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Abstract: Understanding how sea quarks behave inside a nucleon is one of the most
important physics goals of the proposed Electron-Ion Collider in China (EicC), which
is designed to have a 3.5GeV polarized electron beam (80% polarization) colliding with
a 20GeV polarized proton beam (70% polarization) at instantaneous luminosity of 2 ×
1033cm−2s−1. A specific topic at EicC is to understand the polarization of individual
quarks inside a longitudinally polarized nucleon. The potential of various future EicC
data, including the inclusive and semi-inclusive deep inelastic scattering data from both
doubly polarized electron-proton and electron-3He collisions, to reduce the uncertainties
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of parton helicity distributions is explored at the next-to-leading order in QCD, using the
Error PDF Updating Method Package (ePump) which is based on the Hessian profiling
method. We show that the semi-inclusive data are well able to provide good separation
between flavour distributions, and to constrain their uncertainties in the x > 0.005 region,
especially when electron-3He collisions, acting as effective electron-neutron collisions, are
taken into account. To enable this study, we have generated a Hessian representation of
the DSSV14 set of PDF replicas, named DSSV14H PDFs.
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1 Introduction

Understanding the helicity structure of the nucleon in terms of quark and gluon degrees of
freedom is of fundamental interest in modern hadronic physics. In the naive parton model,
the proton spin is considered to be originated from its three valence quarks. This naive
picture was first challenged by the pioneering measurements of polarized deep inelastic
scattering (DIS) performed in the EMC experiment in the late 1980s [1], in which the spin
carried by the three valence quarks has been shown to be much less than the expected 1/2.
Ever since then, tremendous experimental progress has been made in the past 32 years,
including fixed target experiments of polarized lepton-proton and lepton-ion scatterings
at SLAC, CERN, DESY, and JLAB [2], as well as the seminal spin program of polarized
proton-proton and proton-helium collisions at Relativistic Heavy Ion Collider (RHIC) [3].

Identifying the gluon spin contribution and the quark flavour discriminated helicity
distributions are key steps in order to precisely pin down the proton spin configurations.
The first evidence of the polarization of gluon inside the proton [4] was shown in the
RHIC spin program, particularly in the measurement of jet production in polarized proton-
proton collisions [5], where, however, one still could not draw any reliable conclusions on
the exact gluon contribution to the proton spin due to the limited kinematic coverage.
Another interesting measurement at RHIC was the charged weak vector boson production
in polarized proton-proton collisions [6, 7], which was supposed to provide a sensitive
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channel to determine the flavour discriminated helicity distributions. However, again, due
to the limited kinematic coverage, no conclusive statement could be made. As a result, the
parton helicity distributions were left largely unconstrained.

It has long been recognized that parton helicity distributions can be probed in po-
larized lepton-nucleon scatterings. Recently, there have been several proposals to build
a new generation of polarized Electron-Ion Collider (EIC) worldwide, such as an EIC at
Brookhaven National Laboratory [8] and an EIC in China [9]. The EIC machine in the
US is designed to probe the parton helicity distribution in a relatively small x region as
compared to the ongoing experiments at JLab. The Electron-Ion Collider in China (EicC)
is proposed to be constructed based on an upgraded heavy-ion accelerator, High-Intensity
heavy-ion Accelerator Facility (HIAF) which is currently under construction in Guang-
dong Province of China, together with an additional electron ring. The EicC is designed
to cover a center-of-mass energy range from 15 to 20GeV with the luminosity of about
2×1033cm−2s−1 in electron-proton collisions, which aims to bridge the kinematic coverage
between EIC and JLab. In addition to a polarized electron beam with a polarization of
80% and a polarized proton beam with a polarization of 70%, it also plans to offer polarized
light-ion beams such as 3He with a polarization of 70%.

The design of the EicC offers unprecedented new opportunities to study the spin struc-
ture of the nucleon. In this paper, we present a quantitative study of the impact that future
EicC inclusive and semi-inclusive deep inelastic scattering (SIDIS) measurements will have
on the determination of various helicity distributions inside the nucleon as well as on the
determination of their contributions to the proton spin. In our study, we take advantage
of simulated DIS and SIDIS data from electron-proton and electron-3He collisions in order
to disentangle the constraining power that each initial and final state combination has on
the different flavour helicity distributions. During our discussion, it will become apparent
that both proton target and effective neutron targets, such as 3He, together with identified
final states of well-known flavour content, such as pions and kaons, are needed to achieve
a consistent reduction of uncertainties across different helicity distributions. We will also
show that the high accuracy with which these processes are planned to be measured at
the future EicC will allow for unprecedented precision in the extraction of quark helicity
distributions in the region usually referred as the “sea-quark” region.

Apart from the intrinsic advancement of our knowledge of the proton spin content
that comes with the improved overall precision of helicity distributions, reaching such
precision in the sea sector also means that the EicC will help to clarify some intriguing
problems and phenomena observed in the previous experiments, such as the asymmetry in
the distribution of polarized light sea quarks, and the polarization of strange quarks inside
a polarized nucleon, etc. [10–15].

The paper is organized as follows. In the next section, we introduce the theoretical
framework used to compute the Double-Spin-Asymmetries observable in DIS and SIDIS
processes. In section 3 we present the methodology applied to generate EicC pseudo-data
for the different processes considered. Our main discussions and findings are collected
in section 4. After introducing the ePump tool [16, 17] used to perform our analysis, we
summarize in section 4.1 the procedure used to convert replica sets of Parton Distribution
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Functions (PDFs) into equivalent hessian sets of them as this is a step needed in order to
be able to use the chosen replica PDF set within the hessian framework utilized by the
ePump software. The details of the theoretical framework upon which the ePump operates
are summarized in section 4.2 and 4.3. We proceed by describing in section 4.4 the specific
choices that went into making the theory and data tables fed to ePump. In section 4.5 we
present our main results and discuss them. Discussion of the sensitivity of helicity distri-
butions to specific data samples is presented in a more quantitative manner in section 4.6.
We conclude by summarizing our findings and remarks in section 5.

2 Polarized lepton-nucleon scatterings to access helicity distributions

In the Deep-Inelastic Scattering (DIS) process, e + p(n) → e + X, a nucleon such as a
proton (neutron) is collided with an electron and gets destroyed into unobserved hadronic
remnants X while keeping track of the original electron bouncing off the nucleon. Making
use of both longitudinally polarized electron and proton (or effective neutron) beams, a
possible observable that can be measured during this process is the so-called Double-Spin-
Asymmetry (DSA):

ALL = dσ++ − dσ+−

dσ++ + dσ+− = 1
PePp

N++ −N+−

N++ +N+− , (2.1)

where the superscript “+” and “−” denotes the helicity of the two beams respectively, Pe
(Pp) means the polarization of electron (proton) beam, N is the luminosity-normalized
number of events in a specific spin orientation state.

It is necessary to define the kinematic variables for discussions on the experimental
observables. With k, k′ denoting the four-momenta of the incoming and outgoing elec-
tron, p denoting the four-momentum of the incoming nucleon, one can define the following
kinematic variables:

Q2 = −q2 = −(k − k′)2, (2.2)

x = Q2

2p · q , (2.3)

y = q · p
k · p

, (2.4)

Wh =
√

(p+ q)2. (2.5)

The measured DSA can be written down approximately as

ALL = D(y)A1 = y(y − 2)
y2 + 2(1− y)(1 +R)A1 (2.6)

in a kinematic region where x is small while the momentum transfer Q2 is relatively high [18,
19]. The factor R is the cross section ratio between the absorption of a longitudinally
polarized virtual photon and a transversely polarized virtual photon by a nucleon, R = σL

σT
.

The asymmetry A1 is related to the longitudinal spin structure function g1 by

A1 = g1
F2/[2x(1 +R)] '

g1
F1
, (2.7)

where F2 or F1 denotes the spin-independent structure function.
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In the inclusive DIS process, where only the scattered electrons are detected, the
measured F1 and g1 structure functions can be expressed at leading order (LO) in the
parton model, for Q being much smaller than the Z boson mass, as

F1
(
x,Q2

)
= 1

2
∑

q=(u,d,s)
e2
q

[
q
(
x,Q2

)
+ q

(
x,Q2

)]
, (2.8)

g1
(
x,Q2

)
= 1

2
∑

q=(u,d,s)
e2
q

[
∆q

(
x,Q2

)
+ ∆q

(
x,Q2

)]
, (2.9)

where q and ∆q denote the unpolarized and helicity parton distribution functions respec-
tively.

On the other hand, in the SIDIS process, where a leading hadron such as π± or K±

is also detected in addition to the scattered electron, the measured asymmetry Ah1 '
gh

1
Fh

1
is related to the corresponding semi-inclusive unpolarized and longitudinal spin structure
functions, F h1 and gh1 , which can be expressed at LO in the parton model, for Q being much
smaller than the Z boson mass, as

F h1

(
x,Q2, z

)
= 1

2
∑
q

e2
q

[
q
(
x,Q2

)
Dq→h

(
Q2, z

)
+ ∆q

(
x,Q2

)
Dq→h

(
Q2, z

)]
, (2.10)

gh1

(
x,Q2, z

)
= 1

2
∑
q

e2
q

[
∆q

(
x,Q2

)
Dq→h

(
Q2, z

)
+ ∆q

(
x,Q2

)
Dq→h

(
Q2, z

)]
. (2.11)

Here Dq→h(Q2, z) describes the fragmentation process from a quark q to a hadron h, z
represents the momentum fraction of the final state hadron, whose four-momentum is
denoted as Ph, with respect to the momentum of the produced quark. Experimentally it
is defined as z = Ph·p

q·p .
As one can tell from the LO expressions, the final-state hadron in the SIDIS processes

offers different weights for different flavours of the initial state quark comparing to the
inclusive DIS measurements. Hence, SIDIS processes provide a powerful way to separate
single flavour distributions. In the electron-proton collision, considering π± and K± SIDIS
processes, there will be four sets of data. In addition, using polarized 3He as an effective
neutron target offers additional four sets of data. The LO expressions for Ah1 of these eight
data sets can be found in appendix A.

Beyond LO, factorization of short (high energy) and long (low energy) distance inter-
actions in DIS and SIDIS allows to write the previous LO expressions in an all-order form.
For instance, the spin dependent structure function gh1 can be written as

gh1

(
x,z,Q2

)
= 1

2
∑

f,f ′=q,q̄,g

∫ 1

x

dx̂

x̂

∫ 1

z

dẑ

ẑ
∆f

(
x

x̂
,µ2
)
Df ′→h

(
z

ẑ
,µ2
)

∆Cf ′f
(
x̂, ẑ,

Q2

µ2 ,αs
(
µ2
))

≡ 1
2

∑
f,f ′=q,q̄,g

[
∆f⊗∆Cf ′f⊗Df ′→h

](
x,z,Q2,µ2

)
, (2.12)

where with µ we collectively denote all factorization and renormalization scales, x̂ and ẑ are
the partonic counterparts of the hadronic variables x and z, and ∆Cf ′f are spin-dependent
coefficient functions.
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Similar expressions can be written for inclusive g1 by removing the fragmentation
functions. For unpolarized cases, such as F h1 and F1, one has to use unpolarized parton
distributions and unpolarized coefficient functions accordingly.

Moreover, using perturbation theory the coefficient functions can be expanded in terms
of powers of the strong coupling constant αs. For example,

∆Cf ′f = ∆C(0)
f ′f + αs(µ2)

2π ∆C(1)
f ′f +O(α2

s), (2.13)

and its LO expression yields,

∆Cqq(x̂, ẑ) = ∆Cq̄q̄(x̂, ẑ) = ∆C(0)
qq (x̂, ẑ) = e2

q δ(1− x̂)δ(1− ẑ) , (2.14)

which, once being inserted into eq. (2.12), trivially gives the LO expression of eq. (2.11)
with µ2 = Q2. At LO, all other coefficient functions are vanishing.

The corresponding next-to-leading oder (NLO) expression to eq. (2.11) can be obtain
from eqs. (2.13) and (2.12):

2gh1
(
x,z,Q2

)
=
∑
q

e2
q

{
∆q
(
x,Q2

)
Dq→h

(
z,Q2

)
+∆q̄

(
x,Q2

)
Dq̄→h

(
z,Q2

)
+αs

(
Q2)

2π
[(

∆q⊗Dq→h+∆q̄⊗Dq̄→h
)
⊗∆C(1)

qq +(∆q+∆q̄)⊗∆C(1)
gq ⊗Dg→h

+∆g⊗∆C(1)
qg ⊗

(
Dq→h+Dq̄→h

)](
x,z,Q2

)}
, (2.15)

where we have set again µ2 = Q2. Explicit expressions for the polarized and unpolarized
coefficient functions can be found for SIDIS in [20–26] and for DIS in [25, 27].

In the following sections, the impact study on various helicity distributions at NLO
taking advantage of the sets of SIDIS data at the EicC will be discussed in detail.

3 Description of the pseudo-data

The EicC accelerator is optimized to provide a 3.5GeV electron beam on a 20GeV proton
beam (40GeV 3He beam). The pseudo-data were produced according to this design. The
Q2-x coverage of the DIS process at the EicC, together with the coverage of an optional
energy configuration at the US EIC and JLab-12 experiments, are shown in figure 1. As
mentioned above, the instantaneous luminosity at the EicC is about 2× 1033cm−2s−1 per
nucleon, which means that about 50 fb−1 of integrated luminosity will be accumulated
with 10 months of running without considering beam delivery and detector efficiency.

The DJANGOH event generator [28] was employed to produce the pseudo-data. It
has been widely used at HERA and then modified to accommodate the needs of the EIC
community for various simulations. DJANGOH can simulate deep inelastic lepton-nucleon
(nuclei) scattering including both QED and QCD radiative effects. It is an interface of the
Monte-Carlo programs HERACLES [29] and LEPTO [30]. The HERACLES can treat the
electron-proton scattering using either parametrized structure functions or PDFs in the
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Figure1. KinematiccoverageofdeepinelasticscatteringprocessfortheEicCandtheUSEIC

(using10GeV×100GeVasanexample),aswellasJLab-12experiments.

frameworkofthequark-partonmodel. TheLEPTOdoestheintegrationonelectroweak

cross-sectionsand,basedonthecross-section,itsimulateslepton-nucleonscatteringwith

hadronicfinalstatesbyusingtheJETSETlibrary[31].

Oncethepseudo-datawereproduced,thefollowingcutswereapplied:Q2>2GeV2,

W2>12GeV2,0.05<y<0.8,and0.05<z<0.8. Afterwards,thedatawerebinned

inx−Q2twodimensions,asshowninfigure2.Ineachx−Q2bin,alog-likelihoodwas

definedas

L=log
events

yield(x,Q2)

N
, (3.1)

where

yield=(1+λPePpD(y)A1)·σ0·L·A, (3.2)

andthenormalization

N= dx dQ2[1+λPePpD(y)A1]·σ0·L·A. (3.3)

Hereλ,withvalue±1,denotesthedifferentspincombinationsineq.(2.1),Aisthedetector

acceptance,andListheintegratedluminosity.Iftheacceptanceisthesameforλ=±1

states,theuncertaintyfortheA1measurementinaparticularbin,aftermaximizingthe

log-likelihood,isgivenby

σA1=
1

eventsλ
2P2eP

2
pD(y)

2
. (3.4)

Forelectron-protoncollisions,theobtaineduncertaintyprojectiononA1p,wherep

denotesprotondata,canbeusedforthefollowingimpactstudy. Whilefore-3Hecollisions,

aftertheuncertaintyprojectiononA13He isobtained,thedilutionfactorneedstobe

consideredinordertogetA1N projection,whereNdenotesneutron.

Thegroundstateof3Henuclearwave-functionisdominatedbytheS-state,inwhich

theprotonspinscanceleachotherandthenuclearspinismostlycarriedbytheneutron[32].
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Figure 2. The Q2-x coverage of the pseudodata points for electron-proton and electron-3He colli-
sions after kinematics cuts. In electron-proton (or electron-3He) collision, there are 5 sets of data:
inclusive DIS, π± and K± SIDIS.

Hence, 3He can be used as an effective polarized neutron source. Neutron asymmetries can
be obtained from 3He asymmetries using the effective nucleon polarization [33–35] by

A13He = Pn(1− fp)A1N + PpfpA1p, (3.5)

with dilution factor fp = 2σp

σ3He
, neutron effective polarization Pn = 0.86+0.036

−0.02 , and proton
effective polarization Pp = −0.028+0.009

−0.004. The dilution factor was calculated bin by bin for
individual SIDIS channels using a dedicated electron-proton simulation using DJANGOH
with proton beam energy set to be 40/3GeV in order to match the electron-3He colli-
sions. To extract neutron results out of 3He data, various nuclear effects have to be taken
into account, including spin depolarization, nuclear binding and Fermi motion of nucleons,
the off-shellness of the nucleons, presence of non-nucleonic degrees of freedom, and nuclear
shadowing and anti-shadowing, etc. Since we are merely interested in the uncertainty prop-
agation of data in this paper, we shall apply eq. (3.5) as an effective method to extract
neutron results out of 3He data without including the presence of non-nucleon degrees of
freedom and nuclear shadowing and anti-shadowing effects, etc. Considering the precision
of the data expected in the future electron-ion colliders, one has to use the convolution
approach, instead of the effective method, to include all other nuclear effects in order to
obtain the correct central value of the neutron results [32]. This would require dedicated
theoretical and experimental effort in the EIC era.

In the following discussion, the data sample for electron-proton and electron-3He (ef-
fective neutron) collisions are both assumed to be 50 fb−1, respectively. In this scenario,
while discussing the impact of different data subsets, without mentioning proton or neu-
tron data explicitly, for example “EicC(50 fb−1)DIS” or “EicC(50 fb−1)SIDIS”, it means
100 fb−1 of data (50 fb−1 e-p + 50 fb−1 e-3He collisions).

– 7 –
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4 Description of the impact study using ePump

In this section, we discuss how to quantitatively study the impact of new (pseudo) data on
updating the existing PDF sets. After briefly reviewing various methods for this type of
study, we discuss how to convert a Monte Carlo PDF set to a Hessian PDF set. Following
that, the Hessian profiling method will be discussed and applied to the pseudo-data to
carry out the impact study.

The two commonly-used methods for extracting PDFs and their uncertainties from
a global analysis of high-energy scattering data are the Monte Carlo method, used by
NNPDF [36], and the Hessian method, used in CT14HERA2 [37, 38], for example. In the
Monte Carlo method, a statistical ensemble of PDF sets is provided, which are assumed to
approximate the probability distribution of possible PDFs, as constrained from the global
analysis of the data. In the Hessian method, a smaller number of error PDF sets are
provided along with the central set which minimizes the χ2-function in a global analysis.
These error PDF sets correspond to the plus and minus eigenvector directions in the space of
PDF parameters, which are used to approximate the χ2-function near its global minimum.

An understanding of uncertainties due to PDFs is crucial to precision studies of the
standard model, as well as to searches for new physics beyond the standard model at
lepton-hadron and hadron-hadron colliders. In turn, new measurements of standard model
processes can be used to constrain the uncertainties of PDFs. The most complete method
for obtaining constraints from the new data on the PDFs would be to add the new data into
the global analysis package and to do a full re-analysis on the PDFs. However, this is im-
practical for most users of PDFs. A technique for estimating the impact of new data on the
PDFs, without performing a full global analysis, is extremely useful. In the context of the
Monte Carlo PDFs, the PDF reweighting method has become commonplace. This involves
applying a weight factor, which is dependent on the new data and the theory predictions,
to each of the PDFs in the ensemble [39–41] when performing ensemble averages. Because
the weight factor for some of the PDFs in the ensemble may be small, the effective number
of PDFs in the ensemble is reduced. Therefore, the number of initial PDF replicas in the
ensemble must be increased to get sufficient statistics in the reweighted averages. How-
ever, this may not be always sufficient to guarantee a successful outcome of the reweighting
method. In the case of particularly significant data improvements the effective number of
replicas surviving the reweighting procedure can drop down to a few dozens or less, and
any statistical value of the reweighted replica set is therefore lost. For instance, this is
what was observed in [19] when attempting to assess the impact on DSSV14 PDFs [42] of
semi-inclusive deep inelastic scattering off helium at the future U.S.A. Electron-Ion Col-
lider. In that specific case, they have observed the failure of the reweighting method and
stressed the need for a new fit.

To overcome this possible limitation, it is also possible to estimate the impact of new
data directly using the so-called “Hessian profiling” [16, 17, 43, 44] method to update the
existing Hessian PDF sets. The advantage of this Hessian updating method over the Monte
Carlo reweighting method is that it directly works with the (smaller set of) Hessian PDFs,
and it is a simpler and a much faster way to estimate the effects of the new data. This
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method directly calculates the minimum of the updated χ2 function within the Hessian
approximation.

In this work, the software package ePump (error PDF Updating Method Package) [16,
17], which can update any given set of Hessian PDFs obtained from an earlier global
analysis, was used. Although the DSSV14 PDFs were presented as Monte Carlo sets, we
can apply the package MC2Hessian [45] to produce an equivalent Hessian set, which will be
named as DSSV14H in this work. The details of this conversion will be discussed below.
After that, one is able to use the ePump package to estimate the impact of new (pseudo)
data on updating the DSSV14H Hessian PDFs. A few similar studies, but for unpolarized
PDFs, can be found in refs. [46–48].

4.1 A Hessian representation for Monte Carlo PDFs

In this subsection, a brief overview of the methodology employed by the MC2Hessian pack-
age to generate a reliable Hessian representation from a PDF Monte Carlo (MC) replica set
will be presented, followed by its application in our specific case for the DSSV14 PDF set.

PDFs extracted using Monte Carlo methods are given in terms of an ensemble of
functions, called “replicas”, which form a discrete representation of the probability distri-
bution describing the PDF functional space for a given set of experimental data. Although
the probabilistic interpretation of PDFs’ “best-fit” and “uncertainties” as the mean and
standard deviation of the replica distribution is in this case straightforward, Monte Carlo
methods usually do not require optimizing the end number of replicas describing a specific
PDF set. As a consequence, PDFs are often given in terms of a large number of replicas
which may be strongly correlated with each other. In such a case, it has been shown [49]
that it is possible to find an equivalent representation of the PDFs using a smaller subset
of the original replicas. This also implies that, for a sufficiently large number of replicas
{f (k)
α }k=1,...,Nrep , where α = 1, . . . , Npdf runs over the type of quarks, antiquarks, and the

gluon PDFs, one may be able to describe the Monte Carlo sample as a linear combination
of a suitably chosen subset of replicas {η(i)

α }i=1,...,Neig ⊂ {f
(k)
α }:

f (k)
α ≈ f (k)

H,α ≡ f
(0)
α +

Neig∑
i=1

a
(k)
i

(
η(i)
α − f (0)

α

)
, (4.1)

where f (0)
α denotes the average value of the original replica set, a(k)

i are constant coefficients,
and f (k)

H,α is the linear representation of the original replica f (k)
α .

As one can see more in detail hereinafter, given such replica basis, it is possible to
produce a Hessian representation of the original PDF set in the space of linear expansion
coefficients a(k)

i . However, the deviation of the Hessian representation from the original
MC sample ends up being proportional to the deviation from the gaussianity of the start-
ing probability distribution. This might be the case for specific kinematic regions (such
as small-x and large-x) where limited experimental data are available and the PDF un-
certainties are determined mainly by theoretical constraints. Nonetheless, for most cases,
where PDF uncertainties are driven by copious experimental data, gaussianity is a reason-
able approximation and the described strategy turns out to be a reliable way to convert
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MC PDF sets into Hessian PDF sets. From a practical point of view, this is achieved by
choosing the optimal {η(i)

α }i=1,...,Neig and determining the parameters {a(k)
i }.

In order to get the coefficients {a(k)
i }, starting from the covariant matrix in the PDF

functional space

covpdf
ij,αβ ≡

Nrep
Nrep−1

(〈
f (k)
α (xi,Q2

0)·f (k)
β (xj ,Q2

0)
〉

rep
−
〈
f (k)
α (xi,Q2

0)
〉

rep

〈
f

(k)
β (xj ,Q2

0)
〉

rep

)
,

(4.2)
where the averages are calculated over the original Nrep replicas, one can define a figure
of merit

χ
2(k)
pdf ≡

Nx∑
i,j=1

Nf∑
α,β=1

([
f

(k)
H,α

(
xi,Q

2
0

)
−f (k)

α

(
xi,Q

2
0

)]
·
(
covpdf

)−1

ij,αβ
·
[
f

(k)
H,β

(
xj ,Q

2
0

)
−f (k)

β (xj ,Q2
0)
])
,

(4.3)
where Nx runs over the number of sampling of a discretized x-grid.

The coefficients {a(k)
i } are obtained by minimization of eq. (4.3) using Singular Value

Decomposition techniques. The Hessian representation of the original replica set is obtained
by computing the following co-variant matrix,

cov(a)
ij = Nrep

Nrep − 1

(〈
a

(k)
i a

(k)
j

〉
rep
−
〈
a

(k)
i

〉
rep

〈
a

(k)
j

〉
rep

)
, i, j = 1, . . . , Neig . (4.4)

and calculating the Hessian matrix, defined as the diagonalized inverse matrix
(
cov(a)

ij

)−1
.

If we define vij to be the rotation matrix used to diagonalize
(
cov(a)

ij

)−1
and λi the set of

obtained eigenvalues, the PDF uncertainties can be expressed as

σPDF
H,α

(
x,Q2

)
=

√√√√√Neig∑
i=1

Neig∑
j=1

vij√
λi

(
η

(j)
α (x,Q2)− f (0)

α (x,Q2)
)2

, (4.5)

whereas the Neig symmetric Hessian eigenvectors describing the original Monte Carlo sam-
ple are given by

f̃ (i)
α

(
x,Q2

)
= f (0)

α

(
x,Q2

)
+
Neig∑
j=1

vij√
λi

(
η(j)
α

(
x,Q2

)
− f (0)

α

(
x,Q2

))
. (4.6)

Using eq. (4.6), eq. (4.5) yields

σPDF
H,α

(
x,Q2

)
=

√√√√Neig∑
i=1

(
f̃

(i)
α (x,Q2)− f (0)

α (x,Q2)
)2
. (4.7)

A successful determination of {a(k)
i } implies that eq. (4.7) should yield similar results as

the one-sigma PDF of the Monte Carlo representation defined as

σPDF
α (x,Q2) =

√〈(
f

(k)
α (x,Q2)

)2
〉

rep
−
〈
f

(k)
α (x,Q2)

〉2

rep
. (4.8)
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To determine the optimal set of {η(i)
α }i=1,...,Neig , MC2Hessian utilizes a Genetic Algo-

rithm (GA) to optimize an “estimator” defined as

ERFσ =
Nx∑
i=1

Npdf∑
α=1

∣∣∣∣∣σ
PDF
H,α

(
xi, Q

2
0
)
− σPDF

α

(
xi, Q

2
0
)

σPDF
α

(
xi, Q2

0
) ∣∣∣∣∣ , (4.9)

for a fixed value of Neig. A detailed discussion of the specific GA is beyond the scope of
this paper and we refer the reader to the original work [45].

The package has an additional optimization parameter defined as

εα
(
xi, Q

2
0

)
=
∣∣σα (xi, Q2

0
)
− σ68

α

(
xi, Q

2
0
)∣∣

σ68
α

(
xi, Q2

0
) , (4.10)

where σα(xi, Q2
0) and σ68

α (xi, Q2
0) are respectively the one-sigma and 68% confidence level

intervals for the α-th PDF which allows to discard points on the x-grid for which the
gaussian approximation deviates more than a threshold value ε, i.e. εα(xi, Q2

0) < ε.
For the purpose of this paper, the MC2Hessian has been applied to the DSSV14 PDF

set [42], which, from its original analysis, is given in the form of Nrep = 1000 Monte Carlo
replicas. Among the consistency checks of the PDF Monte Carlo extraction, the DSSV
collaboration has performed a comparison between the provided Monte Carlo sample and
a version of the same analysis with error bands produced using the Lagrange Multiplier
procedure. Similar to the Monte Carlo procedure, this method allows dropping the re-
quirement of a linearized error analysis, typical of the Hessian representation. However,
uncertainties bands are defined in terms of a tolerated increase in the χ2, denoted “tol-
erance” ∆χ2. For normal (Gaussian) errors a 68% Confidence Level (CL) band would
correspond to a tolerance ∆χ2 = 1. In the context of PDF fits, a deviation from this
standard textbook value is usually employed to cope with neglected uncertainties which
cannot be quantified and included in the analysis, such as possible tensions among data
sets included in a global analysis. It is interesting to notice that in their comparison, they
achieve a good agreement between the two extracted sets by setting ∆χ2 ∼ 10−15. As the
resulting one-sigma variance from the Monte Carlo replica method has a solid probabilis-
tic interpretation, the corresponding comparable error band for the Lagrange Multiplier
method with ∆χ2 ∼ 10− 15 shares the same interpretation.

Following the logic of the methodology described above, this may suggest that the devi-
ation from the Gaussian distribution could end up spoiling our attempt to use MC2Hessian
to convert DSSV14 into a Hessian representation. However, we have performed the con-
version for different values of Neig and ε at Q2

0 = 1GeV2, and have found great agreement
in the range 0.001 < x < 0.9, useful to our analysis, for a value of Neig = 52. This leads to
a total of 104 error PDF sets, with symmetric error in both positive and negative eigenvec-
tor directions away from the central PDF set. Below, we refer to this set of PDFs as the
DSSV14H Hessian PDFs. Moreover, no limitation on the parameter ε was found, which
means no x-grid points are eliminated during the conversion according to the gaussianity
condition εα(xi, Q2

0) < ε. Figure 3 shows a direct comparison between the two represen-
tations; one is the original DSSV14 MC replica set, and another is the derived DSSV14H
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Figure 3. PDFs plots of DSSV14 representative distributions in different formats. The DSSV14MC
is the original DSSV14 in form of 1000 Monte Carlo replicas; the DSSV14H is the DSSV14 in form
of symmetric Hessian sets with 52 eigenvector pairs. The PDFs uncertainties of DSSV14 in different
forms agree with each other.

Hessian set. The difference between representations is below the per-mil level which is
more than sufficient for the scope of this work. Hereafter, we shall only consider DSSV14H
Hessian PDFs, which will also be referred as DSSV14 interchangeably.

4.2 A brief review of the Hessian profiling method

The error PDFs and the PDF-induced uncertainty of theoretical calculations can be effec-
tively calculated by using the Hessian method. In order to find the Hessian eigenvector
pairs of PDF sets (i.e., error PDFs) after the inclusion of new data sets, a full global fit
is needed so that one can evaluate variations of PDFs around the best-fit with respect to
PDF parameters. Since a full global fit might be complicated and time-consuming, one may
desire a faster and simpler approach to estimate the impact of a new data set. Paukkunen
and Zurita [43] introduced a method that utilizes the Hessian eigenvector set to study the
impact of the new data input. This method has been implemented in the software package
ePump [16], which we used in this study. In this subsection, we briefly review some details
of this method.

Consider a new data set for the measurement of the observable X with Npt data points.
Let’s denote its experimental values as XE

i , the inverse of its covariance matrix for the
correlated experimental errors as C−1

ij , and the corresponding theoretical prediction values
XT
i , which depend on N diagonalized PDF parameters {z±r } = {0, . . . , zr = ±1, . . . , 0}.
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With the inclusion of this new data set, the variation of the total χ2 becomes,

∆χ2
new = χ2

old +
Npt∑
j,k=1

(
XE
j −XT

j (z)
)
C−1
jk

(
XE
k −XT

k (z)
)
, (4.11)

where χ2
old = T 2∑N

r=1 z
2
r and T is the tolerance parameter. In practice, the deviation in a

particular eigenvalue direction zr is limited by the Dynamical Tolerance, T±r , at the given
confidence level. So the parameters take the values z±r = ±T±r /T . But for simplicity, we
will ignore the Dynamical Tolerance dependence in the discussion. For more detail, refer
to refs. [16, 17].

The new total χ2 can be rewritten by expanding the XT
j (z) up to the linear term,

∆χ2
new =

Npt∑
j,k=1

(
XE
j −X

T,0
j

)
C−1
jk

(
XE
k −X

T,0
k

)
+T 2

 N∑
m=1

z2
m+

N∑
m,n=1

zmM
mnzn−2

N∑
m=1

Amzm

 ,
(4.12)

where we define a vector A and a matrix M such that,

Mmn =
Npt∑
j,k=1

XT,m
j C−1

jk X
T,n
j , (4.13)

Am = 1
T

Npt∑
j,k=1

(
XE
j −X

T,0
j

)
C−1
jk X

T,m
k . (4.14)

With new information of PDFs being introduced by the new data set, the PDFs parameters
are then driven to the updated values. By minimizing eq. (4.12), the updated central values
of parameters can be found,

z0
n

update−−−−→ z0
n =

N∑
m=1

(
I +M

)−1
mn
Am. (4.15)

Then, the r-th new eigenvector and its corresponding eigenvalue are

N∑
n=1

MmnU rn = λrU rm, (4.16)

N∑
m=1

U rmU
s
m = δrs. (4.17)

With the inclusion of new information, the Hessian eigenvalue directions are also updated
from the set of old bases z to a new set of bases z′. By diagonalizing the quadratic terms
of the eq. (4.12), the new parameters are

z′r =
√

1 + λr

N∑
m=1

U rmzm. (4.18)
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Consider another observable Y = Y (z) whose PDF-induced uncertainty is constructed by
the Hessian eigenvector sets. After the inclusion of the new data set Xi, the central value
of Y (z) is updated to

Y 0
new = Y 0

old +
N∑
s=1

z0
s∆Y s, (4.19)

where ∆Y s = (Y s,+ − Y s,−)/2. The extreme values of Y for the new r-th eigenvector can
be calculated in a similar manner as in eq. (4.18),

Y ±rnew = Y 0
new + 1√

1 + λr

N∑
s=1

U rs

(
Y s,± − Y 0

)
. (4.20)

Notice that we can of course choose the Y to be the PDFs f(x,Q0). In this case, eq. (4.19)
and eq. (4.20) stand for the updated central value and the error set of PDFs. This procedure
is referred as ePump-updating, and is implemented in the ePump package.

To quantitatively summarize in a single value the change in the best-fit PDFs after the
new data has been added to the global fit, the measure d0 was introduced in ref. [16] as

(d0)2 =
N∑
r=1

(
T

Tr
z0
r

)2
, (4.21)

where, again, the dynamical tolerance Tr limits the deviation in the particular (r-th) eigen-
vector direction. To be precise, d0 is the length of the shift of the best-fit point in parameter
space, relative to the 90% confidence level (C.L.) boundary of the original PDFs. Thus,
d0 = 1 means that the new best-fit touches the 90% C.L. boundary, while a value of d0 � 1
implies a very small change to the best-fit PDFs. One should note that d0 only reflects
the change in the best-fit PDFs, so that it is still possible for the new data to produce a
significant reduction in the PDF error bands, even if d0 is small. A value d0 > 1 would
indicate that either there is tension between the new data and the original data, or else
the uncertainties in the original global analysis were under-estimated [16].

4.3 A brief review of the data set rediagonalization

In the previous subsection, it has been discussed in detail that the PDF uncertainty can be
effectively expressed in terms of a Hessian set, and that the impact of the measurement for
a new observable is also easily accessible with the updating method. These methods are
frequently used in the analyses of the PDF uncertainty with respect to experimental errors
or kinematical cuts. Although they are straightforward conceptually and well-applicable
numerically, repeated exercises for a Hessian set with a large number of error PDFs would
still be time-consuming. It would be more convenient if one can reproduce the majority
of the PDF dependence for given observables with a reduced Hessian set, so that it is not
necessary to repeatedly evaluate all of the error PDFs, but a smaller number of them. The
members of this optimized Hessian set are chosen in such a way that the combination of
them recovers the PDF uncertainty for the observables to any desired precision.

The idea of this optimization method is based on the data set diagonalization procedure
by Pumplin [50]. Noting that the representation of the diagonalized parameters z is not
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unique, one could take the advantage of this freedom to rotate the diagonalized parameters
z into a new set of parameters z′ where the PDF sensitivity for a given data set is maximized
on a certain direction. Note that the given data set may or may not be included in the
original global fit, and that the optimized eigenvectors after the rotation contain exactly
the same information as the original eigenvectors do.

Our goal is to find a direction on which the variation for a set of observables Xi(z),
where i runs from 1 to Npt, from its best-fit values X0

i = Xi(0) is maximized. Therefore,
we define the following function,

S(z, λ) =
Npt∑
i=1

1
T 2

(
Xi(z)−X0

i

)2
− λ

(∆χ2(z)
T 2 − 1

)
, (4.22)

where λ is the Lagrange multiplier. To simplify the expression, let’s again take the usual
approximation and expand Xi(z) up to the linear terms,

S(z, λ) =
N∑

r,s=1
zrMrszs − λ

(
N∑
i=1

z2
r − 1

)
, (4.23)

where

Mrs =
Npt∑
i=1

Xr
iX

s
i , (4.24)

and as defined before the Xr
i = (Xr,+

i −Xr,−
i )/2. The matrix Mij is normalized in such a

way that Tr{M} = Npt. The extreme values of S(z, λ) appear when the equality ∂S/∂zr =
0 holds for all Hessian indices r. Therefore the optimized parameters can be found by
solving the eigenequation, (

Mrs − λδrs
)
zs = 0. (4.25)

If we rediagonalize the matrix M by

N∑
r=1

MrsU
t
r = λtU ts, (4.26)

N∑
t=1

U trU
t
s = δrs, (4.27)

we can find a new set of parameter z′ in the rediagonalized space,

z′r =
N∑
s=1

√
λrU rs zs, (4.28)

The rediagonalized error PDF is calculated as usual,

f±r = f(0) +
N∑
s=1

U rs

(
f(z′s

±)− f(0)
)
. (4.29)

For the old parameters z, we do not discriminate among N Hessian eigenvalue di-
rections, since when diagonalizing the Hessian matrix, we have already normalized the

– 15 –



J
H
E
P
0
8
(
2
0
2
1
)
0
3
4

orthogonal bases by their corresponding eigenvalues. But for the rediagonalized parame-
ters z′, each of new eigenvalue directions z′r is associated with its corresponding eigenvalue
λr of the error matrixM for the interested observable X. The eigenvalue λr provides useful
information that reflects how much this rediagonalized direction z′r is sensitive to the given
observable X. Since the matrix M is normalized in a way that Tr{M} = Npt, we have∑
r λ

r = Npt. Therefore, one is able to quantify how many data points of the set Xi are
particularly constraining a specific direction z′r. If a rediagonalized error PDF has a small
eigenvalue λr, one can draw a conclusion that no data points in the set Xi are sensitive
to this rediagonalized direction z′r. Thus, one can ignore the error PDFs in this direction
without a significant loss of accuracy. This procedure of the data set rediagonalization is
referred as the ePump-optimization procedure, and is implemented in the ePump package.

4.4 Updating the PDFs with pseudo data

In our analysis, the quantitative study to update the DSSV14H Hessian PDFs with the
EicC new (pseudo) data is done by using the above detailed Hessian updating method,
via ePump. In order to perform the analysis, ePump requires two sets of inputs: data
templates and theory templates. The data templates consist of the new experimental data
values and their statistical and systematic uncertainties, including correlations, exactly as
what would be included in a standard global analysis. The theory templates consist of
the corresponding theory predictions for the same observables, evaluated using the central
PDF and each of the DSSV14H Hessian eigenvector PDFs. Note that any number of new
data sets can be included in the update by ePump. The output of ePump consists of an
updated central and Hessian eigenvectors PDFs, which approximate the result that would
be obtained from a full global re-analysis that includes the new data. As an additional
benefit, ePump can also directly output the updated predictions and uncertainties for any
other observables of interest (such as the cross-section in the signal region), without the
necessity to recalculate them using the updated PDFs. More details about the use of ePump
can be found in refs. [16, 17].

The theory predictions have been generated according to the NLO formulae discussed
in section 2 expressed in the standardMS factorization scheme. To include data from both
proton and neutron targets in the analysis, we shall apply SU(2) proton-neutron isospin
symmetry and impose ∆u neutron = ∆d proton, ∆ū neutron = ∆d̄ proton, ∆d neutron = ∆u proton

and ∆d̄ neutron = ∆ū proton. We have also set all renormalization and factorization scales
µ2 = Q2. Factorization scale and scheme dependence investigations are well beyond the
scope of this analysis. However, it may be a very interesting factor to include in the error
analysis of future global extractions of PDFs, once the real EicC data will become available.
Another source of theoretical errors that we defer to future studies is the fragmentation
function uncertainties. In the case of parton-to-pion fragmentation functions, it has already
been shown [51] that the inclusion of such systematic errors produces effects of at most
a few percent level. However, due to the lower rate of production of kaons in respect to
pions, and a consequent lower precision of kaon SIDIS data, uncertainties for parton-to-
kaon fragmentation functions are generally larger compared to the respective pion ones (see
for example [52] and references therein). Analyses such as [53] suggest that future electron-
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ion collider SIDIS data will have a remarkable impact on the kaon fragmentation functions.
On the other hand, it is also argued that in order to use the future rich information of
the high precision SIDIS data to extract parton and fragmentation distribution functions
with reliable uncertainties, a simultaneous fitting of PDFs and FFs is needed in order
to disentangle the highly correlated set of parameters describing them [54–56]. In fact,
traditional methods of global fitting of FFs using SIDIS data fix a specific PDF set as a
baseline and account for their error by propagating them into the FFs themselves. This
introduces a non-trivial correlated double-counting effect when such FFs are used to extract
PDFs and their uncertainties. For example, in [54] when performing a reweighting of PDFs
using SIDIS data, it has been shown how explicitly choosing to include (or not to include)
current kaon FF uncertainties [52] extracted with traditional methods results in an under
(or over) estimation of the PDF uncertainties. Solving this conundrum will definitely be
a task of the more sophisticated simultaneous PDFs and FFs fitting machinery once real
SIDIS data with precision comparable to the inclusive case are available. For the time being
and for the scope of this article we want to concentrate on the effect of EicC future data
solely on helicity PDFs. Hence, we choose not to include FFs uncertainties in our analysis
and to use only the central “best-fit” values of DSS [57]. Our results may be biased by this
assumption and have to be taken as the “best possible outcome” in the future case where
pion and, in particular, kaon FFs will be known at very high precision.

The data templates have been constructed using the uncertainty calculations of the
pseudo-data according to section 3, cf. eq. (3.4). However, the fit using ePump requires a
central value of the experimental observable as well. The central value of the asymmetry
A1, cf. eq. (2.7), for each data point, was taken from the theory tables after a smearing
procedure with a Gaussian distribution centered at 0 and a standard deviation equal to
the estimated A1 uncertainty of the pseudo-data. This ensures a reasonable estimation of
the central value of A1 while not affecting the χ2 artificially during the fit.

Lastly, the tolerance value for the ePump updating has been set to be ∆χ2 = 10, which
is of the same order of magnitude as the tolerance used in the DSSV14 analysis when
studying the uncertainties via means of the Lagrange multiplier’s method.

In total, ten pairs of theory-data templates have been prepared for this analysis: two
for DIS process, one for electron-proton collision and one for electron-neutron collision, and
eight for SIDIS process which corresponds to each combination of the two possible nucleon
targets (proton or neutron) and the four observed final state hadrons (π± or K±). In the
original DSSV14 analysis they also included data with charged hadrons as the final state.
For the purpose of this study, we concentrate only on the final states of known flavour
content as this is very helpful to investigate the impact of specific data sets on the flavour
content of the proton (neutron) target.

4.5 Updated PDFs and their moments

In the following, the results of the ePump updating procedure will be presented. All the
results are presented at Q2 = 10GeV2 with uncertainties given at 68% CL.

Figure 4 shows the impact of DIS and SIDIS EicC pseudo-data on the parton helicity
distributions, separately. As a general remark, all plots show a larger constraining power

– 17 –



J
H
E
P
0
8
(
2
0
2
1
)
0
3
4

x
*

∆
u

(x
,Q

)

x

∆u(x,Q) at Q
2
 =10.0 GeV

2
 68%C.L.

DSSV14

DSSV14+EicC50fb
-1

DIS
DSSV14+EicC50fb

-1
SIDIS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10
-4

10
-3

10
-2

10
-1 0.2 0.5 0.9

x
*

∆
d

(x
,Q

)

x

∆d(x,Q) at Q
2
 =10.0 GeV

2
 68%C.L.

DSSV14

DSSV14+EicC50fb
-1

DIS
DSSV14+EicC50fb

-1
SIDIS

-0.15

-0.12

-0.09

-0.06

-0.03

0.00

0.03

0.06

10
-4

10
-3

10
-2

10
-1 0.2 0.5 0.9

x
*

∆
– u

(x
,Q

)

x

∆
–
u(x,Q) at Q

2
 =10.0 GeV

2
 68%C.L.

DSSV14

DSSV14+EicC50fb
-1

DIS
DSSV14+EicC50fb

-1
SIDIS

-0.02

0.00

0.02

0.04

10
-4

10
-3

10
-2

10
-1 0.2 0.5 0.9

x
*

∆
– d

(x
,Q

)

x

∆
–
d(x,Q) at Q

2
 =10.0 GeV

2
 68%C.L.

DSSV14

DSSV14+EicC50fb
-1

DIS
DSSV14+EicC50fb

-1
SIDIS

-0.04

-0.02

0.00

0.02

10
-4

10
-3

10
-2

10
-1 0.2 0.5 0.9

x
*

∆
s(

x
,Q

)

x

∆s(x,Q) at Q
2
 =10.0 GeV

2
 68%C.L.

DSSV14

DSSV14+EicC50fb
-1

DIS
DSSV14+EicC50fb

-1
SIDIS

-0.01

0.00

0.01

0.02

10
-4

10
-3

10
-2

10
-1 0.2 0.5 0.9

x
*

∆
g

(x
,Q

)

x

∆g(x,Q) at Q
2
 =10.0 GeV

2
 68%C.L.

DSSV14
DSSV14+EicC50fb

-1
DIS

DSSV14+EicC50fb
-1

SIDIS

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

10
-4

10
-3

10
-2

10
-1 0.2 0.5 0.9

Figure 4. Results on the uncertainty band of polarized quark and gluon distributions after a
next-to-leading order fit by including EicC pseudo-data. The light blue band represents the orig-
inal DSSV14 global fit. The red (green) band shows the results by adding EicC DIS (SIDIS)
pseudo-data.

of some degree of SIDIS data (green areas) compared to DIS data (red areas). The small
impact difference between the two types of data on the ∆u distribution is to be expected
as ∆u is already the most constrained flavour distribution by the already available high
precision proton inclusive data. On the other hand, the largest difference between the effects
of including DIS versus SIDIS data can be seen in the sea quark distributions (∆ū, ∆d̄ and
∆s) over the whole x-range spanned by the pseudo-data, down to about x = 0.005. The
ability of the EicC machine to pin down the sea distributions through the SIDIS process is
a core feature around which the accelerator is being designed. Our result shows the benefit
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of using EicC SIDIS data to determine the sea quark distributions for which the impact of
DIS pseudo-data only accounts with a minor or zero reduction of the PDF uncertainties.
For ∆u and ∆d, the largest uncertainty reduction happens around x = 0.2 which is the
region where the valence quarks are expected to contribute the most to the proton and
neutron flavour content.

The EicC is not specifically planned to investigate the small-x gluon distribution. A
better machine suited for this purpose will be the future Electron-Ion Collider planned in
the U.S.A. (EIC). Nonetheless, we show in figure 4 that both DIS and SIDIS EicC pseudo-
data are able to reduce the uncertainties on ∆g for 10−3 . x . 4 × 10−2. The reduction
of the uncertainties below the pseudo-data range x . 10−3 that we can observe in both
∆s (the green grid part) and ∆g (the red and green grid parts) can be sourced back to
assumptions made in the original DSSV14 analysis. Among those, the most stringent ones
are the initial parametrization bias of the helicity PDFs, and, in particular for ∆s, the
hyperon β-decay constraints that will be discussed later on in this section.

To study the difference of the impact between the proton and neutron target pseudo-
data, in figure 5 the uncertainty bands for the first 5 plots are presented as a difference
with their respective central values, meaning that the uncertainty bands for the origi-
nal DSSV14H (light-blue), the DSSV14H including proton pseudo-data (green) and the
DSSV14H including neutron pseudo-data (red) are always centered along the zero axis. In
the last row of figure 5(b), the error bands of ∆u and ∆d are presented as ratios to central
values for better visualization of percentage uncertainties.

For both DIS (figure 5(a)) and SIDIS (figure 5(b)), the proton data are able to constrain
the ∆u distribution better compared to the neutron data. This is consistent with a quark
model picture in which the proton content is dominated by the u quarks whereas the
neutron content by the d quarks. This can be observed more in detail in figure 5(b),
where this behavior remains the same for ∆ū and is accordingly inverted for the ∆d and
∆d̄ distributions. More significantly, it shows the importance of including both SIDIS
neutron and proton target data in order to efficiently constrain the up and down quark
and anti-quark distributions.

In figure 6 the impact of SIDIS pion pseudo-data (green) versus SIDIS kaon pseudo-
data (red) is shown in the same type of difference plot for the ∆s distribution. Since the
flavour content of kaon mesons is dominated by strange quarks, identifying kaons in the
final state effectively “tags” the strange quarks scattering out of the target. Hence, the
SIDIS kaon data are able to better constrain ∆s in respect to SIDIS data with non-strange
final state hadrons such as pions. Moreover, comparing with figure 4 we notice that the
∆s is further constrained after including the pion data on top of the kaon data. This is
due to the correlation between ∆u, ∆d and ∆s introduced by the relation imposed in the
DSSV14 analysis that we discuss further down in eq. (4.30).

As shown in figures 4–6, the EicC pseudo-data can effectively constrain the polarized
PDFs, namely, their error bands have been significantly reduced. As for the changes of
PDFs’ central values after the updates, we have calculated the measure d0 defined in
eq. (4.21) and list them in table 1. The fact that none of those d0 values is greater than
one indicates that the ePump-updating provides a reasonable fit, cf. section 4.2. This result
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(b) SIDIS pseudo-data

Figure 5. Results on the uncertainty band of polarized quark and sea quark distributions after
a next-to-leading order fit by including EicC pseudo-data. The light blue band represents the
original DSSV14 global fit. The red (green) band shows the results by adding EicC neutron (proton)
pseudo-data. The error bands in the first 5 plots are presented in the format of absolute differences
comparing to the central values in figure 4, while in the last row the error bands of ∆u and ∆d are
presented as ratios to central values for better visualization of percentage uncertainties.
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Figure 6. Results on the uncertainty band of polarized strange quark distribution after a next-
to-leading order fit by including EicC pseudo-data. The light blue band represents the original
DSSV14 global fit. The red (green) band shows the results by adding EicC SIDIS K (SIDIS π)
pseudo-data.

ePump update d0 ePump update d0

EicC SIDIS 0.88 EicC DIS 0.50
EicC SIDIS proton 0.89 EicC DIS proton 0.45
EicC SIDIS neutron 0.64 EicC DIS neutron 0.34
EicC SIDIS pion 0.68 EicC SIDIS kaon 0.59

Table 1. The d0 measures, defined in the eq. (4.21), for various ePump update analyses.

is expected by the construction of the pseudo-data, discussed in section 3. Although this
measure is a powerful tool to quantify the shift of the central value due to a new set of
data, in the contest of pseudo-data it cannot act as a physically meaningful prediction of the
shift on the best-fit that will result when real experimental data are used. Pseudo-data are
constructed such that they embed a faithful estimate of the future EicC data uncertainties
but they have an unknown degree of deviation from the future actual experimental data
central values. For this reason, any definitive statement on central-value shifts has to be
postponed for when updating will be possible with the EicC real experimental data.

Quantities of particular interest in the field are the moments of the singlet combination
∆Σ, i.e. the sum over all flavour PDFs (see appendix A), and the gluon distribution. More
specifically, their first moment, i.e. their integral over the parton momentum fraction, has
a simple interpretation as the net quark and gluon contribution to the proton spin.

The impact of the EicC pseudo-data on such quantities is shown in figure 7, where the
correlated uncertainties of the truncated first moment of the gluon and singlet distribution
are depicted in a two-dimensional plot at Q2 = 10 GeV2. The lower truncation of the
integral is set to xmin = 0.005, which corresponds to the theoretical lower momentum
fraction accessible to the future EicC machine and, consequently, below which pseudo-data
have not been generated for this analysis. Trying to investigate the spin contribution to
the proton from quarks and gluons with smaller momentum fraction by stretching our
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analysis beyond this lower threshold, would return biased results only constrained by the
original DSSV14 assumptions such as the choice of the initial parametrization form or
the continuity, integrability, and positivity (i.e. |∆q| < q) requirements of the helicity
distributions. However, lower values of xmin will be accessible from the future EIC and
analyses using EIC pseudo-data down to xmin ∼ 10−5 such as [19] have been performed.
In that specific study, they have also extended their integration from xmin ∼ 10−5 down
to xmin ∼ 10−6 and observed that the integrals tend to saturate quite early, suggesting
a picture where very low-x partons become unpolarized. Independently from whether or
not this feature will be confirmed by the future EIC measurements at very low-x, the
actual allowed central value of the two integrals will be proportional to the precision at
which the distributions are known in the full x-range. In this respect, the EicC acts
as a complementary machine to the EIC by being able to better determine distributions
in the sea-quark region (x & 10−2). The red and blue contours in figure 7 show the
allowed values of the contribution to the integrals, together with their central values, for
x > 5 × 10−3 according to different EicC pseudo-data sets. The black cross and black
contour are, respectively, the central value and the allowed values of the contribution to
the integrals for the same x-region for the actual DSSV14. As can be observed in all plots,
the uncertainty area of the DSSV14 is predicted to be well reduced by the ePump updating
after including EicC pseudo-data.

More in detail, figure 7(a) explicitly shows the higher constraining power of SIDIS
pseudo-data (blue region) in respect to the DIS ones (red region). The shifts on the
respective central values are a consequence of the slight shifts observed for the “sea-quark”
distribution ∆ū. Moreover, the effect of SIDIS pseudo-data on the central value is sizeably
bigger than the effect observed for DIS pseudo-data. As already discussed above, the
particular value of the shift has no real physical meaning in this analysis and depends on
the specifically chosen iteration of the gaussian smearing used to produce the pseudo-data.
Nonetheless, it cannot be excluded that real future EicC data may change the shape of the
gluon and single flavour distribution for the region x > 5× 10−3.

Figures 7(b) and 7(c) show the effect on the integrals for EicC proton and neutron
DIS and SIDIS pseudo-data, separately. Both electron-proton and electron-neutron colli-
sions have been generated with an integrated luminosity of 50 fb−1. However, the neutron
data sample has been obtained from electron-3He collision data through the dilution pro-
cedure described in section 3. The effect of the additional uncertainties introduced in the
neutron data sample, by the required neutron and proton effective polarization values,
can be directly observed for both DIS and SIDIS as a lower constraining power of the
neutron pseudo-data (red regions) in respect to the proton pseudo-data (blue regions).
Moreover, the central values updated with proton and neutron (SI)DIS pseudo-data do
not shift between each other by a significant amount. This is an expected result dictated
by the underlying SU(2) proton-neutron isospin symmetry imposed when calculating the
theoretical tables for this analysis. Future global fitting will be able to lift this assump-
tion by exploiting the ability for precise SIDIS data to discriminate flavours over a large
kinematical range. Actually, the DSSV collaboration already allows deviations from exact
SU(2) and SU(3) flavour symmetries in their analyses in the form of two additional fitting
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parameters εSU(2) and εSU(3). They are inserted in the fitting procedure in order to relax
the constraints coming from the hyperon semi-leptonic β-decay and its implicit flavour
symmetry assumptions, normally imposed in polarized PDFs extractions based on solely
DIS data [57]. More specifically, this translates in various first moments being related by

∆Σ1
u −∆Σ1

d = (F +D) [1 + εSU(2)],
∆Σ1

u + ∆Σ1
d − 2∆Σ1

s = (3F −D) [1 + εSU(3)], (4.30)

where F , D are constants parametrizing the β-decay rates [58] at the input scale µ0 = 1GeV
of the DSSV analysis, and

∆Σ1
q ≡

∫ 1

0
[∆q + ∆q̄](x, µ0) dx, q ∈ {u, d, s}. (4.31)

As eqs. (4.30) and (4.31) show, the precision at which the εSU(2) and εSU(3) param-
eters can be determined are tied together with the accuracy at which the integrals can
be calculated over the full 0 < x < 1 span. Due to the lower kinematical limit lying at
xmin ∼ 10−3, data from the planned EicC machine wouldn’t be sufficient by itself to impose
very strict constraints to the parameters. As for x . 10−3, the integrals in eq. (4.30) would
be strongly biased by the PDF initial parametrization form and only loosely constraint by
general helicity PDFs requirements such as the continuity, integrability, and positivity of
the distributions. However, precise determination of the deviations from flavour SU(2) and
SU(3) from global fitting will be possible and highly improved by taking into account both
future EIC and EicC SIDIS data which, combined, will span over a larger x −Q2 area in
respect to SIDIS world data currently available with unprecedented precision. A study of
the effect of DIS and SIDIS EIC pseudo-data was presented in [19].

The effect of data samples with identified pions and kaons in the final state is shown in
figure 7(d). The larger area delimited by the SIDIS kaon pseudo-data comes from the fact
that larger statistical uncertainties are associated with the kaon pseudo-data as kaons are
produced with a lower rate in respect to pions. In the same plot, we can observe a slightly
different shift of the central values produced by the two data sets. Since in the case of
the SIDIS process different PDFs are weighted with different fragmentation functions, the
different flavour content of the identified final state hadrons is responsible for the dissimilar
shift after ePump updating. The ability for some specific data set to constrain particular
flavour distributions will be discussed in detail in section 4.6.

In addition to the quark and gluon contributions to the proton spin, the remaining
missing part is related to the quark and gluon orbital momentum. (For more on the subject,
see [59] and references therein). In figure 8 we show the net contributions of quarks and
gluons to the proton spin and their cumulative difference with the actual proton spin
value 1/2 as a function of the lower bound xmin used to compute the truncated moments.
In all plots one can observe a clear reduction of uncertainties when including DIS and
SIDIS EicC pseudo-data, with SIDIS data having the larger impact. The tendency for
the central values of the integrals to saturate at low-x shown in figures 8(a) and 8(b) is
compatible with a picture where partons carrying very small momentum fraction x are
mostly unpolarized. However, contributions from partons with lower momentum fraction
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(c) After updating with SIDIS electron-
proton and electron-3He collision pseudo-
data where the identified hadrons are pions
or kaons.
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(d) After updating with SIDIS pseudo-data
for identified pions and kaons in the final
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Figure 7. Correlation contour between 1
2
∫ 1

xmin
∆Σdx and

∫ 1
xmin

∆gdx. The black contour shows
the correlation with DSSV14 PDFs. The red and blue contours show the correlation with DSSV14
PDFs after ePump updating by using different EicC DIS and SIDIS pseudo-data. In all data sets
the integrated luminosity for EicC pseudo-data is 50 fb−1 for e-p collisions and 50 fb−1 for e-3He
collisions. See text for detailed discussion.

than x ∼ 10−3 may still contribute to the proton spin, in which case the above picture
could result to be incorrect. At the moment, the huge uncertainties associated with the
∆g distribution at low-x is still the main limiting factor in order to state a more definitive
conclusion on the matter. The US EIC will be the perfect machine to precisely pin down
the low-x ∆g. On the other hand, the EicC is planned to explore that complementary part
of the phase space particularly suited for a better determination of the “sea-quark” sector.
This becomes apparent if we observe the significant uncertainties’ reduction on the quark
spin contribution in figure 8(a), which extends from xmin ∼ 10−3 up to high xmin values.
In contrast, in figure 8(b) we observe a much lower impact to the uncertainties, which is
almost entirely relegated to the xmin . 10−2 region of the plot.

Nonetheless, this exercise shows, once again, the importance of including the informa-
tion coming from the SIDIS process when it comes to precision extraction of both gluon
and quarks helicity distribution functions and their moments.
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(c) Difference between the proton spin 1/2
and the net spin contribution of partons as a
function of xmin

Figure 8. Central values and uncertainty limits for the net spin contribution of gluons, quarks
and other sources as a function of their minimum momentum fraction xmin. The limit imposed
by the original DSSV14 analysis is given in light-blue. The results including EicC DIS (SIDIS)
pseudo-data are shown in red (green).

Finally, figure 8(c) shows the evolution of the missing contribution to the proton spin
as we consider contributions from partons with smaller and smaller momentum fraction
x in the computation of the integrals. The central value of the quantity shown in the
plot seems to saturate asymptotically for small-x, with the SIDIS data having a greater
constraining effect on the uncertainties in respect to DIS data. In the assumption that all
missing proton spin comes exclusively from the quark and gluon orbital momentum and
that partons with x . 10−3 are mostly unpolarized (i.e. their spin contribution turns out
to be negligible), the uncertainties of the plots at x ∼ 10−3 precisely represent the room
left by the EicC data to the quark and gluon orbital momentum contribution to the proton
spin. Deviation from this picture will become apparent as soon the EIC will be able to
precisely fix the very low-x region, and in particular the ∆g distribution, and the EicC will
constrain with unprecedented accuracy the remaining middle and high-x range.

4.6 Optimizing the PDFs with pseudo data and results

To quantitatively analyze the sensitivities of individual pseudo-data set to constraining var-
ious parton flavour PDFs at certain x ranges, and to demonstrate how these eight different
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data sets play complementary roles in reducing the PDF uncertainty in the PDF-updating
procedure, we shall deploy the ePump-optimization (or PDF-rediagonization) method of
the ePump code. As explained in section 4.3, this application of ePump is based on ideas
similar to that used in the data set diagonalization method developed by Pumplin [50].
It takes a set of Hessian error PDFs and constructs an equivalent set of error PDFs that
exactly reproduces the Hessian symmetric PDF uncertainties, but in addition, each new
eigenvector pair has an eigenvalue that quantitatively describes its contribution to the PDF
uncertainty of a given data set or sets. The new optimized error PDF pairs are ordered
by their eigenvalues in a way that the first optimized error PDF pair possesses the largest
eigenvalue while the successive error PDF pairs have smaller eigenvalues. This ordering
of optimized error PDF pairs makes it easy to choose a reduced set that covers the PDF
uncertainty for the data set to any desired accuracy [16, 17]. Higher accuracy corresponds
to a choice of eigenvector pairs for which the value of the sum over their eigenvalues is
closer to the total number of new data points. The contributions of new eigenvector pairs
to the uncertainties of PDFs, for a given parton flavor, provide useful information of how
the new data points are sensitive to PDFs, at various x ranges.

By applying the ePump optimization method to DSSV14H PDFs with the combination
of both the EicC DIS and SIDIS pseudo-data sets, which contains 332 data points totally, we
found that the first six eigenvector pairs (out of the total 52 eigenvector pairs) play the most
important roles in constructing the total PDF error bands. Their eigenvalues are 167.8,
38.7, 28.3, 21.5, 16.2, and 11.3 respectively. Totally these six eigenvector pairs provide
85.5% of the total PDF error bands, while the first fifteen eigenvector pairs cover 99.1%
of the total error bands. The successive eigenvector pairs have even smaller eigenvalues.
Hence, one could ignore the successive eigenvector pairs and reproduce the major part of
DSSV14 PDFs uncertainties with only the first fifteen eigenvector pairs, instead of all of
the Neig = 52 eigenvector pairs or all of the Nrep = 1000 replicas.

These fifteen optimized eigenvector pairs also reveal how the pseudo-data points are
sensitive to different parton flavour PDFs at certain x ranges. Such information can be
obtained in a two-fold way. Firstly, the optimized eigenvector pairs dominating the con-
tributions to the uncertainties of each flavour are identified. The biggest contributions of
optimized eigenvector pairs to DSSV14 PDFs are shown in figures 9 and 10. Secondly, the
sensitivity of new data points to the optimized eigenvector pairs is assessed by how much
the optimized eigenvector pairs would contribute to data points. The thickness of the dots
in the x − Q2 plots of figures 11 and 12 shows the fractional contributions of optimized
eigenvector pairs, which are dominating DSSV14 uncertainties, to the PDF uncertainties of
various EicC SIDIS pseudo-data points. The summary of this analysis is given in table 2,
while our major physical findings in this section are as follows:

• The majority of EicC SIDIS pseudo-data points are essential to improve the DSSV14
∆u distribution. Figure 9(a) shows that the first optimized eigenvector pair (EV1)
dominates the ∆u error band, while figure 11(a) clearly shows that EV1 contributes
largely to most of SIDIS pseudo-data points. Therefore it becomes apparent that
EicC SIDIS pseudo-data is pretty sensitive to the ∆u distribution.
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(a) The EV1 to ∆u
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(b) The EV1 to ∆d
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(c) The EV2 to ∆u
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(d) The EV3 to ∆d
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(e) The EV4 to ∆s

P
D

F
 D

if
fe

re
n
c
e
 t

o
 D

S
S

V
1
4

x

∆s(x,Q) at Q
2
 = 10.0 GeV

2
 68%C.L.

DSSV14
SIDIS-kaon EV1
SIDIS-kaon EV2
SIDIS-kaon EV3

SIDIS-kaon EV4
SIDIS-kaon EV5
SIDIS-kaon EV6

-0.005

0.000

0.005

0.010

0.015

10
-3

10
-2

10
-1 0.2 0.5 0.9

(f) Optimization only with SIDIS Kaon data

Figure 9. In figure 9(a)–9(e), the first four pairs of the optimized eigenvector PDFs are compared
to the central values of the DSSV14 PDFs at Q2 = 10.0GeV2. For each eigenvector pair only the
most impacted flavours are shown. The positive and negative directions of the eigenvector pairs
are shown with red and green lines respectively. The light-blue areas are the original DSSV14 error
bands. In figure 9(f), only kaon data are considered in the ePump optimization.
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flavour EV sets x range SIDIS obs.
∆u EV1 all all

EV2 x > 0.4 all
∆d EV1 all all

EV3 x > 0.1 N+K+

EV6 x < 0.1 N+K+

∆s EV4 0.03 ∼ 0.3 P/N+K−
∆ū EV10 10−3 ∼ 0.04 & 0.06 ∼ 0.3 P+K−

P+π−
EV13 x > 0.03 P+K−
EV15 x > 0.04 N+K−

∆d̄ EV6 all N+K−
EV10 10−3 ∼ 0.02 & 0.05 ∼ 0.3 N+K−

N+π−

Table 2. The leading eigenvector pairs (EV sets), after the ePump-optimization, contributing to
the PDF error band of each flavour, and the SIDIS EicC pseudo-data sets (SIDIS obs.) which
provide leading constraints on the specific eigenvector pair PDFs. Note that the EV6 and EV10 are
sensitive to multiple flavours, therefore, when presenting the constraints of pseudo-data sets onto
the EV6 and EV10, we arrange pseudo-data sets according to their flavour contents. The meaning
of the notations, such as “N+K+”, in the last column is the same as those in the figure 11.

• The EV1 also contributes to the ∆d error band. But as shown in figure 11(b) it is not
as dominant as it is for the ∆u. The fact that the absolute value of the down quark
charge is half of that of the up quark results in this difference. The majority of SIDIS
pseudo-data points have the power of constraining the ∆u and the ∆d simultaneously.

• We expect that the ∆d distribution will be particularly constrained by the future
EicC Neutron+K+ data. As shown in figure 9(d), the third optimized eigenvector
pair (EV3) largely covers the ∆d error band for x > 0.1. We also notice in figure 11(c)
that the Neutron+K+ pseudo-data points receive large fractional contributions from
EV3 for the same x > 0.1 region, hence indicating that the Neutron+K+ pseudo-
data is sensitive to the ∆d. Given the flavour content of the K+ meson, this is to be
expected as the Neutron+K+ data should be able to probe the ∆u distribution inside
the neutron, which, due to the isospin symmetry, corresponds to the ∆d distribution
inside the proton.

• Both EicC Proton and Neutron kaon SIDIS data will be important for constraining
the ∆s. In figure 9(e), we observe that the fourth optimized eigenvector pair (EV4)
dominates the ∆s error band. Figure 11(d) shows that EV4 is particularly sensitive
to both Proton and Neutron+K− pseudo-data sets. This is consistent with the quark
model picture, where the K− meson is considered to be composed by s and ū quarks.

• In the naive parton model picture, as discussed in appendix A, one could easily
conclude that the kaon data must play a decisive role in determining ∆s. To check
on this, we show in figure 9(f) the result of another ePump optimization study in
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which only SIDIS Kaon pseudo-data are considered. Unexpectedly, there is no single
eigenvector pair dominating the PDF error band of ∆s when only the SIDIS kaon
pseudo-data sets are included in ePump-optimization. By the nature of the Hessian
profiling method, the eigenvectors are orthogonal to each other. This implies that
those SIDIS kaon pseudo-data sets are providing information about ∆s at different x
values. On the contrary, figure 9(e) shows that the eigenvector pair EV4 dominates
the constraint on the error band of ∆s when all the DIS and SIDIS (pion and kaon)
pseudo-data are included. Hence, there must be some other pseudo-data sets that
provide an additional constraint on ∆s via some underlying correlation present in
the original DSSV14 PDFs. Since the theoretical predictions used in this study are
generated with DSSV14 PDFs, it is possible that the underlying correlation comes
from the original setting of DSSV14 PDFs. The identity of eq. (4.30) implies a
correlation between ∆s and ∆u, ∆ū, ∆d and ∆d̄ imposed in the construction of
DSSV14 PDFs, such that the pseudo-data sets sensitive to ∆u, ∆ū, ∆d and ∆d̄
are also providing information on constraining ∆s. This explains why adding those
non-kaon data can further constrain ∆s when using the DSSV14 PDFs.

• Figure 10(d)–10(f) indicate that the 8 SIDIS pseudo-data will constrain ∆ū in differ-
ent ranges of x, and it takes mainly three eigenvector sets (EV10, EV13 and EV15)
to represent the error band of ∆ū PDF in DSSV14. Furthermore, figure 12 shows
that the leading data sets that contribute to the eigenvector sets EV10, EV13 and
EV15 are the kaon data. This is the kind of information that can not be read out
from figure 4, directly. Although one could perform ePump-updating by adding only
one pseudo-data set at a time to study the impact from each individual data set, one
could use ePump-optimization to quickly gain information about the complimentary
role that each data set plays in constraining a certain flavour PDF at a given x re-
gion after ePump-updating. The SIDIS EicC pseudo-data sets which provide leading
constraints on the specific eigenvector pair PDFs can be read out from table 2.

• For ∆d̄, the EicC SIDIS Neutron K− or π− data will be important. In figure 10, the
uncertainty band of ∆d̄, as a function of x, exhibits sensitivity to EV6 and EV10. At
the same time, figure 11(e) shows that Neutron+K− pseudo-data provide the leading
constraint on EV6 for x < 0.3, and figure 12(a) shows that both Neutron+K− and
Neutron+π− pseudo-data also constrain EV10. Hence the ∆d̄ distribution is mostly
constrained by the Neutron+K− data, while the Neutron+π− data also provide in-
formation on ∆d̄ with x < 0.03.

• As for the ∆g, none of these fifteen optimized eigenvector pairs provide a large pro-
portion to the error band. This is expected as the EicC SIDIS is a machine better
suited to investigate the “sea-quark” sector rather than exploring the ∆g distribution,
which dominates the small-x region and can be effectively probed at the EIC [8].
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(a) The EV6 to ∆d
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(b) The EV6 to ∆d̄
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(c) The EV10 to ∆d̄
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(d) The EV10 to ∆ū
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(e) The EV13 to ∆ū
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(f) The EV15 to ∆ū

Figure 10. The same as figure 9, but of the sixth, tenth, thirteenth and fifteenth pairs of the
optimized eigenvector PDFs.

In short summary, by employing the ePump-optimization procedure, we have explored
the complementary role played by different data sets in reducing the PDF uncertainty in
the PDF-updating procedure. In figures 9 and 10, we show the contributions provided by
the leading pairs of eigenvector PDFs to the PDF error bands of various flavours, after
performing ePump-optimization with the inclusion of the pseudo-data sets considered in
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this study. Through this, we have identified which EV sets dominantly constrain the PDF
error bands of a given flavour. Furthermore, in figures 11 and 12, we have depicted the
fractional contributions of the leading optimized eigenvector pairs to the PDF uncertainties
of various SIDIS data included in this study. This tells us whether the included pseudo-
data sets provide similar or independent information on reducing the PDF uncertainties
in the ePump-updating procedure. Lastly, we note that, with the first 15 optimized EV
sets, the DSSV14 error bands (calculated from a total of 52 eigenvector pairs given by
the Mc2Hessian package) can be recovered as much as 99.1%, when applying the ePump
optimization procedure to DSSV14H PDFs with the combination of both the EicC DIS
and SIDIS pseudo-data sets (with a total of 332 data points).

5 Summary

In this work, we have presented a study that assesses the impact of future EicC data on
the uncertainty bands of the DSSV14 helicity distribution functions and their moments.
With EicC pseudo-data including DIS and SIDIS processes from doubly polarized electron-
proton (3.5GeV × 20GeV) and electron-3He (3.5GeV × 40GeV) collisions, the DSSV14
PDF sets were updated by using a hessian updating procedure via the ePump tool. The
resulting updated hessian set of the DSSV14 PDFs, named DSSV14H PDFs, was also used
to evaluate the effects of specific initial and final state combinations of DIS and SIDIS
processes at the future EicC on the uncertainties of the distributions and their moments.
Moreover, the DSSV14H PDF set was rotated into an equivalent Hessian set via the ePump-
optimization procedure, which is employed to explore the complementary role played by
different data sets in reducing the PDF uncertainty in the PDF-updating procedure. By
identifying the dominant optimized eigenvector sets to the error band of each flavour and
their contributions to the pseudo-data points, the sensitivities of EicC pseudo-data points
to reducing the PDF error bands over various x ranges were then assessed.

As expected from the intent embedded in the design features of the EicC, we have
observed a great reduction of the uncertainties of quark helicities in the sea-quark region,
especially when considering SIDIS processes. It is important to remark that both electron-
proton and electron-helium data are needed to obtain a consistent reduction of uncertainties
over all quark flavours. Also essential to pin down the strange quark distribution are the
kaon SIDIS data. In this regard, one of the limiting factors that will inevitably hinder
the accuracy of the strange distribution in a global analysis with real EicC data will be
the somewhat still large uncertainty of kaon fragmentation functions. With the advent of
the Electron-Ion Colliders, extracting high precision fragmentation functions will become
a more and more essential task.

The reduction of uncertainty of the gluon helicity distribution, although not as impres-
sive as the one reported for the future US EIC in ref. [19], is still very significant for the
low-x region. The ability of the EicC to constrain the gluon distribution at energies lower
than the ones reachable by the US EIC plays, nonetheless, a fundamental role in extending
the coverage of meaningful data over a larger span of the phase space that will contribute
to future extraction in a global analysis of the gluon helicity distribution.

– 31 –



J
H
E
P
0
8
(
2
0
2
1
)
0
3
4

10 2 10 1 100

x

101

102

Q
2
 [
G
e
V2
]

SIDIS Data Set

N+K

N+K+

N+Pi

N+Pi+

P+K

P+K+

P+Pi

P+Pi+

Fraction
Contributions

20.0%

24.0%

28.0%

32.0%

36.0%

40.0%

10 2 10 1 100

x

101

102

Q
2
 [
G
e
V2
]

SIDIS Data Set

N+K

N+K+

N+Pi

N+Pi+

P+K

P+K+

P+Pi

P+Pi+

Fraction
Contributions

3.0%

6.0%

9.0%

12.0%

15.0%

(a)TheEV1toSIDIS

10 2 10 1 100

x

101

102

Q
2
 [
G
e
V2
]

SIDIS Data Set

N+K

N+K+

N+Pi

N+Pi+

P+K

P+K+

P+Pi

P+Pi+

Fraction
Contributions

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

(b)TheEV2toSIDIS

10 2 10 1 100

x

101

102
Q
2
 [
G
e
V2
]

SIDIS Data Set

N+K

N+K+

N+Pi

N+Pi+

P+K

P+K+

P+Pi

P+Pi+

Fraction
Contributions

3.0%

6.0%

9.0%

12.0%

15.0%

18.0%

(c)TheEV3toSIDIS

10 2 10 1 100

x

101

102

Q
2
 [
G
e
V2
]

SIDIS Data Set

N+K

N+K+

N+Pi

N+Pi+

P+K

P+K+

P+Pi

P+Pi+

Fraction
Contributions

1.5%

3.0%

4.5%

6.0%

7.5%

9.0%

10.5%

(d)TheEV4toSIDIS

(e)TheEV6toSIDIS

Figure11.Fractionalcontributionsofthefirstfourandthesixthoptimizedeigenvectorpairsto

thePDFuncertaintiesofvariousSIDISobservables. Thesizesofdotscorrespondtotherelative

contributionofoptimizedeigenvectorpairstotheseobservables.Inthelegendsof“SIDISDataSet”,

thenotation,“N+K+”forexample,standsforthepseudo-datasetoftheexperimentalobservable

A1fortheneutronmeasurement,whilethefinalhadronstateistheK
+.Thesameruleappliesto

otherdatasetsinthelegends.
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Figure12.Thesameasthefigure11,butofthetenth,thirteenthandfifteenthoptimizedeigen-

vectorspairs.Thesizesofdotsarescaleddifferentlyfromthefigure11forbettervisualization.

Inourdiscussion,wehavestressedthecomplementaryroleofthetwomachines,the

USEICandtheEicC,especiallywhenitcomestodeterminingtherelationbetweenthe

protonspinanditsflavourcontent.

Asitiswellknown,thecurrentelectron-proton(neutron)fixedtargetexperiments

arelimitedbyeithertheirlowcenter-of-massenergyortheirlowluminositywhichletus

preciselyexploreonlythelowQ2andhighxregion.Answeringthefundamentalquestion

oftheoriginoftheprotonspinisoneofthemainobjectivesofthefutureelectron-ion

machinesandtheextensionoftheaccessibleQ2−xcoveragetohigherQ2andlowerx

valuesisakeycomponenttowardsthisgoal.Inourstudy,wehaveshownhowtheEicC

datawillgreatlyconstrainthevalueofthespincontributionscomingfromquarksand

gluonswithmomentumfractionx 10−3. Ontheotherhand,theUSEICisbetter

suitedtoconstrainthemforevenlowervaluesofx.Together,thetwomachineswillreduce

theroomlefttospeculationsandenhanceourunderstandingontherelationbetweenthe

protonspinandthequark/gluonspinaswellastheirorbitalandangularmomentumdown

toanextremelysmallmomentumfractionregion.
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Finally, We note that in this study the tolerance value for the ePump updating has been
set to be ∆χ2 = 10, which is of the same order of magnitude as the tolerance used in the
DSSV14 analysis when studying the uncertainties via means of the Lagrange multiplier’s
method. Using the typical choice of ∆χ2 = 1 for this update would be inconsistent with
the DSSV14 error PDFs used for generating the DSSV14H Hessian PDFs. As explained
in refs. [16, 17], using the small value of ∆χ2 = 1 to updating the given error PDFs
is equivalent to overweighting these pseudo-data by about a factor of 10 in this study.
This would result in much smaller PDF error bands than what we have concluded in this
paper, so that using ∆χ2 = 1 would greatly overestimate the effect of these pseudo-data
on reducing the PDF errors.
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A DIS and SIDIS at leading order

In this appendix, the better flavour separation power of the SIDIS process in respect to the
DIS one is made explicit by presenting explicit LO expressions for g1, gh1 and finally Ah1 .

Let’s start by rewriting eq. (2.9) for three flavours as

g1(x,Q2) =
(
± 1

12∆v+
3 + 1

36∆v+
8 + 1

9∆Σ
)

(A.1)

where we have included the values of the fractional charges e2
u = 4/9 and e2

d = e2
s = 1/9 and

∆v+
3 = (∆u+ ∆ū)−

(
∆d+ ∆d̄

)
∆v+

8 = (∆u+ ∆ū) +
(
∆d+ ∆d̄

)
− 2 (∆s+ ∆s̄)

∆Σ = (∆u+ ∆ū) +
(
∆d+ ∆d̄

)
+ (∆s+ ∆s̄) . (A.2)

The ± sign in front of ∆v+
3 is set according to the scattered nucleon, proton or neutron

accordingly.
From eq. (A.2), it can be inferred that only ∆v+

3 may be determined directly from
measurements of proton and neutron g1 structure functions. On the other hand, ∆v+

8
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and ∆Σ may be only determined thanks to their scaling properties. Moreover, using only
DIS data it is impossible to disentangle quark from anti-quark distributions as there is no
weighting factor to discriminate between them.

Combinations of the type ∆q − ∆q̄ can be probed if flavour changing interactions
or processes involving hadronization are taken into account. In the case of SIDIS, the
observation of identified hadrons in the final state, allows to distinguish between ∆q and
∆q̄ thanks to the knowledge of the observed hadron flavour content described by the
fragmentation functions Dq→h. The SIDIS equivalent expression to eq. (A.2) reads

gh1 (x,z,Q2) =
(
∆v+

8 ±∆v+
3 ∆Σ

)
1
72

1
72

1
108

1
72

1
72

1
36

1
108

1
36

1
27



Dv+

8

Dv+
8

DΣ

+
(
∆qvu ∆qvd ∆qvs

)
2
9 0 0

0 1
18 0

0 0 1
18



Dv
u

Dv
d

Dv
s

,
(A.3)

where

Dv+
3

=
(
Du→h +Dū→h

)
−
(
Dd→h +Dd̄→h

)
Dv+

8
=
(
Du→h +Dū→h

)
+
(
Dd→h +Dd̄→h

)
− 2

(
Ds→h +Ds̄→h

)
DΣ =

(
Du→h +Dū→h

)
+
(
Dd→h +Dd̄→h

)
+
(
Ds→h +Ds̄→h

)
Dv
q = Dq→h −Dq̄→h with q = u, d, s

∆qvu = (∆u−∆ū) for proton target

=
(
∆d−∆d̄

)
for neutron target

∆qvd =
(
∆d−∆d̄

)
for proton target

= (∆u−∆ū) for neutron target
∆qvs = (∆s−∆s̄) . (A.4)

Eq. (A.3) makes the flavour structure and the relative weights to each parton distri-
bution functions manifest to the reader.

To conclude, we report the full expanded expression for the asymmetries Ah1 . For
proton measurement, the experimental observables Ah1 in the SIDIS process for identified
π± and K± can be written as:

Aπ
+

1p = 0.5e2
uD

u→π+

F π
+

1p
∆u+ 0.5e2

ūD
ū→π+

F π
+

1p
∆ū+ 0.5e2

dD
d→π+

F π
+

1p
∆d+

0.5e2
d̄
Dd̄→π+

F π
+

1p
∆d̄+ 0.5e2

s(Ds→π+ +Ds̄→π+)
F π

+
1p

∆s,

(A.5)

Aπ
−

1p = 0.5e2
uD

u→π−

F π
−

1p
∆u+ 0.5e2

ūD
ū→π−

F π
−

1p
∆ū+ 0.5e2

dD
d→π−

F π
−

1p
∆d+

0.5e2
d̄
Dd̄→π−

F π
−

1p
∆d̄+ 0.5e2

s(Ds→π− +Ds̄→π−)
F π
−

1p
∆s,

(A.6)
AK

+
1p = 0.5e2

uD
u→K+

FK
+

1p
∆u+ 0.5e2

ūD
ū→K+

FK
+

1p
∆ū+ 0.5e2

dD
d→K+

FK
+

1p
∆d+

0.5e2
d̄
Dd̄→K+

FK
+

1p
∆d̄+ 0.5e2

s(Ds→K+ +Ds̄→K+)
FK

+
1p

∆s,

(A.7)
AK

−
1p = 0.5e2

uD
u→K−

FK
−

1p
∆u+ 0.5e2

ūD
ū→K−

FK
−

1p
∆ū+ 0.5e2

dD
d→K−

FK
−

1p
∆d+

0.5e2
d̄
Dd̄→K−

FK
−

1p
∆d̄+ 0.5e2

s(Ds→K− +Ds̄→K−)
FK

−
1p

∆s,

(A.8)
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where

F π
+

1p = 0.5e2
uuD

u→π+ + 0.5e2
ūūD

ū→π+ + 0.5e2
ddD

d→π+ + 0.5e2
d̄
d̄Dd̄→π+ + 0.5e2

ssD
s→π+ + 0.5e2

s̄ s̄D
s̄→π+

.

(A.9)
For neutron measurements, if one uses iso-spin symmetry: ∆un = ∆dp,∆ūn = ∆d̄p,

∆dn = ∆up,∆d̄n = ∆ūp, ∆sn = ∆sp = ∆s̄n = ∆s̄p, the asymmetries can be expressed (in
terms of helicity distributions in proton) as:

Aπ
+

1N = 0.5e2
dD

d→π+

F π
+

1N
∆u+

0.5e2
d̄
Dd̄→π+

F π
+

1N
∆ū+ 0.5e2

uD
u→π+

F π
+

1N
∆d+ 0.5e2

ūD
ū→π+

F π
+

1N
∆d̄+ 0.5e2

s(Ds→π+ +Ds̄→π+)
F π

+
1N

∆s,

(A.10)

Aπ
−

1N = 0.5e2
dD

d→π−

F π
−

1N
∆u+

0.5e2
d̄
Dd̄→π−

F π
−

1N
∆ū+ 0.5e2

uD
u→π−

F π
−

1N
∆d+ 0.5e2

ūD
ū→π−

F π
−

1N
∆d̄+ 0.5e2

s(Ds→π− +Ds̄→π−)
F π
−

1N
∆s,

(A.11)
AK

+
1N = 0.5e2

dD
d→K+

FK
+

1N
∆u+

0.5e2
d̄
Dd̄→K+

FK
+

1N
∆ū+ 0.5e2

uD
u→K+

FK
+

1N
∆d+ 0.5e2

ūD
ū→K+

FK
+

1N
∆d̄+ 0.5e2

s(Ds→K+ +Ds̄→K+)
FK

+
1N

∆s,

(A.12)
AK

−
1N = 0.5e2

dD
d→K−

FK
−

1N
∆u+

0.5e2
d̄
Dd̄→K−

FK
−

1N
∆ū+ 0.5e2

uD
u→K−

FK
−

1N
∆d+ 0.5e2

ūD
ū→K−

FK
−

1N
∆d̄+ 0.5e2

s(Ds→K− +Ds̄→K−)
FK

−
1N

∆s,

(A.13)
where (in the format of PDFs in proton)

F π
+

1N = 0.5e2
duD

d→π+ + 0.5e2
d̄
ūDd̄→π+ + 0.5e2

udD
u→π+ + 0.5e2

ūd̄D
ū→π+ + 0.5e2

ssD
s→π+ + 0.5e2

s̄ s̄D
s̄→π+

.

(A.14)
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