
1. Introduction
The transport and retention of solutes in catchments is influenced by both hydrologic and biogeochemical 
processes. Solute transit or travel time distributions (TTDs) provide insights on the integrated behavior of 
hydrologic and biogeochemical processes within catchments, although the distinction between the process-
es and time scales involved in hydrologic/hydraulic versus hydrochemical response should be emphasized 
(Birkel et al., 2011; Botter et al., 2010; Fiori & Russo, 2008; Hrachowitz et al., 2013; Maloszewski & Zu-
ber, 1993; McGuire & McDonnell, 2006). There is a large body of research on TTDs in catchments, which 
has been synthesized in review papers (e.g., Hrachowitz et al., 2016; Maloszewski & Zuber, 1993; McGuire 
& McDonnell, 2006; Sprenger et al., 2019).

Catchment solute TTDs often exhibit longer tails than the exponential distribution, a commonly used mod-
el for TTDs. Additionally, Kirchner et al. (2000, 2001) showed that solute TTDs in catchments at Plynlimon, 
UK, decline more steeply than an exponential distribution at early times. They suggested that a gamma dis-
tribution, h t t e

t           1 /
/  , with shape parameter α = 0.5 (more generally α < 1), captures both 

steep early-time decline (indicative of short-term responsiveness) and long-term memory and is hence a bet-
ter model for solute TTDs than the exponential distribution (α = 1). Correspondingly, stream concentration 
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power spectra were observed to exhibit 1/frequency behavior (more generally 1/frequency to a power <2) 
across a wide range of frequencies, which they referred to as “fractal stream chemistry.” Similar behavior 
has been documented at other catchments (Godsey et al., 2010), and for a variety of solutes (Kirchner & 
Neal, 2013), although some catchments do exhibit exponential baseflow TTDs (e.g., McGuire et al., 2005).

Various mechanisms have been proposed to explain fractal stream chemistry. Kirchner et al. (2001); Kirch-
ner and Neal (2013) suggested that this behavior could result from an advective-dispersive process with high 
dispersion (Peclet number [Pe] ∼1), associated with variable travel time across streamlines in a hillslope 
flow system. Lindgren et al. (2004) proposed that even with moderate dispersion, first-order mobile-immo-
bile exchange can explain fractal scaling. Cardenas (2007) and Kollet and Maxwell  (2008) demonstrated 
that hillslope groundwater flow systems with significant variation in advective travel times across stream-
lines produce power-law solute TTDs. Kollet and Maxwell (2008) also showed that transient vadose zone 
processes influence stream concentration spectra at higher frequencies. Fiori and Russo's (2008) simula-
tions of transient flow and solute transport in a hillslope produced TTDs resembling gamma distributions 
with α < 1. Haitjema (1995) and Fiori and Russo (2008) showed that transient effects and heterogeneity 
have a minor influence on TTDs compared to variations in travel times across streamlines in steady flow 
representations. Ameli et  al.  (2016) showed that decreasing permeability with depth in a hillslope flow 
model, either exponential or due to macroscopic layering, produced a gamma TTD with α close to 0.5. 
Harman (2015) showed that a time-variable uniform TTD with a range parameter that increases with de-
creasing storage (inverse storage effect) reproduces 1/frequency spectra. Lumped parameter hydrochemical 
models with multiple compartments have also reproduced gamma TTDs with α < 1 (Benettin et al., 2015; 
Hrachowitz et al., 2013).

The contribution of shallow groundwater flow through fractured bedrock to streamflow and solute export 
in mountain catchments has long been recognized, including at Plynlimon (Kirchner et  al.,  2001; Neal 
et al., 1997) and other recent studies (Carroll et al., 2019, 2020; Frisbee et al., 2013; Godsey et al., 2010; 
Hale et al., 2016; Herndon et al., 2015; Manning et al., 2013; Tokunaga et al., 2019). It is well established 
that matrix diffusion, a phenomenon first invoked to explain anomalous tracer ages (Foster,  1975; Ner-
etnieks, 1981), significantly influences the travel time of tracers in fractured rock. The potential influence of 
matrix diffusion on catchment hydrochemical response and tracer ages was further highlighted by Malosze-
wski and Zuber (1993) and Shapiro (2011). However, few models of catchment-scale solute TTDs explicitly 
incorporate the influence of matrix diffusion, and its contribution to fractal scaling and long-tailed TTDs 
has not received sufficient attention. In this paper, I present frequency and time domain analyses of the 
combined influence of variable advective travel times and matrix diffusion on solute transport in a catch-
ment/hillslope groundwater system hosted in fractured bedrock. I show that the theoretical power spec-
trum of stream concentration variations inherently exhibits fractal scaling, and that the solute TTD strongly 
resembles a gamma distribution with α < 1 for finite accessible matrix widths. For larger matrix widths, the 
characteristic late-time power-law tailing associated with matrix diffusion persists for a long duration. I also 
present an application to the Lower Hafren catchment at Plynlimon.

2. Conceptual Model and Transport Equations
The catchment-scale groundwater flow system is represented as a steady saturated flow in fractured bed-
rock, receiving spatially uniform recharge. Figure 1 shows a schematic representation (adapted from Hait-
jema, 1995). Fluid flow is assumed to occur only in fractures, with no advection in the rock matrix. Solutes 
undergo rapid advection along streamlines through permeable fractures, while simultaneously diffusing in 
and out of the rock matrix. The fracture density is assumed to be high so that an equivalent porous medium 
representation is employed for flow (but not for transport). Thus, the water table and hydraulic head field 
are assumed to be well defined and smooth. Isochrones TaE I  denote contours of equal advective travel time 
aE T  from the water table to the outflow at the stream, and TaE   denotes the surface area contained within TaE I . 

Advective travel times aE T  along streamlines (streamsurfaces) from the water table to the stream are assumed 
to increase monotonically with TaE  . The streamtube originating from the surface element TaE d  in Figure 1a 
is bounded by isochrones TaE I  and T dTa aE I  , comprising streamlines along which advective travel times to the 
stream range from aE T  to a aE T dT . It is important to emphasize the distinction between advective and total 
solute travel times: the total travel time along a streamline is also influenced by matrix diffusion and thus 
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much longer than the advective travel time. The catchment-scale solute TTD is derived by considering the 
distribution of total travel/transit times across all streamlines.

Previous studies suggest that when advective travel times across streamlines vary over a large range, the 
influence of heterogeneity and dispersion is secondary (Duffy & Gelhar, 1986; Fiori & Russo, 2008; Gel-
har, 1993; Haitjema, 1995). I therefore neglect streamline tortuosity and dispersion in the analysis presented 
below. The influence of heterogeneity may be incorporated using modified advective travel time distribu-
tions as in the Lagrangian stochastic frameworks of Cvetkovic et al. (1999) and Simic and Destouni (1999). 
I assume one-dimensional diffusion with an effective matrix width B (Figure 1b), which may either be re-
lated to the block size or an accessible weathered matrix thickness adjacent to fractures. Multidimensional 
diffusion in matrix blocks is similar to one-dimensional diffusion with modified parameters, as discussed 
by Barker (1985).

For the above flow system, solute transport equations along a streamline and the matrix domain adjacent 
to it are presented below, following Grisak and Pickens (1980), Tang et al. (1981), and Małoszewski and Zu-
ber (1985). The fracture concentration at time t, at location s along a streamline that originated at isochrone 

TaE I  (Figure 1) is denoted by  , ;f TaE C s t I ; and the concentration in the adjacent rock matrix by  , , ;m TaE C s z t I , 
where z is the distance from the fracture matrix interface (see Figure 1b). The fracture transport equation is:
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Figure 1. Schematic conceptual model of catchment-scale groundwater flow and transport. (a) Plan view showing 
total area totalE   and area TaE   bounded by isochrone TaE I  from which the advective travel time to the stream is aE T . (b) 
Vertical cross-section along x-x' in (a), showing streamlines from the surface, through the water table to the stream. The 
streamline coordinate is denoted by s, and z denotes the distance from the fracture-matrix interface. One-dimensional 
matrix diffusion is assumed, with an accessible matrix width B.
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where sE u  is the solute velocity along the streamline, E b is the fracture aperture; mE   and eE D  are the matrix 
porosity and effective diffusivity respectively. The parameters E b, mE  , and eE D  are assumed as constant catch-
ment-scale average values, while sE u  varies across the flow system. The diffusion equation in the rock matrix 
is:

 
2

2 0m m
m b d m e

C CK D
t z

   
  

 
 (2)

where bE   and dE K are respectively the bulk density of solids and the distribution coefficient in the rock matrix. 
The lateral boundary conditions for Equation 2 are:

C s z t I C s t I
C

z
s z B t I

m Ta f Ta

m

Ta
, , ; , ; , , , ;     


  0 0 (3)

The streamline coordinate s in Equation 1 may be replaced with an advective travel time coordinate (Cvet-
kovic et al., 1999; Duffy & Gelhar, 1986; Gelhar & Collins, 1971):

 0

s

a
s s
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 (4)

Correspondingly, the fracture and matrix concentrations may be written as functions of aE  , that is, 
 , ;f a TaE C t I  and  , , ;m a TaE C z t I , and Equation 1 can be rewritten as (Cvetkovic et al., 1999):
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I use Equation 5, together with Equations 2 and 3 to relate the stream concentration to the input concentra-
tion. At the inflow end of a streamline (s = 0, aE   = 0), concentration inputs  iE C t  are assumed to be uniform 
across all streamlines (i.e., the catchment area), but vary with time:

   0, ;f a T iaC t I C t   (6)

At the outflow boundary  a aE T  , the stream concentration  oE C t  is obtained by mixing of concentrations 
from all streamlines. The fraction of the total outflow that originates within the streamtube TaE d  is denoted 
as  T Ta aE w I d , where  TaE w I  is a flux-weighting function. If aE T  increases monotonically with TaE  , the frac-
tion  T Ta aE w I d  may also be represented using the advective travel time probability density function across 
streamlines,  aE P T , as  a aE P T dT . Thus,  oE C t  may be written in terms of an integral over either TaE   or aE T :

         
0total

, ; , ;o f a T T T f a T a aa a a a
Ta

C t C T t I w I d C T t I P T dT


 
    (7)

If the fluid flux and velocity are assumed to be constant across the depth of the flow system at the outflow, 
as in a Dupuit model, w I

Ta
   1/

total
, a constant. Additionally, assuming spatially uniform recharge and 

an approximately constant saturated thickness (H),  aE P T  is an exponential distribution (Gelhar & Wil-
son, 1974; Haitjema, 1995; Małoszewski & Zuber, 1982):

  1 exp a
a

a a

TP T
T T

 
   

 
 (8)

In Equation 8, aE T  is the mean advective travel time, given by /aE H r , where aE   is the active porosity corre-
sponding to the hydrologically responsive fracture flow system and r is the recharge rate. The exponential 
advective travel time distribution is also applicable to hillslope flow systems with a sloping base, under the 
assumption of uniform recharge and constant saturated thickness. The relationship for TaE   corresponding 
to Equation 8 is (Haitjema, 1995):

 
Ta a a

T T    total 1 exp / (9)

3. Frequency Domain Analysis: Stream Concentration Power Spectrum
To relate the power spectra of stream and precipitation concentrations, the transport equations are solved 
in the frequency domain (Sections  S.1 and  S.2). The Fourier transforms (or spectral representations) of 

     , , , ;i o f a TaE C t C t C t I  and  , , ;m a TaE C z t I  are denoted by      , , , ;i o f a TaE C C C I       and  , , ;m a TaE C z I   
respectively, where E  is the angular frequency. The Fourier transforms of Equations 2 and 3 are solved to 
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express  , , ;m a TaE C z I   in terms of  , ;f a TaE C I   (Equation S7). Using this relationship in the Fourier trans-
form of Equation 5 produces a differential Equation S8 for  , ;f a TaE C I  :

  0f
f

a

dC
k C

d



 


 (10)

where (Equations S10 and S11):
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m e
m e
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In Equation 11, 1E i    and R K
b d m

  1  /  denotes the retardation factor in the rock matrix.

Solving Equation 10 and using the transform of Equation 6, the Fourier transform of the fracture concen-
tration at the outflow end of a streamline ( a aE T  ) is:

      , ; expf a T i aaC T I C k T     (12)

The Fourier transform of the stream concentration is then obtained from Equation 7:

        
0
expo i a a aC C k T P T dT  


   (13)

Correspondingly, the stream   C Co oE S   and precipitation   C Ci iE S   concentration power spectra are relat-
ed by:

        
2

0
expC C C C a a ao o i iS S k T P T dT  


  (14)

Equation 14 generalizes a relationship presented by Duffy and Gelhar (1985) and Gelhar (1993) for pure 
advection (  E k i  ), by incorporating matrix diffusion and reformulating the integral in terms of  aE P T .  
In general, any appropriate advective travel time distribution (obtained from an analytical or numerical 
groundwater flow model) can be employed in Equation 14.

For the exponential advective travel time distribution, the stream concentration power spectrum is obtained 
by using Equations 11 and 8 in Equation 14 (Section S.2):

S S
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 (16)

Equation 15 is written in terms of a dimensionless frequency ( aE T ) to highlight the dimensionless param-
eters that regulate the influence of matrix diffusion. The dimensionless parameter A is a measure of the 
strength of matrix diffusion. It may also be viewed as a ratio between the matrix storage accessible over a 
time scale on the order of aE T  (which scales with the retardation factor times the retarded diffusion thickness, 
that is, e aE RD T ) and the fracture storage (which scales with b). For illustration, with representative values 
of 100.05, 10m eE D    m2/s, 410E b   m, and 1E R  ; 2aE T   and 10 days will respectively yield A = 2.08 and 
4.65. The parameter B D T R

e a
/ /  represents the influence of matrix thickness. If B >> the accessible matrix 

diffusion thickness ( D T R
e a

/ ) over a time scale aE T , the behavior is practically identical to that obtained with 
an infinite rock matrix thickness (M, N E  1, Section S.2). For smaller values of B, matrix storage is limited, 
and matrix diffusion will not influence the power spectrum at lower frequencies. The mean total travel 
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time, given by T B b
a m
1 2  / , is much longer than the mean advective travel time. It is independent of the 

matrix diffusion parameters but controlled by the total storage ratio 2B b
m
 / . For an infinite matrix, the total 

travel time is theoretically unbounded.

It is clear from Equation 15 that for strong matrix diffusion (large A; M, N close to 1), the third term in the 
denominator of Equation 15 dominates and the catchment spectral filter S S

CoCo CiCi
/  will exhibit 1/frequen-

cy behavior. More generally, Equation 15 can produce stream concentration power spectra with a range of 
apparent decay exponents >−2 (fractal scaling). When 0E A   (negligible matrix diffusion) or 0E B   (neg-

ligible matrix thickness), Equation 15 reduces to S S T
CoCo CiCi a

       





/ 1

2 2 , which corresponds to 

pure advection with an exponential advective travel time distribution across streamlines (Gelhar, 1993). It is 
also interesting to note that for a sorbing solute, Equation 15 predicts that in the frequency range where the 
third term in the denominator is dominant, the stream concentration power spectrum is 1/R times that for 
a passive solute. This is consistent with the behavior suggested by Feng et al. (2004).

Figure 2a shows the behavior of the spectral ratio or filter S S
CoCo CiCi

/  for different values of A (0, 2, 5, and 
10) and B DeT

a
/  (5, 10, and E ) for A = 5, assuming no sorption  1E R  . For A = 5 and 10, 1/ behavior 

is evident across several orders of magnitude in frequency. For A = 2, behavior close to 1/ is evident at 
dimensionless frequencies between 0.1 and 10 (two orders of magnitude), with 1 1 5

/
.  behavior at higher 

dimensionless frequencies. In general, the spectral ratio in Figure 2a exhibits curvature and deviates from 
true linear behavior in a log-log plot. However, the curvature is relatively mild at dimensionless frequencies 
>0.1. The scatter inherent in spectral estimates from noisy real-world data may obscure such curvature and 
accommodate acceptable straight-line fits. A finite matrix width does not influence the spectral ratio at high 
frequencies corresponding to time scales smaller than the diffusion time scale across the width. At lower 
frequencies, spectral ratios for a finite matrix width deviate from that for an infinite matrix and become 
steeper. This steepening could in fact produce a closer tendency to straight-line behavior when estimating 
spectra from noisy data (see 1/ line plotted in Figure 2a).

Strictly speaking, fractal stream chemistry requires 1/ behavior (more generally spectral slopes > −2) per-
sisting out to very high frequencies (Kirchner et al., 2000). While the matrix diffusion model will produce 
1

2
/  behavior for T A

a
 10 2, this dimensionless frequency value is quite large even for modest values 

of A. In a wide range of relevant frequencies, apparent spectral slopes produced by matrix diffusion will 
be closer to −1 or −1.5, and thus consistent with fractal scaling. Matrix diffusion produces frequency-de-
pendent attenuation of the power spectrum generated purely by the advective travel time distribution, with 
maximum attenuation at T

a
 1. There is little attenuation at extremely low (T A

a
  1 10

2
/ ) frequencies 

because the spectral content of the input forcing at time scales much longer than the characteristic response 
time scales of any system is preserved. The lack of attenuation at high (T A

a
 10

2) frequencies is because 
matrix diffusion does not influence very early time advective breakthrough (explained in Section 4). At 
intermediate-high frequencies, the frequency domain signature of fracture-matrix coupling (E i , second 
term in  E k  ) generates fractal scaling. The resulting attenuated spectral ratio resembles that of a gamma 
(α = 0.5) total travel time distribution whose mean total travel time is much longer than the mean advective 
travel time T

a
. At lower frequencies, the spectral ratio influenced by matrix diffusion does not flatten out as 

much as that generated by the advective travel time distribution (due to the slow delayed release of solutes), 
sustaining fractal scaling with an apparent spectral slope between −1 and −0.5. From Equation 14, a gen-
eralization of Equation 15 for a gamma advective travel time distribution is presented in the SI (Section S.2, 
Equation S25). With a shape parameter α, the 1 2

/   scaling in the spectral ratio of a gamma advective travel 
time distribution is modified to 1/ by matrix diffusion for large A.

4. Time Domain Analysis: Solute Travel Time Distribution (TTD)
The solute TTD  E h t  is the solution for  oE C t  corresponding to a unit impulse (Dirac delta) input, that is, 
   iE C t t , and can be obtained from Equation 7. The solution for  , ;f a TaE C T t I  at the outflow end of any 

streamline due to a unit impulse at the inflow, can be expressed in the form    ;a a aE H t T g T t T  , where 
 aE H t T  is the Heaviside function. The function g depends on both the advective travel time aE T  and the time 
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Figure 2.
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since advective breakthrough, aE t T . It has a simple analytical form for an infinite matrix (Małoszewski & 
Zuber, 1985, Section S.4):

 
   

2 2

3/2; expa a
a a

aa

aT a Tg T t T
t Tt T

 
   
   

 (17)

where a RD b
m e

  / . However,  ;a aE g T t T  can only be expressed as an implicit integral or obtained by 
numerical Laplace transform inversion for finite matrix widths (Małoszewski & Zuber, 1985, Section S.3). 
In either case,  E h t  can be expressed from Equation 7 as:

           
0 0

; ;
t

a a a a a a a a ah t H t T g T t T P T dT g T t T P T dT


      (18)

At any time t after input, the solute TTD (Equation 18) only includes contributions from streamlines for 
which the advective travel time to the stream aE T t . It accounts for the combined influence of variable 
advective travel times across streamlines (with any appropriate form for  aE P T ) and matrix diffusion. Cvet-
kovic et al. (1999), Simic and Destouni (1999), Cvetkovic and Haggerty (2002), Lindgren et al. (2004), and 
Cvetkovic et al.  (2012) employed similar approaches for advective travel time distributions generated by 
heterogeneity.

Figures 2b and 2c show the dimensionless solute TTD h t T T
a a

/   obtained by numerical integration of Equa-
tion 18 with the exponential  aE P T  from Equation 8 in log-log and linear plots. The TTD for A = 0 (no ma-
trix diffusion) is the exponential distribution. Analytical approximations to Equation 18 for infinite matrix 
widths are presented in Section S.4 (for both exponential and gamma  aE P T ). With an exponential  aE P T ,  
power-law behavior (   1/2E h t t ), similar to the gamma distribution with α = 0.5, arises at intermediate 
times (Equation S35, Section S.4):

1/2
21 1, 4

2
a

a a a

t t th T A
AAT T T


   
     
   
   

 (19)

This behavior, evident in Figures 2b and 2c, is also valid for finite matrix widths, which only influence 
late time behavior. However, unlike a gamma distribution, the TTD does not blow up as 0E t  , instead 
approaching  E P t , the advective travel time distribution. For any value of A, at very early times  , 0aE t T  , 
it can be shown that    ;a a aE g T t T t T    and thus    E h t P t  (also see Figures S1 and S2). Further-
more, the explicit dependence of E g on aE T  in addition to aE t T  is such that streamlines with shorter aE T  are less 
affected by matrix diffusion than streamlines with longer aE T . Thus, the overall TTD influenced by matrix dif-
fusion exhibits a much steeper decline (steepness increasing with A) at intermediate times, compared to an 
exponential TTD. Solute retained by matrix diffusion is released slowly at later times, producing longer and 
heavier tails. For an infinite matrix, the late-time tail behaves as   3/2E h t t  (Section S.4) and the mean total 
travel time is unbounded. For finite matrix widths (shown for A = 5), the solute TTD coincides with that 
for an infinite matrix at earlier times, then levels off due to back-diffusion of solute from the matrix, and 
subsequently decreases exponentially as solute is flushed out. The mean total travel time (T B b

a m
1 2  / ) 

is much longer than the mean advective travel time aE T .

Overall, the solute TTD impacted by matrix diffusion thus exhibits both the steep decline (short-term re-
sponsiveness) similar to a gamma distribution with α = 0.5, and long-term memory, which are highlighted 
by Kirchner et al. (2000) as key elements of fractal scaling. In Section S.4, I also consider gamma advec-
tive travel time distributions with shape parameter 0 <  α < 2, showing that Equation 19 generalizes to 
  1 /2E h t t   , allowing for a wider range of intermediate-time power-law behaviors.

Figure 2. Influence of the matrix diffusion parameter A. (a) Dimensionless power spectral ratio S S
CoCo CiCi

/  Equation 15 plotted against dimensionless 

angular frequency ( aE T ). Black lines indicate various power-law slopes. For A = 0 (solid black), S S T
CoCo CiCi a

/     








1

2
2

. (b and c) Dimensionless solute 

travel time distribution (TTD) h t T T
a a

/   from Equation 18 with an exponential  aE P T , plotted against dimensionless time (t T
a

/ ) on logarithmic (b) and linear 

(c) axes. Solid lines correspond to different values of A and an infinite matrix. The dashed and dash-dotted magenta lines in (b) correspond to B D T
e a

/  = 5 and 
10 respectively, for A = 5. Black dotted lines show intermediate (∼1 1 2

/
/

t ) and late-time (∼1 3 2
/

/
t ) power-law regimes. A dimensionless gamma TTD with shape 

parameter α = 0.5 is shown in (c) for comparison.
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5. Application to the Lower Hafren Catchment
Neal et  al.  (1997) describe the hydrogeology of the Hafren catchment. 
Storm runoff is dominated by groundwater and interflow, and groundwa-
ter levels are highly responsive to rainfall. The shallow groundwater sys-
tem is hosted in highly fractured shale, mudstone, and greywacke rocks, 
overlain by relatively thin soils (∼0.7 m). Typical water table depths are 
around 5 m. Although groundwater is estimated to occur down to 30 m 
below the stream, rapid circulation and significant groundwater storage 
only occurs down to 9 m depth, suggesting a saturated thickness (E H) of 
∼4 m for the active portion of the groundwater system. The net recharge 
rate (E r) is about 2 m/year.

Kirchner et  al.  (2000) and Kirchner and Neal  (2013) presented stream 
and precipitation power spectra for chloride at Lower Hafren. Both 
analyses suggest that the power spectral ratio S S

CoCo CiCi
    /  exhib-

its close to 1/ω behavior, well represented by a gamma solute TTD, for 
which S f S f f

CoCo CiCi
     / /( )1 1 4

2 2 2   , where f   /2  is the fre-
quency. Kirchner et al. (2000) fitted values of 0.48, 1.9yrE    , which 
corresponds to a mean total travel time of 0.91yrE   . The power spectra 
of Kirchner and Neal  (2013) are better fit with 0.5, 0.4yrE     (Fig-
ure  3a), which corresponds to a shorter mean travel time of 0.2  years. 
Kirchner and Neal (2013) reported that the precipitation chloride spec-
trum exhibits 1 0 41

/
.

f  behavior. From a precipitation chloride spectrum 
based on a subset of the full data set (Harman, 2015), I obtained a best fit 
of 0 38 0 34

. /
.

f  (mg/L)2-yr. With the exponent fixed at 0.41, I obtained a best 
fit 0 42 0 41

. /
.

f  (mg/L)2-yr. These two alternative forms for the precipitation 
chloride spectra do not produce major differences in calculated stream 
concentration spectra (compare Figure 3a with Figure S4).

The power spectral ratio (15, 16) depends on two key variables: the mean 
advective travel time aE T  and the matrix diffusion parameter A. Because 
A contains products and ratios of other physical parameters, these pa-
rameters cannot be fit uniquely. My intention here is not to produce a 
“best-fit” parameter set, but rather to present reasonable parameter val-
ues that are consistent with the site description and match the spectral 
estimates of Kirchner and Neal (2013). I assume an exponential advective 
travel time distribution (Equation 8). Estimation of aE T  requires an esti-
mate of the effective fracture porosity aE   for the hydrologically responsive 
flow system at the scale of the watershed, which is a highly uncertain 
parameter. Assuming a value of aE   = 0.005 (e.g., a regular arrangement 
of cubic matrix blocks with 0.3 m sides, interspersed with b = 0.5 mm 
wide connected fractures), the mean advective travel time is estimated 
as T H r

a a
  /   =  0.01  years (3.65  days). The accessible matrix width B 

in Equations 15 and 16 could be smaller than the block size, first, Bark-
er's (1985) analysis suggests an effective width equal to 1/6 of the block size for cubical blocks, and second, 
significant matrix diffusion is often restricted to the weathered periphery of matrix blocks. Assumed values 
for the matrix porosity ( mE   = 0.15), and effective diffusivity for chloride ( eE D  = 1.5 × 10−10 m2/s) fall within the 
ranges reported for shale and mudstone (Barone et al., 1992; Manger, 1963), resulting in A = 2.06.

Figure  3a compares  C Co oE S f  calculated using S f f
CiCi

   0 42
0 41

. /
.  and the above parameter values in 

Equation 15, the gamma model with 0.5, 0.4yrE    , and the spectral estimates from Figure S7 in Kirch-
ner and Neal (2013). Both the matrix diffusion and the fitted gamma models produce reasonable matches 
to the estimated stream concentration spectra and the slope of −1.4 estimated by Kirchner and Neal (2013). 
Because of the relatively short aE T , even a small accessible matrix thickness (B m B DeT

a
 0 05 7 27. , / . )  

produces only a minor deviation of the power spectral ratio from that for an infinite matrix. All models 

Figure 3. (a) Chloride power spectrum and (b) solute travel time 
distribution (TTD) for Lower Hafren, based on the matrix diffusion model 
( 10 20.15, 1.5 10 m /sm eE D    , 45 10 mE b   , 0.01yraE T  ) and matrix 
widths 0.05E B   m, 0.1E  m, and E ; and a gamma model ( 0.5, 0.4yrE    )  
fit to the power spectral estimates from Kirchner and Neal (2013). A line 
with the fitted power law slope of −1.4 (Kirchner & Neal, 2013) is also 
shown in (a). Dotted and dash-dotted lines in (b) respectively show the 
intermediate (∼1 1 2

/
/

t ) and late-time (∼1 3 2
/

/
t ) power-law regimes.
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approach the precipitation concentration spectrum at frequencies <0.1  yr−1. At the high frequency end 
(>20 yr−1), the matrix diffusion models underestimate the spectral power slightly. This is likely because 
the analysis assumes steady flow and thus misses the influence of hydrologic transients. Alternative sets 
of parameter values that produce reasonable matches with the estimated stream concentration spectra are 
presented in Figure S3. As noted above, compensatory variations among the physical parameters that occur 
in A preclude unique parameter estimates.

The solute TTDs corresponding to the power spectral models presented in Figure 3a are shown in Figure 3b. 
For finite matrix widths (B = 0.05, 0.1 m), the solute TTDs obtained with the matrix diffusion model are 
comparable to the fitted gamma distribution, which exhibits 1/2E t  power law behavior at intermediate times. 
The tails of the solute TTDs are longer for larger B, and for very large B, there is a tendency toward 3/2E t  be-
havior at late time. The mean solute travel times corresponding to the finite width matrix diffusion models 
are 0.31 years (B = 0.05 m) and 0.61 years (B = 0.1 m).

6. Discussion
Although the role of matrix diffusion in influencing environmental solute ages has been recognized previ-
ously, it is seldom explicitly considered in studies and interpretations of catchment solute TTDs. This paper 
quantitatively demonstrates that matrix diffusion in fractured bedrock can generate fractal stream chem-
istry, power-law behavior and long-term memory in solute TTDs. The general relationships Equation 14 
and Equation 18 provide a framework for quantifying catchment-scale stream concentration power spectra 
and solute TTDs, by superposing the influence of matrix diffusion on any general advective travel time 
distribution derived from analytical or numerical subsurface flow models (e.g., Ameli et al., 2016; Carroll 
et al., 2020; Kollet & Maxwell, 2008). The matrix diffusion mechanism is physically consistent with the large 
residual or passive storage component inferred while calibrating compartmental models of catchment hy-
drochemical response (e.g., Birkel et al., 2011; Benettin et al., 2015). The analysis presented here can also be 
extended to incorporate alternative representations of matrix diffusion and retention (e.g., multirate models 
or memory functions) and heterogeneity within the fracture flow system (Berkowitz et al., 2006; Cvetkovic 
& Haggerty, 2002; Shapiro, 2001; Zhou et al., 2007).

In a data-rich setting like the catchments at Plynlimon, availability of high frequency long-term datasets 
on precipitation and stream water chemistry and hydrogeologic characterization provides constraints on 
parameters in the matrix diffusion model. In general, application of the matrix diffusion model will require 
estimates of the matrix diffusion parameter A RD T b

m e a
  / , in which the porous medium and fracture 

properties appear as a product. It is therefore challenging to estimate these parameters uniquely. This non-
uniqueness issue is unavoidable if only input-output water chemistry data are available. The influence of 
matrix diffusion would be confirmed if spectra for nonreactive solutes with different molecular diffusivities 
exhibit distinct differences (A would be expected to vary in the ratio of the square root of their molecular 
diffusivities). Rock matrix porosity mE   and effective diffusivity eE D  can be estimated from experimental meas-
urements on rock samples. There is typically less heterogeneity in these properties, compared to permeabil-
ity. It is more appropriate to estimate the average fracture aperture b from fitted TTDs, since it varies sub-
stantially and represents a catchment-scale parameter. Similar comments apply to constraining the mean 
advective travel time T

a
, which requires estimates of recharge, saturated thickness and active porosity in the 

Dupuit model. More generally, where the Dupuit model is not valid, the geometry of streamlines will be 
influenced by subsurface stratigraphy (including declining permeability with depth and distinct geological 
units), and better represented using numerical groundwater flow models. The influence of matrix diffusion 
can also be incorporated into numerical models of transient unsaturated-saturated flow and transport (e.g., 
Carroll et al., 2020; Kollet & Maxwell, 2008) for more comprehensive evaluation of solute TTDs. Interpreta-
tion of solute TTDs, especially in mountain catchments with fractured bedrock, should consider the poten-
tial influence of matrix diffusion in addition to other factors.

Data Availability Statement
No datasets were generated in this study.
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