between coastal and more distant areas (Parkington et al.
2020, 2021). In particular, observed differences in the concentrations of material culture classes between large
middens and sites from periods before and after their proliferation challenge the interpretation of the middens as
sites of residential occupation. Stable isotope analyses on human skeletons from the west coast show greater
consumption of marine foods during the 3™ millennium BP (Sealy and van der Merwe 1988) and are suggestive
of population growth and territoriality during the late Holocene (Sealy 2016). However, whether this increase is
consistent with diets consisting of large amounts of shellfish has been questioned (Parkington et al. 2020).

Approximately 2000 years ago, the practice of herding livestock appeared on the west coast (Sadr 2015). The
earliest, directly dated evidence of domestic caprine remains from the region is found at Spoegrivier Cave in
Namaqualand dating to ~2031 BP! (2105465 bp; Sealy and Yates 1994; see also Coutu et al. 2021), with

! Radiocarbon determinations in this study are presented as median values of calibrated ages before present,
with raw radiocarbon ages presented in parentheses, e.g. ~530 BP (550 £ 50 bp). Calibrations were completed
using the rcarbon 1.4.1 package (Crema and Bevan 2020) for the R statistical computing platform (R Core
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domestic stock and other signals like ceramics appearing a few centuries later at sites such as Kasteelberg on the
Vredenburg Peninsula (Sadr et al. 2017), Die Kelders near Walker Bay (Horsburgh and Rhines 2010), and
Blombos Cave on the southern Cape coast (Henshilwood 1996). Direct evidence for herding in Verlorenvlei can
be found at Tortoise Cave beginning ~1533 BP (Pta-3312 1680+50 bp; Robey 1987), with evidence for pottery
preceding this by a few centuries (Orton 2002). It has been long debated whether herding groups were distinct
from foragers, maintaining a social distance that facilitated adjacent but parallel lifeways (Smith 1998) or if
populations operated along a subsistence spectrum, with some more reliant on food production and others more
reliant on foraging (Sadr 2003). In either case, the introduction of novel subsistence practices would almost
certainly have resulted in further reorganization of ecological relationships within the region (Parkington et al.
1986; Orton 2006; Jerardino et al. 2009).

Lithic assemblages recovered from Verlorenvlei sites are overwhelmingly manufactured from quartz using
bipolar reduction techniques (Orton 2006:25). The relative abundance of ‘exotic’ raw materials in stone artifact
assemblages is often used to demonstrate shifts in settlement patterns of late Holocene west coast populations
(e.g. Parkington et al. 1988; Wahl 1994). The term ‘exotic’ may be variably defined (Orton 2004:93); here it is
understood to mean materials not readily available within a few hours” walk from a site. At Steenbokfontein and
Tortoise Cave, Jerardino et al. (2009) noted decreasing proportions of silcrete and hornfels in assemblages
dating after 3500 BP, suggesting that this pattern is indicative of intensified occupation of local, quartz-rich
areas and limited interaction with places where other materials are found more readily. Orton (2004:231)
likewise notes an increasing quartz component after 2000 BP in a number of Elands Bay localities (excluding
Elands Bay Cave), potentially indicating limited access to exotic raw materials following the introduction of
pastoralism to the area.

While approaches based on raw material abundances connect movement to the spatial distribution of geological
sources, the actual locations of these sources are not always known (Orton 2006). At the same time, the overall
numbers of exotic artifacts are low in many late Holocene deposits, making it difficult to make meaningful
assessments of long-term trends. To build on these interpretations, we use the geometry of artifacts to assess
local mobility by way of the cortex ratio: a measure of the separation of cortical surface relative to volume. This
approach, described below, allows us to take advantage of the higher numbers of quartz artifacts found in
Verlorenvlei assemblages in order to assess late Holocene settlement patterns as expressed across the landscape.

Materials and methods
Spring Cave

Spring Cave is a rock shelter located on a steep, north-facing slope on the Bobbejaansberg kopje approximately
500m from the Verlorenvlei estuary and about 500m from the Elands Bay coast (Fig 1A). A water seep allows
for some vegetation growth within the cave. The shelter itself measures about 20m wide and about 5m high (Fig
1B). The location provides a commanding view of the vlei and coast north of Baboon Point (Fig 1C). The lithic
composition of the shelter is primarily Piekenierskloof conglomerate, with quartz pebbles eroding actively from
shelter walls.

Team 2020). Terrestrial samples were calibrated using the SHCal20 curve (Hogg et al. 2020), while marine
samples were calibrated using the Marine20 curve (Heaton et al. 2020) with AR offsets for the west coast of
South Africa (Dewar et al. 2012).
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Figure 1 A) Location of Spring Cave in relation to other Verlorenvlei sites (DFM Dunefield Midden, EBC
Elands Bay Cave, EC Eagle Cave, HSM Hailstorm Midden, MTM Mike Taylors Midden, PKM Pancho’s
Kitchen Midden, RWM Railway Midden, TC Tortoise Cave); B) Front view of Spring Cave; C) North facing
view from Spring Cave

Excavations at Spring Cave were undertaken by a team from the University of Cape Town in 1984 in 2 non-
adjacent 1 m? squares (D9 and 19). The excavated squares revealed a sequence of occupation layers with the
densest concentrations of material culture objects falling between 764-341 1 sigma cal BP (Pta-4062 840+60
BP; Pta-4062 460+40 BP) and 3833-2967 1 sigma cal BP (Pta-4027 3510+60 BP; Pta-4033 2970+60 BP). The
former corresponds to the post-pottery, post-pastoralism period immediately preceding European colonization
and the latter to the millennium prior to a the ‘megamidden’ period of intensified era of shellfish use.

The outcomes of the Spring Cave excavations were not formally published, but are frequently cited in regional
reconstructions of west coast settlement patterns (e.g. Miller et al. 1995; Orton 2004, 2006; Jerardino et al.
2013; Parkington et al. 1988; Parkington 2012). In particular, Orton (2004, 2006) studied the lithic artifacts at
Spring Cave in terms of technology and raw material use in the wider context of Late Pleistocene and Holocene
archaeology at Elands Bay. Findings from the 1984 excavations were reviewed by Jerardino and colleagues
(2021), including a detailed description of stratigraphy and an analysis of faunal remains from the site.

Spring Cave lithics were accessed and analyzed at the University of Cape Town Department of Archaeology in
late 2019. In keeping with other studies using geometric proxies, only artifacts larger than 10mm in maximum
dimension were included in the study. Assemblages were divided into 2 temporal groups: >3000 BP, and <1000
BP. Artifacts found between layers Echo (~1013 cal BP; Pta-4035 1150+50 BP) and UDF (~3086 cal BP; Pta-
4033 2970+£60 BP) and those beneath and including layer Next Black 4 (~4270 cal BP; Pta-6226 386060 BP)
were left out of the analysis as they could not be reliably assigned to one of these periods within the late
Holocene; however, only 15 artifacts over the minimum size threshold are associated with these intervening
layers.

Cortex ratio
The cortex ratio is a comparison between the amount of cortex (outer weathered surface) present in an

archaeological assemblage and the cortex expected from that assemblage if all products of reduction were
retained there (see Dibble et al. 2005; Douglass et al. 2008 for detailed descriptions). Ratio values that deviate
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from 1 indicate that the amount of cortex has either been increased or decreased by the addition or removal of
artifacts, suggesting regular movement to or from the assemblage location. Values close to 1 indicate that the net
addition and subtraction of artifacts is balanced. While it is possible that regular transport of lithic artifacts over
time results in a balance between input and output, this is more easily achieved when most artifacts produced
locally are also discarded locally, suggesting limited movement between discard events.

The cortex ratio and other geometric measures depend on estimates of the average size of raw material nodules.
To accommodate this, measures of core reduction intensity from cortex proportion, as well as flake scar
frequency and orientation, have been developed (Braun 2006; Douglass 2010; Douglass et al. 2018). Other
applications use upper quartiles of remnant cores (e.g., Phillipps and Holdaway 2015) or maximum flake lengths
(Lin et al. 2015) to estimate original nodule dimensions. Each of these approaches was developed for
application to a particular material and/or technology being studied. However, they share a perspective of flakes
and cores as objects generally distinguishable by higher and lower ratios of cortical surface area to volume,
respectively. For bipolar-reduced, quartz-dominated assemblages, the chunky, fragmented nature of reduction
products makes such distinctions less useful for estimating average nodule size using the methods described
above (Diez-Martin 2011; de 1a Pefia 2015; Spry et al. 2021). An analysis of cortex ratio using bipolar quartz
assemblages must therefore rely on other fragment attributes to estimate average nodule size. Here, we draw on
recent experimental work using the curvature of cortical pieces to reconstruct nodule size (Douglass et al. 2021).

Figure 2. Illustration of lens clock use for measuring cobble curvature A) demonstrates measurement of cortical
curvature with lens clock, note leg position indicating starting point of measure at nodule “end” B) close-up
image showing derived measures from lens clock used to estimate radius of curvature.

A purpose-built lens clock (two-legged spherometer) was used to take curvature measurements on fragments
with cortical surfaces. The lens clock used for our study was made using a Neoteck VTMNTK 120 digital
indicator consisting of a spring-pressured probe where the distance of plunge is displayed on a digital dial face
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(resolution of 0.01mm, maximum measuring range 25.4mm). A drill press was used on a small block of wood to
make three holes, one through the block for inserting the probe and two of the same depth placed equidistant on
either side of the central hole into which small brad nails were placed (Fig 1). Combined, the holes are aligned
in a straight row and plumb to the wood block with the probe slightly higher than the two legs. When placed on
a round surface, the legs remain constant while the probe is plunged inward.

Measurements of curvature taken using a lens clock can be translated into a spherical radius estimate, which we
use here as a model of average nodule size. The equation for the radius of curvature is:

_ Y? + S
T
Where Y equals the distance between each leg and the probe tip (half the distance between legs) and S equals the
difference in depth between the probe and the legs.

Lens clock readings were then taken over the cortical surface of cortex-bearing fragments in each assemblage.
Measurements were taken at lcm increments in a grid-like fashion, first oriented to the longest axis of the core
or fragment and then perpendicular to this axis, to provide even coverage of the surface (see SI Appendix 1). All
measures taken from cortical fragments in an assemblage are then averaged, the result being directly
proportional to the radius of the cobble(s) from which it was produced. Experimental validation using irregular
quartz pebbles demonstrated close agreement (mean radius deviation ~15%) between the average radius of
unworked nodules and lens clock-derived estimates from cortical fragments following reduction (see Douglass
et al. 2021 for additional details).

To calculate cortex ratios using this value, average radii obtained from measured fragments were converted into
nodule volumes using the equation for a sphere:

4

V=_nr
37TT

The average of these volumes was then used as the average reconstructed nodule volume, and this was used to
calculate the average reconstructed nodule surface area:

12
A =m3(6V)3

The entire process, from artifact measurement to cortex ratio calculation, is as follows:

1. For each artifact in the assemblage, record the identification number, horizontal unit, vertical unit, raw
material, cortical surface percentage (estimated at 10% intervals), maximum length (mm), maximum
width (mm), maximum thickness (mm), and weight (g).

2. For artifacts with cortical surface large enough to measure (that is, with a maximum dimension greater
than the distance 2Y in Fig 2), take lens clock readings at 1 cm intervals, first parallel to the axis of
maximum dimension along transects spaced 1 cm apart; then, if possible, perpendicular to it, with the
lens clock legs set astride the transect. For each lens clock reading, in a separate table, record
identification number of artifact (corresponding to step 1), 2Y and S (distance travelled by digital
indicator). See SI Appendix 1 for more details.

3. For each unique artifact measured with the lens clock, use the mean of the S values and half the value
of 2Y to calculate an average radius using Eq. 1 above. Use each r to calculate nodule volume estimates
using Eq. 2. Take the mean of all volume estimates as the theoretical average nodule volume (7) and
calculate the theoretical average nodule surface area (4) using Eq 3.

4. For each analytical group of artifacts (e.g. <1000 BP) take the sum of artifact weight values and divide
by raw material specific density (e.g. 2.65 for quartz) to calculate assemblage volume. Divide this by
the theoretical average nodule volume (V) to obtain the estimated number of nodules and multiply this
by the theoretical average nodule surface area (A) to calculate expected cortical surface.
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5. For each artifact in the analytical group, multiply the 2D surface area (max. length x max. width) by the
percentage of cortical surface to obtain the cortical surface area. Sum these values to obtain the
observed cortical surface area for the analytical group. Divide observed cortical surface by expected
cortical surface area to calculate the cortex ratio.

Following the calculation of cortex ratios, a series of tests were conducted to assess statistical confidence (Lin et
al. 2015). All data analyses were conducted using the R statistical computing platform (R Core Team 2020).
Code and documentation can be found in an electronic supplement.

Results

Analyzed assemblages consisted principally of chipped quartz, which can be sourced locally as conglomerate
pebbles, and smaller components of quartzite, silcrete, and hornfels (Table 1). While vein quartz sources are
available from Table Mountain Sandstone landforms in region, these are thought to be limited (Orton 2006), and

all of the quartz fragments studied here has maximum dimensions consistent with pebble reduction.

Table 1 Raw materials for Spring Cave lithic assemblages (all fragment classes)

Group Quartz Quartzite Silcrete Hornfels Other Total
SC <1000 BP 273 46 6 2 1 328
SC >3000 BP 257 33 16 3 14 323

A total of 552 curvature measurements were taken from 48 quartz fragments that a) possessed cortical surface
and b) had enough surface area from which to take readings. Of the measured fragments, only those with 5 or
more curvature measurements (#7=18) were used in the reconstruction of average nodule radius as lower
numbers of readings can produce extreme values (Douglass et al. 2021). Among the included fragments, a final
total of 483 measurements were used, and the mean number of readings for the included fragments was 26.83.
The values for mean curvature-derived radius, as well as volume and surface area estimates for reconstructed
nodules, are presented in Table 2.

Table 2 Cortical surface curvature estimates for Spring Cave artifacts

Site No. of No. of curvature Mean Reconstructed Reconstructed
measured measurements curvature- nodule volume nodule surface
fragments derived (mm?) area (mm?)

nodule

radius (mm)
Spring 18 483 299+152 58900 7321.6
Cave

The mean nodule radius derived from curvature estimates on archaeological fragments (29.9 mm) gives a
diameter of 59.8 mm, which is in close agreement with previous assessments of raw materials available as clasts
in the local Piernierskloof formation conglomerate (e.g., Rust 1967; Bordy et al. 2016). For example, Bordy and
colleagues (2016) found an average clast size of 56 mm across sampling sites from Elands Bay to Doring Bay,
with Elands Bay sites showing similar average values to that produced here. Among the measured fragments
themselves, the maximum dimension was 54 mm, also falling within the range of average clast sizes for the
region.

While the two Spring Cave assemblages had comparable numbers of artifacts, those from the <1000 BP window
had nearly twice the volume of those from >3000 BP. This resulted in substantially different estimates for
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expected surface area observed between the two groups (Table 3). The <1000 BP group had a cortex ratio of
0.56, notably lower than the baseline value of 1, while the >3000 BP group had a cortex ratio of 1.00.

Table 3 Volume, surface area, and cortex ratio estimates for Spring Cave assemblages

Assemblage Nguartz Total Volume | Expected Observed Cortex Ratio
(mm’) Surface Area Surface Area
(mm?) (mm?)
<1000 BP 273 248947.2 30940.7 17451.9 0.56
>3000 BP 249 103698.1 12888.3 12724.2 1.00

Following Lin et al. (2015), we assessed these assemblages in terms of whether they deviate significantly from 1
and the extent to which they can be reliably shown to be different from one another. In the first case, we
generated 10,000 simulated assemblages from fragments randomly sampled from an experimental dataset of 20
quartz cobbles reduced using the bipolar technique, with cortex ratios calculated using the lens clock method
(“Heavy Reduced Quartz” in Douglass et al. 2021). Sample sizes were matched to the number of artifacts in
each temporal grouping. Given that the experimental data include all fragments from reduced cobbles, the cortex
ratios produced from these assemblages approximate 1. To achieve a two-sided probability, simulated and
observed cortex ratios were log transformed. The <1000 BP assemblages were found to be significantly

different from the mean of their corresponding simulated distribution at a 0.05 threshold. The >3000 BP

assemblage, with a cortex ratio of 1.00, could not be differentiated statistically from simulated “complete”

assemblages.
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Figure 3 Histograms of log-transformed cortex ratios generated using randomly sampled artifacts from a
“complete” experimental assemblage. Dotted line indicates difference between log-transformed observed cortex

ratios and 0 for two-tailed probability.

To assess the likelihood that the artifact groups studied here were drawn from the same population, we used a

Monte Carlo resampling routine where the combined artifacts from two layers are randomly divided into two

groups equaling the number of artifacts in each layer. Cortex ratios are then calculated for each group, and the
difference between the two is taken. This process is repeated 10,000 times to generate a sampling distribution,

10
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and the true difference between the two layers is compared, using p=0.05 as a threshold for significance. For
Spring cave, the difference in cortex ratios between the two layers is 0.44, well outside that produced by the
Monte Carlo resampling, with a corresponding p-value of less than 0.001.

Spring Cave >3k vs <1k
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Figure 4 Histogram of differences in cortex ratios between Monte Carlo resampled lithic artifact groups from
Spring Cave. Dotted lines indicate observed difference between groups for two-tailed probability (£0.44).

Discussion

Understanding mobility in the past, particularly as it relates to environments and subsistence changes, is
fundamental for interpreting human evolution and cultural change. Building this understanding requires reliable
indicators of movement in the past that can be applied across a wide range of archaeological contexts. The
inferences derived from this study of lithic geometry provide a means to derive information about mobility from
a widely available archaeological proxy (quartz artifacts) that complements data obtained from site densities and
deposition rates, frequencies of exotic lithics, stable isotopes, etc.

The difference in cortex ratios from Spring Cave between >3000 BP and <1000 BP is striking, especially given
the otherwise similar qualities of the lithic assemblages. For the earlier window, a cortex ratio close to 1 is
suggestive of nearly complete quartz reduction sets. The period of greatest accumulation at Spring Cave during
that time is consistent with the onset of increased population and territoriality along the west coast generally
(Sealy 2016). Spring Cave, with its easy access to the productive coast, panoramic view, and ready source of
quartz for artifact manufacture, would make an attractive location for this kind of settlement. While movements
certainly occurred during this time, as indicated by the presence of mollusc shells and non-local lithic material
transported to the site, they may not have been occurring with enough frequency to remove or add substantial
amounts of cortical quartz.

During the later phase, the cortex ratio at Spring Cave drops to ~0.56, indicating that more cortex is leaving
Spring Cave than is being brought into it, and suggests greater mobility relative to the >3000 BP period of
occupation. There are several existing interpretive frameworks that might account for increased mobility during
the last millennium. The arrival and growth of herding around or just after 2000 BP would likely have disrupted
the lifeways of resident forager populations, potentially pushing them into marginal habitats (Smith 1998). It is
also possible that fixed resource bases became either less accessible or less productive, necessitating a more
opportunistic approach to resource acquisition that involved frequent movement (Jerardino et al. 2009;
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Parkington 2016). In any of these cases, the result would almost certainly be more rather than less movement
during this period. The evidence offered by the cortex ratio values from Spring Cave suggests that cortical
material has been removed from the assemblage or non-cortical material has been carried into it (or both), which
is consistent with increased mobility overall during this period.

The cortex ratio is useful as a measure of movement because it is sensitive to the separation of volume and
cortical surface area in flaked stone assemblages. However, because the Spring Cave excavations are limited to
two square meter test pits, it is possible that artifacts from the remaining deposit might shift these values and
thus scuttle the above interpretation. The material from the excavations undertaken so far is not very useful for
evaluating intra-site spatial variability in assemblage composition: all of the pre-3000 BP quartz artifacts were
recovered from the I9 unit, and almost all of the post-1000 BP quartz artifacts were recovered from the D9 unit.
Kolmogorov-Smirnov tests comparing the small number of post-1000 BP quartz artifacts from the 19 unit
(n=20) with those from the D9 unit (n=253) detected no clear difference in terms of artifact weight (D =
0.27668, p-value = 0.1171) or cortical surface area (D = 0.24447, p-value = 0.2179). On a conceptual level, as
the assemblage size increases, the ratio value becomes more robust to the influence of individual artifact
contributions and reflects the ‘average’ of lithic discard behavior at a given location over the period of
accumulation (Parkington 1993; Davies et al. 2021). For artifacts from the unexcavated portion of the Spring
Cave deposit to shift the present cortex ratios to values that would change the interpretation, the character of the
unexcavated assemblage would have to be systematically different across a very small area.

For this study, we developed an estimate of average nodule size using combined cortical fragments regardless of
their temporal associations. This gave us a larger sample of cortical fragments to use in our estimate but gives
the study an in-built assumption that raw material size is not a driving factor in the observed differences in
cortex ratios between time periods. Such an assumption may not always be warranted, especially for instances
where higher levels of mobility are suspected that might bring an individual into contact with a wider range of
raw material sources. This can be investigated by generating assemblage-specific estimates. While differences in
raw material sizes are suggested between the pre-3000 BP and post-1000 BP assemblages from Spring Cave,
their impact on the resultant cortex ratios is minimal (see SI Appendix 2). This provides additional support for
the outcome of the study and its wider applicability. In future studies using this method, the impact of temporal
variability in raw material characteristics should likewise be investigated.

While the current study is suggestive of changing use of the Spring Cave site between the two periods studied,
these are single instances from a continuum of underlying values expressed across the landscape, and the extent
to which these patterns are unique to Spring Cave or reflect the broader trends in the region is not yet known.
For example, the ratio value close to 1 recorded for the >3000 BP assemblage may be most parsimoniously
explained through limited transport of lithics, but it could be that this is an outlier among a distribution of values
from similarly aged deposits that is more consistent with frequent movement. Developing the picture of mobility
in the past will require expanding the analysis to a wider range of sites. The collective properties of cortex ratios
expressed across a landscape can be used to inform on broad-scale use of space (Rezek et al. 2020). An
instructive example comes from semi-arid Australia, where cortex ratios obtained from late Holocene surface
assemblages vary between values close to 0 and values greater than 1, but in aggregate exhibit regularities that
indicate repeated visitation and regular transport of cortical flakes (Holdaway et al. 2019). Computer
simulations have been used to contextualize these findings in terms of different configurations of mobility
(Davies et al. 2018; Holdaway and Davies 2019), showing that when cortex ratios are juxtaposed with density,
they can be used to differentiate between collections of assemblages generated by variable occupation intensity
or frequency of visitation (Davies et al. 2021).

The Spring Cave case study provides a proof-of-concept for a methodological approach that could be deployed
more widely in areas where quartz lithic technology is predominant (Orton 2006), permitting comparative
assessment of movement between many localities and time periods. For the west coast of South Africa in
particular, this study lacks a sample occurring between 3000 and 2000 BP, which is considered to be the height
of the megamidden phenomenon. Comparisons of cortex ratios between inland and coastal assemblages dated
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before, during, and after the period of intense midden-building could help to resolve questions related to
changes in settlement patterns and socioeconomic organization (e.g. Parkington 2016; Parkington et al. 2020,
2021; Jerardino 2021; Jerardino et al. 2013). It is also easy to imagine how an approach such as this could be
applied fruitfully to lithic scatters such as those found in deflation hollows that occur across the landscape north
of Verlorenvlei (Manhire 1987) in order to explore spatial variability in movement patterns. This is to say
nothing of the extensive Pleistocene record present throughout the region, for which this approach would also be
useful for understanding settlement arrangements.

Conclusions

This study illustrates the adaption of the cortex ratio to bipolar quartz assemblages using estimates of cortical
surface curvature and applies it to the late Holocene assemblages at Spring Cave. There are interesting parallels
between the cortex ratio values from Spring Cave and other indicators of mobility identified in the late Holocene
record from Verlorenvlei. In particular, the ratios suggest a shift from a less mobile coastal settlement prior to
3000 BP to a more mobile arrangement after 1000 BP. This interpretation is preliminary, and additional
assemblages will need to be assessed before this pattern can be determined to be meaningful for the area more
broadly. The approach presented here offers a means to address mobility in archaeological assemblages like
those from Verlorenvlei where bipolar-reduced quartz is a predominant feature.
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