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Abstract. A nondispersive, conservative regularisation of the inviscid Burgers equation
is proposed and studied. Inspired by a related regularisation of the shallow water sys-
tem recently introduced by Clamond and Dutykh, the new regularisation provides a family
of Galilean-invariant interpolants between the inviscid Burgers equation and the Hunter–
Saxton equation. It admits weakly singular regularised shocks and cusped traveling-wave
weak solutions. The breakdown of local smooth solutions is demonstrated, and the existence
of two types of global weak solutions, conserving or dissipating an H1 energy, is established.
Dissipative solutions satisfy an Oleinik inequality like entropy solutions of the inviscid Burg-
ers equation. As the regularisation scale parameter ℓ tends to 0 or ∞, limits of dissipative
solutions are shown to satisfy the inviscid Burgers or Hunter–Saxton equation respectively,
forced by an unknown remaining term.
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1. Introduction

The dispersionless shallow water equations, also called the Saint-Venant equations, admit
shock-wave solutions. Recently, a Hamiltonian regularisation of this system (rSV), has been
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proposed which approximates these discontinuous waves by less singular ones [10]. The rSV
system can be written

ht + [hu ]x = 0, (1.1a)

[hu ]t + [hu2 + 1
2 g h

2 + εRh2 ]
x
= 0, (1.1b)

R def= h (u2
x − uxt − uuxx ) − g (hhxx + 1

2 h
2
x ) , (1.1c)

where ε is a small positive parameter, h is the total water depth and u is the velocity. The
classical Saint-Venant equations can be obtained letting ε→ 0. This regularisation is Galilean
invariant, non-dispersive, non-diffusive, and conserves energy for regular solutions. It also
admits regularised shock-wave weak solutions which have the same wave speed and which
dissipate energy at the same rate as shocks in the classical Saint-Venant (cSV) equations, [32].
Some mathematical results on rSV were obtained by Pu et al. [32] and Liu et al. [31], but
several natural questions remain open, such as the existence of global weak solutions. Inspired
by the rSV equations, a more general regularisation of the unidimensional barotropic Euler
system has been derived and studied in [20].

In the present work we consider such questions for an analogous but simpler model equation,
namely a Hamiltonian regularisation of the inviscid Burgers equation ut +uux = 0. Motivated
by the rSV and the dispersionless Camassa-Holm [8] equations, in Section 2 we describe a
regularised Burgers equation (rB) in the form

ut + uux = ℓ2 (utxx + 2ux uxx + uuxxx) , (1.2)

where ℓ ⩾ 0 is a parameter. Being a scalar equation, the rB equation is more tractable than
the rSV system. An equation mathematically equivalent to (1.2) has previously appeared in
[19, Remark 1] together with a Hamiltonian formulation. It can be compared to the well-
known Camassa–Holm (CH) equation [8], the Degasperis–Procesi (DP) equation [18] and the
Benjamin–Bona–Mahony (BBM) equation [1] (see Section 2 below).

The purpose of the present paper is to establish several basic results for (1.2), including
the existence of local smooth solutions, blow-up, global weak solutions, and weakly singular
traveling waves, and also to study the limiting cases ℓ→ 0 and ℓ→ +∞.

The local (in time) existence of smooth solutions of the rB equation (1.2) has been es-
tablished in [35, 36] for a generalised Camassa–Holm equation that covers (1.2) as special
case. The existence of global weak solutions of the Camassa–Holm equation in the space H1

has been widely studied before, we refer to [6, 7, 9, 12, 14, 22, 23, 24, 34]. We also refer to
[15, 16, 17] for the existence of solutions of the DP equation.

Our treatment of global weak solutions is analogous to the treatment of the Camassa–Holm
equation by Bressan and Constantin in [6, 7]. We rewrite (1.2) into an equivalent semi-linear
system, but without asking the initial data to be in H1. We then prove the existence of a so-
called conservative global weak solution (Theorem 4.3, cf. [6]), which locally conserves energy.
Energy conservation may not be appropriate for approximating shock waves, however. We
obtain another type of solution called dissipative (see Theorem 5.3 below, cf. [7]), by slightly
modifying the equivalent system. Dissipative solutions satisfy an Oleinik inequality of the
form

ux(t, x) ⩽
C

t
, t > 0, x ∈ R. (1.3)

This inequality is well known to ensure uniqueness for entropy solutions of the inviscid Burgers
equation. However, uniqueness for dissipative solutions of rB remains an open problem.
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In order to study the limiting cases ℓ→ 0 and ℓ→ +∞, the equivalent system and the Oleinik
inequality (1.3) are used to obtain a uniform BV estimate independent of the parameter ℓ for
the dissipative solutions (Lemma 7.1). When ℓ → 0, a dissipative solution converges (up to a
subsequence) to a function u that satisfies the Burgers equation with a remaining term (see
Theorem 7.2 below). If the remaining term is zero, then the entropy solution of Burgers is
recovered. We prove that this term is zero for smooth solutions of Burgers equations (see
Proposition 7.5). However, the disappearance of the remaining term in general remains an
open problem. Similar results are obtained when ℓ → +∞, where the limit is a solution of
the Hunter–Saxton equation, at least before the appearance of singularities1 (Theorem 7.6
and Proposition 7.8 below). The limiting case ℓ → 0 of the Camassa–Holm equation is more
challenging. Indeed, dissipative solutions of the CH equation satisfy an Oleinik inequality
with a constant that depends on ℓ. Thus, the compactness arguments presented in this paper
cannot be used for the CH equation. However, the limiting case of the viscous CH equation
have been studied in [11, 13, 28] under the condition “ℓ is small enough compared to the
viscosity parameter”. The authors proved that as the viscosity parameter goes to zero, we
recover the unique entropy solution of the scalar conservation law ut + (3u2/2)x = 0.

We find below that the rB equation has a great variety of weakly singular traveling wave
solutions, solutions which are bounded, continuous and piecewise smooth but which may
dissipate (or gain) energy at isolated points where derivatives become infinite. All these waves
have analogs for the rSV system (1.1a)–(1.1c). In particular, corresponding to each simple
shock-wave entropy solution of the inviscid Burgers equation, there is a monotonic traveling-
wave dissipative solution of the rB equation, having the same limiting states, shock speed and
energy dissipation rate. We also find cusped traveling waves (both periodic and solitary in
nature) that are conservative. Furthermore, there is a great abundance of composite waveforms
that are neither dissipative nor conservative, which were overlooked in [32] but are similar to
some of the many types of weak traveling wave solutions of the Camassa-Holm equation found
by Lenells [30].

This paper is organised as follows. A heuristic derivation of the rB equation is given in
section 2. Section 3 is devoted to study the existence of local smooth solutions. In Section
4, a proof of the existence of global conservative solutions is given. The global dissipative
solutions are obtained in Section 5. Weakly singular traveling waves are described in Section 6,
including energy-conserving ‘cuspons’ and energy-dissipating weakly singular shocks. Section
7 studies the limiting cases ℓ → 0 and ℓ → +∞ for dissipative solutions. The optimality of
the requirement that ux ∈ L2

loc for weak solutions is shown in section 8, where we prove in
particular that when a smooth solution breaks down, ux may blow up in Lp

loc for all p > 2.

2. Heuristic derivation of a regularised Burgers equation

In order to describe a suitable regularisation of the inviscid Burgers equation with similar
features as the rSV system (1.1), we note first that the rSV equations yield

ut + uux + g hx + ε (hRx + 2Rhx ) = 0. (2.1)

When h is taken constant, this equation (with the definition of R given at (1.1c)) becomes

ut + uux = ℓ2 [uxxt − ux uxx + uuxxx ] , (2.2)

1 “Singularity” is used here to describe the blow-up of derivatives, which corresponds to shocks of the classical
Burgers equation. Contrary to the Burgers case, solutions of rB remain continuous at the singularities.
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where ℓ def= h√ε ⩾ 0 is a constant characterising a length scale for the regularisation. After the
change of independent variables (t, x) → (t/ℓ, x/ℓ), which leaves the inviscid Burgers equation
invariant, equation (2.2) becomes

ut + uux = uxxt − ux uxx + uuxxx. (2.3)

Equation (2.3) belongs to a three-parameter family of non-dispersive equations, given by

ut − uxxt = auux + bux uxx + cuuxxx, for a, b, c ∈ R. (2.4)

In this family, we look for an equation that has Galilean invariance and conservation of energy
(at least for smooth solutions). The family (2.4) includes a number of famous equations,
including the the dispersionless Camassa–Holm equation [8]

ut + 3uux = uxxt + 2ux uxx + uuxxx, (2.5)

as well as the Degasperis–Procesi equation [18] and the Benjamin–Bona–Mahony equation [1].
None of these equations have the properties we seek, however. E.g., it is well known that the
Camassa–Holm equation conserves the H1 energy [8], but is not Galilean invariant.

In order to obtain a Galilean invariant regularisation of the Burgers equation, one must
take c = −a = 1 in (2.4). The special case b = 0 was studied by Bhat and Fetecau [2, 3, 4],
who proved the existence of the solution and the convergence to weak solutions of the Burgers
equation in the limit corresponding to ℓ → 0. The limit fails to satisfy the entropy condition
for the Riemann problem with uleft < uright [4]. For this regularisation, no energy conservation
equation is known.

In the present paper, we consider c = −a = 1 (to ensure Galilean invariance, as in [2]) and,
in order to maintain conservation of the H1 norm at least for smooth solutions, we take b = 2
(as in the Camassa–Holm equation). With this done, equation (2.4) becomes

ut + uux = utxx + 2ux uxx + uuxxx, (2.6)

Introducing the scaling (t, x) ↦ (ℓ t, ℓ x), we obtain

ut + uux = ℓ2 (utxx + 2ux uxx + uuxxx) , (2.7)

that is a formal approximation of the Burgers equation for small ℓ. Equation (2.7) is the
regularised Burgers (rB) equation studied in this paper. It is Galilean invariant, and smooth
solutions of (2.7) satisfy a conservation law for an H1 energy density, namely

[ 1
2 u

2 + 1
2 ℓ

2 u2
x ]t + [

1
3 u

3 − ℓ2 u2 uxx − ℓ2 uuxt ]x = 0. (2.8)

A mathematically equivalent equation was proposed in [19, Remark 1] as a modification of
the BBM equation that possesses a Galilean-like invariance property.

We remark that the rB equation (2.7) has variational structure (described further in [21])
that we will not use here and which appears unrelated to H1 energy conservation. E.g., (2.7)
can be obtained as the Euler–Lagrange equation for an action with Lagrangian density

Lℓ def= 1
2 ϕx ϕt +

1
6 ϕ

3
x + 1

2 ℓ
2 [ϕx ϕ2

xx − ϕxxx ϕt] , (2.9)

where ϕ is a velocity potential, i.e., u = ϕx. The rB equation has also a Hamiltonian structure
[19, 21], but with Hamiltonian different from the H1 energy. Indeed, with the Hamiltonian
operator and functional

D
def= (1 − ℓ2 ∂2x)

−1
∂x, H

def= ∫ [ 16 u
3 + 1

2 ℓ
2 uu2

x ] dx, (2.10)
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the equation

ut = −D δuH = −D [ 12 u
2 + 1

2 ℓ
2 u2

x − ℓ2 (uux)x ] (2.11)

can be rewritten in a form equivalent to the rB equation (2.7), namely

ut + uux + ℓ2 Px = 0, P
def= G ∗ 1

2 u
2
x ⩾ 0, G

def= (2ℓ)−1 exp(−∣x∣/ℓ), (2.12)

where ∗ denotes the convolution product. For comparison, the Camassa–Holm equation (2.5)
can be rewritten in the form

ut + uux + [G ∗ (12 u
2
x + u2)]

x
= 0, G(x) def= 1

2 exp(−∣x∣). (2.13)

Differentiating (2.12) with respect to x, and using that P − ℓ2Pxx = 1
2u

2
x, one obtains

[ut + uux ]x + P = 1
2 u

2
x. (2.14)

Note that P goes formally to zero as ℓ → +∞, whence one obtains the Hunter–Saxton (HS)
equation [26, 27]

[ut + uux ]x = 1
2 u

2
x. (2.15)

Note also that by taking ℓ → +∞ formally in (2.7), we obtain the derivative of (2.15) with
respect of x.

In this section, we have provided a heuristic derivation of a regularised Burgers equation by
imposing the important physical requirements of Galilean invariance and energy conservation.
We have also related this equation with well-known equations. In the rest of the paper, we
perform a rigorous mathematical investigation of its solutions.

3. Existence and breakdown of smooth solutions

This section is devoted to show the local existence and breakdown of smooth solutions for
the Cauchy problem (2.12) with u(0, x) = u0(x). The form (2.12) of the regularised Burgers
equation is more convenient for studying smooth solutions than (2.7), because it involves fewer
derivatives.

Usually, one needs an equation for ux to study the life span of smooth solutions. Equation
(2.14) can be written

uxt + 1
2 u

2
x + uuxx + P = 0. (3.1)

Multiplying (2.12) by u and multiplying (3.1) by ℓ2 ux, we obtain

[ 1
2 u

2 ]
t
+ [ 13 u

3 + ℓ2 uP ]
x
= ℓ2 ux P, (3.2)

[ 1
2 ℓ

2 u2x ]t + [
1
2 ℓ

2 uu2x ]x = − ℓ
2 ux P, (3.3)

which imply an energy conservation law for smooth solutions; i.e., we have the (conservative)
energy equation

[ 1
2 u

2 + 1
2 ℓ

2 u2x ]t + [
1
3 u

3 + ℓ2 uP + 1
2 ℓ

2 uu2x ]x = 0. (3.4)

For a class of equations including rB as special case, Yin [35, 36] has proven the following
local existence result.

Theorem 3.1 (Yin [35, 36]). For an initial datum u0 ∈ Hs(R) with s > 3/2, there exists a
maximal time T ∗ > 0 (independent of s) and a unique solution u ∈ C([0, T ∗[,Hs) of (2.12)
such that (blow-up criterium)

T ∗ < +∞ ⇒ lim
t↑T ∗
∥u(t, ⋅) ∥Hs = +∞. (3.5)
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Moreover, if s ⩾ 3, then

T ∗ < +∞ ⇒ lim
t↑T ∗

inf
x∈R

ux(t, x) = −∞. (3.6)

Furthermore, the solution given in this theorem satisfies the Oleinik inequality:

Proposition 3.2. (Oleinik inequality) Let u0 ∈Hs(R) with s ⩾ 2 and let M = supx∈R u′0(x).
Then, for all t ∈ [0, T ∗[ the solution given in Theorem 3.1 satisfies

sup
x∈R

ux(t, x) ⩽ 2M
M t+2 ⩽ M. (3.7)

Proof. Let x0 ∈ R and let the characteristic η(t, x0) be defined as the solution of the Cauchy
problem ηt(t, x0) = u(t, η(t, x0)), with the initial datum η(0, x0) = x0. With H(t, x0) def=
ux(t, η(t, x0)), the equation (3.1) can be rewritten

Ht + 1
2 H

2 + P = 0. (3.8)

Since P ⩾ 0, it follows that Ht ⩽ −1
2H

2 which implies that H(t, x0) ⩽ 2H(0,x0)
H(0,x0)t+2 ⩽

2M
Mt+2 . □

Remark 3.3. The Oleinik inequality (3.7) is valid only when the solution u is smooth. In
Theorem 5.3 below, we show that this inequality holds for all times also for a certain type of
weak solutions (called dissipative) such that u ∈H1 (and, possibly, for M = +∞).

Unfortunately, the solution given in Theorem 3.1 does not exist globally in time for all non
trivial initial data [35]. Since Yin [35] studied a general family of equations including rB, his
result is not optimal for rB. In the following proposition, this result is improved with a shorter
proof.

Proposition 3.4. (An upper bound on the blow-up time) Let u0 ∈ Hs(R) with s ⩾ 2.
If there exists x0 ∈ R such that u′0(x0) < 0, then T ∗ ⩽ −2/ inf u′0.
Proof. From the proof of the previous proposition, we have

H(t, x0) ⩽
2H(0, x0)

tH(0, x0) + 2
, t < T ∗. (3.9)

If T ∗ > −2/ inf u′0 then H(0, x0) < 0 implies

lim
t→−2/H(0,x0)

H(t, x0) = −∞,

this contradicts u ∈ C([0, T ∗[,Hs). □
A uniform (with respect to ℓ) lower bound on T ∗ is needed, in order to prove in section 7

below the convergence of smooth solutions (see Proposition 7.5 and Proposition 7.8).

Theorem 3.5. (A lower bound on the blow-up time) Let u0 in Hs be non-trivial with
s ⩾ 2 and let

m(t) def= inf
x∈R

ux(t, x) < 0 < M(t) def= sup
x∈R

ux(t, x), t < T ∗.

If ∣m(0)∣ ⩾M(0) then
− 1/inf u′0 ⩽ T ∗ ⩽ −2/inf u′0. (3.10)

If ∣m(0)∣ < M(0) then, there exists t∗ such that 0 < t∗ ⩽ −m(0)−1 −M(0)−1 and m(t∗) =
−M(t∗). Therefore

t∗ + 1/supu′0 ⩽ T ∗ ⩽ −2/inf u′0. (3.11)
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Remark 3.6. Note that the blow-up time T ∗ is uniformly (with respect to ℓ) bounded from
below by 1/ sup ∣u′0∣.
Proof. Since u ∈ Hs, ux → 0 when x goes to ±∞, and ux is not the zero function, so m(t) =
minx∈RH(t, x) < 0 < M(t) = maxx∈RH(t, x). The equation (3.8) implies that m and M are
decreasing in time, so ∣m∣ = −m is increasing. So, if ∣m(t0)∣ ⩾ M(t0), then for all t > t0 we
have ∣m(t)∣ ⩾ M(t).

The inequality (3.9) shows that for t < T ∗

0 < M(t) ⩽ 2M(0)
M(0) t + 2

, m(t) ⩽ 2m(0)
m(0) t + 2

< 0, (3.12)

which implies that, if ∣m(0)∣ < M(0), there exists t∗ ⩽ −(m(0) +M(0))/(m(0)M(0)) such
that ∣m(t∗)∣ =M(t∗).

If δ > 0 is small enough, since the function H(t + δ, ⋅) has a minimum, then there exists xδ
such that m(t + δ) =H(t + δ, xδ). Inspired by Junca and Lombard [29] one gets

m(t + δ) = H(t + δ, xδ) = H(t, xδ) + ∫
t+δ

t
Ht(s, xδ)ds

⩾ m(t) − ∫
t+δ

t
(1
2 H(s, xδ)

2 + P (s, xδ)) ds. (3.13)

Since m(⋅) < 0 and δ is arbitrary small, we have m(s) ⩽ H(s, xδ) ⩽ 0 then m(s)2 ⩾ H(s, xδ)2,
implying that

m(t + δ) −m(t)
δ

⩾ − 1
δ
∫

t+δ

t
(12 m(s)

2 + sup
x∈R

P (s, x))ds. (3.14)

Defining the generalised derivative

ṁ(t) def= lim inf
δ→0+

m(t + δ) − m(t)
δ

, (3.15)

one can show that
ṁ(t) + 1

2 m(t)
2 ⩾ − sup

x∈R
P (t, x). (3.16)

Using the definition of P from (2.12) and using that ∥G∥1 = 1, one obtains

sup
x∈R

P (t, x) ⩽ 1
2 ∥ux(t, ⋅) ∥

2
∞ ⩽ max{12 M(t)

2, 12 m(t)
2} . (3.17)

and the Riccati-like inequality (3.16) becomes

ṁ(t) + m(t)2 ⩾ 0 t > t∗. (3.18)

Then T ∗ − t∗ ⩾ −1 /m(t∗) = 1 /M(t∗), and with (3.12), one obtains

T ∗ ⩾ t∗ + 1/supu′0. □

4. Global weak solutions: conservative case

Note that Proposition 3.4 shows that, for s ⩾ 2, we have limt↑T ∗ infx ∈R ux(t, x) = −∞ which
implies that

lim
t↑T ∗

∥u(t, ⋅) ∥Hs = +∞.

Hence the space Hs with s ⩾ 2 is not the right space in order to obtain the global existence of
the solution.
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Bressan and Constantin [6, 7] have proved the existence of two types of global solutions for
the Camassa–Holm equation (2.13) in H1. Using the formal energy equation (3.4), a similar
proof (of global existence of conservative and dissipative solutions in H1) for rB can be done
following [6, 7]. Another proof of existence of a dissipative solution, using the vanishing
viscosity method, is given by Chen and Tian [9], Xin and Zhang [34].

In this paper, the existence theorem will be developed for solutions not vanishing as ∣x∣ → ∞.
Note that a major difference between the rB (2.12) and the Camassa–Holm (2.13) equations is
that u2 does not appear in the non-local term of rB. This allows us to get global existence for
rB without asking u to be in L2(R). Moreover, in Theorem 8.2 below, we show that asking
ux ∈ L2 is optimal.

These remarks lead us to assert in the following the existence of two types of solutions of rB:
conservative and dissipative. We start the analysis in this section by defining a conservative
solution.

Definition 4.1. A function u is called a conservative solution of rB if
● The function u belongs to Lip([0, T ], L2

loc) and ux ∈ L∞([0, T ], L2
loc) for all T > 0.

● u satisfies the equation (2.12), with an initial data u(0, x) = u0(x).
● u satisfies (3.4) in the sense of distributions.

It means that it is a weak solution conserving the energy, as smooth solutions.

Remark 4.2. The regularity ux ∈ L∞([0, T ], L2
loc) ensures that (3.2) is satisfied. Thence, the

equalities (3.3) and (3.4) are equivalent.

Introducing the homogeneous Sobolev space Ḣ1(R) = {f ∶ ∥f ′∥2 < +∞}, we can state the
theorem:

Theorem 4.3. Let u0 ∈ Ḣ1(R) ∩ L∞(R). If there exists a Lipschitz function ϕ such that
ϕ′ ∈ L1(R) with u0 − ϕ ∈ H1(R), then there exists a global conservative solution u of (2.12),
such that u(t, ⋅) − ϕ ∈H1(R) for all t > 0. In addition, for all T > 0

lim
t↑T

inf
x∈R

ux(t, x) = −∞ ⇒ lim
t↓T

sup
x∈R

ux(t, x) = +∞, (4.1)

and if u0 ∈H1, then for almost all t > 0

∫
R
[u(t, x)2 + ℓ2 ux(t, x)2 ]dx = ∫

R
[u0(x)2 + ℓ2 u′0(x)2 ]dx. (4.2)

Remark 4.4. This theorem covers also some solutions that do not have a limit when ∣x∣ → ∞,
such as ϕ(x) = u0(x) = cos ln(x2 + 1).

Remark 4.5. Note that (4.1) implies that the Oleinik inequality (3.7) cannot hold after the
appearance of singularities.

Proof of Theorem 4.3. In the special case u0 ∈ H1(R), the proof can be done following
Bressan and Constantin [6]. In the general case, the energy is modified as

E(t) = ∫
R
[u(t, x) − ϕ(x)]2 + ℓ2 ux(t, x)2 dx, (4.3)

and the proof is done in several steps:
● In the first step we obtain an energy estimate of the solution in the Eulerian coordi-

nates.
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● In the second step we define a mapping from the Eulerian to the Lagrangian coordi-
nates where we obtain an equivalent semi-linear system of rB.
● In the third and the fourth steps we prove the existence of global solutions of the

equivalent system in the Lagrangian coordinates.
● In step 5, we rewrite the solution of the equivalent system in the Eulerian coordinates

and we show that it is a global conservative solution of rB.
Step 1: Formal energy estimate on the x-variable. Let ũ(t, x) = u(t, x) − ϕ(x). The

equation (2.12) can be rewritten

ut + uux + ℓ2 Px = ũt + uux + ℓ2 Px = 0. (4.4)

Multiplying (4.4) by ũ, one gets

[ 1
2 ũ

2 ]
t
+ [ 13 u

3 − 1
2 ϕu

2 ]
x
+ 1

2 ϕx u
2 + ℓ2 uPx − ℓ2 ϕPx = 0. (4.5)

Adding (4.5) and (3.3), we obtain
1
2
[ũ2 + ℓ2 u2x]t + [

1
3u

3 + 1
6ϕ

3 − 1
2ϕu

2 + 1
2ℓ

2uu2
x + ℓ2uP ]x = ℓ

2ϕPx − 1
2ϕx (ũ

2 + 2ϕũ) . (4.6)

Integrating over the real line, one gets (exploiting the triangular inequality)

1
2 E
′(t) ⩽ ∫

R
( ℓ2 ∣ϕPx∣ + 1

2 ∣ϕ
′∣ (2 ũ2 + ϕ2 ))dx. (4.7)

The Young inequality implies that

∥P (t) ∥p ⩽ 1
2 ℓ2
∥G ∥pE(t) ∀p ∈ [1,∞], (4.8a)

∥Px(t) ∥p ⩽ 1
2 ℓ3
∥G ∥pE(t) ∀p ∈ [1,∞]. (4.8b)

Using (4.7) and (4.8b), we obtain

E′(t) ⩽ ( ℓ−1 ∥ϕ ∥∞ + 2 ∥ϕ′ ∥∞ )E(t) + ∥ϕ ∥2∞ ∥ϕ′ ∥1. (4.9)

Then the Gronwall lemma ensures that E(t) does not blow up in finite time.

Step 2: Equivalent system. As in [6], let ξ ∈ R and let y0(ξ) be defined by

∫
y0(ξ)

0
(1 + u′0

2 )dx = ξ, (4.10)

and let y(t, ξ) be the function2 defined by the equation

yt(t, ξ) = u(t, y(t, ξ)), y(0, ξ) = y0(ξ). (4.11)

Let also v = v(t, ξ) and q = q(t, ξ) be defined as

v
def= 2 arctan(ux), q

def= (1 + u2
x )yξ, (4.12)

where ux(t, ξ) = ux(t, y(t, ξ)). Notice that

1

1 + u2
x

= cos2(v
2
) , ux

1 + u2
x

= sin(v)
2

,
u2
x

1 + u2
x

= sin2(v
2
) , ∂y

∂ξ
= q cos2(v

2
) . (4.13)

Integrating the last equality in (4.13), one obtains

y(t, ξ′) − y(t, ξ) = ∫
ξ′

ξ
q(t, s) cos2(v(t, s)

2
)ds. (4.14)

2It will turn out that y(t, ξ) is the characteristic of rB corresponding to y0(ξ), with speed u(t, y(t, ξ)).
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Using (4.13) and the change of variables x = y(t, ξ′), (4.14), P and Px can be written in the
new variables as

P (t, ξ) = 1

4 ℓ
∫
R
exp(−∣y(t, ξ) − x∣

ℓ
)u2

x(t, x)dx

= 1

4 ℓ
∫
R
exp(−1

ℓ
∣∫

ξ′

ξ
q(t, s) cos2(v(t, s)

2
)ds∣) q(t, ξ′) sin2(v(t, ξ

′)
2
)dξ′, (4.15)

Px(t, ξ) =
1

4 ℓ2
(∫

+∞

y(t,ξ)
−∫

y(t,ξ)

−∞
) exp(−∣y(t, ξ) − x∣ℓ)u2

x(t, x)dx

= (∫
+∞

ξ
−∫

ξ

−∞
) exp(− ∣∫

ξ′

ξ
q(t, s) cos2(v(t, s)

2
) ds
ℓ
∣) q(t, ξ′) sin2(v(t, ξ

′)
2
) dξ′

4 ℓ2
.

(4.16)

Then, a system equivalent to the rB equation is given by

yt = u, y(0, ξ) = y0(ξ), (4.17a)

ut = −ℓ2 Px, u(0, ξ) = u0(y0(ξ)), (4.17b)

vt = −P (1 + cos(v)) − sin2(v/2), v(0, ξ) = 2arctan(u′0 (y0(ξ))) , (4.17c)

qt = q (12 − P) sin(v), q(0, ξ) = 1. (4.17d)

In order to prove Theorem 4.3, we prove first the global existence of the solution of the initial-
value problem (4.17), then we infer that this solution yields a conservative solution of rB.

Step 3: Local existence for the new system. Our goal is to prove that the system of
equations (4.17) is locally well-posed. The proof given in [6] for the Camassa–Holm equation
is slightly simplified here.

We first solve a coupled 2x2 subsystem instead of a 3x3 subsystem in [6]. Let u0 be a
function such that u0 −ϕ ∈H1, then y0 is well defined in (4.10). Note that the right-hand side
of (4.17) does not depend on y. Since P and Px depend only on v and q, the right-hand sides
of equations (4.17b), (4.17c) and (4.17d) do not depend on u. Also, the equations (4.17c) and
(4.17d) are coupled. Thus, we are left to show that the system of two equations

vt = −P (1 + cos v) − sin2
v

2
, v(0, ξ) = v0(ξ) = 2 arctanu′0 (y0(ξ)) , (4.18a)

qt = q (12 − P ) sin v, q(0, ξ) = q0(ξ) = 1 (4.18b)

is well defined in the space X def= C([0, T ], L∞(R,R2)).
Let U = (v, q), and let D ⊂X be the closed set satisfying U(0, ξ) = U0(ξ) and

1 /C ⩽ q(t, ξ) ⩽ C ∀(t, ξ) ∈ [0, T ] ×R, (4.19a)

∣{ξ, sin2 v(t,ξ)
2 ⩾ 1

2}∣ ⩽ C ∀t ∈ [0, T ], (4.19b)

where C > 0 is a constant. Then, for ξ1 < ξ2, from the equations (4.19) we obtain

∫
ξ2

ξ1
q(ξ) cos2 v(ξ)

2
dξ ⩾ ∫

{ξ∈[ξ1,ξ2], sin2
v(t,ξ)

2 ⩽ 1
2}

C−1

2
dξ ⩾ [ξ2 − ξ1

2
− C

2
]C−1. (4.20)
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Let Γ be defined as

Γ(ζ) =min{1, exp( 1

2 ℓ
− ∣ζ ∣
2 ℓ
C−1)} . (4.21)

Then, for (v, q) ∈D, the exponential terms in (4.15) and (4.16) are smaller than Γ(ξ − ξ′).
Let P (ξ, v, q) be defined by (4.15). If (v, q) ∈D then, using Young inequality, ∂vP and ∂qP

are bounded, i.e., for {U, Ũ} ∈D we have

∥P (ξ,U) − P (ξ, Ũ) ∥X ≲ ∥U − Ũ ∥X , (4.22)

where the symbol ≲ means “less or equal” with a constant depending only on C and ℓ. Then,
for T small enough, the Picard operator

(P(U))(t, ξ) def= U0 + ∫
t

0
(−(1 + cos v)P − sin2

v

2
, q (12 − P ) sin v) dτ, (4.23)

is a contraction from D to D. The local existence of the solution of the Cauchy problem (4.18)
follows at once.

Step 4: Global existence for the equivalent system. After proving the local existence
of the solution of system (4.18), an estimate of the quantity

∥ q(t) ∥∞ + ∥1 / q(t) ∥∞ + ∥ sin2 (v(t) /2) ∥1 + ∥ v(t) ∥∞, (4.24)

is needed to ensure that the solutions exist for all time. Let u be defined as

u(t, ξ) def= u0(y0(ξ)) − ∫
t

0
ℓ2 Px(s, ξ)ds, (4.25)

and let y be the family of characteristics

y(t, ξ) def= y0(ξ) + ∫
t

0
u(s, ξ)ds, (4.26)

and, finally, let ϕ(t, ξ) def= ϕ(y(t, ξ)). Our task here is to show that the modified energy

Ẽ(t) = ∫
R
[(u − ϕ)2 cos2

v

2
+ ℓ2 sin2

v

2
] q dξ (4.27)

does not blow-up in finite time.
The system (4.17) implies that

(q cos2 v
2
)
t
= 1

2 q sin v, (q sin2 v
2
)
t
= qt − 1

2 q sin v = − q P sin v, (4.28)

while the equations (4.15) and (4.16) imply that

Pξ = q Px cos2
v

2
, ℓ2 (Px)ξ = q P cos2

v

2
− 1

2 q sin
2 v

2
. (4.29)

From (4.17), (4.25) and (4.29), we have

(uξ − 1
2 q sin v)t = 0,

and, for t = 0, we have from (4.12) and (4.13)

uξ − 1
2 q sin v = ux

∂y
∂ξ −

1
2 sin v = 0.

Thus, as long as the solution of (4.17) is defined, the equality

uξ = 1
2 q sin v (4.30)
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holds. Therefore, the equations (4.28), (4.29), (4.30) yield

[(u2 cos2
v

2
+ ℓ2 sin2

v

2
) q ]

t
+ [2 ℓ2 uP − 1

3 u
3 ]

ξ
= 0, (4.31)

which expresses conservation of energy in the (t, ξ)-variables when u+ = u− = 0, i.e., for ϕ = 0.
From (4.28), (4.30) and (4.26), we have

(q cos2 v
2
)
t
= uξ = (

∂y

∂ξ
)
t

,

implying that the equality
∂y

∂ξ
= q cos2

v

2
(4.32)

holds for the (t, ξ)-variables (note that the equality is true for t = 0 from (4.13)). Then, using
(4.26) and (4.32), we get

ϕt(t, ξ) =
d

dt
ϕ(y(t, ξ)) = uϕ′, ϕξ(t, ξ) = q cos2(v

2
)ϕ′, (4.33)

so, using (4.25), (4.17), (4.33) and (4.28), we obtain

[(ϕ2 − 2uϕ) q cos2 v
2
]
t
+ [12 ϕu

2 + 1
2 ϕ (u − ϕ)

2 − 1
6 ϕ

3 ]
ξ
=

2 ℓ2 Px ϕq cos
2 v

2
− 2uϕξ (u − ϕ) + 1

2 ϕξ u
2 + (ϕ2 − 2uϕ)uξ

+ ϕuuξ + 1
2 ϕξ (u − ϕ)

2 + ϕ (u − ϕ)ξ(u − ϕ) − 1
2 ϕ

2ϕξ

= − ϕξ(u − ϕ)2 + 2 ℓ2 Px ϕq cos
2 v

2
− 2ϕϕξ(u − ϕ). (4.34)

Adding (4.31) and (4.34), with the trivial relation 2ϕ (u − ϕ) ⩽ ϕ2 + (u − ϕ)2, then
integrating the result with respect of ξ, we get

Ẽ′(t) ⩽ ∫
R
(2 ℓ2 ∣ϕPx∣ q cos2

v

2
+ ∣ϕξ ∣ (2 (u − ϕ)2 + ϕ2)) dξ. (4.35)

Using (4.32) and (4.33) with the change of variables x = y(t, ξ), then expoiting (4.8), one
obtains

Ẽ′(t) ⩽ ∫
{ξ,cos v≠−1}

(2 ℓ2 ∣ϕPx∣ + ∣ϕ′∣ (2 (u − ϕ)2 + ϕ2)) q cos2 v
2
dξ

= ∫
R
(2 ℓ2 ∣ϕPx∣ + ∣ϕ′∣ (2 (u − ϕ)2 + ϕ2)) dx

⩽ ( ℓ−1 ∥ϕ ∥∞ + 2 ∥ϕ′ ∥∞ )E(t) + ∥ϕ ∥2∞ ∥ϕ′ ∥1,

where Px in the second equation is defined as Px = 1
2 Gx ∗ u2x.

From (4.3) and (4.27), and using the change of variables x = y(t, ξ), one can show easily
that

E(t) = ∫
{ξ,cos v≠−1}

[(u − ϕ)2 cos2
v

2
+ ℓ2 sin2

v

2
] q dξ ⩽ Ẽ(t). (4.36)

Thence, the uniform estimate of Ẽ(t) on any bounded interval [0, T ] follows by using Gronwall
lemma.
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We can show now that the quantity (4.24) does not blow up in finite time. Using Young
inequality, (4.15), (4.16) and (4.21), one obtains

∥P (t)∥p ⩽ 1
4 ℓ3
∥Γ∥p Ẽ(t) ∀p ∈ [1,∞], (4.37a)

∥Px(t)∥p ⩽ 1
4 ℓ4
∥Γ∥p Ẽ(t) ∀p ∈ [1,∞]. (4.37b)

The inequalities (4.37) are the identical estimates as (4.8), but in the (t, ξ)-variables. Using
(4.17d) and (4.37), we get

∣qt∣ ⩽ (12 +
1

4 ℓ3
E(t)) q, (4.38)

implying that ∥q(t)∥∞ +∥1 / q(t)∥∞ does not blow-up in finite time. The equation (4.17c) and
(4.37) imply that ∥v(t)∥∞ remains bounded on any finite interval [0, T ]. Also, the bounded-
ness of the energy Ẽ(t) and ∥1 / q(t) ∥∞ implies that ∥ cos2 (v(t) /2) ∥

1
remains bounded on

any interval [0, T ]. This completes the proof of the global existence.

Step 5: Global existence of a conservative solution. Here, we show that the global
solution of the equivalent system (4.17) yields a global solution of the rB equation.

Let u and y be defined by (4.25) and (4.26), respectively. We claim that the solution of rB
can be written as

u(t, x) = u(t, ξ), y(t, ξ) = x. (4.39)
Using (4.30), (4.33) and the change of variables x = y(t, ξ) with (4.32), one obtains

∣u(t, ξ) − ϕ(t, ξ)∣2 ⩽ 2 ∫
R
∣u − ϕ∣ ∣uξ − ϕξ ∣dξ

⩽ 2 ∫
R
∣u − ϕ∣ q (sin v

2
cos

v

2
+ ϕ′ cos2

v

2
) dξ

⩽ 2E(t) + ∥ϕ′∥22,
implying that ∥u(t)∥∞ is uniformly bounded on any bounded interval [0, T ]. Therefore, from
(4.26), we get

y0(ξ) − ∥u(t)∥∞ t ⩽ y(t, ξ) ⩽ y0(ξ) + ∥u(t)∥∞ t, (4.40)
and thus

lim
ξ→±∞

y0(t, ξ) = ±∞. (4.41)

The equation (4.32) implies that the mapping ξ ↦ y(t, ξ) is non-decreasing and, if for ξ < ξ′

we have y(t, ξ) = y(t, ξ′), then sin(v) = 2 cos(v/2) sin(v/2) = 0 between ξ and ξ′ (see eq. 4.32).
Integrating (4.30) with respect to ξ, one obtains that u(t, ξ) = u(t, ξ′), so u is well-defined in
(4.39).

Proceeding as in [6, section 4], we can prove that for each interval [t1, t2] there exists a
constant C = C(ℓ, t2) such that, ∀t ∈ [t1 , t2 − h],

∫
R
∣u(t + h,x) − u(t, x)∣2dx ⩽ C h2, (4.42)

and then u satisfies
d

dt
u(t, y(t, ξ)) = −Px(t, ξ). (4.43)

The inequality (4.42) implies that u belongs to Lip([0, T ], L2
loc). Straightforward calculations

show that, for x = y(t, ξ) and for cos(v(t, ξ)) ≠ 1, we have

ux(t, x) = tan(v(t, ξ)
2
) = sin(v(t, ξ))

1 + cos(v(t, ξ)) . (4.44)
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Using the change of variables x = y(t, ξ) with (4.32), one can show that u is a global solution
of rB.

In order to prove (3.3), let ψ be a test function and let ψ̃(t, ξ) = ψ(t, y(t, ξ)). Multiplying
(4.28b) by ψ̃ and integrating the result with respect to ξ, one obtains

0 = ∫
+∞

0
∫
R
[(q sin2 v/2)

t
+ q P sin v] ψ̃ dtdξ,

= ∫
+∞

0
∫
R
[−ψ̃t q sin

2 v/2 + ψ̃ q P sin v]dtdξ + ∫
R
ψ̃(0, x) sin2 v(0, ξ)/2dξ,

= ∫ ∫
{cos v>−1}

[−ψ̃t q sin
2 v/2 + ψ̃ q P sin v]dtdξ + ∫

{v0>−π}
ψ̃(0, x) sin2 v(0, ξ)/2dξ,

+ ∫ ∫
{cos v=−1}

−q ψ̃t dtdξ + ∫
{v0=−π}

ψ̃(0, x)dξ. (4.45)

It is clear from (4.17c) that

∣{ξ, cos v(t, ξ) = −1}∣ = 0 for almost all t ⩾ 0. (4.46)

Using that ψ̃t = ψt + uψx and the change of variables x = y(t, ξ), the equation (3.3) follows in
the sense of distributions.

Finally, let u0 ∈H1. The equation (4.31) implies that
d

dt
∫
R
(u2 cos2

v(t,ξ)
2 + ℓ2 sin2

v(t,ξ)
2 ) q(t, ξ)dξ = 0, (4.47)

hence Ẽ(t) = Ẽ(0). In addition, using the change of variables x = y(t, ξ) with (4.32) and
(4.44), one obtains

∫
R
u(t, x)2 + ℓ2 ux(t, x)2 dx = ∫

{ξ, cos v(t,ξ)>−1}
(u2 cos2

v(t,ξ)
2 + ℓ2 sin2

v(t,ξ)
2 ) q(t, ξ)dξ.

(4.48)
Using (4.46), the conservation of the energy (4.2) follows.

We end this demonstration with the proof of the property (4.1). The equation (4.17c) im-
plies that v is decreasing in time. Further, if v(T, ξ) = −π (corresponding to an infinite value
of ux, see (4.44) above) then vt(T, ξ) = −1, meaning that the value of v(t, ξ) crosses −π and
v(t, ξ) < −π for all t > T . Then, (4.1) follows using (4.44). □

5. Global weak solutions: dissipative case

We start this section by defining dissipative solutions, this kind of solution being very
important for applications. We note in passing that when ℓ goes to zero, we expect to recover
the entropy solution of the Burgers equation. However, in Section 7, we show that the limit
(up to a subsequence) is a solution of the Burgers equation with a remaining forcing term.

Definition 5.1. A function u is called a dissipative solution of rB if
● The function u belongs to Lip([0, T ], L2

loc) and ux ∈ L∞([0, T ], L2
loc) for all T > 0.;

● u satisfies the equation (2.12), with an initial data u(0, x) = u0(x);
● u satisfies the inequality

[ 1
2 u

2 + 1
2 ℓ

2 u2x ]t + [
1
3 u

3 + ℓ2 uP + 1
2 ℓ

2 uu2x ]x ⩽ 0, (5.1)

in the sense of distributions.
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● There exists a constant C such that u satisfies the Oleinik inequality

ux(t, x) ⩽ C / t ∀t, x.
Remark 5.2. Following [7], we construct in Theorem 5.3 a dissipative solution of rB with
C = 2. The entropy solutions of the classical Burgers equation satisfy the Oleinik inequality
with C = 1.

As mentioned above, when v crosses the value −π, ux jumps from −∞ to +∞, which means
that the Oleinik inequality cannot be satisfied. Thus, to enforce the Oleinik inequality, the
value of v is not allowed to leave the interval [−π,π[. For that purpose, the system (4.18) is
modified (as in [7]) to become

ut = −ℓ2 Px, (5.2a)

vt =
⎧⎪⎪⎨⎪⎪⎩

−P (1 + cos v) − sin2(v/2), v > −π,
0 v ⩽ −π,

(5.2b)

qt =
⎧⎪⎪⎨⎪⎪⎩

q (12 − P ) sin(v), v > −π
0 v ⩽ −π.

(5.2c)

and P and Px are also modified as

P (t, ξ) = 1

4 ℓ
∫
R
exp{−1

ℓ
∣ ∫

ξ′

ξ
q̄(t, s) cos2 v(t, s)

2
ds∣} q̄(t, ξ′) sin2 v(t, ξ

′)
2

dξ′, (5.3)

Px(t, ξ) =
1

4 ℓ2
(∫

+∞

ξ
−∫

ξ

−∞

) exp{−1
ℓ
∣ ∫

ξ′

ξ
q̄(t, s) cos2 v(t, s)

2
ds∣} q̄(t, ξ′) sin2 v(t, ξ

′)
2

dξ′, (5.4)

where q̄(t, ξ) = q(t, ξ) if v(t, ξ) > −π and q̄(t, ξ) = 0 if v(t, ξ) ⩽ −π. The system (5.2) is the
key tool to prove the following theorem.

Theorem 5.3. Let u0 ∈ Ḣ1(R) ∩ L∞(R). If there exist a Lipschitz function ϕ such that
ϕ′ ∈ L1(R) and with u0 − ϕ ∈ H1(R), then there exists a global dissipative solution u of the
equation (2.12), such that u(t, ⋅) − ϕ ∈H1(R) for all t > 0. In addition, for all t > 0

ux(t, x) ⩽ 2 / t (t, x) ∈ R+ ×R, (5.5)

and if u0 ∈H1, then for almost all t > 0

∫
R
[u(t, x)2 + ℓ2 ux(t, x)2 ]dx ⩽ ∫

R
[u0(x)2 + ℓ2 u′0(x)2 ]dx. (5.6)

Remark 5.4. Due to the loss of the Oleinik inequality (cf. Remark 4.5), the system (4.17) is
slightly modified to (5.2) in order to obtain dissipative solutions of rB that satisfies the Oleinik
inequality (5.5).

Remark 5.5. In general, if the initial datum satisfies u′0 ⩽ M ∈ R ∪ {+∞}, then the Oleinik
inequality (5.5) can be improved as

ux(t, x) ⩽ 2M / (Mt + 2) (t, x) ∈ R+ ×R, (5.7)

as shown in (5.17) below.

Proof of Theorem 5.3. The idea of the proof is similar to Theorem 4.3 above and it is done
in the following steps:

● In the first step we prove the existence of the global solution as in Theorem 4.3.
● In the second step we prove the dissipation of the energy and the Oleinik inequality.
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Step 1: Existence of a solution. As in the proof of Theorem 4.3, it suffices to show
that (5.2b) and (5.2c) are locally well posed in the domain D ⊂X, D being defined below and
X

def= C([0, T ], L∞(R,R2)).
Note that if v is near −π the right-hand side of (5.2b) is discontinuous. To avoid this

discontinuity, the system (5.2) is replaced, as in [7], by

Ut(t, ξ) = F (U(t, ξ)) + G(ξ,U(t, ⋅)), U = (v, q), (5.8)
with

F (U) def=
⎧⎪⎪⎨⎪⎪⎩

(− sin2 v
2 ,

1
2 q sin v) v > −π,

(−1,0) v ⩽ −π,
G(U) def=

⎧⎪⎪⎨⎪⎪⎩

(−P (1 + cos v),−P q sin v) v > −π,
(0,0) v ⩽ −π,

Note also that, as long as the solution to (5.8) is well defined, replacing v by max{−π, v}
gives a solution of the equations (5.2b) and (5.2c). In the rest of this step, our aim is to show
that the system (5.8) is locally well-posed. Let δ ∈]0, 2π3 ] and let Λ be defined by

Λ
def= { ξ, v0(ξ) ∈ ] − π, δ − π] }. (5.9)

The equation (5.8) implies that, if v ∈ ] − π, δ − π] ⊂ ] − π, −π
3 ], then vt ⩽ −1

2 . Let D ⊂ X
satisfy U(0, ξ) = U0(ξ) and

1 /C ⩽ q(t, ξ) ⩽ C ∀(t, ξ) ∈ [0, T ] ×R, (5.10a)

∣{ ξ, sin2 (v(t, ξ) /2) ⩾ 1
2
}∣ ⩽ C ∀t ∈ [0, T ], (5.10b)

∥U(t) − U(s) ∥∞ ⩽ C ∣t − s∣ ∀t, s ∈ [0, T ], (5.10c)

v(t, ξ) − v(s, ξ) ⩽ − t−s
2 ∀ξ ∈ Λ, 0 ⩽ s ⩽ t ⩽ T. (5.10d)

Taking (v, q) ∈D and using (4.37), one gets that the right-hand sides of (5.2b) and (5.2c) are
bounded. However, the inequality (4.22) is no longer true and we have instead

∥P (U) − P (Ũ)∥∞ ≲ ∥U − Ũ∥∞ + ∣{ ξ, (v(ξ) + π)(ṽ(ξ) + π) < 0}∣ , (5.11)

which implies that
∥F (U) − F (Ũ))∥∞ ≲ ∥U − Ũ∥∞ , (5.12)

∥G(U) − G(Ũ))∥∞ ≲ ∥U − Ũ∥∞ + ∣{ξ, (v(ξ) + π)(ṽ(ξ) + π) < 0}∣. (5.13)

In order to estimate the second term of the right-hand side of the last equation, the crossing
time τ is defined as

τ(ξ) def= sup {t ∈ [0, T ], v(t, ξ) > −π}. (5.14)
Note that the equation (5.10c) implies that ∣v(t, ξ) − v0(ξ)∣ ⩽ C t. So, if ξ ∉ Λ then

min{τ(ξ), τ̃(ξ)} ⩾ δ /C.
Taking T small enough (T < δ/C) and using (5.10d), one obtains

∫
T

0
∣{ξ, (v(τ, ξ) + π)(ṽ(τ, ξ) + π) < 0}∣ dτ ⩽ ∫

Λ
∣τ(ξ) − τ̃(ξ)∣ dξ

⩽ 2 ∣Λ ∣ ∥U − Ũ∥∞ .
Now, the Picard operator

(P(U))(t, ξ) = U0 + ∫
t

0
[F (U) + G(U)] dτ, (5.15)
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satisfies
∥P(U) − P(Ũ)∥∞ ⩽ K (T + ∣Λ ∣) ∥U − Ũ∥∞ , (5.16)

where K depends only on C and ℓ. Since sin2 v0
2 ∈ L

1, by choosing δ > 0 small enough, one
can make ∣Λ∣ arbitrary small. Choosing also T small enough, one obtains the local existence
of the solution of the system (5.8), yielding a solution of (5.2). The rest of the proof of the
existence can be done following the proof of Theorem 4.3.

Step 2: Oleinik inequality and the dissipation of the energy. The equation (5.2b)
implies that if v(0, ξ) ⩽ 0, then for all t ⩾ 0 v(t, ξ) remains in [−π,0]. If v0(ξ) ∈]0, π[ then, as
long as v is positive, the following inequality holds

[arctan v
2
]
t
⩽ −1

2 arctan
2 v

2
.

This implies that, if arctan v0(ξ)
2 ⩽M , then

ux = arctan
v(t, ξ)

2
⩽ 2M

Mt + 2 . (5.17)

The Oleinik inequality (5.5) follows taking M = +∞ and using (4.44).
In order to prove the dissipation of the energy (5.1), let ψ be a non-negative test function,

then we follow the same computations in the proof of Theorem 4.3. Since (4.46) is no longer
true for the system (5.2), one can obtain from (4.45) that

∬
[0,+∞[×R

[−u2xψt − uu2xψx + uxP ] dtdx −∫
R

u′20 (x)ψ(0, x)dx

= − ∫
{τ(ξ)<+∞}

q(τ(ξ), ξ)ψ̃(τ(ξ), ξ)dξ ⩽ 0,

where τ(ξ) is the crossing time defined as τ(ξ) def= sup {t ⩾ 0, v(t, ξ) > −π}. Since (3.2) is
satisfied (see Remark 4.2), the dissipation of the energy (5.1) follows.

If u0 ∈ H1, as in the last step of the proof of Theorem 4.3, one can show that (4.47) and
(4.48) hold for the solution of (5.2), while the measure in (4.46) is not always zero. Then, the
dissipation of the energy (5.6) follows. □

6. Traveling waves of permanent form

The rB equation (1.2) can be written in the conservative form

[u − ℓ2 uxx ]t + [
1
2 u

2 − ℓ2 uuxx − 1
2 ℓ

2 u2
x ]x = 0. (6.1)

In this section, we describe traveling waves of permanent form, i.e., we seek bounded weak
solutions of (6.1) having the form u = u(x − ct). We find a great variety of such waves,
roughly comprising a subset of the plethora of traveling wave solutions of the Camassa-Holm
equation found by Lenells [30]. For CH, Lenells found peakons, cuspons, stumpons, smooth
periodic waves, monotone waves, and composite waves of various kinds. When we consider
the requirements imposed by energy conservation or dissipation, however, many composite
constructions are eliminated. In particular, the only traveling waves of rB we find that are
dissipative in the sense of Definition 5.1 are monotone weakly singular shock layers that
correspond to entropy-satisfying shocks of the inviscid Burgers equation in the limit ℓ → 0.
The rB equation has the nice property that such shock layers exist for every entropy-satisfying



18 GUELMAME ET AL.

shock. This is the scalar analog of the property found by Pu et al. [32] for the nondispersively
regularized shallow water system (1.1a)–(1.1c).

Since the rB equation is Galilean invariant, we can work in the frame of reference moving
with the wave, where the motion is steady. Moreover, by the rescaling x/ℓ→ x we can presume
ℓ = 1. I.e., we look for (weak) solutions such that u = u(x/ℓ).

For steady motions with ℓ = 1, the momentum flux S, given by

S
def= 1

2 u
2 − uuxx − 1

2 u
2
x = 1

2 u
2 + P, (6.2)

is constant, cf. (2.14). In any open set where u ≠ 0, equation (6.2) is an ODE and any weak
solution must be smooth. The energy conservation law (2.8) then implies that the energy flux
F , given by

F (x) def= 1
3 u

3 − u2 uxx = 1
3 u

3 + uP + 1
2 uu

2
x, (6.3)

is locally constant, cf. (3.4). Eliminating uxx between (6.2) and (6.3), one obtains the first-
order differential equation

1
2 uu

2
x = F − S u + 1

6u
3. (6.4)

6.1. Local analysis of weak solutions. As it turns out, the energy flux F may be discon-
tinuous at points where u = 0. Consider the possibility of a singularity at x = x0, which can
exist only if u(x0) = 0. Equation (6.4) then yields the following asymptotic behavior: As
x→ x0 (from either the right or the left),

uu2x ∼ 2F if Fu > 0, (6.5)

u2x ∼ −2S if F = 0 and S < 0, (6.6)

implying that, as x→ x0,

∣u∣ ∼ (32
√
∣2F ∣ ∣x − x0∣)

2/3
if Fu > 0, (6.7)

∣u∣ ∼
√
∣2S∣ ∣x − x0∣ if F = 0 and S < 0. (6.8)

By consequence, the quantity u2x = O(∣x − x0∣−2/3) is locally integrable. Hence by (6.2), one
can construct a valid weak solution of (6.1) by solving (6.4) separately for x < x0 and x > x0,
allowing F to jump between any two real values from left to right across x0,

6.2. Cuspons and periodic cuspons. In the simplest case, F is globally a nonzero constant.
This is necessary for the wave to be a conservative solution according to Definition 4.1, since
(3.4) requires Fx = 0. Then we obtain a family of waves with cusps having the behavior in
(6.7) for x0 either at a single point or at any point in a periodic grid.

Note that u(−x) is a solution of (6.4) whenever u(x) is, and −u is a solution for −F in place
of F . Without loss, then, we may consider the case when u > 0 for x > 0 = x0, and F > 0.
Necessarily, if u is to be bounded, the cubic polynomial on the right-hand side of (6.4) must
have two positive roots at points u1 ⩾ u0 > 0 and a negative root at −u1 −u0, related to F and
S via

F = 1
6u0u1(u0 + u1), S = 1

6(u
2
0 + u0u1 + u21). (6.9)

By consequence, we can separate variables in (6.4) and find that u = η(x) where η is determined
implicitly by x from the relation

H(η) def= ∫
η

0
( 3v

(u0 − v)(u1 − v)(u0 + u1 + v)
)
1/2

dv = x, 0 < x < x∗ =H(u0) ≤ ∞. (6.10)
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We obtain a periodic cuspon solution whenever u0 < u1. In this case the integral converges
at η = u0 to a finite value, and u(x) can be defined by reflection about x0 = 0 as

u(x) = η(∣x∣/ℓ), ∣x∣ ⩽ x∗ℓ, (6.11)

then extended as smooth and periodic with period 2x∗ℓ and maximum value u0 = u(x∗ℓ).
Here we have put back the scale parameter ℓ to obtain a stationary weak solution of (6.1)
valid for any ℓ > 0.

We find a cuspon with u(x) → u0 as x → ±∞, provided by the same formulas in the case
u0 = u1, when we find x∗ = H(u0) = +∞. This has a single singular point at x0 = 0. In this
case,

F = 1
3u

3
0, S = 1

2u
2
0, H(η) = ∫

η

0
( 3v

2u0 + v
)
1/2 dv

u0 − v
= ∣x∣. (6.12)

A similar analysis provides negative cuspons u < 0 with reversed signs F < 0 and u1 ⩽ u0 < 0.
Necessarily S > 0 in this case also. In case F = 0 globally, one has only the trivial solution
u ≡ 0, for there are no other bounded solutions, since uxx = 1

3u for u ≠ 0 by (6.3). Finally, also
we note that

In summary we can state the following, noting that minu>0(∣F ∣ −Su+ 1
6u

3) ≤ 0 in all cases.

Proposition 6.1. For globally constant energy flux F , a bounded nonzero stationary solution
u of (6.1) exists, having the form

u(x) = η(∣x∣/ℓ) sgnF, for ∣x∣ ⩽ x∗ℓ, (6.13)

provided
0 < 3∣F ∣ ⩽ (2S)3/2, (6.14)

where we have equality for cupsons, strict inequality for periodic cuspons. All these cuspons
and periodic cuspons are conservative solutions according to Definition 4.1.

6.3. Shock layers. For a stationary solution u to be dissipative according to Definition 5.1,
we require ux ≤ 0 to satisfy the Oleinik inequality (1.3). The energy flux F (x) can be discon-
tinuous, but it must be decreasing across singularities in order to satisfy the energy dissipation
inequality (5.1).

Thus we require u > 0 and F = F− > 0 for x < 0 = x0, while u < 0 and F = F+ < 0 for x > 0.
Since u(x) is required to be bounded and monotone we should have

u(x) →
⎧⎪⎪⎨⎪⎪⎩

u− as x→ −∞,
u+ as x→ +∞,

(6.15)

where necessarily S > 0 and u− = −u+ =
√
2S by taking x → ±∞ in (6.2). Since we must

solve the same ODE as in the previous subsection, to obtain a global monotonic solution it is
necessary that

∣u±∣ = (2S)1/2 = (3∣F±∣)1/3. (6.16)
We obtain such solutions by taking u0 = u− in the formulas in (6.12), and taking the odd
extension of the left half of the cuspon, setting

u(x) =
⎧⎪⎪⎨⎪⎪⎩

η(−x/ℓ), x < 0,
−η(x/ℓ), x > 0.

(6.17)

As before this yields a solution of (6.1) for any ℓ > 0. In the limit ℓ→ 0 we evidently obtain
any stationary entropy-satifying shock for the inviscid Burgers equation, which must take two
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Figure 1. Types of weakly singular stationary waves: (a) cuspon; (b) periodic
cuspon; (c) shock layer; (d) composite wave

values u− > u+ with u2− = u2+. By Galilean boosts we obtain traveling weakly singular shock
layer solutions which converge in the limit ℓ → 0 to any arbitrary entropy-satisfying simple
shock for the inviscid Burgers equation. Thereby we obtain the following.

Proposition 6.2. Corresponding to any entropy-satisfying simple shock for the inviscid Burg-
ers equation, taking constant values u− > u+ respectively for x < ct and x > ct with c =
1
2(u− + u+), the regularized Burgers equation (6.1) admits a weakly singular shock layer solu-
tion satsifying

u(x, t) = c − η(∣x − ct∣/ℓ) sgn(x − ct) →
⎧⎪⎪⎨⎪⎪⎩

u− x→ −∞,
u+ x→ +∞,

(6.18)

where η(x) is determined from (6.12) with u0 = 1
2(u− − u+).

Remark 6.3. We note from (5.1) that the rate of energy dissipation for the stationary shock
layer is

F− − F+ = 2
3u

3
− = 1

12(u− − u+)
3,

and all of the energy dissipation occurs at the location of the weak singularity. This rate is
exactly the same as for the corresponding inviscid Burgers shock, which is famously cubic in
the amplitude of the shock.

6.4. Composite waves. If one discards the criteria we have imposed to find conservative or
dissipative solutions, a great many more stationary weak solutions of (6.1) can be constructed,
by joining together segments of (periodic) cuspons between consecutive zeros, while allowing
the energy flux F (x) to jump discontinuously at the zeros, in an essentially arbitrary way
subject only to the inequality (6.14).

We will not describe these solutions in any further detail, since we have already described
the only such solutions that are conservative or dissipative according to Definitions 4.1 and 5.1.
At any isolated singular point x0 where the left-to-right jump F (x0+) − F (x0−) is negative,
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energy is dissipated, while energy is generated if this jump is positive. One can construct
composite solutions having multiple zeros that all dissipate energy, by taking F (x) piecewise
constant and non-increasing. One such composite solution is plotted in Figure 1(d). These are
not dissipative solutions in the sense of Definition 5.1, however, since they are not monotonic
hence violate the Oleinik inequality.

6.5. Non-existing waves. Some of the kinds of waves found by Lenells for CH are not
possible for rB. In particular, we find that rB does not admit smooth periodic waves, peakons
with bounded derivatives, or “stumpons”: Such waves can be made stationary by a Galilean
transformation, then must have a single sign, which may be assumed nonnegative. If minu = 0
we must have S > 0 and the wave must be a cuspon, as found above. And if minu > 0, then the
cubic polynomial in (6.4) must take positive values between two zeros u0 =minu <maxu = u1.
But this is not possible since −u0 − u1 is the only other zero.

7. The limiting cases ℓ→ 0 and ℓ→ +∞ for dissipative solutions

Taking formally ℓ = 0, the rB equation becomes the classical Burgers equation, and letting
ℓ → +∞ it becomes the Hunter–Saxton equation. In this section, we study the compactness
of the dissipative solutions when taking ℓ→ 0 and ℓ→ +∞.

Let the initial datum u0 be taken in H1, with u′0 ∈ L1 and M
def= supx∈R u

′
0(x) < +∞. Let

also uℓ be the dissipative solution of the rB equation given in Theorem 5.3. In order to take
the limit, an estimate on the total variation of uℓ is needed. For that purpose, the following
Lemma is given

Lemma 7.1. [BV estimate] If u′0 satisfies the conditions of Theorem 5.3 with u′0 ∈ L1 and
u′0(x) ⩽M ∀x, then for all t ∈ R+

TVuℓ(t, ⋅) = ∥uℓx(t, ⋅)∥1 ⩽ ∥u
′
0∥1 (

Mt + 2
2
)
2

. (7.1)

Proof. For v ∈] − π,π[, the equation (4.30) implies

s̃
def= sgn(uℓξ) = sgn(sin(vℓ)) = sgn(sin(v

ℓ

2
)), cos(v

ℓ

2
) ⩾ 0. (7.2)

Note that tan(vℓ/2) ⩽ tan(v0/2) = 2M/(Mt + 2) from (5.17). Differentiating (5.2a) w.r.t ξ,
multiplying by s̃ — and using (4.29), (4.30) and sin v = 2 sin(v/2) cos(v/2) — one gets

d

dt
∫
R
∣uℓξ ∣ dξ = −ℓ2∫

R
s̃ (Px)ξ dξ = −ℓ2∫

{s̃ > 0}
(Px)ξ dξ + ℓ2 ∫

{s̃ < 0}
(Px)ξ dξ

= −2 ℓ2 ∫
{s̃ > 0}

(Px)ξ dξ + ℓ2 ∫
R
(Px)ξ dξ

= −2 ∫
{s̃ > 0}

(qℓ P cos2
vℓ

2
− 1

2q
ℓ sin2

vℓ

2
) dξ

⩽ ∫
{s̃ > 0}

qℓ sin
vℓ

2
cos

vℓ

2
tan

vℓ

2
dξ

⩽ 2M

Mt + 2 ∫R ∣u
ℓ
ξ ∣ dξ. (7.3)



22 GUELMAME ET AL.

Gronwall lemma then implies that

∥uξ∥1 ⩽ ∥(u0)ξ∥1 (
Mt + 2

2
)
2

. (7.4)

Note that the last inequality is on the ξ−variable. Using that the application ξ ↦ y(t, ξ) is
not decreasing for all t and using that TVf = ∥f ′∥1 for smooth solutions (f ∈W 1,1

loc ), the result
follows. □

7.1. The limiting case ℓ → 0. The goal of this subsection is to show that when ℓ → 0, the
dissipative solution uℓ converges (up to a subsequence) to a function u satisfying the Burgers
equation with a source term:

ut + 1
2
[u2]

x
= −µx, (7.5)

where µ is a measure such that 0 ⩽ µ ∈ L∞([0,+∞[,M1). In Proposition 7.5 below, we show
that the measure µ is zero before the appearance of singularities. The question whether or
not µ is zero after singularities is open, in general. The following theorem can be stated

Theorem 7.2. Let u0 ∈ H1, such that u′0 ∈ L1 and u′0(x) ⩽ M ∀x, then there exists u ∈
L∞([0, T ],BV (R)) for all T > 0, such that there exists a subsequence of uℓ (also noted uℓ)
and for all interval I ⊂ R we have

uℓ
ℓ→0——→ u in C([0, T ], L1(I)), (7.6)

and u satisfies the equation (7.5). Moreover, u satisfies the Oleinik inequality

ux(t, x) ⩽
2M

Mt + 2 in D′(R). (7.7)

Remark 7.3. If µ = 0 then, due to the Oleinik inequality, u is the unique entropy solution of
the Burgers equation.

In order to prove Theorem 7.2, the following definition and lemma are needed:
Let I ⊂ R be a bounded interval and let

W (I) def= {f ∈ D′(I), ∃F ∈ L1(I) such that F ′ = f} , (7.8)

where the norm of the space W (I) is given by

∥f∥W (I)
def= inf

c ∈R
∥F + c ∥L1(I) = min

c ∈R
∥F + c ∥L1(I). (7.9)

Lemma 7.4. The space W (I) is a Banach space and the embedding

L1(I) ↪ W (I), (7.10)

is continuous.

Proof. Let (fn)n∈N be a Cauchy sequence in W (I) and let Fn be a primitive of fn. From
the definition of the norm (7.9), there exists a constant cn such that (F̃n − cn)n∈N (where
F̃n = Fn + cn) is a Cauchy sequence in L1(I). Let F̃ be the limit of F̃n in L1(I). Then

∥fn − F̃ ′∥W (I) ⩽ ∥F̃n − F̃ ∥L1(I), (7.11)

implying that W (I) is a Banach space. Now, the continuous embedding can be proved.
If f ∈ L1(I), then F (x) − F (a) = ∫ x

a f(y)dy for almost all x, a ∈ I. Therefore,

∥f∥W (I) ⩽ ∫
I
∣F (x) − F (a)∣ dx ⩽ ∣I∣∫

I
∣f(y)∣ dy, (7.12)
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which ends the proof. □
The previous lemma and Helly’s selection theorem imply that

W 1,1(I) ↪ L1(I) ↪ W (I), (7.13)

where the first embedding is compact and the second is continuous.

Proof of Theorem 7.2: Let the compact set [0, T ] ×I ⊂ R+ ×R. Supposing that ℓ ⩽ 1 then,
from (5.6), the dissipative solutions of rB satisfies

∥uℓ∥22 ⩽ ∥u0∥2H1 , ℓ2∥P ∥1 = 1
2 ℓ

2 ∥uℓx∥22 ⩽ 1
2 ∥u0∥

2
H1 , (7.14)

implying that uℓ is uniformly bounded on L∞([0, T ], L2(R)). Subsequently, it is also uni-
formly bounded on L∞([0, T ], L1(I)). Because Lemma 7.1 yields that uℓ is bounded on
L∞([0, T ],W 1,1(I)), and the equation (7.14) implies that 1

2u
ℓ 2 + ℓ2P is uniformly bounded

on L∞([0, T ], L1(I)), then since uℓt = −(12u
ℓ 2 + ℓ2P)

x
, (7.9) implies that uℓt is bounded on

L∞([0, T ],W (I)). Then, using the Aubin theorem (see Corollary 4 in [33]), the compactness
follows.

The quantity ℓ2P is non-negative and bounded in L∞([0,+∞[, L1(R)), implying the ex-
istence of a non-negative measure µ ∈ L∞([0,+∞[,M1(R)) such that ℓ2P converges (up to
a subsequence) weakly to µ. The equation (7.5) follows taking the limit ℓ → 0 in the weak
formulation of (2.12). Finally, taking the limit in the weak formulation of (5.7), we can prove
that ux(t, x) ⩽ 2M/(Mt + 2). □

The question whether or not µ = 0 is open. The following proposition shows that when
ℓ→ 0 for smooth solutions (i.e., before appearance of singularities), uℓ converges to the unique
solution u of the classical Burgers equation.

Proposition 7.5. If u0 is in Hs ∩BV with s ⩾ 3, then for t < 1/ supx ∣u′0(x)∣ we have

µ = 0. (7.15)

Proof. From Theorem 3.5 and Remark 3.6, we can find a uniform upper bound on uℓx in the
space L∞([0, T ], L∞(R)) with T < 1/ supx ∣u′0(x)∣, which implies that ℓ2P → 0. □

7.2. The limiting case ℓ→ +∞. The goal of this subsection is to show that, when ℓ→ +∞,
the dissipative solution uℓ converges (up to a subsequence) to a function u that satisfies:

[ut + 1
2(u

2)x]x = ν, (7.16)

where 0 ⩽ ν ∈ L∞([0,+∞[,M1). In Proposition 7.8 below, we show that before the appearance
of singularities, the measure ν = u2x/2. The question whether or not ν = u2x/2 in general is
posed. We have the following theorem:

Theorem 7.6. Let u0 ∈ H1 such that u′0 ∈ L1 and u′0(x) ⩽ M ∀x, then there exists u ∈
L∞([0, T ],BV (R)) for all T > 0, such that there exists a subsequence of uℓ (noted also uℓ)
and for all interval I ⊂ R we have

uℓ
ℓ→+∞———→ u in C([0, T ], L1(I)), (7.17)

and u satisfies the equation (7.16). Moreover, u satisfies the Oleinik inequality

ux(t, x) ⩽
2M

Mt + 2 in D′(R). (7.18)
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Remark 7.7. If ν = 1
2u

2
x then u is a dissipative solution of the Hunter–Saxton equation [5].

Proof. Let the compact set [0, T ] × I ⊂ R+ ×R. Supposing that ℓ ⩾ 1 then, from (5.6), the
dissipative solution of rB satisfies

∥P ∥1 = 1
2 ∥u

ℓ
x∥22 ⩽ 1

2 ∥u0∥
2
H1 . (7.19)

Using Lemma 7.1, one gets that uℓ is bounded in L∞([0, T ] ×R) and

∫
R
∣uℓ(t, x + h) − uℓ(t, x)∣dx ⩽ ∥u′0∥1 (

MT + 2
2

)
2

∣h∣. (7.20)

Integrating (2.12) between t1 and t2, one obtains

uℓ(t1, x) − uℓ(t2, x) = ∫
t2

t1
(uℓ uℓx + ℓ2 Px ) dt. (7.21)

Using Lemma 7.1, inequality (7.19) and

∥Px∥∞ ⩽ 1
4 ℓ
−2 ∥uℓx∥22,

we can show that there exists B = B(T,I) such that

∫
I
∣uℓ(t2, x) − uℓ(t1, x)∣dx ⩽ B ∣t2 − t1∣. (7.22)

The compactness follows using Theorem A.8 in [25].
The quantity 1

2 u
ℓ
x
2 is non-negative and bounded in L∞([0,+∞[, L1(R)), which implies that

there exists a non-negative measure ν ∈ L∞([0,+∞[,M1(R)) such that P converges (up to
a subsequence) weakly to ν. The equation (7.16) follows by taking the limit ℓ → +∞, in the
weak formulation of (3.1). Finally, taking the limit in the weak formulation of (5.7), we can
prove that ux(t, x) ⩽ 2M

Mt+2 . □
The question whether or not the equality always holds ν = u2x/2 is open. The following

proposition shows that, when ℓ→ +∞ for smooth solutions (before appearance of singularities),
uℓ converges to a dissipative solution u of the Hunter–Saxton equation [5].

Proposition 7.8. If u0 is in Hs ∩BV with s ⩾ 3, then for t < 1/ supx ∣u′0(x)∣ we have

ν = 1
2 u

2
x. (7.23)

Proof. From Theorem 3.5 and Remark 3.6, we can find a uniform upper bound on uℓx in the
space L∞([0, T ], L∞(R)) with T < 1/ supx ∣u′0(x)∣, which implies that the convergence uℓx to
ux is strong. Thus, uℓx

2 → u2x. □

8. Optimality of the Ḣloc space

In the previous sections (see Proposition 3.4, Theorem 3.5 and Theorem 5.3), we have
shown, on one side, that even if the initial datum u0 is smooth, there exists a finite blow-up
time T ∗ > 0 such that

inf
x∈R

ux(t, x) > −∞ ∀t < T ∗, inf
x∈R

ux(T ∗, x) = −∞. (8.1)

On the other side, the Oleinik inequality (5.5) shows that, even if the initial datum is not
Lipschitz, the derivative of the solution becomes instantly bounded from above, i.e.

sup
x∈R

u′0(x) = +∞, sup
x∈R

ux(t, x) < +∞ ∀t > 0. (8.2)
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Remark 8.1. If the derivative of the initial datum is bounded from below and not from above,
it will be instantly bounded from both sides 3 and, after T ∗, it will be bounded from above
and not from below.

This remark is important to prove that the space Ḣ1
loc is the best space to obtain global (in

time) solutions, the optimality being in the following sense.

Theorem 8.2. Let δ > 0 and g(h) def= [ln ∣h∣]δ, then there exist u0 ∈ H1 ∩W 1,∞, T > 0 and a
compact set K, such that there exists a solution u of (2.12) satisfying

∫
R
u′0(x)2 g(u′0(x))dx < +∞, ∫

K
ux(T,x)2 g(ux(T,x))dx = +∞. (8.3)

Thus, we cannot expect that u belongs to W 1,p for p > 2 for all time. In other words, the
space H1 =W 1,2 is optimal for the equation (2.12).

Before proving Theorem 8.2, let u0 ∈ Hs with s big enough, and let u be a solution of rB
with u(0, x) = u0(x). The main quantity is the following integral

∫
K
u2x(T,x) g(ux(T,x))dx, (8.4)

where T > 0 and K is a compact set. Using the change of variable x = y(T, ξ), one gets

∫
K
u2x(T,x) g(ux(T,x))dx = ∫K′ q sin

2(v /2) g(tan(v /2))dξ, (8.5)

where K′ is another compact set. From previous sections, the quantity q is always bounded,
which implies that if g is bounded then (8.4) is bounded. If g is not bounded (see Theorem
8.2), then the quantity (8.4) depends on the behaviour of the derivative ux at time T . The
proof of Theorem 8.2 is done by building u(T, ⋅), such that the quantity (8.4) is infinite. Then,
we use a backward system to go back in time and find a Lipschitz initial datum.

Proof of Theorem 8.2: Let g(h) def= [ln ∣h∣]δ for δ > 0 and let ū be a compactly supported odd
function such that ū ∈ C∞(R/{0}) and for all x ∈]0, 12[ we have

ū′(x) def= − 1√
x
(− ln(x))−

1+δ
2 .

It is clear that ū ∈H1(R) and

∫
V(0)

ū′(x)2 g(ū′(x))dx = +∞, ū′(x) ⩽ C, (8.6)

where V(0) denotes a neighbourhood of 0.
The idea of the proof is to use a backward (in time) system such that u(T,x) = ū(x). The

initial datum u0 is the unknown. To simplify the presentation, the conservative system (4.17)
is used. With this system, we will obtain a local (in time) Oleinik inequality, which is enough
for our construction. A similar proof can be used with the dissipative system (4.18) with a
global Oleinik inequality. The built solution in the interval [0, T [ is Lipchitz, so both systems
(4.17), (4.18) yield the same solution.

3Note that the gain of regularity (8.2) is instantaneous, while the loss of regularity (8.1) needs some time.
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In order to build u0, we use the forward existence proof given in Section 4. One can use
the change of variable t→ −t. The conservative system (4.17) becomes then

yt = −u, y(−T, ξ) = ȳ(ξ), (8.7a)

ut = ℓ2 Px, u(−T, ξ) = ū(ȳ(ξ)), (8.7b)

vt = P (1 + cos(v)) + sin2(v/2), v(−T, ξ) = 2arctan(ū′ (ȳ(ξ))) , (8.7c)

qt = − q (12 − P) sin(v), q(−T, ξ) = 1, (8.7d)

where t ∈ [−T,0] and ȳ is defined as in (4.10), replacing u0 by ū.
The proof of a local existence of solutions can be done as in Section 4. Due to the change

of variable t→ −t, the Oleinik inequality becomes

ux(t, x) ⩾ −2/(t + T ) (8.8)

for t > −T and t close enough to −T . The proof of this Oleinik inequality proceeds as in Section
4 using the equation (8.7c), which implies that the derivative of the solution is bounded from
below. As in Remark 8.1, since ū′ = ux(−T, ⋅) ⩽ C, the derivative of the solution remains
bounded from above for t > −T and t close enough to −T . Taking T > 0 small so the solution
is Lipschitz until t = 0, and thus

∫
R
ux(0, x)2 g(ux(0, x)′)dx < +∞.

The result follows directly by using the change of variable t→ −t. □

Remark 8.3. (1) The optimality given in Theorem 8.2 is also true for the Camassa–Holm
equation.

(2) Xin and Zhang [34] have proved that the Camassa–Holm equation admits dissipative
solutions that satisfy

∫
T

0
∫
∣x∣ ⩽R

∣ux(t, x)∣p dxdt < +∞ ∀T > 0,R > 0, p < 3. (8.9)

This result can also be proven for the rB equation.
(3) Theorem 8.2 does not contradict with (8.9). Theorem 8.2 shows that the function

t↦ ∫
∣x∣ ⩽R

∣ux(t, x)∣p dx

does not necessarily belong to L∞loc([0,+∞)). However, the inequality (8.9) shows that
this function belongs to L1

loc([0,+∞)) if p < 3.

9. Conclusion and discussion

In this paper, we have studied a regularisation of the inviscid Burgers equation (2.12). For a
smooth initial datum, the regularised equation (2.12) has a unique smooth solution locally in
time. After the blow-up time, the solution is no longer unique, nor smooth. At least two types
of solutions exist: conservative and dissipative solutions. We find that the built dissipative
solutions are more interesting because they satisfy an Oleinik inequality (5.5), which plays an
important role in showing that solutions converge (up to a subsequence) when ℓ→ 0 and when
ℓ → ∞ (ℓ the regularising positive parameter). Before the appearance of singularities, the
limit when ℓ → 0 (respectively ℓ →∞) is a smooth solution of the inviscid Burgers (resp. the
Hunter–Saxton) equation. After the breakdown time, it remains open to determine whether



REGULARISED BURGERS EQUATION 27

the Burgers (resp. the Hunter–Saxton) equation holds in the limit without a remaining forcing
term.

As shown above, the major difference between the conservative system (4.17) and the dis-
sipative system (5.2) is that the system (4.17) allows v to cross the value −π, causing a jump
of ux from −∞ to +∞ (see eq. (4.44)), which implies (4.1), thence the loss of the Oleinik
inequality (Remark 4.5). But, the value v = −π is a barrier that cannot be crossed for the
system (5.2). It follows that if v(t, ξ0) = −π at a time t, then v(τ, ξ0) = −π for all times τ ⩾ t
(see figure 2). This property is important to obtain the Oleinik inequality (5.5), which yields
the dissipation of the energy (5.6).

The figure 2 shows the domains where v = −π for the systems (4.17) and (5.2).

v < −π

v = −π
v > −π

System (4.17) (conservative solution)

T ∗

ξ

t

T ∗

t ξ+ξ−

v = −π

v > −π

System (5.2) (dissipative solution)

ξ

t

Figure 2. Regions where v = −π.
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