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Abstract—One significant challenge in the field of supervised
deep learning is the lack of large-scale labeled datasets for
many problems. In this paper, we propose Consensus Spectral
Clustering (CSC), which leverages the strengths of convolutional
autoencoders and spectral clustering to provide pseudo labels
for image data. This data can be used as weakly-labeled data for
training and evaluating classifiers which require supervision. The
primary weaknesses of previous works lies in their inability to
isolate the object of interest in an image and cluster similar
images together. We address these issues by denoising input
images to remove pixels which do not contain data pertinent
to the target. Additionally, we introduce a voting method for
label selection to improve the clustering results. Our extensive
experimentation on several benchmark datasets demonstrates
that the proposed CSC method achieves competitive performance
with state-of-the-art methods.

Index Terms—Cluster, Image, Autoencoder, Pseudo label

I. INTRODUCTION

The lack of large-scale, labeled datasets for many supervised
learning problems has brought about new methods that aim to
cluster data and provide pseudo labels which can be used to
weakly train supervised classifiers. Clustering is a widely used
method for data processing, with many well-known methods
including k-means [1], Gaussian Mixture Models (GMMs)
[2], [3], and spectral clustering [4]. These methods unfortu-
nately struggle with high-dimensional data [5]. Our method
overcomes the limitations of these methods by reducing the
dimensionality of the input data while carefully selecting the
features which are most important for differentiating between
samples. Our multi-step clustering process, which we call
Consensus Subspace Clustering (CSC) is detailed below:

1) An autoencoder is used to prune unnecessary features,

capture spatial relationships of input images and flatten
the data, resulting in the feature vector v.

2) Non-negative matrix factorization (NMF) is then applied
to v to filter out features that are not important for
differentiating input samples producing vy.

3) We build multiple low-dimensional representations from
vy using a variational autoencoder (VAE) [6].

4) Spectral clustering is applied to our low-dimensional
representations and consensus clustering [7] is used to
stablize clustering results.

We introduce a novel method for unsupervised pseudo

labeling, which we call Consensus Subspace Clustering (CSC).
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Experimentation shows that CSC produces results which are
competitive with state-of-the-art methods.
The novel contributions of this work are as follows:

e CSC utilizes a convolutional autoencoder and NMF to
capture spatial relationships of input data and filter out
features of the representation which are not valuable for
separating the data into clusters.

o CSC learns multiple representations of the data to enable
multiple rounds of clustering and voting. The purpose of
this step is to reinforce the robustness of selected cluster
labels.

II. RELATED WORK

The first class of methods that we describe jointly learn
to compress images into dense representations and cluster the
dense representations into classes. Fard et al. [8], [9] propose
methods that tune an autoencoder to generate k-means friendly
representations. In [10], Xie et al. pass samples through an
encoder to generate representations, cluster with k-means and
correct the cluster assignments with a clustering loss based
on a KL divergence between soft assignments and their target
distribution. Borrowing from Xie et al., [11] and [12] use the
same learning framework with an undercomplete autoencoder
to preserve the local structure of input data. Wang et al. [13]
pass the input image through an orthogonal autoencoder prior
to applying spectral clustering. Affeldt et al. [14] use multiple
autoencoder architectures to generate multiple representations
from the input data. The representations are then clustered
with spectral clustering. The authors of [15] propose an
architecture in which a neural network reduces the dimension
of input images. The learned representations are clustered and
the corresponding pseudo labels are used as supervision for
training the network.

The second group of works that we highlight are miscella-
neous techniques for improving cluster performance. Li et al.
[16] use a boosting method to train on easier samples, then
gradually expose the model to more challenging data. [17] uti-
lizes an ensemble of classifiers to generate cluster assignments
and compute a similarity graph. Finally the similarity graph
is pruned to extract high confidence cluster assignments. [18]
uses a modified VAE in which the latent space is sampled from
a mixture of Gaussian distributions. Clustering is achieved
by calculating how far the mixture distribution is from the



Denoised
Data

Denoising

- using NMF

Auto Encoder

Compressed
Data

Consensus

Concatenate
—_— N
Clustering

Spectral
Clustering

Variational
Auto Encoder

Repeat

Fig. 1. Overview of the proposed Consensus Subspace Clustering (CSC) pipeline. The method consists of four main modules: i) a flattening module using
an autoencoder to extract features from input images, ii) a denoising module using NMF to remove unimportant features, iii) a compression module using
VAE to generate a low-dimensional representation of denoised features and iv) a clustering module using spectral clustering to cluster images from their

compressed representations.

normal distribution. Lastly, Li et al. [19] implement multi-
view autoencoders for multi-view data with shared weights.
Their network structure has a deep embedding clustering layer
which recalculates cluster centers each iteration.

The proposed CSC differs from prior work in that the
autoencoder is primarily used for flattening the data and
capturing spatial relationships. In addition, related works do
not filter out features of the learned representation which are
not valuable for separating input data into clusters. Lastly, CSC
utilizes consensus clustering to stabilize clustering results.

III. METHODS

The Consensus Subspace Clustering (CSC) pipeline consists
of four core modules as shown in Fig.1. The first module aims
to extract features from input images using an autoencoder.
The second module removes noise and unimportant features
from input images. This is accomplished by detecting meta-
features with NMF and inspecting errors in the reconstructed
data. CSC only keeps features that have significant contribu-
tions to the reconstruction error because these are likely the
features which separate each class from the others. The first
and second module are repeated to generate multiple denoised
versions of the input images. The third module is a VAE
that projects the denoised features from the second module
into multiple lower-dimensional representations. The fourth
module applies spectral clustering to the low-dimensional
representations. All four modules are repeated to generate
multiple cluster assignments for each image. Finally, an en-
semble approach is used across multiple clustering runs to
determine the final cluster assignment for each image. This is
accomplished by using the cluster assignments obtained from
each representation. We detail each of the four modules in the
following subsections.

A. Feature extraction

We scale the range of pixel values in each image from O to 1
using min-max scaling. After normalization, a 1-layer convo-
lutional autoencoder is used to extract features from the input
images (Fig.2). The encoder consists of one convolutional
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Fig. 2. Feature extraction using our autoencoder. A 1-layer autoencoder is
used to extract features from input images. The representation generated by
the autoencoder has 500 dimensions.

layer and the decoder consists of one deconvolutional layer.
For each image, we obtain 500 features from the bottleneck
layer of the autoencoder. Optimizing this model so that it
can generate a good, compact representation requires that we
identify the significant features of input images. The following
section details our denoising module.

B. Denoising Module

We expect that only a subset of features extracted in the
first step are useful for clustering images into different groups.
Therefore, we focus on filtering out features that are not likely
to play a major role in clustering. Figure 3 shows the workflow
of our feature filtering approach using 1-factor NMF.
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Fig. 3. Denoising extracted features from input images using NMF. The
original data matrix is decomposed into two vectors representing images and
their features in 1-dimensional latent space. The error of the reconstructed data
using these two vectors is used to rank each feature. Only 50% of features
that have the largest error are kept for the next steps.



Briefly, Matrix Factorization is a technique that decomposes
a matrix into the product of two lower dimensional matrices,
W and H with reconstruction error E: V' = W x H+ E where
FE is a matrix of size m X n, the error between the original
data and the reconstructed data from W and H.

In this model, we set the number of factors & = 1. This
makes it very difficult to fit the model for the features which
are significantly different between clusters. In other words, the
features most valuable for the clustering task. Therefore, when
we attempt to reconstruct the original matrix V', we can select
the features most important for clustering by selecting those
which have the highest reconstruction error [20], [21]. We do
this selection by sorting the features by their absolute error and
removing 50% of the features with lowest error. Since both the
feature extraction and denoising modules are non-deterministic
and can be sensitive to random factors, we repeat these two
modules ten times to obtain different denoised versions of the
data. The concatenation of these denoised features are passed
to the next step.
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Fig. 4. Compressing images using a VAE. Denoised images are compressed
into multiple representations using a VAE. Multiple representations are
obtained from one image. This is accomplished by adding different noise into
the latent space and the use of multiple decoders to reconstruct the image.
The representations of each image are used for clustering.

The previous step has removed insignificant features from
the original extracted features, but the dimensions of the re-
maining features are still too large (2,500 features) to perform
clustering efficiently. Hence, a VAE is applied to compress
the significant features into a lower dimension (Fig.4). The
VAE architecture is similar to that of a standard autoencoder.
However, rather than attempting to encode each input sample
into fixed floating point features, the VAE encodes features
as various Normal distributions. The result of this technique
is a smooth and continuous latent space. The input of the
decoder is sampled from the latent space by adding a small
random noise into the latent space. Autoencoders are, however,
prone to overfitting [22]. Therefore, instead of using one
decoder as in a standard VAE, we use multiple decoders
in our implementation to ensure that the encoder learns the
generalized presentation of the input. At the end of this
modules, we obtain multiple (three) compact representations
for each image by repeatedly sampling from the latent space.

These compact representations are used for spectral clustering
in the next step.

D. Basic Subspace clustering

After training the VAE, the final informative and dense
representations of the input images are obtained. Next, spectral
clustering is performed on each subspace to form pseudo labels
for the input data (i.e. each cluster represents a class). We
utilize spectral clustering rather than k-means because spectral
clustering is expected to capture better non-linear relationships
among input images.

In our pipeline, we use the K-Means adaptation of spectral
clustering, proposed by Ng et al. [23], to generate pseudo la-
bels for input images. The clustering procedure first computes
the similarity matrix for all samples to use as the input graph.
It then computes the symmetric and normalized Laplacian
matrix (L*¥™). Then, the K largest eigenvectors for L*Y™,
are computed and normalized to unit length. The eigenvectors
are then used to make up the columns of a matrix. Finally, the
algorithm uses K-means clustering to segment the subspace
into K clusters.

To select the optimal number of clusters, we run the
algorithm with a different number of clusters and select the
clusters that give us the best ratio r of between-sum-of-squares
and total-sum-of-squares by cluster. Since the input data can
be large, for each number of clusters, we subsample the input
multiple times and perform clustering to obtain multiple r.
We take the average of all r for each k and select the optimal
number of clusters K such that r is maximized.

E. Consensus Clustering

We repeat the clustering pipeline multiple times (ten in our
experiments) to obtain multiple cluster assignments for each
image. To generate the final cluster assignment for each image,
we adopt an ensemble clustering strategy called weighted-
based meta-clustering (wMetaC) [24]. wMetaC was originally
developed to combine clustering results from random projec-
tions for single-cell data (gene expression data of individual
cells) to separate cells into different cell types. Here, we use
this strategy in an ensemble clustering approach to combine
multiple cluster assignments for each image. In this work, our
method uses voting from each cluster assignment to determine
the final clusters. First, an image-image similarity matrix is
computed such that each value in the matrix represents the
likelihood that two images are clustered together. Next, each
image is assigned a weight by summing all of the pairs that an
image appears in. These similarity matrices are used to form
a cluster-to-cluster similarity matrix. Lastly, final clusters are
selected by performing hierarchical clustering on the cluster-
cluster similarity matrix.

IV. EXPERIMENTS AND RESULTS

To evaluate our proposed method, we compare CSC with
several existing clustering methods on two different handwrit-
ten digit datasets and one general object classification dataset.
Baseline methods included in our comparison are k-means,



Deep Cluster [25], and Deep k-means [9]. The datasets used
for experimentation are MNIST [26], USPS [27], and CIFAR-
10 [28]. Widely used performance metrics are computed
to compare CSC to baseline techniques and state-of-the-art
methods.

A. Datasets

The datasets that we select for evaluation are MNIST, USPS
and CIFAR-10. Each of these collections are relatively small
and contain low-resolution images (32x32 pixels or less). The
MNIST dataset contains a total of 70,000 images of size 28x28
(60,000 images for training and 10,000 images for testing).
MNIST is relatively balanced with each of the 10 classes
representing close to 10 percent of the total population. The
group with most representation makes up 11.25 percent and
the group with least representation makes up 9 percent. USPS
contains a total of 11,000 images with of size 16x16. Both
datasets have 10 classes, which correspond with the integers
ranging from 0 to 9. Each image depicts a hand-written digit.
USPS is mostly balanced with the largest group representing
17 percent and the smallest group representing 8 percent.
The CIFAR-10 dataset contains total of 60,000 images of
size 32x32x3 (50,000 images for training and 10,000 images
for testing). This dataset is balanced, with 6000 images per
class. CIFAR-10 provides a much more challenging task due
to significantly larger feature space and diverse class labels:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and
truck.

B. Methods for Comparison

Effective evaluation of CSC is achieved via comparison to
state-of-the-art methods in the field. In addition, we select k-
means as a baseline model. Images are flattened before being
passed to k-means. K-means is run with 10 cluster centers for
a maximum of 1000 iterations or until convergence. We run
k-means 20 times on each dataset and select the run with best
results for comparison. The selected state-of-the-art methods
are Deep Cluster [25] and Deep k-means [9]. Results shown
in Table I are those reported in each publication.

C. Metrics

We use Accuracy (ACC) and Normalized Mutual Informa-
tion (NMI) as metrics to evaluate performance of each method.
Accuracy and NMI metrics are used to be consistent with the
evaluations in the original papers of corresponding methods
included in the comparison. The metrics are calculated as

follow:
N
Zn:l l(ll = m(c’b))
N

ACC = maz,y,

where 1(.) is an indicator function, [; is the true label, ¢; is
the label assigned by the clustering method and m(.) denotes
all possible one-to-one mappings between clusters.

I(l,¢)

NI ="m + 10)2

where 1 denotes the ground truth labels, ¢ is the cluster
assignments, I(.) is the mutual information metric, and H (.)
is the entropy.

D. Results

Table I shows the Accuracy and NMI for CSC and compari-
son methods on the MNIST, USPS and CIFAR-10 datasets. On
the MNIST task, CSC far exceeds performance of the baseline
and outperforms the other methods in accuracy. Deep Cluster
reports slightly better NMI for MNIST and Deep K-means
outperforms CSC in both metrics on the USPS dataset. In the
case of Deep Cluster, the margin of difference is very slight
and shows that CSC is competitive with state-of-the-art on this
task. Regarding Deep k-means, we believe that the architecture
is better suited for the smaller feature space found in USPS.
Each image in this dataset contains a total of only 256 features.
To reinforce this claim, we point to the method’s decreased
performance on the larger MNIST and CIFAR-10 datasets. We
note that the authors of Deep Cluster and Deep K-means did
not evaluate their methods on the CIFAR-10 dataset.

TABLE I
PERFORMANCE OF K-MEANS, DEEP CLUSTER, DEEP K-MEANS, AND
CSC oN MNIST, USPS AND CIFAR-10 DATASETS.

MNIST USPS CIFAR-10
Method

ACC NMI ACC NMI ACC NMI
K-means 058 049 048 042 0.14 012
Deep Cluster 086 083 067 069 — —
Deep K-means 0.84 080 076 078 — —
CSC No Flatten 085 0.79 083 078 0.12 0.08
CSC No Filter 083 076 084 079 0.14 0.10
CSC No Voting 082 077 082 076 0.14 0.10
CSC 08 081 083 079 015 0.11

Complete analysis of CSC requires an understanding of how
each component in the pipeline effects the end performance of
the model. Referencing the latter half of Table I, removing the
flattening module reports the least change out of all modules.
However, flattening appears to become more important as the
complexity of the dataset increases. Next, the filtering module
is particularly important for MNIST, but less important for
USPS. This is likely because the samples in USPS are mostly
separated before being processed by the VAE, see Figures 5
and 6. Last, voting or consensus clustering is very important
for stability of clustering results. In our trials without voting,
results can be extremely variable.

V. CONCLUSION

In this work, we have introduced a novel method for
providing pseudo labels on arbitrary image data, which we
call Consensus Subspace Clustering (CSC). To the best of
our knowledge we are the first to present a deep clustering
method which removes inconsequential features from input
data and learns multiple representations of the data to reinforce
the robustness of selected cluster labels. Our experimentation
shows that our work is competitive with, and in some cases,
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Fig. 5. A UMAP [29] visualization of the raw USPS dataset. Each colored
dot represents an input sample.
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Fig. 6. A UMAP [29] visualization of the USPS dataset after it is processed
with CSC. Each colored dot represents a latent representation of an input
sample from the dataset. Note that the points within each cluster tighten
together and the clusters are separated by a greater margin than those that
appear in Fig. 5.

exceeds the state-of-the-art for deep clustering of image data.
Future work in this area could introduce a confidence measure
to the sample in each cluster. Additionally the method could
be expanded to process data beyond images.
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