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Abstract

We prove that two general Enriques surfaces defined over an algebraically closed field
of characteristic different from 2 are isomorphic if their Kuznetsov components are
equivalent. We apply the same techniques to give a new simple proof of a conjecture
by Ingalls and Kuznetsov relating the derived categories of the blow-up of general
Artin—Mumford quartic double solids and of the associated Enriques surfaces.
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1 Introduction

An Enriques surface is a smooth projective surface X with 2-torsion dualizing sheaf
wyx and such that H 1(X ,Ox) = 0. In this paper, we assume that all varieties are
defined over an algebraically closed field K of characteristic different from 2. Under
this additional assumption, the above definition is equivalent to asking that X is the
quotient of a K3 surface by a fixed-point-free involution.

Because of their construction, Enriques surfaces inherit certain properties from their
K3 cousins. Of interest to us here is an important Hodge theoretic feature that they
share: their period maps are injective. In other words, in characteristic zero, Hodge-
theoretic Torelli theorems hold for both Enriques and K3 surfaces. More precisely, the
formulation of the Torelli theorem for Enriques surfaces involves the weight-2 Hodge
structure on the second integral cohomology group of the K3 surfaces which are their
double covers.

On the other hand, the bounded derived category of coherent sheaves DP (X)) has very
different behaviour depending on whether X is a K3 surface or an Enriques surface.
Indeed, in the first case, there might be numerous (albeit finitely many) non-isomorphic
K3 surfaces with derived category equivalent to DP(X) (see [36,39] in characteristic
zero and [34] in positive characteristic). Moreover, D°(X) is indecomposable, i.e. it
does not contain proper non-trivial admissible subcategories.

When X is an Enriques surface, however, DP(X) uniquely determines X up to
isomorphism (see [8] in characteristic zero and [21] for the fields K of odd positive
characteristic). In analogy to the Hodge theoretic result, we refer to this fact as the
Derived Torelli Theorem for Enriques surfaces: two Enriques surfaces X; and X»,
defined over a field K as above, are isomorphic if and only if DP(X;) = DP(X>).
Moreover, we will recall in Sect. 3.1 that for an Enriques surface X there is a collection
L :={Ly,..., Lo} of 10 exceptional bundles. If X is generic, then it was shown in
[40] that there is a collection £ satisfying the additional property that there exists an
isomorphism of graded vector spaces

RHom(L;, L;) = K%, (%)
In other words, the set £ is a completely orthogonal exceptional collection. We then
define the Kuznetsov component of X to be the admissible subcategory Ku (X, £) :=
(L)L, giving the (non-trivial) semiorthogonal decomposition
D*(X) = (Ku(X, L), £).
This decomposition and the properties of Kiu(X, £) have been extensively studied
in [24,29]. The aim of this paper is to investigate further how much of the geometry

of X is encoded by Ku (X, £). The following result should be thought of as a refined
version of the Derived Torelli Theorem for Enriques surfaces mentioned above.
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A refined derived Torelli theorem for Enriques surfaces

Theorem A Let X| and X, be Enriques surfaces. Assume that, fori = 1, 2, there exist
semiorthogonal decompositions

DP(X;) = (Ku(X;, L), Li)

and an exact equivalence F: Ku(X1, L) = Ku(Xy, L2) of Fourier—Mukai type,
where L; is a collection of 10 bundles satisfying (x). Then X1 = X».

The terminology used above will be clarified in Sect. 2 while the proof of this result
will be carried out in Sect. 5.2. More precisely, the result is an easy consequence of
the more general Theorem 5.1.

The essence of the proof is in showing that the equivalence F can be extended to an
equivalence DP(X{) = D®(X,) by means of Propositions 2.4 and 2.5 and by adding
step by step the 10 exceptional objects. Then the Derived Torelli Theorem implies our
result. The way we obtain the latter global equivalence is by studying and classifying
the so-called 3-spherical objects in Kuu(X;, £;). This is done in Sect. 4. Note that
the reason why we have to assume that the characteristic of K is not 2 is because
the Derived Torelli Theorem for Enriques surfaces is only known to hold under this
additional assumption, but the rest of our argument applies even in characteristic 2 for
classical Enriques surfaces (see [16]).

It is clear that Theorem A has a trivial converse that, for the sake of completeness,
we include in Theorem 5.2.

We develop the techniques we use to prove Theorem A in sufficient generality
to give a short proof of a very interesting conjecture by Ingalls and Kuznetsov (see
Conjecture 3.8). This will be explained in detail in Sect. 3.2, so we content ourselves
here with a short summary.

Recall that a general Artin—-Mumford quartic double solid is a double cover of the
three dimensional projective space, ramified over a quartic symmetroid surface with
10 nodes, which is the degeneracy locus of a web of quadrics in P3. The 10 singular
points correspond to quadrics of corank 2 in the family.

Consider the blow-up Y’ of a general Artin-Mumford double solid at its 10 singu-
lar points. It is a classical observation that ¥’ has an associated Enriques surface X
obtained as a quotient of the (desingularization) of the quartic symmetroid. It turns
out that D?(X) has a semiorthogonal decomposition D°(X) = (Ku(X, L), L) where
L ={L1,..., L)} satisfies (x).

The main result of [24] shows that there is a semiorthogonal decomposition
DP(Y") = (Ay/, By:), where By' consists of 12 exceptional objects. The compo-
nent Ay has a completely orthogonal exceptional collection G = {G1, ..., G1p}, and
defining Ku(Y’, G) := (G)* gives the semiorthogonal decomposition

Ay = (Ku(Y', G), G).
Most importantly, there is an exact equivalence Ku(Y’, G) = Ku(X, £) of Fourier—

Mukai type (see Theorem 3.7).
The following is our second main result.
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Theorem B Ler Y’ be the blow-up of a general Artin—-Mumford double solid at its
10 singular points. Let X be its associated Enriques surface. Then there is an exact
equivalence

DY(X) = Ay

which is of Fourier—Mukai type.

This statement, which is precisely the content of Conjecture 3.8 of Ingalls and
Kuznetsov [24], was previously proved by Hosono and Takagi [22] using an intricate
argument depending on Homological Projective Duality. Our more precise Theorem
5.4 in Sect. 5.2 implies Theorem B and, given its elementary proof, it provides a
simpler proof of this conjecture.

This paper originates from the circle of ideas that stems out of [5]. Indeed, if
Y1 and Y, are cubic threefolds (i.e. smooth degree 3 hypersurfaces in the complex
projective space P*) and H; is the class of a hyperplane section in Pic(Y;), then we
have semiorthogonal decompositions

DP(Y;) = (Ku(Y;), Oy,, Oy, (H;)).

The main result in [5] shows that Y1 = Y5 if and only if there is an exact equivalence
Ku(Y1) = Ku(Y>). To make the analogy with the paper [5] tighter, we should also
mention cubic threefolds and Artin-Mumfold double solids are both Fano threefolds of
index 2 and their derived categories admit very similar semiorthogonal decompositions
(see Corollary 3.5 in [24]), even though Artin-Mumfold double solids are singular.

If we increase the dimension of the hypersurfaces by one and we consider two cubic
fourfolds W and W», then we get semiorthogonal decompositions similar to the one
above but with additional exceptional objects Oy, (2H;). In this case, the admissible
subcategories Kit(W;) behave like the derived category of a K3 surface. Thus, in view
of the discussion above, we cannot expect that Wi = W, if and only if there is an
exact equivalence Ku(W1) = Ku(W>). And in fact, Huybrechts and Rennemo proved
in [23] that such a statement needs an adjustment: the equivalence Ku(Wp) = Ku(W>)
has to satisfy some additional and natural compatibility. Contrary to the approach we
use in the present paper, the proofs of categorical Torelli for cubic threefolds in [5],
and for cubic fourfolds in [4, Appendix] and [33], all make use of Bridgeland stability
conditions.

In conclusion, it is worth pointing out that arbitrary semiorthogonal decompositions
are in general non-canonical. However, Theorem A is further evidence of the fact that,
when these decompositions originate from geometry, they usually encode important
pieces of information.

2 Semiorthogonal decompositions and an extension result
In this section, we briefly recall some basic facts about semiorthogonal decomposi-

tions. We also prove an extension result for Fourier—Mukai functors of independent
interest and which will be important in this paper.

@ Springer



A refined derived Torelli theorem for Enriques surfaces

2.1 Generalities

In complete generality, let 7 be a triangulated category. A semiorthogonal decompo-
sition

T =(D1,...,Dn)
is a sequence of full triangulated subcategories Dy, ..., Dy, of 7 such that:

(a) Hom(F,G) =0, forall F € D;, G € Dj andi > j;
(b) Forany F € T, there is a sequence of morphisms

O0=F,—>Fy_1—>---—>F—> Fy=F,

such that 77; (F) := Cone(F; — F;_1) € D; for1 <i < m.

The subcategories D; are called the components of the decomposition.

The condition (a) implies that the factors ; (F) in (b) are uniquely determined
and functorial. Hence, for alli = 1, ..., m, one can define the i-th projection functor
wi: T — Djforall FeT.

Denote by «; : D; < 7 the inclusion. We say that D; is admissible if «; has left
adjoint o] and right adjoint oe}.

Let 77 = (D},D%) and 7, = (D%,D%) be two triangulated categories with
semiorthogonal decompositions by admissible subcategories o;; : Dij < 7;. Fol-
lowing [31, Section 2.2], we can define the gluing functor'

! Y j
W .—ozljoozzj.D2 — Dy.

Moreover, if B € D%, then we denote by np: a1 ¥V1(B) — a21(B) the counit of
adjunction.
The following result will be useful later.

Lemma2.1 Fori = 1,2, let T, = (D’i, Dé) be a triangulated category with a
semiorthogonal decomposition by admissible subcategories. Let F: T — T, be an
exact functor with left and right adjoints and such that

(a) F(D]l) c D% and the induced functors F := Flp : D} — D? are equivalences
J
forj=1,2.
(b) The morphism F(np) induces an isomorphism

Hom (F(er11 (A)), Flar1 W (B)) — 2" Hom (F(e11(A)), F(a21 (B)),

forall A € D} and all B € D).

Then F is an equivalence.

! Note that our gluing functor differs from the one in [31] by the shift by 1. This is harmless and it makes
the rest of the discussion easier.
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To help the reader to keep track of the numerous indices in our notation for categories
and functors, we include here a diagram which summarizes them:

DfLTl <£D%

| b

2 212 022 2
D} —*=T, < Dj.

Proof The objects of 1 (Dll) and a1 (D%) form a spanning class 2 for 77 in the sense
of [7]. Hence, by [7, Theorem 2.3], to prove that F is fully faithful it is enough to show
that, for any A, B € , the natural morphism

Hom(A, B) — Hom(F(A), F(B))

induced by F is bijective.

Since F; is an equivalence by (a) and the categories DI, D; are semiorthogonal
in 7; while D%, D% are semiorthogonal in 75, it follows from the definition of a
semiorthogonal decomposition that we need only verify that the morphism

Hom(a11(A), az1(B)) — Hom(a12F1(A), axnF2(B))

induced by F is bijective, for all A € D} and B € D%. To this extent, consider the
commutative diagram

Hom(a11(A), 11 W1(B)) —> Hom(F(a11(A)), F(e11V1(B))) == Hom(a12F1 (A), a12F1 (V1 (B)))

l'mo— \L \LFMB)O

Hom(a11(A), a21(B)) — Hom(F(a11(A)), F(a21(B))) Hom(a12F(A), anF(B)),

where the top and bottom rows are obtained by applying F.

Note that the vertical arrows are isomorphisms by adjunction and (b). Since F;
is an equivalence by (a), the top row is an isomorphism. Thus the bottom one is an
isomorphism as well.

The essential surjectivity can be deduced now, as the image of a fully faithful functor
is triangulated, and the category 7, is generated by D% and D%. O

In the general situation where we have a semiorthogonal decomposition
T = (D1, Dy),
then 71 and 7 coincide with the left adjoint ] and and the right adjoint a’z of the

embeddings «; : D; < T . The left mutation functor through D; is denoted Lp, and
is defined by the canonical functorial distinguished triangle

ai B> id — Lp,, Q2.1
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A refined derived Torelli theorem for Enriques surfaces

where 71; denotes the counit of the adjunction.

Fromnow on, letus assume that all categories are linear over a field K. Anobject E €
T is exceptional if Hom(E, E[p]) = 0, for all integers p # 0, and Hom(E, E) = K.
A setof objects {E1, ..., E;,}in 7T is an exceptional collection if E; is an exceptional
object, for all i, and Hom(E;, E[p]) = O, for all p and all i > j. An exceptional
collection{Ey, ..., E;y}isorthogonal it Hom(E;, E;[p]) = 0,foralli, j =1,...,m
with i # j and for all integers p.

If 7 admits a semiorthogonal decomposition 7 = (Dj, D;) with D, =
(E1, ..., Epn), where {E1, ..., E;} is an orthogonal exceptional collection, then the
left mutation through D, takes a particularly convenient form:

Lp,(F) = Cone | ev: @ Hom(E;, F[p]) ® Ei[-p]l — F | . 2.2)

I<i<m,p

2.2 Extending Fourier-Mukai functors
Now let X and Y be smooth projective varieties over K with admissible embeddings
o«: A<>D°X) and B:B < DP(Y).

Thus A (resp. B) is endowed with a Serre functor S 4 (resp. Sg) by [24, Lemma
2.8]. Recall that an exact functor F: A — B is of Fourier—Mukai type if there exists
£ € D(X x Y) such that the composition 8 o F is isomorphic to the restriction

Pglg: A— DO(Y).
Here the exact functor ®¢ is given by

De(—) 1= p2(€ ® pi(—)),

where p; is the ith natural projection. By construction, a morphism & — &; in
DP(X x Y) induces a morphism

g, (F) — g, (F),
for all F € D°(X). Moreover, a distinguished triangle
El—> & — &
in D°(X x Y) induces a distinguished triangle
Og, (F) = Pg, (F) —> Pgy(F),

forall F € D°(X).
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Remark 2.2 In the above setup, for a given Fourier—Mukai functor ®¢: D*(X) —
DP(Y) suppose that the induced exact functor F := ®g|4: A — DP(Y) factors
through B. By [27, Theorem 7.1], the projection functor onto the admissible subcat-
egory A is of Fourier—-Mukai type. Thus, if we precompose ®¢ with the projection
onto A, we get a Fourier—Mukai functor ®¢: Db (X)) —> Db(Y) such that ®g/| 4 = F
and g/ (A) = 0.

Remark 2.3 1t should be noted that, when F is an equivalence, [30, Conjecture 3.7]
would imply that F is of Fourier—-Mukai type. Unfortunately, this conjecture is not
known to hold true in the generality needed in this paper. This expectation should be
compared with the fact that any full functor F: DP(X) — DP(Y) is of Fourier-Mukai
type (see [11,37]). As for this, it should be noted that in the seminal paper [37] such
a result was proved under the assumption that F is fully faithful but in [9,11] the
assumptions were weakened. In particular, assuming full is enough.

We can now explain how to extend a Fourier—Mukai functor to an exceptional
object.

Proposition 2.4 Let a: A — D®(X) be an admissible embedding and let E € ~A
with counit of adjunction 1 : (xot!(E) — E . Let &g : Db(X) — Db(Y) be a Fourier—
Mukai functor with the property that ® ¢ (LA) = 0. For any object F in D®(Y) and any
morphism ¢ : ®g(aa' (E)) — F, there is an object & € DP(X x Y) and a morphism
Y : & — & such that

(1) the induced morphism ®g, | 4 ﬂ) D¢l 4 is an isomorphism;

(2) q)g(p |J‘<.A,E) = O,' and
(3) there is an isomorphism CDEW (E) = F such that the diagram

g, ()

D¢, (@a'(E)) D¢, (E) (2.3)

J/:/xF(aa’(E)) l%

Pe(a'(E) —— = F

is commutative.
Proof Consider the triangle (2.1) applied to the object E:
ad'(E) > E — Ly(E). (2.4)
Set E' := Sx ((L4(E))Y). If we take the derived dual of (2.4) and we apply Sx we
get the triangle

Sx(EY) — Sx ((owc!(E))v) AN E'[1]. 2.5)
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A refined derived Torelli theorem for Enriques surfaces

Next, we observe that, for any K € D’(X x ¥), M € D°(X) and N € D°(Y), we
get isomorphisms

Hom(®g (M), N) = Hom(p2.(K ® pyM), N)
= Hom(K ® piM, p5N) (2.6)
=~ Hom(K, Sx (M) X N)

which are functorial in K, M, and N. Thus, we get a natural morphism

Hom (®g (ea (E)), F) = Hom (£, Sx (e (E)") B F) 724" Hom (€, E'RF1]),
2.7
where the latter map is induced by the postcomposition by y X idr for y as in (2.5).
Such a morphism of vector spaces takes ¢ as in the assumptions of the proposition
to a morphism ¢’ : £ — E' W F[1]. We set Yr : £, — £ to be the cocone of ¢’ as in
the distinguished triangle

g, V5 & % ERFI. (2.8)

Clearly, ¥ induces a natural transformation g, — ®¢ which we denote with the
same symbol.

Note that +(A, E) € LA. Then, an easy computation using (2.6) shows that
L4(E) € At and hence ®pp(A) = 0 and, similarly, that L4(E) € (A, E) =
(*(A, E))* and hence ® gy (- (A, E)) = 0. Therefore

Pprr(A) = Pprrt(A E) =0 dprp(E) = F. (2.9)

Since, by assumption, ®¢ (£A) = 0, the first two isomorphisms imply (1) and (2) in
the statement.

To complete the proof of (3) and deduce the commutative diagram (2.3), we apply
the Fourier—-Mukai functors whose kernels are the objects in (2.8) to the triangle in
(2.4). We obtain the commutative diagram

Pg, (LAE)[~1]) —————— P¢, (aa'(E)) b D¢, (E)
\LwF(LA(E)[—l]) lw(w!(E» l
Dg(LAE)[-1]) ———— Pg(@a'(E)) ————0
\LW(LA(E)[—H) l l
Qg (LAE)[-1]) 0 F[1]

(2.10)
with rows and columns which are distinguished triangles. The zero in the bottom row
of the diagrams comes from the fact that ® /g plaa'(E)) Z0 by (2.9). The zero on
the third column depends on the fact that E € -4 and, by assumption, ®g(+.A4) = 0.
In conclusion, the morphisms € and WF(aa!(E )) are both isomorphisms.
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Now we can recast its top row and left column in the following commutative diagram

| e, ()
®g, (LAE)[~1]) —— D, (aa'(E)) o, (E)
J/wwa’(fs))
/oe—l
®g, (LAE)[~1]) —— g(aa'(E)) — > &gy (LA(E)[—1])

(2.11)
where we write ¢’ as a shorthand for the natural transformation ¢’ (L 4 (E)[—1]) coming
from (2.11). Observe that the middle vertical map is an isomorphism by (2.11), since
aa'(E) € A. Therefore, there is an isomorphism

e, (E) » Pprpn(LaAE)[-1]) = F (2.12)

making all squares in (2.11) commutative. The right square is precisely (2.3) as
the bottom morphism identifies with ¢ under the maps (2.7) and the isomorphism

S (LAE)[-1]) = Pprprn(E[-1]) E F. |
Now we consider the case when ®¢| 4 is an equivalence onto its image.

Proposition 2.5 Leto: A — DP(X) be an admissible embedding and let E € A with
counit of adjunctionn : ao'(E) = E. Let De : DP(X) — DY(Y) be a Fourier—Mukai
functor with the property that ®g(LA) = 0. Suppose further that

(a) gl 4 is an equivalence onto an admissible subcategory B with embedding 8 :
B < DP(Y), and
(b) there is an exceptional object F € 118 and an isomorphism p : ®g(aa'(E)) =

BB (F).

Then the Fourier—-Mukai functor ®g, restricts to an equivalence between (A, E) and
(B, F), where &, is the object given by Proposition 2.4 for ¢ = n' o p and n’
BB'(F) — F is the counit of adjunction.

Proof We apply Lemma 2.1. The assumption (a) of the lemma obviously holds. It is
enough to check that for any object A in A,

\ g, ()
Hom(®g, (A), P¢, (@' (E))) Hom(®g, (A), P¢, (E))

(2.13)

is an isomorphism. For this we consider the commutative diagram (2.3) in Proposition
2.4 (3), which takes the form

| g, (1)
¢, (@’ (E)) ——— D¢, (E)

lw(aa’w)) =
p=n'op

D¢ (aet' (E)) F
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where the vertical arrows are isomorphisms for the same arguments as in the proof of
Proposition 2.4 (see, in particular, the middle column in (2.10) for the isomorphism
on the left and (2.12) for the one on the right).

Now the cone C of the morphism at the top is isomorphic to the cone of ¢, which
in turn is isomorphic to Lg(F) € B*. It follows that C € B+, so C is right orthogonal
to &g (A) € B for any A € A. Therefore, if we apply RHom(CDgW(A), —) to the
distinguished triangle

\ Dg, (M)
O, (2a'(E))) —— > dg, (E) — C ,

we get the isomorphism (2.13). O

2.3 Aside remark: a dg category approach

Even though our approach in this paper is purely triangulated, this section ends with a
short discussion concerning an alternative viewpoint via dg categories (the non-expert
reader can have a look at [10] for a quick introduction to this subject). More precisely,
this section should be considered as an indication of how an expert in dg categories
might read the results in Sect. 2.2. On the other hand, the reader who is not interested
in this higher categorical viewpoint can move to Sect. 3.

Let us first rediscuss semiorthogonal decompositions in terms of dg categories.
Assume that 7 = (D, D») is a small K-linear algebraic triangulated category, i.e.
there is a small K-linear pre-triangulated dg category B and an exact equivalence 7 =
H(B), where H°(13) denotes the homotopy category of 3. Suppose thato; : D; < T
is the embedding of an admissible subcategory, fori = 1, 2. Then there exist two pre-
triangulated dg subcategories G, : B; < B such that H(B;) = D; and H*(G;) = «;.
As it is explained for example in [31, Section 4], there exist a dg bimodule ¢ (i.e. a
B;®B,-dg module), a pre-triangulated dg category Bj x , B, whose definition depends
on B1, B and ¢, and an isomorphism B = B; x, B, in Ho(dgCat). Here Ho(dgCat)
denotes the homotopy category of the category dgCat of (small) dg categories which
are linear over the field K. We will refer to By x, By as the gluing of By and B,
along ¢. By [31, Corollary 4.5], the dg bimodule ¢ yields, at the triangulated level,
the gluing functor in Sect. 2.1.

Assume that C; and C, are two pre-triangulated dg categories which are obtained
by this gluing procedure. In explicit form, C; = C{ X g Cé.

Example 2.6 For our applications and in accordance with the discussion and notations
in the previous section, we should think of the case (A, E) = H(C)) and (B, F) =
H%(Cy). The dg subcategories C;. are taken so that A = HO(CII) B = HO(Clz),
(E) = H(C)) and (F) = HO(C3).

LetJ;: C 11 — Cl2 and Jo: C21 — C% be two isomorphisms in Ho(dgCat). We would
like to conclude that J; and J, glue to an isomorphism J: C; — C; in Ho(dgCat),
under some reasonable assumptions. To this extent, consider the (Cll)o ® Czl—module
¢ obtained from ¢, by composing with J; and J,.
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The following is a well-known result, which should be thought of as the dg analogue
of Propositions 2.4 and 2.5.

Proposition 2.7 Under the assumptions above, suppose that there is a quasi-
isomorphism between ¢\ and ¢|. Then there is an isomorphism J: Ci — Cy in
Ho(dgCat) whose restriction to C} isJj, for j =1,2.

Proof The argument is an easy adaptation of the proof of Propositions 4.11 and 4.14
in [31]. O

Roughly, the existence of a quasi-isomorphism between ¢; and ¢| means that
@1 and ¢, are compatible under the action of J; and J,. In general, it is clear that
this assumption is not easy to verify. On the other hand, if we look at the triangulated
counterpart of this hypothesis in the simplified situation in Example 2.6, it corresponds
to the assumptions on ®¢ in Proposition 2.5. Hence, the reader should interpret the
results in the previous section as a way to give a conceptually simple triangulated
version of Proposition 2.7. In this case, the conditions under which one glue exact
equivalences will be easy to check, see Sect. 5.1 for an application of this technique.

It should be noted that the dg approach to semiorthogonal decompositions discussed
in this section was put in an even more general categorical setting in [38] (see, in
particular, [38, Section 9.3]).

3 The geometric setting

In this section, we discuss the structure of the derived categories of Enriques surfaces
and of Artin—-Mumford quartic double solids. The emphasis is on the analogies which
are at the core of this paper.

3.1 The case of Enriques surfaces

We work over an algebraically closed field K of characteristic different from 2. We
refer to [17] for a quick but exhaustive introduction to the geometry of Enriques
surfaces. For the moment, we recall several useful facts.

First note that the Serre functor Sy (—) := (—) ® wx[2] satisfies the property
S%( = [4], but Sy # [2] because the dualizing sheaf wy := Ox(Kx) is non-trivial
but 2-torsion. Note that NS(X)r = Z/27Z and it is generated by the class of Ky. We
set Num(X) := NS(X)/NS(X)or. If F is a line bundle on X and f is its class in
Num(X), then Riemann—Roch takes the simple form

1o
x(F)=Zf"+1 (3.D

for an Enriques surface.
Secondly, recall that an Enriques surface X is called unnodal if it contains no smooth
rational curves. It is called nodal otherwise. Denote by M the 10-dimensional moduli
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space of Enriques surfaces. Nodal Enriques surfaces form an irreducible divisor in M
(see, for example, [17, Section 5]).

Now let us make precise a result that was mentioned in the introduction. Indeed, as
an application of the stronger statements [8, Proposition 6.1] and [21, Theorem 1.1],
we get the following result.

Theorem 3.1 (Bridgeland—Maciocia, Honigs—Lieblich-Tirabassi) Let X and Y be
smooth projective surfaces defined over an algebraically closed field K of charac-

teristic different from 2. If X is an Enriques surface and there is an exact equivalence
DP(X) Z DP(Y), then X = Y.

To the best of our knowledge, a similar statement is not known when K has char-
acteristic 2, due to the additional complexity of the double cover structure. We should
also observe that generalizations of Theorem 3.1 are available in the twisted setting
(see [1] when the characteristic is 0 and [21] in positive characteristic).

As we mentioned in the introduction, the category DP(X) admits a very nice
semiorthogonal decomposition. To describe it, we must begin with the relationship
between Fano polarizations and canonical isotropic 10-sequences.

Definition 3.2 Let X be an Enriques surface.
(a) A Fano polarization on X is a nef divisor A such that

(i) A% =10;
(i) A.F > 3 for every nef divisor F with F 2=0.

(b) An isotropic 10-sequence in Num(X) is a set of 10 vectors F = {f1, ..., fio} C
Num(X) such that f;.f; = 1 — §;;, where §;; is Kronecker delta.

If A is a Fano polarization, then by [18, Theorem 2.6] it determines an isotropic 10-
sequence { f1, ..., f1o} which is unique up to permutation and such that the numerical
class & of A satisfies

1
§=3(fit -+ fio) (3.2

Even though this is not going to be used later, let us note that the statement above
can be made more precise. Indeed, as explained in Sections 2.2 and 2.3 of [18], the
isotropic 10-sequence { f1, . . ., fi0} yielding (3.2) is canonical, i.e. it contains all the
nef representatives of its orbit under the action of the Weyl group generated by the
reflections in the classes of the (—2)-curves. Moreover, by [18, Theorem 2.7], the
converse is also true: given a canonical isotropic 10-sequence {fi, ..., fio}, there is
a Fano polarization A on X whose numerical class § satisfies (3.2).

Remark 3.3 (i) By [19, Proposition 1], every Enriques surface possesses a Fano polar-
ization A. On the other hand, by [18, Proposition 2.7], a Fano polarization A is ample
if and only if the corresponding isotropic 10-sequence {fi, ..., fio} is made of nef
classes.

(ii) If X is unnodal, an easy application of [14, Theorem 3.2] shows that X has an
ample Fano polarization A. A generic nodal Enriques surface has the same property
by [15, Theorem 3.2.2] and [18, Corollary 4.4]. Thus Enriques surfaces with an ample
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Fano polarization form an open subset in M whose complement has codimension at
least 2.

Example 3.4 Let X be an unnodal Enriques surface defined over C with an ample Fano
polarization A. Let { f1, ..., fi0} be the isotropic 10-sequence associated to A, and let
Fl.jE € NS(X) be the two preimages of f; under the quotient map NS(X) — Num(X).
Thenfori =1,...,10, F;" = F;” + K and the linear series

+ _ —
2Ff | = [2F]]

has precisely two double fibers, supported on F l.+ and F;”. Asobserved in [40, Example
2.6], {(’)X(FiJr)}]S,-S]o is an orthogonal exceptional collection. Each of the objects
OX(FI.JF) can be individually changed to Ox (F;") just by tensoring by the canonical
bundle and the new collection is still an orthogonal exceptional collection by Serre
duality. Thus we have at least 2! = 1024 possible choices of orthogonal exceptional
collections of line bundles in DP(X). Of course, in every case the numerical class of
the sum of all ten divisors remains unchanged, equal to 35. By [3, Theorem 3.11], there
are exactly 213 - 3. 17 - 31 numerical classes of Fano polarizations up to the action of
the Weyl group. So each of these give rise to 1024 different orthogonal exceptional
collections as above.

We now want to discuss how to use isotropic 10-sequences to construct interesting
collections of exceptional objects and generalize the picture in Example 3.4. The
following is probably well-known to experts but we state and prove it here for the sake
of completeness.

Proposition 3.5 Let X be an Enriques surface over Kwith a Fano polarization A. Then
Db(X) contains an admissible subcategory L = (L1, ..., L), where Ly, ..., L. are
completely orthogonal admissible subcategories and

Li=(L},....L})

where

(1) L;. is aline bundle such thatL; = L’i ®OX(R’i +-- -+R§.71) where R: | .. ., R;fl
is a chain of (—2)-curves of Aj_1 type;

@ {Li,..., Lili} is an exceptional collection; and

3) ni+---+n. = 10.

Moreover, if A is ample, then ¢ = 10, ny = --- = ny9 = 1 and L is generated by an
orthogonal exceptional collection {L1, ..., Lo} consisting of line bundles.

Proof By Remark 3.3 (i), A determines a unique (up to reordering) isotropic 10-
sequence F C Num(X). By [16, Lemma 3.3.1] (see also [18, Section 2] for an
extensive discussion), such an isotropic 10-sequence can be written as a disjoint union

F=Fu---ukg, 3.3)
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where, fori =1,...,c,
Fi={fl..... fi}

and letting F;’i be the two lifts of f j’ , we have

(a) FJ’:’i = Fli’i + R4+ Rj._l, where R}, ..., Rj._l is a chain of (—=2)-curves
of Aj_; type; _

(b) f{ isnefforalli = 1,...,c, and the classes fj’., for j = 1,...,n;, are all the
elements of F which are conjugate to fli under the Weyl group action and ordered
in such a way that f;+1 — f} = R;; and

(c) ni+---+n.=10.

Let LZ. = OX(F]#). Since H%(X,Ox) = 0 for s = 1,2, all line bundles are
exceptional objects. Moreover, by construction, RHom(Li., L};) =0, foralli =
1,...,candall j > k € {1,...,n;}and so {Li, e, Lﬁ,i}is an exceptional collection
fori = 1,...,c (see [20, Theorem B]). By (a) and (c), conditions (1), (2), and
(3) in the statement are satisfied by the L’/.’s. Thus it remains to show that, if we
set £; = (L’i, ...,Lfll,), then the block £; is completely orthogonal to £; when
i#je{l,...,ch .

To this extent, it is enough to show that RHom(Lj , L',‘n) =0, forall j #k €
{I,....c},I=1,...,njandm =1, ..., n. But

Hom(L/, LX) = HO(X, LK, @ (L))Y) =0

because f,]fl - flj is not effective by (b). Indeed, if f,]; - flj is effective, then such a

class is a (—2)-curve. Thus fn’; and f/ would be in the same orbit under the action of
the Weyl group, contradicting the fact that j # k.

Likewise, Hom(Lfn, Llj ® Ox(Kx)) = 0 because flj - f,f; is not effective. There-
fore, it follows from Serre duality that

Ext*(L], LX)¥ = Hom(LY, L] ® Ox(Kx)) = 0.

By Riemann-Roch (3.1), wehave x (L], LX) = x (LK &(L))") = L(fE— /)2 +1 =
0, so we get orthogonality as claimed.

If A is ample then, by Remark 3.3 (i) all the vectors in F are nef. By [16, Lemma
33.1],wegetc = 10in (3.3)and n; = 1 fori = 1,..., 10. It follows from the
argument above that £ = {Ly, ..., L1} is an orthogonal exceptional collection.”
This concludes the proof. O

Remark 3.6 (i) Assume that X has an ample Fano polarization so that the admissible
subcategory L in Proposition 3.5 is generated by a collection of 10 orthogonal excep-
tional objects Ly, ..., L1g. It is clear that the choice of the L;’s is not unique. For

2 Note that the case when X has an ample polarization was also treated in [35, Lemma 3.7].
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example, we can replace any L; by L; ® Ox(Kx). Thus, as in Example 3.4, we have
at least 2'9 = 1024 choices of 10 orthogonal exceptional objects in D°(X).

(i1) In [25], the author provides examples of Enriques surfaces for which no Fano
polarization A has a c (as in Proposition 3.5) equal to 10. By Remark 3.3 (i), it follows
that X does not have an ample Fano polarization and Proposition 3.5 does not provide
an orthogonal exceptional collection of line bundles of length 10.

In conclusion, let £ be the admissible subcategory in Proposition 3.5, and define
Ku(X, L) =L = (L, ..., LT
Then DP(X) admits a semiorthogonal decomposition:
DP(X) = (Ku(X, L), £). (3.4)

Moreover, if X has an ample Fano polarization (e.g. if X is an unnodal or a generic
nodal Enriques surface), then again by Proposition 3.5 the admissible subcategory
L ={Ly,..., Ly} satisfies (x) in the Introduction.

For an extensive discussion about some remarkable properties of Ku(X, £) for
nodal Enriques surfaces, one can have a look at [24].

3.2 Artin—-Mumford quartic double solids

Let us now recall the construction of Artin—-Mumford quartic double solids from [24].
Consider two vector spaces V and W of dimension 4 and the divisor

Qs S P(V) xP(W)

of bidegree (2,1) on P(V) x P(W) corresponding to a global section s €
H° (Opv)xpw)(2, 1)). Clearly, O, can be thought of as a family of quadrics in
P(V) parameterized by P(W). The degeneration locus of this family of quadrics is a
(singular) quartic surface Dy C P(W) called a quartic symmetroid. Consider further
the (singular) double covering Yy — P(W) ramified over D;. For generic s, D has
10 singular points, corresponding to the quadrics of corank 2, and we will refer to
Y; as a general Artin—-Mumford quartic double solid. It was explained in [15] that for
generic s, the Y are precisely the Artin—-Mumford conic bundles constructed in [2] as
examples of unirational, but not rational, conic bundles. From now on, we will assume
that s is general so that the Artin—-Mumford quartic double solid is general as well and,
for simplicity, we will remove the section s from the notation.

Now Y is singular at precisely 10 points above the 10 singular points of D. Let Y’
be the blow-up of Y at these 10 singular points. By [24, Lemma 3.6], the variety Y’ is
the double covering of the blow-up of P(W) at the 10 singular points of D ramified
over the proper preimage (and not just the proper transform) D’ of D. So we have the
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following diagram:

Y — oy (3.5)

2 Jo

Bl pis(P(W)) —— P(W).

It follows that D’ is the blow-up of D at its 10 singular points. As s is assumed to be
generic, D’ is a smooth K3 surface with a fixed-point free involution 7. Indeed, the
surface D’ can be seen as the zero locus of the section s viewed as a global section of
WY ® Opvyxpvy(1, 1) and 7 is just the restriction of the transposition of factors in
P(V) x P(V). The quotient X := D’/{z) is then an Enriques surface which will be
called the Enriques surface associated to Y. These Enriques surfaces are nodal (see
[24, Remark 4.1] and the reference therein).

We now set some more notation. Let e; (resp. Q;) be the class of the i-th exceptional
divisor of Bljg pis(P(W)) — P(W) (resp. Y’ — Y). Each Q; is isomorphic to P! x P!
because it is the exceptional divisor of the blow-up along an ordinary double point. Let
G; = Og,(—1,0). By [24, Corollary 3.8 and Lemma 3.12], we have a semiorthogonal
decomposition

DP(Y') = (Ku(Y"), {Gi}}2,, Oy (—=h), (Oy/(—e)} 2, Oyr), (3.6)

where  is the pull-back of the hyperplane class in P(W). The subcategory Ku(Y”)
is defined to be the right orthogonal to all the other objects while both {G; }}21 and
{(’)y/(—el-)}}g | are orthogonal exceptional collections. Set

Ay == (Ku(¥"), {G}}2)) (3.7)

and denote by S 4, its Serre functor.

Note that the action on DP(Y’) of the Galois involution on Y’ given by the
double cover Y’ — Bljgpus(P(W)) in (3.5) preserves the exceptional collec-
tion {Oy/(—h), {(’)y/(—ei)}}gl, Oy} in (3.6) because they are pull-backs from
Blio pts (P(W)). Thus the Galois involution preserves the residual category Ay. We
will explain later how S 4, is related to such an involution.

In [24], the authors exhibit an embedding of X inside the Grassmannian Gr(2, V),
providing it with a Reye polarization (see [18, Section 2.4] for the definition), which
is, in particular, an ample Fano polarization. By Proposition 3.5, the Enriques surface
X associated to Y has an explicit semiorthogonal decomposition

DP(X) = (Ku(X, L), L),

where £ = {L1, ..., Lo} is an orthogonal exceptional collection of line bundles. The
following statement collects the main results in [24] concerning Ay: and Ku(Y’).

Theorem 3.7 [24, Corollary 3.8, Theorem 4.3] In the above setting:

(1) There is an isomorphism of exact functors S 4, = I[2] where | is the non-trivial
involution of Ay’ (i.e. 1ol = id 4, ) induced by the Galois involution of Y.
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(2) There is an equivalence Ku(Y') = Ku(X, L) of Fourier—Mukai type.

This result strongly suggests that .4y+ should be very much related to the derived
category of X. In other words, it is very suggestive to guess that the correspondence
between general Artin—-Mumford quartic double solids and associated Enriques sur-
faces might have a nice categorical counterpart. This was made precise by the following
[24, Conjecture 4.2]:

Conjecture 3.8 (Ingalls—Kuznetsov) If Y’ is the blow-up of a general Artin-Mumford
quartic double solid Y at its 10 singular points, then there is an equivalence Ay =
DY(X), where X is the Enriques surface associated to Y.

This conjecture was proved by Hosono and Takagi in [22]. As we explained in
the introduction, one of the aims of this paper is to give a shorter, simpler proof (see
Theorem B and Theorem 5.4 in Sect. 5.2 for a more precise statement).

4 Spherical objects in Enriques categories

The proof of Theorem A is based on the classification of spherical objects in Ku (X, £),
for X an Enriques surface. We will explain this in a slightly more general setting which
is suited to deal with the case of Artin—-Mumford quartic double solids as well.

Recall that if A is a K-linear triangulated category with Serre functor S 4 and d is
a positive integer, we have the following.

Definition 4.1 An object E € A is d-spherical if

K if p=0,d,
Hom(E, E[pp = |~ " P~
0 otherwise

and S5 (E) = E[d].

In particular, the graded Ext-algebra of a d-spherical object is isomorphic to the
cohomology of a sphere of dimension d.

We are interested in studying this kind of objects in categories which resemble the
derived category of an Enriques surface X.

Definition 4.2 A K-linear triangulated category A is an m-Enriques category, for
m > 0 a rational number in %Z, if it possesses a Serre functor S 4 with the property

that S% = [2m].

Remark 4.3 (i) The expert reader has certainly noticed that m-Enriques categories are
in particular fractional Calabi—Yau categories of dimension m (see [28]).
(ii) If A is an m-Enriques category with m € Z, then we can write S = I[m], where
| is an autoequivalence of A such that I* = id. Indeed, we can just take | := S[—m].
(iii) In the special case when A is an m-Enriques category, m > 1 is an integer and
S = [m], then, by Serre duality, A cannot contain exceptional objects.
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Example 4.4 There are several examples of m-Enriques categories available in the
literature. We discuss some of them here. The first two are particularly relevant given
the scope of this paper.

(1) If X is an Enriques surface, then we already observed that the dualizing sheaf
wx = Ox(Ky) is 2-torsion. Thus the Serre functor Sy (—) = (—) ® wx[2] satisfies
Si = [4] and DP(X) is a 2-Enriques category.

(ii) By the discussion in Sect. 3.2, if Y’ is the blow-up of a general Artin-Mumford
quartic double solid at its 10 singular points, then the category Ay defined in (3.7) is
a 2-Enriques category by Theorem 3.7(1).

(iii) Let X be a Gushel-Mukai variety of dimension #. It is a smooth intersection
of the cone in P10 over the Grassmannian Gr(2,5) — P with P*** < P19 and a
quadric hypersurface 9 € P"**. As explained in [32], DP(X) always contains an
admissible subcategory Ay which, by [32, Proposition 2.6], is a 2-Enriques category.
If n is even, then S 4, = [2] and thus we are in the situation described in Remark 4.3
(iii). If n is odd, then S 4, is not a shift.

(iii) Other examples of m-Enriques categories with m 7 2 can be found in [28].

We now work in the following setting:

Setup 4.5 A is an m-Enriques category with a semiorthogonal decomposition
A=(K,Li,...,Lyn),

where K is admissible, N > 1 is an integer, and £ := {L1, ..., Ly} is an orthogonal
exceptional collection.

Note that since A contains at least one exceptional object, by Remark 4.3 (iii), the
Serre functor of .4 cannot be isomorphic to a shift.

Example 4.6 By Sects. 3.1 and 3.2 and Example 4.4 (i) and (ii), A = DP(X), where
X is either an Enriques surface, and A = Ay, where Y’ is the blow-up of an Artin—
Momford quartic double solid, are both as in Setup 4.5. Indeed, in both cases, the
2-Enriques categories in Example 4.4 (i) and (ii) contain 10 orthogonal exceptional
objects.

Suppose that we are in Setup 4.5, and let us simplify notation by setting S := S 4 and
letting « : IC — A be the natural inclusion with left adjoint «*. By Serre duality, we
have Hom(L;, S(L;)) = K, so we can define S; — L; to be the cocone of the unique
non-zero (up to scaling) morphism L; — S(L;). These objects fit in the distinguished
triangle

S; — L; — S(L;). 4.1

All the objects in (4.1) are clearly contained in .A. We claim that more is true
Lemmad4.7 Fori =1,..., N, we have S; € K.

Proof We must show that RHom(L;, S;) = Ofor j = 1,...,N.If j # i, then
RHom(L, L;) = RHom(L, S(L;)) = 0, by assumption (b) in Setup 4.5 and Serre
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duality. Thus RHom(Lj, S;) = 0 for j # i. On the other hand, the morphism L; —
S(L;) in (4.1) yields an isomorphism RHom(L;, L;) = RHom(L;, S(L;)). Thus
RHom(L;, §;) = 0 as well. O

It then follows that in-fact we have
Si = k*(S(Li)[—1], 4.2)

fori=1,...,N.
The following result summarizes the important properties of the S;.

Lemma 4.8 In Setup 4.5, the object S; is 2m —1)-spherical in IC, foralli =1, ..., N.
Moreover, RHom(S;, ;) = 0 and thus S; % S;lk] foralli # j € {1,..., N} and
foranyk € Z.

Proof We begin by proving the first condition for being (2m — 1)-spherical as well as
the second statement of the lemma.
Since S is an autoequivalence, we get isomorphisms of graded vector spaces

RHom(S(L;), S(L;)) = RHom(L;, L;) = K%,
fori, j=1,..., N. We also get the isomorphisms of graded vector spaces

RHom(S(L;), L;) = RHom(S*(L;), S(L})) (4.3)
= RHom(L;[2m], S(L,))
= RHom(L, L;[2m])"
= Kii[—2m),

where the first, second, and third isomorphisms follow from S being an autoequiv-

~

alence, the fact that 52 ~ [2m], and Serre duality, respectively. These two remarks
show that if we apply RHom(S(L;), —) to (4.1), we get an isomorphism of graded
vector spaces

RHom(S(L;), §j) = K% [—1] @ K% [—2m]. 4.4)

Hence, if we apply RHom(—, §;) to (4.1) and we use that §; € K C Lil by Lemma
4.7, we get an isomorphism of graded vector spaces

RHom(S;, S;) = K% @ K% [1 — 2m],

as required.
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It remains to show that Si-(S;) = S;[2m — 1], fori = 1, ..., N. This easily follows
from the following chain of isomorphisms

Sk (51 = Liry,ny) (STHS)
=1,(57'(S)
= Ly, (Cone(S™H(LH[=1] = Li[—1]))
=1,(57 (L)
= Si[—2m + 1].
Observe that the first isomorphism follows from [28, Lemma 2.6], while for the second
one we used (2.2), the fact that S is an equivalence, and (4.4). The third one and the

last one use (4.1) (to which we apply S~!) and (4.3). The fourth isomorphism follows
fromL;,(L;) =0. O

Remark 4.9 (i) If we combine Serre duality and Lemma 4.7, then we get that
Hom(S;, S(L)[p — 11) = Hom(L;, S;[1 — p])" =0,

for all p. So by applying RHom(S;, —) to (4.1), we see that there is a unique (up
to scalars) morphism f;: S; — L;. For the same reason, the composition with f;
provides an isomorphism Hom(E, S;) = Hom(E, L;), forall E € K.

(ii) Let us reconsider the embedding x: X — A realizing X as an admissible
subcategory. An easy exercise with Serre duality shows that its right adjoint «' is
described by the formula

P =S;<o;c*oS;ll,

where Sic and S 4 are the Serre functors of IC and A, respectively. Thus, as an appli-
cation of (4.2) and Lemma 4.8, we get the isomorphisms

K (L) = S ok oS3 (Li) = Sic o k™ 0 S A(Li)[—2m] = Sc(S)[—2m + 1] = 8,

fori = 1,..., N. For the second isomorphism we used that Sil = [2m].

The lemma shows how to construct (2m — 1)-spherical objects in K. We want to
prove now that the list is complete.

Proposition 4.10 Let A be an m-Enriques category with a semiorthogonal decompo-
sition

A=<IC,L11"'5LN)!

where IC is admissible, N > 1 is an integer, and L := {L1, ..., Ly} is an orthogonal
exceptional collection. Let F be a (2m — 1)-spherical object in K. If m > % then
F = Si[k] for somei =1, ..., N and some integer k.
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Proof By [28, Lemma 2.6] and since S2(F) = F[2m] (as in Definition 4.2), the iso-
morphism S (F) = F[2m — 1] is equivalent to the existence of an isomorphism
F = Lig,,....1x)(S(F))[—1]. Define the object P := €,_;_y L;. It is polyexcep-
tional in the sense that it is a direct sum of objects forming an orthogonal exceptional
collection and so its endomorphism algebra is such that

RHom(P, P) = KV,
. It follows from (2.2) that F sits in a distinguished triangle
F — P ®@gv RHom(P, S(F)) — S(F). 4.5)

If we apply RHom(F', —) to (4.5), then, by Serre duality and taking into account
that F' is (2m — 1)-spherical, we get a distinguished triangle of graded K-vector spaces

K& K[—-2m 4 1] — RHom(F, P) @k~ RHom(F, P)Y - K& K[2m —1]. (4.6)

Hence, since 2m > 3, the graded vector space V := RHom(F, P) Qgn
RHom(F, P)VY is 4-dimensional. Moreover, since RHom (P, P) consists only of com-
ponentwise morphisms, V decomposes as

N
v=PvieV
i=l1

where V; := RHom(F, L;). For dimension reasons, we can only have two possibili-
ties: either there are four non-trivial 1-dimensional V; or there is only one non-trivial
2-dimensional V;. But in the former case, as V; ® Viv is concentrated in degree O for
each i, we get a contradiction since V has 2-dimensional degree 0 piece by (4.6). Thus
there must be only one non-trivial V; which then must satisfy

V; = K[k — 2m + 1] & K[k],

for some k € Z. Thus, up to reordering the objects in £ and shifting, we can assume
i = 1 and k = 0. To simplify the notation, for the rest of the proof, we set L := L.
Hence

K ifp=0,2m—1,
Hom(F, Lipp = | = " P = " @.7)
0 otherwise.

Then (4.5) gets the following simplified form, after a rotation:
L[-1]1® L[2m — 2] — S(F)[—1] — F. 4.8)
We will show that F = Sy, as required.
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To that end, let C be the cone of the unique (up to scalars) morphism L[2m —2] —
S(F)[—1] so that we get the following distinguished triangle

L[2m — 2] — S(F)[-1] — C. 4.9

Note that it can put in the following commutative diagram of distinguished triangles

L2m —2] —— S(F)[-1] — C

l I |

L[-11® L[2m — 2] — S(F)[-1] — F

l l |

L[—-1] > 0 s L

in view of the octahedron axiom. Thus C, F and L sit in a distinguished triangle

crFr L (4.10)

By applying RHom(L, —) to (4.10) (resp. RHom(—, L) to (4.9)) and using the fact
that F € K and Serre duality, we see that

K ifj =1

Hom(L, C[j]) = and Hom(C, L[j]) = {K if j =2m —1

0 otherwise.

4.11)
This and (4.7) show that the morphism F — L in (4.10) is not trivial. Otherwise
C = F @ L[—1], contradicting the second part of (4.11).

We claim that to show F = S, it suffices to show that C = S(L)[—1]. Indeed,
observe first that F 22 S(L)[—1] & L because Hom(F, F) = K as F isa 2m —
1)-spherical object. Thus, in view of (4.10), C = S(L)[—1] would imply that F
is isomorphic to the cone of the (unique up to scalars) non-trivial map L[—1] —
S(L)[—1], which is S| by (4.1).

To show C = S(L)[—1], we first prove that it is exceptional and then produce non-
trivial morphisms f: S(L)[—1] — C and g: C — S(L)[—1] whose composition
g o f is non-zero. As S(L)[—1] is exceptional, up to scaling f or g, we may assume
that g o f = id. But then S(L)[—1] must be a direct summand of C, contradicting the
fact that C is exceptional. Hence C = S(L)[—1].

By Serre duality and (4.11) we conclude that

0 otherwise

Hom(S(L)[—1], €)Y = Hom(C, S*(L)[—1]) = Hom(C, L[2m — 1]) = K,
Hom(C, S(L)[—11)¥ = Hom(L, C[1]) = K.

Thus we let f € Hom(S(L)[—1], C) and g € Hom(C, S(L)[—1]) be the unique (up
to scalars) non-zero morphisms.
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Before we prove that g o f # 0, we prove that C is exceptional, recording a useful
result along the way. We claim indeed that

Hom(C, S(F)[j]) =0, forall j € Z, and Hom(C, C[j]) = Kt j _9
0 otherwise.
To that end, applying RHom(F, —) to (4.10), we get Hom(F, C[j]) = O for
every j < 2m — 2. By Serre duality, we get Hom(C, S(F)[j]) = 0 for every
j =2—-2m > —1 (note that m > %). At this point, we apply RHom(—, S(F))
to (4.9) and get Hom(C, S(F)[j]) = O for every j < —2. Therefore, we conclude that
Hom(C, S(F)[j]) = 0, for every j € Z. Finally, if we apply RHom(C, —) to (4.9),
we get C is exceptional.
It remains to show that g o f is non-zero. Let ko, € Hom(S(F)[—1], S(L)[—1]) =
K be the unique (up to scalars) non-trivial morphism, and similarly, let k3 be the
unique (up to scalars) non-trivial morphism in Hom(S(L)[—1], F) = K. We claim
that k3 o ky # 0. Indeed, applying RHom(S(—), F) to (4.8), we get an exact sequence

Hom(S2(F)[—1], F) — Hom(S(L)[—1], F) & Hom(S(L)[2m — 2], F)
— Hom(S(F)[—1], F) — Hom(S*(F)[~2], F).

Now fori = 0, 1, Hom(Sz(F)[—(i + 1], F) 2 Hom(F2m — (i + 1], F) =0
because F is (2m — 1)-spherical and S2 > [2m]. Moreover, as m > 3, it follows from
(4.7) that

Hom(S(L)[2m — 2], F) = Hom(F, SZ(L)[2m —2D)Y = Hom(F, L[4m —2])V = 0.
Thus precomposition with k> induces an isomorphism
Hom(S(L)[—1], F) = Hom(S(F)[—1], F). (4.12)

In particular, k3 # 0 has non-trivial image, i.e. k3 o kp # 0.

Applying RHom(—, C) to (4.9) and using (4.11), we see that there is a unique (up
to scalars) non-trivial morphism k4 € Hom(S(F)[—1], C) = K. The same argument
as in the previous paragraph, by applying RHom(—, S(L)[—1]) to (4.9), yields that
precomposition with k4 induces an isomorphism

Hom(C, S(L)[—1]) = Hom(S(F)[—1], S(L)[—1]). (4.13)

Now we claim that the composition of non-trivial morphisms

S(F)[—1] 2% ¢ =% s()[-1]1 5> F
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is a non-trivial morphism. Indeed, by (4.13) g o k4 is non-zero, so there exists 0 #
u € K such that O # g o k4 = wko. But then

kzogoky = ks oky #0.
In particular, it follows that the composition k3 o g is non-zero.
Applying RHom(C, —) to (4.10), we see that Hom(C, F) = K from a simple

computation using (4.11) and the fact that Hom(C, C) = K. Thus there exists 0 #
A € K such that

k3 o g = Aky.
Finally, applying RHom(S(L)[—1], —) to (4.10), we get the isomorphism
Hom(S(L)[—1], C) = Hom(S(L)[—1], F), (4.14)

defined by the postcomposition by the non-trivial map k. In particular, since f # 0,
we have k| o f # 0. But then

0#Akiof)= (ko f=ksogo f,
so g o f # 0, as required. O
Remark 4.11 It would be interesting to study whether Proposition 4.10 can be gener-
alized to situations where one has semiorthogonal decompositions as in Proposition

3.5 when the surface does not have an ample Fano polarization. Unfortunately, the
proof provided above does not apply in this setting.

5 Proof of the main results

The proof of the main results in this paper is explained in Sect. 5.2 and it follows from
a more general result which will be proved in the next section.

5.1 A general extension result
Let Z; and Z;, be smooth projective varieties over K admitting admissible subcate-

gories Az, which fall under Setup 4.5. That is, the Az, are m-Enriques and admit
semiorthogonal decompositions

Az, = (Ku(Z), Ly, ..., L},),

where Kiu(Z;) is admissible in Az;, N; > 11is an integer, and £; := (L%, ..., L’}\,,_} is

an orthogonal exceptional collection. We can then prove the following general result.
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Theorem 5.1 Under the assumptions above, let F: Ku(Zy) — Ku(Z;) be an equiv-
alence which is of Fourier—Mukai type. Then N1 = N, = N and there exists a
Fourier—Mukai functor <I>5~: D"(Z)) — DP(Z») such that

(D) Pslkuz) =F
(2) Pglay, : Azy — Az, is an equivalence; and
(3) Up to reordering and shifft, CDS(LZ-I) = Ll-z,for alli=1,...,N.
Proof We first observethat Ny = N, = N.Indeed, by Lemma4.8 and Proposition4.10
applied to Az, , Kuu(Z;) has to contain, up to shift, exactly N; pairwise non-isomorphic
(2m — 1)-spherical objects. Since such a number is invariant under equivalence and
Ku(Z1) = Ku(Z,), we must have Ny = N».

Now let £ € DP(Z; x Z,) be such that F = Delxu(z,)- We would like to apply
Proposition 2.5 with

A=Az, X=2,, Y=2,, B=Az,.
By Remark 2.2, we may choose & such that ®¢|ix;,z,, = 0 without changing

®¢elxu(z,)- Thus we can suppose without loss of generality that ®¢ is as in Proposition
2.5 and that assumption (a) of the proposition is verified. Consider, for any j = 1,2

andany i = 1,..., N, the (2m — 1)-spherical object Sij € Ku(Z;) defined by the
distinguished triangle

Slii — Ll’ — SAZ-(L;'/)'
J
By Proposition 4.10, we can assume F(Sl.l) = Sl.z, up to reordering and shift, for all
i=1,...,N.
Denote by
¢t Ku(Z) = D°(Z;) and «;: Ku(Z;) — Az
the relevant embeddings for i = 1,2. Note that by Remark 4.9 (ii), the object

KjK; (LJ ) S’ An analogous computation shows that g‘]g‘ (L)) = S/, so we get
an 1somorphlsm

F@gi(Lh) = Fs) = 87 = tg5(L)).
Thus assumption (b) of Proposition 2.5 is also satisfied if we set
X=27 Y=2Z, A=Ku(Z)) B=Ku(Zy) E=L}| F=1L3.
Therefore, by Proposition 2.5, we get a Fourier—Mukai type functor ® FE, such that
@4 izl Ku(Z0), Li) = (Ku(Z2), L], @y liuzy =F. @y, (L] = L, and

@ pg, ( HKu(Zy), L) = 0.
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The argument proceeds inductively. To simplify the notation slightly, let us set L; :=
L 11 and M; = Ll.2. For k > 2, we assume that we have a Fourier—-Mukai kernel E Ej_
such that

Qg K@, Ly iyt (KU(Z1), Ly o Li—1) = (Ku(Z2), My, ... My—1)

is an equivalence satisfying
Qe lkuz) = Pgg, ,lkuez) and Pg (L) = M;,

fori =1,...,k — 1, where we set & = £. To proceed to stage k, we apply again
Proposition 2.5 with

A= (Ku(Z1),L1,...,Li—1), B=(Ku(Zy),My,...,My_1), E=Ly, F=M;.

Here it is important to note that, since the exceptional objects Ly, ..., Ly (resp.
My, ..., My) are orthogonal, by Remark 4.9 (ii) the object aa'(Ly) = S,i (resp.
BB (My) = S,%) is actually contained in Ku(Z;) (resp. Ku(Z3)) and not just in A
(resp. B). Here o: A — DP(Z;) and B: B < DP(Z») are the admissible embed-
dings. Hence ® 3 satisfies the assumptions of Proposition 2.5 by induction, and we

can produce ¢ R Continuing in this way, by Proposition 2.5, we get an equivalence
d>5~N: Db(Azl) = Db(.AZZ) and we just set € := En. O

5.2 Proof of Theorems A and B

As for Theorem A, we can actually prove the following more general version of it.

Theorem 5.2 Let X| and X, be Enriques surfaces. Then the following are equivalent:

(1) There is a semiorthogonal decomposition Db(Xi) = (Ku(X;, £;), L;), satisfying
(x), fori = 1,2 and an exact equivalence

F:Ku(X1, L1) = Ku(Xa, L2)

of Fourier—-Mukai type;
(i) X1 = X, and either D°(X}) or DP(X>,) has a semiorthogonal decomposition
satisfying condition (x).

Proof The proof of the fact that (i) implies (ii) amounts to showing that, under the
assumptions in (i), X1 = X». For this, we just apply Theorem 5.1 with

Zi=Xi, Az =D"(X)), N =10, and Ku(Z;)=Ku(X;, Li), Li),
where £; = (L', ..., Lim} is as in (%), for i = 1,2 (see Example 4.6). Indeed, the

exact equivalence F: Ku(X{, £1) — Ku(X3, £,) of Fourier-Mukai type extends to
an equivalence DP(X1) = D°(X>). By Theorem 3.1, we deduce that X; = X».
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On the other hand, assume that there exists an isomorphism f: X; — X5 and
a semiorthogonal decomposition for DP(X») satisfying (x). Since f*: D(X,) —
DP(X) is an equivalence, we can take on DP(X)) the semiorthogonal decompo-
sition satisfying (x) which is the image of the given one on DP(X5) under f*.
Clearly, such a semiorthogonal decomposition on DP(X1) satisfies (). Finally, F :=
(f*)_1|Ku(X1,E1): Ku(Xy, L) = Ku(X,, L) is an exact equivalence of Fourier—
Mukai type by construction. The argument when D(X ) satisfies such a property is
identical using the (quasi-)inverse of f* instead of f*. O

Remark 5.3 One way to generalize Theorem 5.2 to non-generic Enriques surfaces
could be to consider semiorthogonal decompositions as in Proposition 3.5 when the
surface does not have an ample Fano polarization. Let us briefly sketch the idea which
was suggested to us by A. Perry. Indeed, one might try to deform X, X, and the
equivalence F: Ku(X1, £1) — Ku(X», £7) to the generic case. In the generic case,
we can then apply Theorem 5.2 and conclude that the deformed Enriques surfaces are
isomorphic. The separatedness of the moduli space of (polarized) Enriques surfaces
should then allow us to conclude that X| = X».

Unfortunately, while in the generic case first order deformations of X; coincide
with first order deformations of the subcategory Ku(X;, £), this seems not to be the
case for nodal non-generic Enriques surfaces. Thus one needs to add some natural
assumptions on F. Namely, we need the equivalence to preserve commutative first
order deformations of X1 and X». This will be investigated in future work.

The proof of Theorem B is along the same lines. Indeed, let Y’ be the blow-up at the
10 singular points of a general Artin-Mumford quartic double solid ¥ with associated
Enriques surface X. Consider the semiorthogonal decompositions of the 2-Enriques
categories (see Sect. 3.2 and Example 4.6)

Ay = (Ku(Y"), {G:}]2,) D*(X) = (Ku(X, L), Ly ..., L)

discussed in Sect. 3.2. Moreover, we know that there is an exact equivalence
Ku(X, £) = Ku(Y') of Fourier-Mukai type (see Theorem 3.7 (2)). We then apply
Theorem 5.1.

In particular, we get the following more precise version of Theorem B.

Theorem 5.4 Under our assumptions, there is an exact equivalence Db(X) = Ay
induced by a Fourier-Mukai functor ®¢ : D*(X) — DP(Y’) such that

D) Pelrux.c): KuX, L) — Ku(Y")) is the exact equivalence in Theorem 3.7 (2),
and
(2) Up to reordering and shifts, ®g(L;) = Gy, fori =1, ..., 10.

In a sense, this result proves a stronger version of Conjecture 3.8 since the
equivalence we construct is automatically compatible with the semiorthogonal decom-
positions of D?(X) and Ay
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