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Abstract— CelebA is the most common and largest scale
dataset used to evaluate methods for facial attribute prediction,
an important benchmark in imbalanced classification and face
analysis. However, we argue that the evaluation metrics and
baseline models currently used to compare the performance
of different methods are insufficient for determining which
approaches are best at classifying highly imbalanced attributes.
We are able to obtain results comparable to current state-of-
the-art using a ResNet-18 model trained with binary cross-
entropy, a substantially less sophisticated approach than related
work. We also show that we can obtain near-state-of-the-art
results on accuracy using a model trained with just 10% of
CelebA, and on balanced accuracy simply by maximizing recall
for imbalanced attributes at the expense of all other metrics.
To deal with these issues, we suggest several improvements to
model evaluation including better metrics, stronger baselines,
and increased awareness of the limitations of the dataset.

I. INTRODUCTION

Facial attribute labels describe a face with natural language
features such as big nose, bushy eyebrows, gray hair, and
smiling. In addition to the direct utility of being able to
describe a face in words, attribute labels have been used to
improve face verification and identification [17][23], seman-
tic segmentation [16], and other face parsing tasks such as
detection and landmarking [20]. Facial attributes have also
recently become popular for face editing [2][11]. The largest
and most widely used facial attribute dataset is CelebA [19],
which contains 202,599 images of 10,177 people labeled
with 40 binary attributes. The images are provided in both
the original, uncropped format and as 218 x 178 cropped and
aligned images. We refer to the two versions as CelebA-ITW
(In the wild) and CelebA-C+A (Cropped+aligned). Examples
of both are shown in Figure 1.

In this work we show that near-state-of-the-art accuracy
can be obtained on both versions of the CelebA dataset
using a ResNet-18 model [10] trained with binary cross-
entropy loss without any auxiliary data. This is in contrast
to most recent attribute prediction approaches, which use
substantially larger models and additional information such
as segmentation masks and identity labels. By using initial
weights pretrained on ImageNet, our results become even
more competitive. On CelebA-ITW our results with pre-
training substantially improve upon the accuracy obtained by
current state-of-the-art models, most of which use auxiliary
data far closer to the target domain.

We argue that a major reason models struggle to improve
upon such a simple baseline is that the metrics used to
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Fig. 1. Examples of CelebA-ITW images (top) and their CelebA-C+A
versions (bottom).

evaluate them are severely flawed. Due to the imbalanced
nature of the dataset, very high accuracy can be obtained for
some attributes by a naive classifier which always predicts
the majority class. We obtain results not far behind current
state-of-the-art even when randomly discarding 90% of the
training data, which disproportionately impacts the least
balanced attributes. Furthermore, we show that balanced
accuracy, used by several works as an alternative metric
for dealing with these issues, can in fact be even worse for
measuring performance on imbalanced data. We demonstrate
how balanced accuracy can be exploited by training a model
to a balanced accuracy score of 88.4%, only slightly behind
state-of-the-art, with an average precision of just 58.6%.
These metrics result in consistent overestimation of model
quality, masking labeling issues which prevent reasonable
performance on certain attributes. Better metrics show that
several attributes are too subjective or poorly labeled to be
reliably predicted.

These flaws in currently used evaluation metrics, combined
with the wide variety of backbone models and hyperpa-
rameter selections in other state of the art approaches as
well as the lack of publicly available implementations, make
it difficult to meaningfully compare different methods. To
deal with this issue, we provide several suggestions for
improved evaluation of facial attribute prediction models.
Future work should evaluate models using F1-score or other
metrics not affected by true negative counts, provide com-
parisons to stronger baselines more closely related to the
proposed method, and better acknowledge the limitations
of the dataset. Almost all labels are applied inconsistently
across different images of the same person, suggesting that
a new attribute dataset may be necessary for better evaluation
of future work. We provide our implementation and per-
attribute results at github.com/blingenf/celeba-baselines as a
simple but strong baseline for future work to compare to.



II. RELATED WORK

Since the release of the CelebA dataset in 2015, there
have been many proposed methods for CelebA attribute
prediction. Liu et. al. used three deep Convolutional Neural
Networks (CNNs) — LNety, LNet; and ANet — where the
LNet networks detect the face in an unaligned image and
ANet predicts attribute labels. Linear SVMs are then trained
on the validation set to translate features learned by ANet to
attribute predictions [19].

Later works rely on more typical end-to-end CNN models.
MOON [21], which uses CelebA-C+A, consists of VGG-
16 with a multitask loss function which accounts for differ-
ences between a source and target distribution. AFFACT [6],
which provides results for both CelebA-C+A and CelebA-
ITW (with faces detected by a pretrained face detector),
uses ResNet-50 combined with both train-time and test-time
augmentations. MCNN-AUX [8] uses a shallower CNN with
different branches for different attribute groupings to take
advantage of relationships between attributes.

Other works use additional data or labels to improve
performance. SSP+SSG [15] takes advantage of the relation-
ship between part localization and attribute prediction, using
semantic segmentation to improve prediction performance. A
semantic segmentation model trained on the segmentation-
labeled Helen face dataset is used to gate and pool activations
in a VGG-based architecture. Later work by the same authors
uses an Inception-v3 backbone which jointly learns attribute
prediction and semantic segmentation, improving the perfor-
mance of both [16]. Segmentation data has also been used
by [9], who use a Generative Adversarial Network (GAN) to
generate segmentation masks which are then used to generate
an additional set of features to combine with features from
the RGB images.

In addition to auxiliary data, auxiliary labels can be
used to improve attribute prediction. LMLE and CLMLE
[12] deal with class imbalance by learning an embedding
function which separates cluster distributions within and
between classes. They use DeeplD2 features trained on
the CelebFaces+ dataset [22], which was used to create
CelebA, effectively meaning that CelebA identity labels are
auxiliary data. HFE [24] also takes advantage of the identity
labels provided by CelebA by enforcing that representations
should be separated by both attribute and identity informa-
tion. Their method uses a DeepID2 backbone with fully-
connected branches for each attribute. PS-MCNN [1] uses
attribute groupings and with an additional shared network
pretrained using identity labels. By combining attribute loss
with identity loss (PS-MCNN-LC), they are able to obtain
state-of-the-art results.

III. BASELINE EXPERIMENTS

In this section we establish a simple baseline approach for
facial attribute prediction. We then show that we are able to
obtain results close to all state-of-the-art methods discussed
in Section 2 following this approach, even when using far
less data.

A. Experimental Setup

For both CelebA-ITW and CelebA-C+A, we train one
ResNet-18 model on the entire training set and another on
a randomly sampled subset of 10% of the training set. We
use the same subset across all experiments. We then repeat
all experiments using initial weights pretrained to perform
ImageNet classification. All tests are run five times with
fixed hyperparameters to collect mean and standard deviation
values. It is important to note that prior works do not report
mean and standard deviation, likely resulting in inflated
accuracy numbers. The reported results for AFFACT, for
example, use the model which obtained the highest validation
accuracy out of multiple runs.

For CelebA-C+A, we resize from the original 218 x 178
size to 274 x 224 to ensure the smallest dimension matches
the 224 x 224 image size most commonly used for ImageNet.
To augment images, we use flipping, cropping and rotation.
Images are first resized by a random scale between 95% and
105%, then cropped back to 274 x 224. We then randomly
rotate between +5 degrees. We found that, while minor,
the cropping and rotation transformations were useful for
reducing overfitting. Finally, we flip the image horizontally
with 50% probability. For CelebA-ITW, we zero-pad all
images to be square then resize to 500 x 500 to ensure
facial features remain visible even for images where the face
is small. We then use the same augmentations adjusted to
the larger image size. Because this increases the memory
requirements of the network, we divide both the initial
learning rate and batch size by 4.

To train our models, we primarily use the same parameters
as the ResNet paper [10]: SGD with a batch size of 256,
initial learning rate of 0.1, momentum of 0.9, weight decay
of 0.0001, and a learning rate schedule in which the learning
rate is multiplied by 0.1 when the validation loss plateaus.
However, because we train for a fixed number of epochs,
for most models we found that we obtained more consistent
results by simply multiplying the learning rate by a factor of
0.9 every epoch. Exceptions include results without pretrain-
ing on our 10% downsampled versions of CelebA and on the
full version of CelebA-ITW, for which we use the original
plateau-based schedule. We also use a smaller multiplier of
0.8 for the pretrained model using all of CelebA-ITW. All
models are trained on a single NVIDIA GTX 1080 Ti GPU.
More detailed information about training hyperparameters is
provided as supplemental material.

B. Results

As shown in Table I, we are able to improve upon the
CelebA-C+A results of MOON, CLMLE, and MCNN-AUX
using ResNet-18 without any additional data, and, as shown
in Table II, our CelebA-ITW results without additional data
are within one standard deviation of all methods other
than SA. Note that all methods which outperform our non-
pretrained baselines use either auxiliary data or an additional
model trained on a different dataset. AFFACT and AFFAIR
use pre-trained face detectors, SSP+SSG and SA use seman-
tic segmentation data, FAN uses semantic segmentation data



TABLE I
COMPARISON BETWEEN OUR BASELINE RESNET-18 NETWORKS AND
STATE-OF-THE-ART METHODS ON THE CROPPED AND ALIGNED IMAGES
(CELEBA-C+A). “
SUBSET CONTAINING 10% OF THE TRAINING DATA.

10%” INDICATES THE NETWORK WAS TRAINED ON A

Method Accuracy

MOON [21] 90.94%

CLMLE [12] 91.13%

MCNN-AUX [8] 91.29%

AFFACT [6] 91.67%

SSP + SSG [15] 91.80%

FAN [9] 91.81%

HFE [24] 92.17%
PS-MCNN-LC [1] 92.98 +.25%!
ResNet-18 91.48 +.06%
ResNet-18 (ImageNet pretrained) 91.71+.01%
ResNet-18 (10%) 90.324+.07%
ResNet-18 (10%, ImageNet pretrained) | 90.88+.02%

TABLE II
COMPARISON BETWEEN OUR BASELINE RESNET-18 NETWORKS AND
STATE-OF-THE-ART METHODS ON THE IN THE WILD IMAGES
(CELEBA-ITW).

Method Accuracy
LNets+ANet [19] 87%

Zhong et. al. [25] 89.80%

AFFACT [6] 91.45%

AFFAIR [18] 91.45%

SA [16] 91.47%
ResNet-18 91.36+.13%
ResNet-18 (ImageNet pretrained) 91.814+.07%
ResNet-18 (10%) 89.86 £ .13%
ResNet-18 (10%, ImageNet pretrained) | 90.43 4+.05%

as well as ImageNet pretraining, and HFE and PS-MCNN
use CelebA identity labels. Additionally, ResNet-18 has far
fewer parameters and is much faster at inference time than
the methods used in most other works. For example, SA
uses an Inception-v3 backbone and AFFACT uses ResNet-
50. Both networks have twice as many parameters as ResNet-
18. Note that AFFACT reports higher accuracies when using
162 test-time augmentations or an ensemble of networks. For
fairness of comparison we use their results using a single
model and no test-time augmentations.

Notably, while AFFACT and AFFAIR use face detection
or alignment transformations, we find that we are able
to obtain high-quality results on CelebA-ITW without any
alignment or face detection. With ImageNet pretraining, our
results improve upon the nearest three methods, all of which
are within 0.02% of each other, by 0.34%. We also improve
upon our best CelebA-C+A results, despite most state-of-
the-results using CelebA-C+A rather than CelebA-ITW. This
is partially because the data was labeled using the original
images, and some attributes are not visible in the aligned
version. In particular, wearing necklace and wearing necktie
are frequently cropped out of the aligned image. The full-
size images may have also contributed to bias in the labeling
which networks using aligned data cannot exploit.

111 does not report the number of runs used to compute standard
deviation.

Although the main advantage of CelebA is its large size,
we are also able to obtain results comparable to state-of-
the-art with just 10% of the training data available (a total
of 16,277 training samples, rather than the 162,771 in the
complete dataset). With ImageNet pretraining, our results for
CelebA-C+A are competitive with MOON, which is used as
the strongest baseline for accuracy comparison by several
works [6][15][7]. All methods which improve upon our
CelebA-ITW results, with or without ImageNet pretraining,
use either a pretrained face detector or additional data.

IV. IMPROVING EVALUATION

In this section we show that our ability to match or
improve upon state-of-the-art using simple models is in part
because currently used evaluation metrics are highly flawed.
We provide suggestions for better evaluation and baselines
and show that better metrics reveal labeling flaws which harm
performance for many attributes.

A. Better Metrics

Due to the imbalance present in CelebA, the accuracy
of a model which always predicts the most common class
based on the distribution of the training data is 79.91%,
rather than 50% as it would be for a balanced dataset.
For the least balanced attributes, such a model can obtain
accuracy as high as 97.88%. To demonstrate why this is
problematic for comparing different methods, we compare
our baseline trained on 10% of the data with our baseline
trained on the entire dataset. For the least balanced attributes,
the network trained on 10% of the data only has a few
hundred positive examples to learn from, so we expect these
attributes to be where the difference between the two models
is most apparent. However, when evaluating using accuracy,
we observe the opposite: the most imbalanced attributes
correspond to the smallest differences in accuracy. This is
despite the fact that the network trained with less data clearly
does worse on these attributes in terms of both precision and
recall (combined using F1), as shown in Figure 2. Because
there is little improvement than can be made over always
predicting the majority class, performing well for highly
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Fig. 2. Per-attribute accuracy and F1 drop incurred by training on a random
selection of 10% of the training data. Balance rank orders attributes by their
ratio between positive and negative samples, with rare attributes (e.g. bald)
on the left and common attributes (e.g. young) on the right.
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Precision and recall for a ResNet-18 network optimized with BCE (left) and balance-weighted BCE (right). Balance rank orders attributes by

their ratio between positive and negative samples, with rare attributes (e.g. bald) on the left and common attributes (e.g. young) on the right.

imbalanced attributes is not very important for achieving high
average accuracy Scores.

To address this issue, several previous works
[13][4][15][9][12] have used balanced accuracy, which
weighs true positive rate equally to true negative rate:

1 TP TN !
2\TP+FN T TN FP) M
Average precision has also been used [15]. However, we
argue that both approaches are flawed. Average precision can
be maximized at the expense of recall by only predicting
1 when highly confident, and balanced accuracy considers
only true positive rate and true negative rate, which can be
misleading for highly imbalanced data [3]. In the case of
CelebA, balanced accuracy places very little weight on pre-
cision for highly imbalanced attributes. For the bald attribute,
for example, a network can obtain a balanced accuracy of
95% with perfect recall but a precision of just 17.5% (2.12%
TP, 10% FP, 87.78% TN, 0% FN). The relationship can be
more clearly shown by rewriting balanced accuracy as the
following:

S === ===), 2)

where N, = TP+ FN is the total number of positive samples
and N, = TN + FP is the total number of negative samples.
When N, >> N,, it is much more important to have few
FN than few FP, thus prioritizing recall. Similarly, when
N, >> N, it is much more important to have few FP than
few FN, thus prioritizing precision.

Because almost all CelebA attributes are predominately
negative, we find in practice that optimizing models for
balanced accuracy simply results in maximizing recall. To
show this, we train our baseline ResNet-18 model using a
loss function which is balanced by weighing each attribute
loss by the ratio between negative and positive samples
for that attribute. We find that our balanced accuracy on
CelebA-C+A improves substantially with this weighted loss
(81.52+.14 to 87.84+£.11), but this simply trades precision
for recall, and our F1-score (the harmonic mean of precision
and recall) remains unaffected (71.99 + .23 to 71.83 £ .38).
The tradeoff between precision and recall is shown in Figure
3. Note that, particularly for the least balanced attributes,
precision is substantially damaged to improve recall.

To further show how balanced accuracy can be problem-
atic, we replace each attribute weight w for our BCE loss
with w!?, thus improving recall for attributes which are
mostly negative and improving precision for attributes which
are mostly positive. With ImageNet pretraining, we obtain a
balanced accuracy of 88.43 £+.05% — just 0.35% below the
state-of-the-art result obtained by CLMLE using DeepID2
features pretrained to perform verification on CelebA —
while our average precision drops from 78.75+ .13% to
58.62+.10% and our accuracy drops from 91.72+.01% to
86.10 £ .12%.

While using a combination of balanced accuracy, accuracy,
and average precision overcomes their collective issues, this
can lead to practical difficulties in comparing models. For ex-
ample, [12] compares their model to [15] using both balanced
accuracy and accuracy. However, Kalayeh et. al. obtained
their results using two separate models, one optimized for
accuracy and the other optimized for balanced accuracy, thus
limiting the usefulness of the comparison.

In light of these results, we argue that all metrics used
by prior work — accuracy, balanced accuracy, and average
precision — are insufficient for measuring attribute pre-
diction performance, particularly for imbalanced attributes.
We instead suggest Fl-score, which is commonly used for
other problems exhibiting class imbalance [14] and avoids
the problems described above by completely ignoring the
number of true negatives. We provide results for all our
models using accuracy, balanced accuracy, and F1 in Table
III. Following previous work, our balanced accuracy metrics
are computed separately for each attribute then averaged to
enforce that the model should do well for all attributes.
Similarly, F1 results are the average of per-attribute F1
scores because using cumulative TP/FP/FN counts across all
attributes result in prioritizing attributes which have more
total positives. Note that our F1 results are therefore not
comparable to those provided by [9], as they do not compute
F1 separately for each attribute but instead use cumulative
counts. To our knowledge, no other work provides F1 results
for CelebA.

B. Better Baselines

Given the small scale of accuracy differences between
state-of-the-art approaches, it is worth considering how large
of an effect hyperparameters and network backbone selection



TABLE III
ACCURACY, BALANCED ACCURACY, AND F1 SCORES AVERAGED OVER ALL ATTRIBUTES.

Without Pretraining With ImageNet Pretraining
Data Acc. Bal. Acc. F1 Acc. Bal. Acc. F1
CelebA-C+A, 100% | 91.48+.06% | 81.49£.18% | 71.98+.21% | 91.71£.01% | 82.35+.11% | 73.19£.10%
CelebA-C+A, 10% | 90.32+£.07% | 78.20+.43% | 66.58+.76% | 90.88+.02% | 79.62+.12% | 69.05+.11%
CelebA-ITW, 100% | 91.36+.13% | 82.80+.11% | 73.13+.21% | 91.81+.07% | 82.39+.25% | 73.36 +.31%
CelebA-ITW, 10% | 89.86+.13% | 76.344+.72% | 63.72+£1.58% | 90.434+.05% | 76.92+.19% | 64.57+ .28%

can make. We find that several seemingly minor changes in
training hyperparamters can result in substantial differences
in validation accuracy. For example, we found that resizing
images from 218 x 178 to 274 x 224 resulted in an average
validation accuracy improvement of 0.41%. Additionally, the
final model after our fixed number of epochs does not always
achieve the highest validation accuracy, and stopping training
early can result in similar gains. In particular, the learning
rate reduction on plateau schedule varies a large amount from
run to run, and can result in standard deviations as high as
0.13 as shown in Table III. These fluctuations highlight the
importance of having a strong, directly comparable baseline
to show that reported improvements are actually a result of
the proposed method.

This can be further seen from works which provide such
a comparison. [16] use Inception-v3 as the backbone of their
proposed Symbiotic Augmentation (SA), and as such provide
comparisons to an Inception-v3 baseline trained without
SA. Their method only improves upon this baseline by
0.15%. Another method which uses segmentation masks, [9],
achieves accuracy results for CelebA-C+A which are within
0.01% of SSP+SSG (the precursor to SA), but improve upon
their ResNet-50 baseline by a much larger 0.31%. While
the lack of mean and standard deviation numbers for these
results makes it difficult to determine how significant the
improvements over these baselines are, it is clear from their
small scale that a large portion of the difference between
methods comes from backbone networks and hyperparameter
selection.

C. Labeling Inconsistencies

The similarity in accuracy between a classifier trained
using all the data and one trained using just 10% of the data
raises the question of why state-of-the-art classifiers struggle
to obtain accuracy greater than 92%. Measuring results in
terms of F1 demonstrates some of the major problems present
in the dataset. As explored by previous work, several labels
such as oval face, attractive, high cheekbones, and arched
eyebrows are subjective and inconsistently labeled, while
other labels, such as lipstick, are frequently mislabeled [7].
While some methods have been able to obtain good results
on these attributes in terms of accuracy or balanced accuracy
by exploiting the balance of the dataset, when measured
in terms of F1 these issues become far more clear. For
certain highly subjective attributes such as narrow eyes,
oval face, and big lips, our baseline model pretrained using
ImageNet is unable to obtain an Fl-score above 50. For
some of these attributes, the labeling issues can be seen

Fig. 4. Average of the 200 validation images which achieve the highest
activations for narrow eyes, high cheekbones, big lips, and big nose (left to
right).

by averaging the 200 validation images which result in the
highest activations for each attribute. For example, as shown
in Figure 4, narrow eyes frequently applies to partially closed
eyes due to laughing and high cheekbones seems to just
recognize smiling (we find that 85.6% of images labeled
with high cheekbones are also labeled with smiling). For
some subjective attributes such as big nose and big lips,
our baseline seems to rely heavily on racial or gender bias.
Of the 200 images with the highest activations for big lips,
99% of the people are black. Of the images with the lowest
activations, 0% are black. For the top activations for big
nose, 78% of the people are black and 3% are female. For
the lowest activations, 0% are black and 100% are female.
Almost half (46.5%) of the images that achieve the highest
200 activations for big lips are also in the highest 200
activations for big nose, suggesting that the two features learn
similar biases.

Due to the subjectivity of these attributes, even when
optimizing for accuracy rather than a balanced metric, the
most balanced attributes aren’t necessarily the ones the
network performs best for. For example, as shown in Table
IV, big lips, oval face, and pointy nose are among the most
balanced attributes in the training set with a positive/negative
ratio near 30, but we are unable to obtain an F1 much
better than 50 for any. Additionally, our ability to obtain
better performance on CelebA-ITW than any model not using
identity labels on either CelebA-ITW or CelebA-C+A sug-
gests that the labels are affected by factors outside of facial
features. As previously mentioned, the wearing necklace
attribute is frequently not visible in aligned images, allowing
our ImageNet-pretrained network trained on CelebA-ITW to
obtain an average F1 improvement of 15.28 over an identical
network trained on CelebA-C+A. While the network trained
using CelebA-C+A performs better on most attributes, there
are 13 other attributes for which the network using unaligned
data performs better, including oval face (4+9.95), mustache
(+5.46), big lips (+1.96), and wearing necktie (+1.92).
While wearing necktie is more visible in the uncropped data,



TABLE IV
AVERAGE ACCURACY, BALANCED ACCURACY, PRECISION, RECALL, AND
F1 RESULTS ON CELEBA-C+A USING OUR BASELINE RESNET MODEL
WITH IMAGENET PRETRAINING. “%POS” IS THE PERCENTAGE OF
SAMPLES WHICH ARE POSITIVE. WE BOLD ATTRIBUTES WITH AN F1
BELOW 60.

Attribute | %pos | Acc | BA | Prc | Rcl | Fl

No Beard | 85.4 | 96.5 | 93.4 | 98.1 | 97.8 | 98.0

Young | 75.7 | 89.0 | 82.6 | 90.9 | 95.1 | 92.9

Wearing Lipstick | 52.1 | 94.2 | 94.2 |1 95.9 | 92.8 | 94.3
Smiling | 50.0 [ 93.4 934|947 919|933
Attractive | 59.6 | 83.2 | 83.2 | 83.8 | 82.0 | 82.8

Mouth Slightly Open | 49.5 | 94.3 | 94.3 | 94.9 | 93.6 | 94.2
High Cheekbones | 48.2 | 88.1 | 88.0 | 89.3 [ 85.5 | 87.4
Heavy Makeup | 40.5 | 92.0 | 91.5 | 91.5 | 88.5 | 90.0
Male | 38.7 | 98.4 | 98.2 1983 |97.5|979

Wavy Hair | 36.4 | 85.3 | 82.0 | 87.2 | 69.9 | 77.6

Big Lips | 32.7 | 72.8 | 62.7 | 67.1 | 33.3 | 44.5

Oval Face | 29.6 | 76.1 | 63.0 | 72.3 | 31.1 | 43.5
Pointy Nose | 28.6 | 77.8 | 68.2 | 66.1 | 45.9 | 54.2
Arched Eyebrows | 28.4 | 84.4 | 80.8 | 72.4 | 72.7 | 72.5
Black Hair | 27.2 [ 90.5 | 86.5 | 85.9 | 77.7 | 81.6

Big Nose | 21.2 | 84.3 | 76.8 | 62.8 | 63.8 | 63.3
Straight Hair | 21.0 | 85.0 | 74.7 | 66.7 | 56.9 | 61.4
Wearing Earrings | 20.7 | 90.7 | 86.2 | 76.8 | 78.6 | 77.7
Bags Under Eyes | 20.3 | 85.5 | 78.8 | 63.4 | 67.5 | 65.3
Brown Hair | 18.0 | 89.5 | 83.7 | 69.3 | 74.6 | 71.9
Bangs | 15.6 | 96.2 | 91.9 | 89.4 | 85.8 | 87.6

Narrow Eyes | 14.9 | 87.7 [ 64.5 | 69.4 | 31.5 | 43.3
Wearing Necklace | 13.8 | 88.1 | 65.2 | 63.3 | 33.5 | 43.8

Blond Hair | 13.3 | 96.2 | 91.4 | 86.3 | 84.8 | 85.5

Bushy Eyebrows | 13.0 | 93.0 | 80.3 | 78.9 | 63.2 | 70.2

5 o Clock Shadow | 10.0 | 94.8 | 87.0 | 72.7 | 77.1 | 74.8
Receding Hairline | 8.5 | 94.0 | 74.9 | 69.9 | 51.9 | 59.6
Rosy Cheeks | 7.2 | 954 | 77.4 | 735|563 | 63.8

Wearing Necktie | 7.0 | 97.1 | 87.1 | 81.7 | 75.4 | 78.4
Eyeglasses | 6.5 | 99.7 | 98.4 | 98.2| 96.9 | 97.5
Chubby | 5.3 [959 (757|642 53.1|58.1
Blurry | 5.1 |96.4 | 734|712 (479|572
Sideburns | 4.6 | 98.0 | 89.6 | 76.6 | 80.4 | 78.5
Goatee | 4.6 | 97.6 | 88.1 | 72.0 | 77.7 | 74.7
Double Chin | 4.6 | 96.5 | 72.7 | 66.2 | 46.6 | 54.7
Pale Skin | 4.2 | 97.2 | 753 |74.2 | 51.4 | 60.7
Wearing Hat | 4.2 | 99.2 | 94.3 | 91.2 | 89.0 | 90.1
Mustache | 3.9 | 97.1 | 72.7 | 68.8 | 46.3 | 55.4
Gray Hair | 3.2 | 98.3 | 84.9 | 74.6 | 70.7 | 72.5

Bald | 2.1 |99.1 |86.8|80.4]|74.1]|77.1

the other features should be entirely visible in the aligned
images and may therefore be biased by factors cropped out
during alignment.

We also find that there are many attributes other than those
described in [7] which are seemingly non-subjective but lack
clear definitions and are inconsistently labeled. For example,
we found it highly unclear what differentiates bald from
receding hairline. Although the two classes should seemingly
be disjoint, 33.1% of images labeled with bald are also
labeled with receding hairline. Though detailed analysis of
labeling issues is left for future work, we found that as many
as 50% of images labeled as bald have some amount of hair
on the scalp. Receding hairline is even more inconsistently
labeled, with labelers frequently seeming to use it to describe
hair which is close-cropped or tied back. Examples of both
are shown in Figure 5. More samples of these attributes are
provided as supplemental material.

For a more complete evaluation of consistency, we use

Fig. 5. Top row: Examples of validation images labeled as bald. Some
images are clearly not bald (leftmost example) or clearly bald (rightmost
example), but there is some ambiguity in between. Bottom row: examples
of validation images labeled as receding hairline seemingly due to close-
cropped or tied back hair.

TABLE V
AVERAGE FLEISS K AGREEMENT FOR THE 40 ATTRIBUTES IN CELEBA.
K < 0 INDICATES AGREEMENT IS WORSE THAN WOULD BE EXPECTED BY
RANDOM CHANCE, K = | INDICATES PERFECT AGREEMENT.

Attribute K Attribute K
Blurry —0.0181 Wavy Hair 0.4272
Pale Skin 0.1562 Bangs 0.4313
Mouth Slightly Open 0.2141 Pointy Nose 0.4546
Narrow Eyes 0.2378 Black Hair 0.4717
Wearing Hat 0.2489 Sideburns 0.4759
Smiling 0.2551 Bushy Eyebrows 0.4893
Wearing Necktie 0.2712 Mustache 0.4945
Double Chin 0.2910 Bald 0.4981
Wearing Necklace 0.3113 Goatee 0.5062
High Cheekbones 0.3178 5 o Clock Shadow | 0.5131
Rosy Cheeks 0.3282 Arched Eyebrows | 0.5131
Bags Under Eyes 0.3388 Attractive 0.5140
Receding Hairline 0.3405 Big Nose 0.5585
Straight Hair 0.3441 Blond Hair 0.5727
Brown Hair 0.3719 Heavy Makeup 0.6302
Oval Face 0.3881 No Beard 0.6450
Wearing Earrings 0.3893 Big Lips 0.7279
Chubby 0.3924 Wearing Lipstick 0.7322
Eyeglasses 0.4150 Young 0.8360
Gray Hair 0.4233 Male 0.9789

the Fleiss’ k¥ measure commonly used for evaluating inter-
rater agreement [5]. Fleiss’ k is defined as f:ﬁ: , where P is
the probability that two randomly selected reviewers agree
on a specific rating for a subject and P, is the probability
that this would occur by chance (if an attribute is very rare,
for example, agreement would be high even if the reviewers
are using entirely different criteria simply because most
ratings would be 0). Attributes such as oval face and pointy
nose should be consistent for different images of the same
person, so labels for different images of the same person
can be considered different ratings of the same subject for
the purpose of computing k. As shown in Table V, we find
that agreement is poor for most attributes. In fact, many
of the highest agreement scores are for attributes which we
expect to be least consistent across different images, such as
wearing lipstick, heavy makeup, and 5 o’ clock shadow. This
lack of consistency may explain why using CelebA attributes




have not shown significant value for face verification. For
example, [21] found that using their CelebA attribute clas-
sifier for face verification only moderately improved over a
similar results from Kumar et. al. in 2009, which used more
attributes but far less training data. Both methods lag far
behind state-of-the-art approaches. It is possible that facial
attributes may be more useful for verification than these
results indicate, but only if better care is taken during the
labeling process to ensure attributes are labeled consistently.

V. CONCLUSION

Although CelebA is the largest-scale facial attribute
dataset available, it is difficult to directly compare methods
trained on this data. The two metrics primarily used to
compare performance, accuracy and balanced accuracy, can
be optimized for imbalanced attributes without producing a
classifier which is actually useful for predicting those at-
tributes. We demonstrate that simple baseline models are able
to obtain results very close to highly specialized methods.
To our knowledge, no method is able to improve upon a
non-pretrained ResNet-18 model without requiring additional
data or an additional pretrained model, and improvements
over a ResNet-18 model pretrained on ImageNet are small
(or, in the case of the uncropped data, nonexistent). Addition-
ally, many attributes have highly inconsistent or inaccurate
labels, making it difficult for any model to achieve reasonable
results. Note that LFWA, a popular alternative to CelebA,
was labeled by the same group in the same manner as CelebA
and as such suffers from similar issues.

To improve evaluation of facial attribute prediction mod-
els, we suggest using metrics which are invariant to true
negative count such as F1, computed as the average of per-
attribute scores to ensure that all attributes are weighed
evenly. Per-attribute results showing which attributes the
model performs best on are also important both to show
how performance is impacted by balance and to demon-
strate which attributes cannot be reliably predicted. Improved
performance on certain poorly-labeled attributes may not
be meaningful. Additionally, due to the relatively small
differences between most methods and the varying use of
additional data, we emphasize the importance of compar-
ing to strong baselines and providing mean and standard
deviation numbers to ensure reported improvements come
from the proposed method rather than hyperparameter and
backbone selection. We hope these suggestions will improve
the community’s ability to evaluate new methods for facial
attribute prediction.
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