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Time is running out to limit further devastating losses of biodiversity and nature’s contributions to humans. Addressing this crisis requires
accurate predictions about which species and ecosystems are most at risk to ensure efficient use of limited conservation and management
resources. We review existing biodiversity projection models and discover problematic gaps. Current models usually cannot easily be reconfigured
for other species or systems, omit key biological processes, and cannot accommodate feedbacks with Earth system dynamics. To fill these gaps,
we envision an adaptable, accessible, and universal biodiversity modeling platform that can project essential biodiversity variables, explore
the implications of divergent socioeconomic scenarios, and compare conservation and management strategies. We design a roadmap for
implementing this vision and demonstrate that building this biodiversity forecasting platform is possible and practical.
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ccelerating threats from climate change, habitat
degradation, overexploitation, and species invasions
threaten biodiversity worldwide (Ceballos et al. 2015, Urban
2015). These threats are reorganizing biological commu-
nities, threatening a million species with extinction, and
altering ecosystems through loss of key species and altered
nutrient and energy flows (Ceballos et al. 2015, Urban 2015,
IPBES 2019). The resultant biodiversity loss and ecosystem
collapse are reducing nature’s contributions to human health,
wellbeing, and economy (Costanza et al. 2014) and causing
a growing sense that humankind has surpassed the plan-
etary boundaries for maintaining life on Earth (Rockstrom
et al. 2009). Therefore, protecting and restoring biodiversity
constitutes one of the greatest challenges for science in the
twenty-first century.

The Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES 2019) recently
issued a dire assessment of global biodiversity and the efforts
required to protect it. The assessment concluded that efforts
to conserve biodiversity are falling far short of international
goals and needs. Furthermore, the IPBES expressed low
confidence in the current capacity to project biodiversity
changes and their responses to divergent future scenarios
and mitigation strategies (IPBES 2019). Unlike climate
science, biologists have not devoted substantial resources

to developing shared and comprehensive modeling frame-
works to project future biodiversity change (Urban 2019).
Therefore, the world lacks the predictive infrastructure
needed to address a rapidly accelerating biodiversity crisis.

An important action urgently needed to prevent further
biodiversity loss entails developing accurate models to fore-
cast future biodiversity change, highlight data needs, guide
effective conservation strategies, and prioritize conservation
of the most threatened species and ecosystems. Owing to
the manifold, multiscale, and nonlinear ways humans dis-
rupt nature (Gilman et al. 2010), process-based modeling
efforts are particularly needed to unravel the complex feed-
backs between threats and biodiversity responses and reveal
unrecognized threats to biodiversity. Such knowledge can
inform effective conservation strategies and prevent wasting
limited resources (Barbier et al. 2018) on otherwise resilient
species and ecosystems (Parmesan 2014). Whereas most
conservation efforts currently respond to short-term threats
(Baillie et al. 2004, Pereira et al. 2013), conservation also
needs to focus on evidence-based, proactive measures that
prevent biodiversity from becoming critically endangered in
the first place.

We review current efforts to model, project, and mitigate
biodiversity loss and find critical deficiencies in modeling
efforts and forecasting accuracy that increase uncertainty
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and contribute to inaction. To address these shortcomings,
we design and present a comprehensive platform for predict-
ing and preventing biodiversity loss, define essential stan-
dards, and outline practical recommendations for effective
implementation. We argue that investing in a biodiversity
projection platform now would facilitate the design of strat-
egies that protect most of the remaining biodiversity and
critical ecosystem services despite accelerating threats.

Current efforts to predict nature

To understand the current state of biodiversity prediction, we
review models readily accessible to scientists, conservation
professionals, managers, and policymakers for projecting
future biodiversity change under different human distur-
bance scenarios by gathering information via a systematic
keyword literature search (see the supplemental material),
expert knowledge, and published reviews (Hoban et al. 2012,
Evans et al. 2013, Lurgi et al. 2015, Cabral et al. 2017, Norberg
et al. 2019). We define biodiversity projection models as algo-
rithms that project biological responses to external drivers
such as land use and greenhouse gas emissions. We include
models that predict a wide range of biological responses,
including genetics, traits, population abundances, species
diversity, and ecosystem properties. These responses are
modeled in ways that range from highly complex and mecha-
nistic (e.g., physiological models) to simple and correlational
(e.g., species distribution models), which are then altered to
explore future outcomes. We exclude system-specific frame-
works that inform particular questions or species but cannot
be easily modified to address others, but acknowledge their
important insights for individual questions.

We found 50 models that met our search criteria (see the
supplemental material). Two evaluators independently read
pertinent publications and manuals on each model, catego-
rized them along multiple dimensions, and then resolved
any conflicts. We evaluated the degree to which models
incorporated six key biological processes that enhance real-
ism and predictive accuracy (Gilman et al. 2010, Hoffmann
and Sgro 2011, Urban et al. 2016), including physiology,
demography, dispersal, species interactions, evolution, and
other responses to environmental variation (Urban et al.
2016). We next evaluated if model outputs aligned with the
essential biodiversity variables (EBVs) developed to define
key measurements needed for global monitoring efforts
(Pereira et al. 2013). We also evaluated the degree to which
inexperienced users can adapt models to new species, sys-
tems, and questions.

We found that most biodiversity models omit key bio-
logical processes (figure 1) such as species-specific disper-
sal, biotic interactions, or adaptations that could mediate
biodiversity responses to perturbations such as climate
change (Buckley et al. 2010, Gilman et al. 2010, Urban
et al. 2016). However, models lacking these key processes
are routinely used to inform decision-making. The most
popular and accessible approaches apply species distribution
models (e.g., Maxent-based approaches; Phillips et al. 2006),
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to extrapolate correlations between contemporary species
distributions and environments to project future responses.
Phenomenological models that use algorithms such as
Maxent are simpler to fit with existing data and can perform
sufficiently well for short time horizons or when little is
known about an organism’s biology. These simple models
have been widely adopted by managers that need readily
accessible tools to make conservation decisions. However,
models that incorporate even limited biological informa-
tion generally outperform correlative approaches over lon-
ger time horizons and as underlying mechanisms become
more diverse or interactive (Zurell et al. 2016). For example,
mechanistic models consistently predicted species’ range
dynamics over longer horizons, whereas statistical models
became increasingly inaccurate (Pagel and Schurr 2012).

Despite their many advantages, mechanistic models
remain underused. Existing mechanistic models usually
focus on one or a few key processes (figure 1), with a
few exceptions incorporating multiple biological mecha-
nisms, including SPEGG (Okamoto and Amarasekare 2017),
Nemo (Guillaume and Rougemont 2006), and RangeShifter
(Bocedi et al. 2014, Bocedi et al. 2021). Many mechanistic
models cater to specific taxa (e.g., trees), include few essen-
tial processes, or require specialized programming skills
to modify them (figure 1). General mechanistic models of
biomass and energy have been created that depict ecosystem
functioning (Harfoot et al. 2014), but their outputs cannot
easily be resolved into finer biodiversity details, such as spe-
cies abundances, diversity, and interactions.

Most biodiversity models address specific questions for
particular species and ecosystems and do not interact with
each other, nor are they easily modified to apply to other sys-
tems. Such models were not designed to interface with Earth
system models. Consequently, existing biodiversity models
cannot be applied effectively to investigate large-scale and
dynamic interactions among biodiversity and drivers such as
climate and land-use change (Clark et al. 2001, Gilman et al.
2010, Hoffmann and Sgro 2011, Urban et al. 2016).

Most models predict only a subset of the EBVs expected
to encapsulate the major dimensions of biodiversity change.
For instance, genetic models project future genetic variation
and adaptations, demographic models project population
abundances of single species, and community models project
community richness and composition. A few more sophis-
ticated models predict a greater range of dimensions but
are often restricted to particular taxa (e.g., trees in TreeMig,
Lischke et al. 2006). Understanding how humans shape the
many layers of biodiversity currently requires multiple mod-
els, each with different data needs, modeling languages, and
configurations, and substantial postprocessing of outputs.

If diverse users cannot access, adapt, integrate, and apply
models to new problems, then even the best models are
unlikely to be adopted widely to promote the best conser-
vation and management solutions. We found that model
platforms vary in their accessibility to nonexperts and adapt-
ability for alternative species, ecosystems, and questions. For
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Figure 1. Current biodiversity projection models and their characteristics. We assessed from left to right how models
incorporated six important biological processes, the levels of biodiversity modeled, incorporation of spatial or and
temporal components, essential biodiversity indicators returned as outputs, and model generality, modifiability, and open
access. More sophisticated incorporation of mechanistic components and greater accessibility indicated by darker shading.
Models are ordered from bottom to top on the basis of the number of components incorporated and their sophistication.
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example, some species distribution and genetic models can
be modified for any species or system and are applied widely.
However, potentially more accurate mechanistic models are
often specific to particular species or taxonomic groups, and
modifying them to apply to new systems or circumstances
is usually difficult. Therefore, the current penchant for
phenomenological, correlative models likely reflects not just
missing biological data for parameterization (Urban et al.
2016) but also the limited availability of flexible and easily
modified mechanistic models.

Overall, we find that current biodiversity models gener-
ally lack the biological realism, adaptability, interoperability,
and integration needed to address the complexities of the
biodiversity crisis. We propose one universal modeling plat-
form that would facilitate seamless integration and applica-
tion to a multitude of systems, species, and uses.

Toward a universal biodiversity projection platform

A universal biodiversity projection platform is needed
to advance biodiversity understanding, prediction, con-
servation, management, assessment, and policy solutions
(figure 2). Like the trusty Swiss Army knife and its diverse
tools, this platform would harmonize existing modeling
frameworks and enable projections that are both sophisti-
cated and adaptable to the full range of fundamental and
applied biodiversity questions. We envision that such a
platform would be a quantum leap forward compared with
our current toolbox of individual models. First, one is more
likely to use an existing, comprehensive Swiss Army knife
rather than cobble together various independent tools.
Second, users can select from the most relevant tools to
meet individual needs rather than always needing to recre-
ate existing tools. Third, integrating tools into one platform
promotes their interactions and feedbacks with each other
and with external drivers. Fourth, differences among diver-
gent modeling types (e.g., correlative and mechanistic) can
suggest information about underlying process and inspire
more sophisticated approaches. Fifth, combining the avail-
able model types into ensembles often increases predictive
accuracy. Sixth, by having an open-access platform, a diverse
community of developers and users can efficiently contrib-
ute to building and integrating models and sharing data,
parameterizations, and intellectual developments.

We next define a set of objectives for this platform. A uni-
fied biodiversity projection platform should improve projec-
tion accuracy and certainty relative to existing approaches;
flexibly adapt to any species, system, scale, or region; facili-
tate model optimization and comparison; prioritize data
needs; integrate model validation and monitoring; facilitate
transparency and collaboration; and enable cost-effective
design and evaluation of management solutions. To support
these seven objectives, we delineate 16 design principles
found in bold throughout the text and outlined in table 1.

Improving accuracy and certainty. A biodiversity platform that
integrates diverse modeling types, including statistical and
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mechanistic biological models and Earth systems models,
can improve both accuracy and certainty, by which we mean
high precision and confidence in projections. Therefore, our
first design principle (table 1) is that biodiversity models
should be made realistic by including biological mechanisms
and understanding. We define realism as incorporating
biological processes into models as opposed to using cor-
relations. Incorporating realism is challenging when faced
with model structural uncertainty and when biological
parameters are scarce or uncertain (Urban et al. 2016). We
aim to advocate for mechanistic representations as much
as possible but realize that, at times, correlative approaches
will be useful and perhaps the only way forward when we
do not yet know how to model key biological processes. The
platform could address this issue, however, by combining
insights from both statistical and mechanistic approaches
(Buckley et al. 2010, Hartig et al. 2011).

A biodiversity projection platform should also enable
seamless integration with Earth system drivers, such as cli-
mate, land-use change, and socioeconomic models (Clark
et al. 2001, Rounsevell et al. 2014, Adam et al. 2015). Few
biodiversity models currently account for such drivers
even though these drivers interact strongly with biodi-
versity change (Lovejoy and Nobre 2018, Newbold 2018).
Figure 3 illustrates one example for how to couple models
of land-use drivers and biodiversity, and how feedbacks
between the two can generate substantially different out-
comes than when modeled individually. This integrated
model of climate change, land use, and a climate-sensitive
crop pollinator produced stronger impacts from climate
change on biodiversity relative to projections from uncou-
pled models. As climate change reduced pollinator abun-
dances, crop yields decreased. Lower crop yields increased
demand for agricultural land, prompting subsequent conver-
sion of natural lands into agriculture and reduced biodiver-
sity in natural areas. The takeaway from this exercise is that
interactions between biodiversity and land-use decisions
generate different outcomes than when modeled separately,
but these interactions are usually ignored (Albert et al
2020). For example, although 35% of global food produc-
tion depends on pollinators, most risk assessments neglect
feedbacks between pollinator dynamics and agricultural
land-use decisions (Prestele et al. 2021). Even if these spe-
cific results require validation with future data, integrating
drivers and biodiversity models will be necessary to project
their joint dynamics accurately.

An integrated platform also can account for error propaga-
tion across all steps of the predictive process so as to represent
uncertainties more faithfully (Yates et al. 2018). Otherwise,
errors at one stage do not affect or interact with errors at later
stages, often providing an overly optimistic and unrealistic
interpretation of model certainty (Nicol et al. 2019).

Enhancing flexibility. A universal biodiversity projection plat-

form should be flexible enough to model all species, eco-
systems, regions, and socioeconomic scenarios. Modularity
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Figure 2. A universal biodiversity projection platform would project changes in species abundances, traits, genetics, and
associated environmental impacts. The basic model begins with the environment, which varies in space (the bottom orange
to yellow heat map) and can change through time naturally but also through human impacts and management actions
with bottom layers indicating human impacts (e.g., urbanization) and management strategies (e.g., reserve design). The
environmental layers interact with the genome (the blue funnel) to determine traits from the yellow ring (e.g., physiology
and phenology) as shown by arrows. These traits in turn combine (the green funnel) to determine demographic inputs
(births, immigration) and outputs (deaths, emigration). Each species is embedded in an interaction network (a). Arrows
inside the funnel indicate how changes in species abundances feed back to alter genetics and the environment. Managers
can design mitigation measures and test them with the modeling framework (e.g., corridors linking green habitats).
Essential biodiversity variables are entered from monitoring and recorded in a data cube (light blue). The platform
would follow a nested modular design (b), such that users can choose from multiple options that then reveal additional
options and ultimately input parameters. An example nested set of options is presented here to inform the death rate of a
focal species. In this case, a user selected the green-highlighted nodes to model a species with a death rate that depended
on an enemy species. This interaction was also determined by trait variation in the prey species that was underlain by
quantitative genetic variation, which has the potential to evolve through a nonzero heritability (h?).
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Table 1. Design principles for a global biodiversity projection platform.

Design principle

Design objectives

Description

Enables

Requires

Biological realism

Error propagation

Cointegration
with Earth system
drivers

Nested modularity

Scalability

Optimization

Ensemble
projections

Simplification

Prioritizing data
needs

Essential
biodiversity
variables

Open access

Reproducibility

Community

Accuracy and certainty,
flexibility, optimization and
comparison

Accuracy and certainty,
transparency and
collaboration, solutions

Accuracy and certainty,
flexibility, transparency and
collaboration, solutions

Accuracy and certainty,
flexibility, optimization and
comparison, transparency and
collaboration

Accuracy and certainty,
flexibility, validation

Accuracy and certainty,
optimization and comparison,
validation, solutions

Accuracy and certainty,
validation, transparency and
collaboration

Optimization and comparison,
solutions

Supporting and informing data
collection

Optimization and comparison,
validation, transparency and
collaboration, solutions

Transparency and
collaboration

Accuracy and certainty,
optimization and comparison,
transparency and collaboration

Optimization and comparison,
transparency and
collaboration, solutions

Incorporates key biological
processes that shape how
biodiversity responds to
environmental variation

Errors often interact with other
errors during model runs,

and therefore, models should
propagate errors appropriately,
which might not be possible
when combining standalone
model outputs

Models feedbacks with
major Earth-systems models,
including climate, land use,
and other ecosystem models

Submodels can be easily
added, exchanged, expanded,
simplified, or removed

Data and processes that

are available or operate at
different scales can be scaled
appropriately to operate within
the modeling framework

Optimal model structure

and parameterization for
maximal accuracy and
minimal uncertainty based on
validation with observed data;
it might include procedures to
optimize unknown parameters

By enabling models of varying
structure and complexity, a
platform can produce multiple
models that can be compared
and combined to improve
accuracy

Model structure is simplified
on the basis of user-defined
criteria, including performance,
parameter or structural
sensitivity or uncertainty, and
costs of parameter estimation

Model sensitivity and
uncertainty is used to
prioritize which parameters
should be collected or
improved

A standardized data hyper-
cube of biodiversity state
variables developed in tandem
with monitoring outputs

Users can run, share, modify,
and contribute their own
subroutines

Version control practices
implemented such that the
same code can be run and
re-run and obtain the same
outcomes

An organizing structure for
biodiversity projections and
the scientists that contribute
them

Projections that include
biological processes, and
therefore capture causation,
rather than relying on
correlations which might

be specific to current
observations

An accurate representation of
uncertainty

Modeling of feedbacks
between biodiversity, Earth-
system, and socioeconomic
models and broad-based
optimization and feasibility
assessments

Model comparison and
ensemble-forecasting

Input of data and processes
of varying resolutions

Finding the model and
parameters that produce the
most accurate and certain
projections

Ensemble projections that
often demonstrate enhanced
performance over independent
models

Sensitivity, cost-benefit, and
validation analyses

Cost-effective data collection

Standardized model inputs
and outputs and adaptive
feedbacks with validation from
global monitoring networks

Widespread use, coordinated
enhancement of modeling
effort, efficient development
by users, and transparent
understanding of model
outcomes

Outcomes can be repeated
and traced back to model
structure

Collaboration and synthetic
understanding of global
impacts and intersectoral
impacts

Mechanistic sub-models
that can be used when
data is available; should
interact with statistical
models to provide
enhanced flexibility

Platform that propagates
errors across submodules

Common input and output
currencies and other
coordinated features (e.g.,
spatial/temporal scales)

Hierarchical submodels
that can be turned on
or off according to user
needs

Procedures to upscale and
downscale state variables

Platform that produces
models of varying
structure and complexity.
Might include adaptive
management and artificial
intelligence.

Platform that easily
produces models of
varying structure and
complexity

Multi-model system and
techniques to assign costs
to additional complexity

Multiple parameterizations
to assess model
sensitivity

Standardized “data hyper-
cube” of predictions that
are designed for inter-
model interoperability

Open use standards

Version control

Platform and organization
that unites research and
researchers
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Table 1. Continued.

Design principle Design objectives

Description

Enables

Requires

Codesigned with
users

Facilitate global
assessments

Transparency and
collaboration, solutions

Optimization and comparison,

transparency and
collaboration, solutions

Platform is codeveloped with

land managers, policymakers,

and stakeholders from
the start to promote its
usefulness for finding
biodiversity solutions

Enables standardized

comparisons across scenarios

and joint biodiversity-

Rapid adoption by
conservation practitioners

A more cohesive and accurate
assessment of global trends
and policies

Co-development of
platform structure,
outputs, and user-enabled
features

Standardized use and
development of scenarios

development

Design and test Solutions
conservation
strategies

silica

socioeconomic scenario

Modules allow for creating
and comparing different
conservation strategies in

Effective, efficient, and
less costly exploration of
conservation solutions

Ability to construct
conservation strategies
within the modeling
framework; use decision
theory and artificial
intelligence for particularly
complex problems

addresses this objective by providing users with a toolbox of
modeling options to adapt to their individual needs and to
facilitate intermodel comparisons (figure 2b; Golding et al.
2018). For instance, one application might combine modules
on land use, species interactions, and demography, whereas
another application links statistical species distributions to
a mechanistic dispersal module to project range dynam-
ics during climate change (Engler et al. 2009). A nested
design further enhances flexibility by offering a hierarchy
of modular choices (figure 2b). For example, within a biotic
interaction module, users might also choose competition,
predation, or mutualism. Within each interaction type, users
might choose among different ways to model that interac-
tion and whether the environment or genetics affects the
interaction. Therefore, a biodiversity platform with nested
modularity allows users to combine, exchange, expand,
simplify, and exclude available modules and submodules to
enable projections finely tuned to particular species, ecosys-
tems, regions, and scenarios.

Biological processes operate at divergent spatial and tem-
poral scales, and data are often available at different temporal
and spatial resolutions. A universal biodiversity platform
should feature scalability so that it can accommodate these
scale mismatches via downscaling or upscaling of data layers.

Facilitating optimization and comparison. By providing diverse
models, a universal platform facilitates model optimization.
An optimal model depends on the question of interest but is
generally the one that best predicts out-of-sample observa-
tions from different regions or time periods and therefore
relies on causal mechanisms rather than correlations (Dietze
et al. 2018, Urban 2019). Model projections become more
accurate and precise when the modeling process includes
dynamic feedbacks among the processes of model develop-
ment, validation, and revision (Urban et al. 2016, Dietze
et al. 2018). Therefore, the initial model reveals data needs,
scientists improve estimates of sensitive or poorly defined
parameters, models are reparameterized or revised and
rerun, and the cycle continues as new observations challenge

https://academic.oup.com/bioscience

model outcomes, much the same way as weather forecast-
ing proceeds every day. Although forecasts might initially
be highly uncertain, this dynamic modeling feedback can
rapidly improve projections.

Ready access to diverse models also can promote a more
accurate solution to predicting biodiversity change than rely-
ing on a single model alone. By combining projections from
multiple models, so-called ensemble projections have become
standard in weather and climate forecasting given their fore-
casting advantages (Murphy et al. 2004). For example, the
United States predicts the track and intensity of hurricanes
using an ensemble of 20 model outcomes (Hamill et al. 2012).
However, biologists lag behind in adopting ensemble model-
ing, particularly for process-based models, largely owing to
the difficulties in developing multiple models simultaneously
(Aratjo and New 2007). By allowing many models to be
developed at once, a universal platform would facilitate mul-
timodel development and potentially more accurate ensemble
projections from divergent model types (Leroux et al. 2017).

Given the high price of collecting or refining model
parameters (e.g., through costly experiments and measure-
ments), users often want simpler models that can still gener-
ate accurate and certain outcomes. One way to reduce model
complexity while retaining predictive capacity is to assess
the sensitivity of model outcomes to parameters and remove
those that do not enhance accuracy or precision during
validation and prioritize those that do (Canessa et al. 2015).
Forecasters can then simplify models to facilitate cost-effec-
tive projections that provide similarly reliable projections
while also gaining insights about the complexity needed to
model biodiversity dynamics.

A comprehensive biodiversity projection platform is needed
for all these objectives because we cannot optimize, combine,
or simplify models to their essential ingredients without first
beginning with all the potentially important ingredients.

Prioritizing data needs. Despite increasing efforts to collect

biodiversity data and make them accessible through synthetic
databases (Meyer et al. 2015, Kattge et al. 2020), we still lack
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critical biological data for most species (Urban et al. 2016). A
unified biodiversity projection platform can play an impor-
tant role in prioritizing data collection by providing a means
to assess the sensitivity of outcomes to various parameters
and structural elements and indicate which information is
most needed to improve predictions rapidly. For instance,
let’s assume we want to model a species for which we only
have good physiological and demographic data but not a
good understanding of dispersal distances. We could build
a model with a range of dispersal kernels and evaluate how
sensitive responses are to this uncertain parameter relative to
other unknown parameters. If the responses are highly sensi-
tive to differences in dispersal, then we could advocate for
collecting dispersal data. Alternatively, if that is not possible,
then model outputs could span the range of possible dis-
persal kernels. Focusing on collecting information on these
sensitive parameters can produce the largest gains in model
accuracy and precision while doing so in the most cost-effec-
tive and efficient manner. Therefore, model development
and biodiversity data collection are best done concurrently
whereby models inform what data are most needed, and new
data inform model design and implementation.

Simultaneous validation and monitoring. EBV's support the devel-
opment of standardized indicators of biodiversity trends that
inform policy objectives such as the Aichi targets (Pereira
etal. 2013). EBVs capture the major dimensions of biodiver-
sity change, ranging from genetics to ecosystem properties.
Until now, EBVs have been poorly connected to modeling
efforts (figure 1), but forecasters need them to validate,
refine, and update model structure and parameters, and
monitoring networks need to know what variables are most
useful in model projections.

We recommend explicitly incorporating the EBV frame-
work within the biodiversity modeling platform to harmo-
nize observations and predictions and form a more coherent
system of, and adaptive feedbacks among, biodiversity pro-
jection, validation, monitoring, and assessment. A standard-
ized data hypercube of EBVs would form the core outputs
of a universal platform (figure 2). This standardized and
consistent output matrix with agreed up on naming con-
ventions would provide ready-made interconnections with
external models and promote validation with data stream-
ing in from global monitoring networks (Fer et al. 2021). As
monitored input variables change, model predictions would
change, enabling real-time assessments of biodiversity
change. Coordinating the joint development of measurable
biodiversity indicators between projection and monitoring
efforts to assess progress toward biodiversity and sustainable
development targets would thereby provide early warnings
of impending catastrophic changes (Mace et al. 2018).

Open forecasting. A biodiversity projection platform should
support the creation of open-access, reproducible, and trace-
able code; promote user contributions; and facilitate an
interconnected and diverse community of modelers. In

https://academic.oup.com/bioscience

short, we support the call for building the community-based
cyberinfrastructure needed for biodiversity science (Fer
et al. 2021). Open access ensures that anyone can acquire
model code without paying fees or awaiting author permis-
sion. Specifically, the platform should adhere to the copyleft
license standards, which guarantees that users can run, share,
modify, and contribute their code to software. Moreover,
these standards require that code cannot be used in propri-
etary software and must stay under the same license to pro-
mote collaboration. By facilitating user-contributed code, the
platform could tap into the global expertise, knowledge, and
innovation needed to expand the platform; keep it relevant
in the face of changing knowledge; and build an interactive
community of biodiversity forecasters. This active commu-
nity of software developers would efficiently distribute the
massive workload of this complex global project. For exam-
ple, the open-access R software environment has become a
universal platform for statistical modeling, which has been
expanded and kept relevant by a large user community. The
LANDIS-II forest landscape model also exemplifies these
open-source principles for biology. LANDIS-II comprises a
large community of users and developers and includes cus-
tomizable libraries that allow exploration of climate, land use,
and forestry changes (www.landis-ii.org).

The platform should adopt version control practices that
require the inclusion of structural metadata and build a
repository to maintain future access to the entire version
history. This repository ensures reproducibility because
analyses can be repeated from the original model version
(Golding et al. 2018). Any altered code would receive a
unique version number, and each model run would record
version numbers for subsequent use.

A universal biodiversity platform should support a globally
connected community of biodiversity and Earth system mod-
elers, not unlike that facilitated by the climate and ecosystem
modeling communities (Harfoot et al. 2014, Urban 2019). The
platform could act as a community portal to capitalize on the
extensive but all too often unconnected expertise required to
create biodiversity forecasting models. This platform would not
only integrate biologists, but also mathematicians, statisticians,
computational scientists, software engineers, geographers,
and atmospheric scientists, to name a few. The Inter-Sectoral
Impact Model Intercomparison Project already brings together
scientists to compare diverse impacts from the same climate
change and socioeconomic scenarios (Warszawski et al. 2014)
but often lacks contributions from biologists.

Purpose built for solutions. We suggest that any biodiver-
sity projection platform should be codesigned with users,
including land managers, policymakers, and stakeholders.
Therefore, the platform should support an interactive pro-
cess among stakeholders, modelers, and monitoring net-
works to codesign analyses that solve real-world problems
(Clark et al. 2001, Land et al. 2017). This way the platform
can be conceptualized as a modeling environment within a
human decision-making process. An important part of this
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develops a biodiversity projection (e.g., for an endangered species) and defines
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its effects monitored. Monitoring then informs the original management model
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platform.
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process will be conveying both outcomes
and uncertainties so that policymakers
can make decisions that hedge against
uncertain and undesirable outcomes.

A universal platform should facili-
tate global assessments of biodiversity
impacts of shared socioeconomic sce-
narios (Rosa et al. 2017) to enable accu-
rate, targeted, and agile assessments by
international agencies (e.g., IPBES, the
Intergovernmental Panel on Climate
Change) tasked with recommending
global political and economic strategies
for mitigating global changes in climate,
biodiversity, and ecosystem services. A
biodiversity platform should also contrib-
ute to cross-sectoral syntheses of global
impacts for assessment purposes. Such
a platform can also help define new sce-
narios focused on biodiversity that more
strongly link to local social-ecological
dynamics (Kok et al. 2017). For example,
although replacing natural, nonforested
ecosystems with tree monocultures might
seem an efficient approach to climate miti-
gation, it can negatively affect biodiversity
(Seddon et al. 2019). By jointly evaluating
climate and biodiversity impacts, better
nature-based solutions can be found that
optimize both climate and biodiversity
solutions.

Just as importantly, this platform
should inform the design and testing
of specific management strategies—for
example, by using corridor and reserve
design to promote climate change resil-
ience (Albert et al. 2017). The platform
should promote joint adaptive modeling
and adaptive management (learn by doing
while reducing uncertainty), by including
an adaptive management cycle, whereby
management interventions are designed
to maximize model outcomes. These
management actions then can be incor-
porated into model projections to reduce
uncertainty and update observations, thus
informing subsequent actions (Walters
1986). In addition to facilitating advanced
simulations, an integrated biodiversity
platform should allow for scenario testing
and the identification of optimal man-
agement approaches. These optimization
approaches should permit users to ask
sophisticated questions and to identify
solutions that concurrently maximize bio-
diversity, climate change mitigation, and
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socioeconomic benefits (Alagador and Cerdeira 2020). For
instance, models might use real estate values to guide reserve
design during climate change, thus minimizing both financial
and biodiversity losses.

Although we view biodiversity modeling as becoming
more mechanistic, artificial intelligence technologies could
help design mitigation strategies that optimize manage-
ment criteria, including socioeconomic outcomes, on
the basis of outputs from biodiversity models (figure 4).
Artificial intelligence solves problems through adaptive
algorithms that optimize target criteria and is increasingly
applied to natural resource management and conserva-
tion decision-making (Pichancourt et al. 2012, Chades
et al. 2017). Recent advances such as deep reinforcement
learning are enhancing its wider application (Silver et al.
2016). For example, artificial intelligence could optimize
the spatial design of land-use patterns across complicated
socioecological landscapes to maximize both benefits and
practicality, where complex socioecological dynamics (e.g.,
figure 3) can generate millions of alternative management
strategies that surpass human intuition. By incorporating
artificial intelligence techniques, the platform can identify
globally optimal and feasible management solutions more
readily.

Implementing the vision

One of the greatest challenges of the twenty-first century is
to make informed predictions that will enable us to design
strategies to protect life on Earth, despite historic threats
(Mace et al. 2018). Forty years ago, atmospheric scientists
also faced a similar task of predicting climate and weather,
but lacked a cohesive modeling platform (US National
Academy of Sciences 1975). Rising to the challenge, sci-
entists created multiple dynamic and mechanistic climate
models, established shared socioeconomic scenarios, and
developed a framework to integrate and compare model
outcomes. These collaborative modeling platforms enabled
more cohesive and evidence-based assessment for climate
and enhanced confidence in projections of future climate
change to support policy decisions (Edwards 2011). Biology
needs such a tool if we hope to bend the curve of biodiversity
loss upward in coming years.

Predicting biodiversity is not easy on the best of days,
and even the most sophisticated model projections are
likely to be frustrated by high uncertainty and ecological
surprises (Doak et al. 2008, Berger and Smith 2019). Given
the many complexities of biology, prediction might not ever
reach the accuracy levels attained for weather or physi-
cal particles. However, we argue that substantial gains in
predictive accuracy are possible even with modest gains in
model development, given the current state of the field. The
scientific community has not developed many mechanistic
biodiversity predictions, and even fewer have been validated
with monitoring data. But those that have been tested dem-
onstrate considerable promise. For instance, mechanistic
models have successfully been used to predict population

https://academic.oup.com/bioscience

declines, pest population dynamics, species distributions
from phenological traits, forest carbon dioxide exchanges,
and fire dynamics in nature (Wilder 1999, Brook et al. 2000,
Amthor et al. 2001, Chuine and Beaubien 2001, Emmett
et al. 2021). These examples suggest that accurate predic-
tions for biodiversity and ecosystems are possible especially
when more mechanistic models and data are available.
Finally, even if only modest gains are possible, we will still
have gained fundamental insights about the limits to pre-
dictability in biology.

Although we still too often lack the basic biological data
needed to inform biodiversity models, new data efforts
are rapidly filling these data gaps. Governments, organiza-
tions, and scientists are collecting and compiling these data
at an accelerating rate and storing them in repositories,
including species distributions (e.g., the Global Biodiversity
Information Facility and Ocean Biodiversity Information
System), historical abundances (e.g., the Global Population
Dynamics Database, Projecting Responses of Ecological
Diversity in Changing Terrestrial Systems [PREDICTS] proj-
ect, and the BioTIME database), and traits (e.g., TraitBank,
TRY database). A biodiversity projection platform could
begin using these resources immediately and also facilitate
the further sharing and integration of data. Even where data
gaps continue to exist, models will be crucial in directing
efforts toward more efficient data collection (Ficetola et al.
2018). Waiting until we collect all relevant data would prove
too late for such models to be useful. Therefore, we need a
comprehensive platform both to make use of the increasing
big data of biodiversity (Wiiest et al. 2020), but also to guide
and streamline the monumental effort of collecting relevant
data to support model development and parameterization.

A universal modeling platform could develop either by
building from basic principles (figure 2) or by tethering
together existing models (figure 3). Building a new platform
would be desirable from the standpoint of consistency and
ensuring rapid operation and integration. However, limited
resources for biodiversity science might make this approach
impractical. The alternative is to link existing programs,
such as those listed in figure 1. This alternative approach
would prove efficient from the standpoint of using existing,
error-checked models, and we illustrated the feasibility and
usefulness of this approach in figure 3. Moreover, multi-
model integration could enable substantial gains with rela-
tively little effort by normally ignored model interactions.
However, substantial work is needed to ensure that coupled
models correctly interpret inputs and outputs from one
another and include appropriate linking functions across
spatial and temporal scales. Moreover, these Frankenstein
models usually run slowly given the computing overhead of
cross-program communication and translation. Likely the
best course of action is to link existing models now, while
working toward recoding models in a common language and
framework to speed up future analyses.

Several options exist for integrating models and build-
ing a modular system for coupling code into a biodiversity
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projection platform. One option is to create a package
that acts as a wrapper for submodules written within the
popular R programming environment. For instance, the
zoon R package allows users to choose species distribu-
tion modules from those contributed to an open, version-
controlled online repository and then generate reproducible
workflows that combine results from the chosen modules
(Golding et al. 2018). A complementary approach is to take
advantage of software containers, such as the Docker vir-
tualization platform (www.docker.com), that create stand-
alone packages that can integrate multiple applications that
require different data and computational environments and
encapsulate all software dependencies that might otherwise
change through time (Huang et al. 2019, White et al. 2019).
Already this system has been used to automate ecological
forecasting, including processing new data, fitting, calibrat-
ing, and running multiple different process-based models,
analyzing the outputs, and creating an ensemble forecast.
For instance, Docker has been used to create periodi-
cally updated and interactive projection platforms for both
rodent abundances and forest carbon sinks (Huang et al.
2019, White et al. 2019). Docker also can create interfaces
between biodiversity and land use or Earth system models
that often operate on different platforms (Robinson et al.
2018, Millington et al. 2021).

Building on the design principles outlined in table 1, the
next step is to form a governing board of global scientists,
modelers, and biodiversity professionals to coordinate plat-
form development and explore financing options. Once a
version is available, the next phase would be to demonstrate
its abilities on simulated and real data sets. Simulated data
sets with known drivers and outcomes provide effective
tools to test and refine projection tools because validation is
immediate (Zurell et al. 2010). Providing a common set of
real and simulated benchmark data sets with the platform
could enable standardized tests of performance for new and
revised models in order to support model quality control
and comparison (Fer et al. 2021). Monitoring data are also
needed for future validation. During this stage, the platform
can be improved and enhanced on the basis of the feedbacks
with monitoring data and end users. Another objective at
this stage would be to demonstrate and teach its applications
to potential users, including in academia, governments,
nongovernmental organizations, and businesses.

If designed properly and of demonstrable utility, the plat-
form will grow in accordance with the changes implemented
by the global community, similarly to other open-access
platforms. The governance council can update the platform
according to changing norms and to take advantage of com-
puting advancements.

Although developing this platform is likely beyond fund-
ing available from traditional national scientific grants, a
consortium of science foundations or a public-private fund-
ing scheme could prove sufficient. Funding this platform
requires only a minor shift in global scientific funding pri-
orities. The International Space Station costs approximately
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$4 billion dollars yearly, governments fund climate change
modeling at approximately $4 billion per year (Stanhill 2001,
Urban 2019), and the Large Hadron Collider, which has
greatly advanced physics theory, cost $4.75 billion to build
and $1 billion to run annually. We estimate that less than
0.2% of the costs of these projects ($15 million per year)
would support an international team of professors, research-
ers, programmers, and students to build a comprehensive
biodiversity projection platform over the next 10 years
(see assumptions in supplemental table S4). These outlays
would quickly be recouped through the savings reaped from
improved biodiversity forecasts and mitigation efforts. For
instance, we lose an estimated $20 trillion dollars per year
in ecosystem services from land-use change alone (Costanza
et al. 2014). Preventing just one-millionth of these losses
would pay for the program.

Conclusions

Most biodiversity forecasters either rely on more generaliz-
able, but less accurate, models or undergo the time-consum-
ing and costly process of developing process-based models
specific to particular questions. Consequently, biodiversity
science is less efficient, accurate, integrated, and equitable
than it could be with a universal platform. We now find our-
selves in the middle of the Anthropocene and ill equipped
to predict and prevent biodiversity and ecosystem change.
However, advances in biology, computer science, artificial
intelligence, and computing power now exist to address this
challenge quickly. Scientists now have the capacity to recre-
ate the complexities of diverse interacting species within the
silicon brain of the computer, replicate it in servers through-
out the world, and implement artificial intelligence to find
optimal management schemes. Such tools will allow us to
decrease uncertainties and develop better evidence-based
mitigation and adaptation strategies. With bold innovation
coupled with appropriate coordination and support, this
grand deficiency in global science can and should be solved
this decade.
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