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Fig. 1. We use a combination of learning and program search to automatically synthesize e"icient, high-quality demosaicking algorithms. They significantly
advance the Pareto frontier of cost vs. quality over prior state-of-the-art methods from 10 s to 1000 s of operations per pixel (plot, right). They are at least
1dB higher quality at the same cost, or 5–10× faster at the same quality, relative to prior published algorithms. Visual quality is noticeably improved on
challenging image content (note the Bayer grid speckling and zippering artifacts in the LMMSE, GradientHalide, and VNG outputs). The only prior methods
which o"er higher quality than ours are large convolutional models 2–3 orders of magnitude more computationally expensive (Demosaicnet, Henz at al.).
In addition to traditional Bayer demosaicking shown here, we present Pareto-dominant algorithms for demosaicking from X-Trans sensors, and for joint
demosaicking superresolution and superresolution alone.

We present a method to automatically synthesize e!cient, high-quality
demosaicking algorithms, across a range of computational budgets, given
a loss function and training data. It performs a multi-objective, discrete-
continuous optimization which simultaneously solves for the program
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structure and parameters that best tradeo" computational cost and im-
age quality. We design the method to exploit domain-speci#c structure for
search e!ciency. We apply it to several tasks, including demosaicking both
Bayer and Fuji X-Trans color #lter patterns, as well as joint demosaicking
and super-resolution. In a few days on 8 GPUs, it produces a family of
algorithms that signi#cantly improves image quality relative to the prior
state-of-the-art across a range of computational budgets from 10 s to 1000 s
of operations per pixel (1 dB–3 dB higher quality at the same cost, or 8.5–
200× higher throughput at same or better quality). The resulting programs
combine features of both classical and deep learning-based demosaicking
algorithms into more e!cient hybrid combinations, which are bandwidth-
e!cient and vectorizable by construction. Finally, our method automati-
cally schedules and compiles all generated programs into optimized SIMD
code for modern processors.

CCS Concepts: • Software and its engineering → Genetic program-
ming; • Computing methodologies → Image processing; Machine
learning; Arti!cial intelligence;

Additional Key Words and Phrases: Demosaicking, super-resolution, do-
main speci#c programming, di"erentiable programming, neural architec-
ture search, data driven methods
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1 INTRODUCTION
Demosaicking is among the most ubiquitous and performance-
critical image processing tasks. As the critical #rst step, it can make
or break the results of the entire camera imaging pipeline: any de-
tail lost in demosaicking is gone forever, while any false detail in-
troduced becomes a complex spatial structure nearly impossible to
remove downstream. Balancing the two concerns is di!cult, and
the problem is ill-posed, so there is no correct answer. At the same
time, demosaicking must often be performed under extreme com-
putational budgets: a single stream of 4K 60 FPS video requires
processing 0.5 gigapixels per second. Even if we dedicate one of
the cores in a high-end mobile processor (CPU, GPU, or DSP) just
to the task of demosaicking, with perfect SIMD utilization, this still
leaves time for at most a few hundred operations per pixel.

Faced with this challenge, current demosaickers generally target
one of two extremes (Figure 1). Most widely-deployed implemen-
tations, from cell phones to Adobe Camera Raw, are limited to at
most 100s of operations per pixel of highly-optimized computation,
hand-crafted to invert a single speci#c color #lter array [Hirakawa
and Parks 2006; Zhang and Wu 2005]. With this, they deliver rea-
sonable image quality but struggle to avoid artifacts like Moiré
and false detail in challenging situations. Meanwhile, deep learn-
ing and optimization-based methods have emerged which dramat-
ically improve quality, and more easily generalize to di"erent color
#lter arrays and other problem variants, but at the cost of 2–3 or-
ders of magnitude more computation (hundreds of thousands to
millions of operations per pixel), putting them out of reach of most
practical use cases [Gharbi et al. 2016; Heide et al. 2014]. Depend-
ing on the chosen implementation, demosaicking can take any-
where from 25% to 85% of the Adobe Camera Raw ISP runtime.

We develop new families of e!cient, learned demosaicking al-
gorithms which signi#cantly improve the state-of-the-art image
quality achievable across the whole range from 10 s to 1000 s of
operations per pixel. In addition to the common Bayer pattern, we
also develop demosaicking algorithms for the Fuji X-Trans pattern,
and that jointly solve demosaicking and super-resolution from a
Bayer pattern.

Our programs are Pareto-dominant: they o"er both signi#cantly
higher quality (1 dB–3 dB) at the same computational cost as any
prior algorithm in the same range, and can deliver comparable
or better image quality at dramatically lower computational cost
(8.5–220× or more). They are designed for e!cient stream-
ing SIMD implementation, and automatically compile to highly-
optimized kernels for modern processors.

We generate this family of new algorithms automatically by de-
veloping a multi-objective, discrete-continuous search which si-
multaneously solves for the program structure and parameters to
#nd the best tradeo" between computational cost and image qual-
ity in a target range of computational budgets. The search is driven
by the same loss function and training data as recent demosaicking

and super-resolution neural networks [Anwar and Barnes 2020;
Chu et al. 2021b; Dong et al. 2014; Gharbi et al. 2016; Henz et al.
2018; Shi et al. 2016; Wang et al. 2018]. However, we found stan-
dard neural architecture search (NAS) techniques to be insu!-
cient for our task: these methods usually target highly regular and
extremely over-parameterized models. We focus on low-cost mod-
els, which requires a careful design that exploits domain-speci#c
structure. Our search produces state-of-the-art results in 4–5 days
on 8 GeForce Titan Xp GPUs—on the same order as the cost of
training a single neural network to convergence. The resulting pro-
grams combine features of both classical and deep learning-based
demosaicking and super-resolution algorithms into more e!cient
hybrid combinations, composing building blocks into algorithms
that are bandwidth-e!cient and highly vectorizable by construc-
tion. Finally, our method automatically schedules and compiles
any program produced by the search into highly-optimized SIMD
code.

We believe our approach lays the foundation for automatically
optimizing image processing pipelines for performance and qual-
ity, combining the advantages of both classical algorithms and
deep learning to produce better, more e!cient algorithms than
currently exist. For example, in addition to three variants of the
demosaicking problem, we show that our search method can
also produce Pareto-dominant programs for the task of the high-
performance super-resolution, alone.

In summary, we make the following contributions:
— New, state-of-the-art Bayer & X-Trans demosaicking, joint

demosaicking with super-resolution, as well as standalone
super-resolution algorithms that dramatically outperform
prior work across the most commercially relevant range of
computational budgets.

— A method for automatically generating such algorithms that
span a wide range of compute budgets.

— We show that adding domain-speci#c primitives and search
structures signi#cantly improves the performance-quality
tradeo"s achievable by di"erentiable program search on im-
age processing tasks in the low-cost regime.

— We de#ne a search space that generates SIMD and locality-
friendly algorithms by construction, and a compiler that
exploits this structure to automatically generate highly-
optimized streaming implementations.

2 RELATED WORK
Our approach combines genetic program search with gradient-
based optimization of di"erentiable programs, applying insights
from machine learning and classical algorithms, to automatically
search for e!cient demosaicking programs that cover a large spec-
trum of the quality-performance tradeo" space.

2.1 Image Demosaicking
Reconstructing full-color images from color #lter arrays is a well-
researched, but inherently ill-posed, problem whose solutions
must balance quality and e!ciency [Li et al. 2008]. Demosaicking
errors typically occur at edges, creating false “zipper” patterns or
“maze” artifacts, but they can also a"ect large spatial regions, caus-
ing color fringing, false color Moiré patterns, or over-smoothing.
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Classical algorithms share two key design elements: they use edge-
adaptive directional #lters to avoid smoothing over edges [Hamil-
ton Jr and Adams Jr 1997; Hibbard 1995], and they exploit cross-
channel correlations to guide the interpolation of the missing red
and blue values, using an estimate of the more densely sampled
green channel. For example, the smooth hue prior [Cok 1987] pre-
dicts smooth variations of di"erences or ratios between colors.
Many proposed methods improve edge and color correlation de-
tection, and sometimes jointly address denoising [Alleysson et al.
2005; Buades et al. 2009; Dubois 2005; Duran and Buades 2014;
Hirakawa and Parks 2005, 2006; Kiku et al. 2013; Menon and Cal-
vagno 2009; Niu et al. 2018; Zhang et al. 2009, 2011].

A di"erent class of algorithms cast demosaicking as an in-
verse problem and solve for the full-color image using optimiza-
tion [Chang et al. 2015; Condat and Mosaddegh 2012; Getreuer
2011; Heide et al. 2014; Kokkinos and Lefkimmiatis 2018; Tan
et al. 2017a]. While these methods achieve high-quality demo-
saicking, the large computational cost of optimization limits their
applicability.

Data-driven techniques optimize the parameters of demosaick-
ing algorithms using ground truth natural images [Go et al. 2000;
Kapah and Hel-Or 2000; Khashabi et al. 2014; Kwan and Wu
2004; Li et al. 2018]. Recent approaches use convolutional neu-
ral networks [Gharbi et al. 2016; Henz et al. 2018; Klatzer et al.
2016; Kokkinos and Lefkimmiatis 2018, 2019; Liu et al. 2020;
Ratnasingam 2019; Tan et al. 2018, 2017b]. Deep learning meth-
ods achieve state-of-the-art quality, but remain computationally
expensive.

2.2 Super-resolution
Super-resolution recovers a high-resolution image from one or
more low-resolution images. Classical iterative algorithms are of-
ten computationally expensive and rely on image degradation pri-
ors which can hinder their robustness [Yang and Huang 2017]. It
is also di!cult to avoid over blurring and introducing artifacts like
false high frequencies and jagged edges. SRCNN introduced a mod-
ern convolutional neural network for super-resolution [Dong et al.
2014]. Subsequent work has introduced much larger models, some
with over 1,000 convolutional layers [Zhang et al. 2018]. Despite
producing state of the art image quality, these models are too ex-
pensive to run in most commercial applications. Unfortunately, ex-
isting fast super-resolution models like SRCNN and ESPCN [Shi
et al. 2016] perform dramatically (2–3 dB) worse than large mod-
els (see Figure 8).

An even more challenging problem is super-resolving images di-
rectly from raw camera data. An overwhelming majority of photos
are taken today by smartphone cameras. Their portability requires
small sensors with limited resolution. Such cameras would bene-
#t greatly from joint super-resolution and demosaicking programs.
Traditional approaches to joint super-resolution and demosaicking
require slow iterative optimization like coordinate descent [Farsiu
et al. 2004] or clustering [Bennett et al. 2006]. Recent deep convo-
lutional models [Qian et al. 2019; Xing and Egiazarian 2021] can
take minutes to process a high-resolution image on a CPU, mak-
ing them too slow to run in most commercial image processing
pipelines.

2.3 Neural Architecture Search and Genetic
Programming

NAS and genetic programming methods automatically generate
programs that maximize some (often single) objectives, such as
classi#cation accuracy [Koza and Koza 1992; Zoph and Le 2016].
In graphics, genetic programming has been used for shader simpli-
#cation [He et al. 2015; Sitthi-Amorn et al. 2011; Wang et al. 2014]
and image pipeline optimization [Lou et al. 2016a].

The space of NAS and genetic programming approaches can
be understood in terms of how they de#ne their program search
space, their search strategy, and their performance evaluation cri-
teria [Elsken et al. 2019]. Our search algorithm can be viewed as a
multi-objective NAS via genetic programming. Unlike most NAS
methods, our search procedure focuses on low-cost algorithms
and uses domain-speci#c program structures to design an e!cient
search space. It discovers fast and high-quality demosaicking pro-
grams that signi#cantly outperform models produced by generic
NAS baselines (Section 4.2) and super-resolution programs that
achieve nearly comparable quality to models that are 84×more ex-
pensive produced by a prior multi-objective NAS technique [Chu
et al. 2021b].

Search Space. To make the search tractable, NAS search spaces
are often constrained to #xed-structure compositions (e.g., stacks)
of repeated cells made of coarse-grained network building blocks
(convolutions, skip connections, activations, etc.) [Zhong et al.
2018; Zoph et al. 2018]. This often leads to expensive models,
with a limited structural variation. In contrast, because we are in-
terested in e!cient programs, we search over the complete pro-
gram structure via local directed acyclic graph (DAG) mutations
and include domain-speci#c operators beyond conventional NAS
building blocks (Section 3.1). We factor our search space into se-
mantically meaningful sub-tasks, which reduces the combinatorial
complexity and improves quality (Section 3.2.3).

Search Strategy and Evaluation criteria. Although network prun-
ing [Blalock et al. 2020] remains the most popular technique to
speed up trained models, recent NAS work has explored multi-
objective optimizations that account for model e!ciency [Ander-
son et al. 2019; Chu et al. 2021b; Gong et al. 2019; Zhou and Diamos
2018]. However, few enable full exploration of the cost–quality
tradeo". [Tan et al. 2019; Zoph and Le 2016] collapse the two ob-
jectives into a single scalar reward, which prevents sampling along
the Pareto curve during training, and limits user control. We use
a variant of genetic search that allows us to sample the models we
mutate and retain after each generation based on their dominance
across the Pareto frontier. LEMONADE [Elsken et al. 2018] and
FALSR [Chu et al. 2021a] also use multi-objective genetic search,
but LEMONADE only samples models to mutate based on their
costs.

Generated Model E!ciency. All prior NAS approaches we know
search over cost regimes orders of magnitude more expensive than
ours. MnasNet [Tan et al. 2019], which targets image classi#cation
on smartphones, produces models that are 10 to 100×more expen-
sive than ours. FALSR [Chu et al. 2021a] produces super-resolution
models with 326 k to 1021 k parameters, while our programs have
under 10 k.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



172:4 • K. Ma et al.

Fig. 2. System overview. We define a search space over demosaicking programs that consist of DAGs of both conventional neural network and domain-
specific image processing building blocks. We further factor this space into a search over green prediction and chroma prediction sub-programs. We use
genetic search combined with Pareto sampling to select which programs to mutate and maintain across generations. The Pareto dominance of our programs
is measured by our cost model, which estimates the computational cost, and a cheap training process, which estimates the quality of a given program.

3 TECHNIQUE
To generate demosaicking algorithms that balance cost with qual-
ity, we must e!ciently search over a large number of candidate
programs. Each program is di"erentiable and parameter-heavy,
and needs to be trained on a large dataset. The key constraint driv-
ing our design decisions below is thus the time it takes to run the
search. We take measures to decrease the time it takes to train each
program, and to reduce the combinatorial complexity of our search
space towards programs that are likely to be fast and high-quality.

We use a genetic search algorithm that populates each genera-
tion with mutations of the best-performing programs of the pre-
vious generation. Figure 2 illustrates the overall system. Because
we are optimizing for multiple objectives, the notion of “best-
performing” is not simple. We want high-quality programs that
span a range of runtime budgets. We, therefore, divide the cost axis
into cost tiers, and mutate and maintain programs from each tier
based on their proximity to the Pareto frontier. We estimate pro-
gram quality with a fast training procedure on a small dataset and
we estimate computational cost with a simple model (a weighted
sum of operations performed). From the #nal generation, we take
the top 100 programs ranked by their Pareto-dominance, compile
them to e!cient Halide [Ragan-Kelley et al. 2012] implementations
to measure true cost, and train them on the entire dataset to get
true quality.

In the rest of this section, we #rst detail the domain-speci#c
building blocks from which our search constructs programs
(Section 3.1) then describe the genetic search process (Section 3.2),
before #nally describing our automatic compilation pipeline
(Section 3.3).

3.1 Building Blocks
We design our search primitives based on four criteria. First, they
need to be e!cient to evaluate. Second, we need to be able to easily
compose them into a meaningful pipeline. Third, they need to be
di"erentiable to allow end-to-end training. Finally, they need to be
su!cient to express existing demosaicking algorithms—both clas-
sical feed-forward demosaicking algorithms and deep-learning-
based demosaicking and super-resolution algorithms (Figure 3).

Fig. 3. We construct our program search space using building blocks in-
spired by both classical edge-adaptive (a) and deep-learning-based (b) de-
mosaicking algorithms. We follow the classical regime by first reconstruct-
ing the green color (G), then reconstructing the red and blue (R/B) colors
by predicting the di"erence between them and the reconstructed green
color. Classical edge-adaptive demosaicking o#en selects between direc-
tional 1D filters for green colors to adapt to edges. Therefore, we include
both 1D and 2D grouped convolutions, a so#max layer, element-wise mul-
tiplication, and sum reductions to reproduce this. For the deep-learning
regime, we incorporate the commonly used packing and unpacking prim-
itives (b) that pack a Bayer pa!ern into translation-invariant images and
unpack them back to the input resolution. We also include standard deep
learning primitives including convolutional and pooling layers, pixel-wise
operations with potential inter-channel computation, including element-
wise operations, a stack operator, and variants of 1× 1 convolution layers.

Due to the higher sampling rate of the green channel in mosaic
patterns, inspired by classical demosaicking algorithms [Cok 1987;
Hibbard 1995], we factor our program search to #rst reconstruct
the green image, and then use the green image to guide the
reconstruction of the other two channels. Classical demosaick-
ing algorithms often reconstruct the green channel using an
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edge-adaptive selection from several local directional #l-
ters [Adams Jr 1995; Hirakawa and Parks 2005; Zhang et al. 2011].
Unlike conventional NAS, we include both 1D and 2D grouped
convolution layers [Xie et al. 2017] to allow for directional #lters
and a softmax primitive, element-wise multiplication, and sum
reductions to enable di"erentiable selection across #lters. 1D con-
volutions also provide computational savings over linearly separa-
ble 2D convolutions. We also include variants of 1× 1 convolution
layers and channel-wise sum reductions to facilitate inter-channel
communication.

Classical demosaicking algorithms often reconstruct red and
blue channels by predicting their di"erences to the green channel.
We include element-wise operations like addition and subtraction
to model this technique. Our element-wise operators and stack op-
erator also support residual connections [He et al. 2016] by com-
bining intermediate outputs along the channel dimension.

Some deep-learning-based methods for demosaicking [Gharbi
et al. 2016; Liu et al. 2020] use a packing layer that packs each
repeating 2 × 2 grid in the Bayer pattern into four translation-
invariant image channels (two green, one blue, and one red), and
an unpacking layer that converts a 4 channel image back to the
full resolution grid. But mosaic patterns may have di"erent peri-
odicities. For example, the Bayer pattern has a 2 × 2 period but
the X-Trans pattern has a 6 × 6 period. We support the correct
handling of di"erent mosaic patterns with packing and unpacking
operations parameterized by scale. Unpacking layers are also com-
monly used by deep super-resolution models [Anwar and Barnes
2020; Qian et al. 2019; Shi et al. 2016; Wang et al. 2018] in an up-
sampling layer to move information from the channel dimension
into the spatial dimensions.

Upsampling and Downsampling are another set of important
domain-speci#c building blocks for tasks like demosaicking and
super-resolution. Downsampling is an e!cient alternative for in-
creasing a model’s receptive #eld for recognizing high-frequency
patterns and avoiding moiré artifacts, compared to the conven-
tional approach of adding convolutional layers. We support mul-
tiple types of upsampling and allow our search to choose which
ones to use. Our upsampling operators are: Unpack, Bicubic, and
LearnedUpsample via transposed convolution. For Downsample
we use a Pack or a LearnedDownsample which is a strided con-
volution with a #lter width twice as large as the stride for proper
anti-aliasing.

Finally, we designed insertion functions that insert predicted
color values into their proper color channels with the given color
values from the mosaic to produce full red, green, and blue images.
These specialized functions allow our programs to make location-
aware color predictions and save computation by only predicting
the missing values.

In all, we use the following building blocks:
— element-wise: Add, Sub, Mul, Stack, ReLU
— convolutional: GroupedConv1D, GroupedConv2D
— #lter selection: SoftMax
— per-pixel inter-channel computation: GroupedConv1x1,

GroupedSum, InterleavedSum
— upsample: Unpack, Bicubic, LearnedUpsample
— downsample: Pack, LearnedDownsample
— insertion: GreenInsert, ChromaInsert

The convolutional operators GroupedConv1D, GroupedConv2D,
and GroupedConv1x1 are parameterized by the number of groups
and output channels. The #lter width is 3 except in the 1 × 1
case. SoftMax is used without scaling parameters. GroupedSum
and InterleavedSum both take an N channel image, and pro-
duce a N /k channel image by summing together values within
the channel group. GroupedSum sums over consecutive channels
while InterleavedSum outputs channel i by summing over chan-
nels i + jN /k for 0 ≤ j < k . All operations are done in single
precision $oating point.

3.2 Search Algorithm
We combine multi-objective genetic search and gradient descent to
#nd Pareto-dominant pipelines represented as DAGs of the build-
ing blocks described above. Our search space requires special mu-
tation rules (Section 3.2.1) both to deal with complex DAG struc-
tures where nodes can have multiple downstream parents to share
computation, and to respect the constraints of special operators
(e.g., that all inputs to a stage be upsampled/downsampled to the
same resolution, and that the output needs to be at the correct tar-
get resolution). Because our search space is very large and allows
for arbitrary DAGs, we factor it using domain-speci#c knowledge
to reduce its combinatorial complexity, leverage pruning rules to
exclude obviously bad or ine!cient programs, and use fast and
robust training methods to quickly explore thousands of models
(Sections 3.2.2 and 3.2.3).

The goal of our search is to explore the design space of fast de-
mosaickers, so we initialize it with two e!cient models, shown in
Figure 4, that are based on prior state-of-the-art designs. One seed
model is a small simpli#ed version of Demosaicnet [Gharbi et al.
2016] with fewer layers and channel counts. We do not use the pub-
lished full-size Demosaicnet as a seed model because its through-
put is far below (almost two orders of magnitude lower) than the
range of throughputs for e!cient demosaickers. Our other seed
model is inspired by the GradientHalide model [Li et al. 2018]
but uses multiple resolutions via upsampling and downsampling
operators.

To optimize program quality across a range of compute costs, we
bin our programs into cost tiers. After each search generation, we
keep the top 20 programs in each cost tier and sample 12 models
from each tier to mutate for the next generation. The width of each
bin doubles as the programs get larger. The cost tier bins start at 0–
200 FLOPs for green interpolation programs (Section 3.2.3) and 0–
300 FLOPs for blue/red interpolation programs. The blue/red inter-
polation programs are allowed to be more expensive because they
use a green interpolation program to produce one of their inputs.
During each generation, the newly mutated programs are trained
on a small dataset for a few epochs. Programs are trained for 6
epochs on a 100 k image subset of the Demosaicnet dataset during
the search. One could increase the number and width of the cost
tiers to cover lower throughput programs. However, this would in-
crease the search time by adding more expensive programs to train
per generation.

Estimating Cost. We estimate the cost of each program by
traversing the DAG and counting the number of $oating point
operations required by the computations performed at each
node, treating operations that can be executed using fused
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Fig. 4. Inputs and outputs of our search: seed programs are shown on the le#, derived from prior work, and four green prediction models found by our search
are shown on the right, ordered by increasing computational cost and quality. We use a Demosaicnet [Gharbi et al. 2016] variant and a multi-resolution
demosaicking program inspired by AHD [Hirakawa and Parks 2005] as our seed models. Note how the diverse generated models di"er significantly from
the original seeds, how their DAG structures become increasingly complex as quality improves, and how they combine conventional neural building blocks
with our domain-specific primitives. (Convolutional layers denote group count a#er their filter size).

multiply-add (FMA) as a single operation. The total cost of a
program is the sum of the costs at each node. While this mea-
sure neglects data movement, it successfully estimates relative run-
time, as demonstrated in Section 4, because our programs are con-
strained to operations that can be e!ciently blocked or fused for
locality.

Selecting Programs for Mutation. Within each cost tier, we select
which programs to mutate and keep for the next generation using
importance sampling. The likelihood of choosing a program is in-
versely proportional to its Pareto rank compared to other programs
within its tier. Models on the Pareto frontier have rank 1. Models
that would be on the frontier after removing all rank 1 models have
rank 2, and so on. Thus, models are importance sampled based on
their proximity to the current Pareto frontier.

3.2.1 Mutations. Each program selected for mutation is modi-
#ed using one of the following operations:
• Insertion chooses, uniformly at random, a building block to

add to the program at a random location in the DAG. If the
chosen insertion location is invalid for the building block, this
mutation rule continues randomly selecting locations until
a valid location is found. If the operation to insert has two
operands, then the second operand is chosen to be the out-
put of some existing sub-DAG of the program. This induces
recurrent connections and shared computations.
• Deletion chooses, uniformly at random, a DAG node to re-

move from the program.
• Resolution Changes Inserting, removing, and moving Up-

samples and Downsamples is tricky. We must ensure that all

resolution-changing mutations preserve the correct output
resolution and do not allow intermediate outputs with di"er-
ent resolutions to be combined. To solve this problem, we use
graph coloring and color each node by its output resolution.
This representation allows us to perform resolution change
mutations easily by manipulating color boundaries.
— Create Resolution Change, randomly selects a subgraph

from within a color boundary to compute at a lower reso-
lution relative to its parent boundary. The resolution scale
factor is randomly chosen as either 2 or 3.

— Remove Resolution Change, randomly selects a color
boundary and removes the resolution change it induces by
deleting or inserting Upsamples and Downsamples.

— Shrink Resolution Subgraph, randomly selects a node
at a boundary and changes its resolution to that of the ad-
jacent color across the boundary.

— Swap Resolution Operation, randomly selects a resolu-
tion changing node and changes the type of Upsampling or
Downsampling function used.

• Decouple randomly chooses a sub-DAG shared by more than
one consumer node and duplicates it, allowing later mutations
to modify each copy separately.
• Channel Count Change picks a random convolution oper-

ation and modi#es its output channel count.1
• Group Change picks a random convolution operation and

modi#es its channel grouping [Xie et al. 2017], where the
allowed groupings are any common factors of the input and
output channel counts of the operation being mutated. Our

1The options for channel count are {8, 10, 12, 16, 20, 24, 28, 32}.
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search #nds that using grouped convolutions can provide use-
ful computational savings (Figure 4).
• Green Input Change, used only during the search for

red/blue interpolation programs (Section 3.2.3), modi#es a
red/blue program to use a di"erent green subprogram as its
input.

Search is biased towards insertion and deletion over other muta-
tions, because we found this allows generations to increase quality
and decrease cost more quickly.

3.2.2 Fast Training. Each mutated program is trained using gra-
dient descent on a dataset of di!cult mosaic patches [Gharbi et al.
2016]. In an ideal world, we would be able to train programs on
the entire dataset to convergence; however, the training time (5–10
GPU-hours per program) would make search intractable. Instead,
we employ a strategy to drastically cut down training time while
still obtaining a good estimate of quality.

First, we constrain the training to use a #xed random subset of
100,000 (out of 2.6 million) images, and only train for 6 epochs.
Both parameters were set based on the exploration of the train-
ing dynamics of our space of programs. We found this setting
produces a good ranking of options that corresponds fairly closely
to the fully-trained results, but in just 10–15 GPU-minutes per
program.

Second, to avoid under-estimating quality due to catastrophic
weight initialization [Frankle and Carbin 2019], we initialize three
sets of weights. We simultaneously train all three sets for one
epoch. After one epoch, we keep training the set of weights with
the best validation PSNR. We observe that bad weight initializa-
tions can usually be detected within the #rst epoch by comparing
performance across initializations. This strategy greatly improves
the robustness of our quality measurements for a small increase in
training time.

3.2.3 E!iciently Structured Search. We structure the search
space in a number of ways to raise the likelihood of #nding inter-
esting points in the quality-e!ciency tradeo" space within a #xed
amount of time. Because of the large cost of training each program,
we employ three key strategies, in addition to the structure of our
building blocks, to steer the search towards useful programs:

— We bias the selection of mutations during search towards in-
sertion and deletion (Section 3.2.1);

— We eagerly discard likely-poor programs before training
them;

— We factor the search into the space of subprograms that es-
timate green values and the space of subprograms that use
these green values to interpolate red and blue values.

Because our search is allowed to consider all possible DAGs con-
sisting of our building blocks, mutations may result in programs
that are unlikely to represent interesting points in the tradeo" be-
tween the amount of computation and the quality of the demo-
saicking result. For example, a mutation may insert an operation
that is the inverse of the operation before it (such as an addition
followed by subtraction, or a downsample followed by an upsam-
ple). Similarly, insertions may result in trivial operations (e.g., an

InterleavedSum over a single channel). To avoid spending valu-
able training time on these programs, we eagerly discard them be-
fore the training phase.

We observe that some prior work on demosaicking algorithms
uses di"erent strategies to interpolate green values compared
to blue and red values, due to the presence of twice as many
known green values versus the other colors. Green values are also
predicted #rst because they serve as a useful guide for predict-
ing red and blue. We, therefore, reduce the combinatorial com-
plexity of the search by factoring it into two separate search
spaces: one for green prediction programs and another for red
and blue prediction programs. We #rst perform the search over
green-interpolation programs and select a set of generated pro-
grams that are Pareto-dominant over a range of computing costs.
Then the red-blue search can select any of these Pareto-dominant
green-interpolation programs to use as an additional input to the
mosaic to help guide the red and blue interpolation. We show
that this strategy is more e!cient than the alternative of search-
ing for a single program that interpolates all values jointly in
Section 4.2.

3.3 Compiling Programs to Optimized Implementations
Compiling our programs to e!cient SIMD code is straightforward
and fully automatic, as our building blocks were intentionally se-
lected with this in mind. We compile our programs by lowering
them to Halide [Ragan-Kelley et al. 2012]. We traverse the model
graph, mapping each node to its corresponding Halide implemen-
tation. These are typically 5–10 lines of code each.

Halide code also requires a “schedule” that speci#es how the
algorithm runs on the hardware. Generating this is also straight-
forward and fully automatic, again thanks to our choice of search
space. All of our nodes have small spatial support, so we fuse the
entire pipeline in tiles. We compute stages as needed per tile of
output.2 Nodes that only have one consumer are inlined into that
consumer whenever this would not incur recompute (i.e., when the
consumer is not a stencil or reduction over channels). Nodes that
perform a computation that varies across the output channels (e.g.,
Stack) are unrolled across output channels. All nodes that reduce
across input channels (e.g., conv layers) are fully unrolled across
input channels. Upsamples and downsamples are never inlined,
to avoid complicating the addressing patterns of the consuming
stage.

This simple heuristic scheduler gives a performance that corre-
lates extremely well with our cost model, as shown in Figure 10.
Halide includes more complex automatic schedulers (e.g., [Adams
et al. 2019]), but they proved unnecessary in this work.

4 EVALUATION
We evaluate our search technique and the programs it produces
according to cost (program throughput) and quality (PSNR rela-
tive to ground truth) on three demosaicking applications: Bayer
demosaicking, X-Trans demosaicking, and joint Bayer demosaick-
ing with super-resolution. In addition, we evaluate our technique’s

2We used a tile size of 768×240, which was empirically determined on our target x86
processor. Tile size would ideally be re-tuned if compiling for a di"erent target.
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Fig. 5. Bayer demosaicking quality vs. throughput on the HDR-VDP and
Moiré datasets for our automatically generated Pareto frontier of pro-
grams, prior state-of-the-art algorithms, and a grid search over Demo-
saicnet variants representative of structured pruning. Our search process
significantly improves the quality vs. performance tradeo" of existing pro-
grams in the real-time performance regime, and spans a frontier of state-
of-the-art algorithms covering a throughput range of 10—100 Megapixels
per second on a single CPU core. Our search found a program that is > 8×
faster than the best baseline model, Gradient Halide with 15 7 × 7 filters,
at the same quality and another program that is >1 dB be!er at the same
throughput.

generalization to the standalone task of super-resolution. We
compare our programs against the cost and quality of existing
demosaicking, super-resolution, and joint demosaicking super-
resolution methods. We also visualize the outputs of programs pro-
duced by our method that span a wide range of throughputs and
compare them qualitatively to the outputs of our baselines. We fur-
ther evaluate our three key design choices:
(1) We study the usefulness of our domain-speci#c search prim-

itives by comparing to our search algorithm restricted to tra-
ditional convolutional network primitives.

(2) We evaluate the importance of decomposing the search
into green-prediction followed by red/blue prediction, by
searching for programs that directly predict all three color
channels.

(3) We study the accuracy of our cost model by comparing the es-
timated cost with the actual runtimes of generated programs.

All results are evaluated on held-out test datasets, which we did
not touch during the search process. These are the Set5, Set14, Ur-
ban100, BSD100, Kodak, and McMaster datasets along with 1,000
randomly-selected 128× 128 patches from each of the challenging
HDR-VDP and Moiré datasets used by Gharbi et al. [2016]. All per-

Fig. 6. X-Trans demosaicking quality vs. throughput for our automatically
generated Pareto frontier of programs and state-of-the-art algorithms on
the HDR-VDP and Moiré datasets. Very few demosaicking algorithms exist
that support X-Trans, making our technique vital for finding algorithms at
di"erent points in the quality-performance tradeo" space. Our search pro-
duces a program that is 5.4× faster than Markesteijin with 0.4 dB higher
quality. The highest quality program found by our search is 3.7 dB be!er
than Markesteijn and more than 100× faster than Demosaicnet, with very
high quality reconstruction at 33.25 dB test set performance.

formance measurements are for a single core on an Intel i9-9960X
CPU @ 3.10 GHz with HyperThreading disabled.3

4.1 Pareto-Dominant Programs
Figures 5, 6, 7, 8 show the Pareto frontier of programs found by
our search along with several existing demosaicking, joint demo-
saicking with super-resolution, and super-resolution algorithms as
baselines. Table 1 lists for each application and test dataset, the
PSNRs and throughputs of all our baseline methods, and a selection
of models found by our search. For demosaicking and joint demo-
saicking with super-resolution tasks, our programs are the result of
40 generations of search over green reconstruction programs, and
40 generations on red and blue reconstruction programs. For the
super-resolution task, our programs are the result of 40 search gen-
erations. Our search process signi#cantly improves the quality vs.
performance tradeo" of existing programs in the real-time perfor-
mance regime, and spans a frontier of state-of-the-art algorithms
covering a throughput range of one to two orders of magnitude in
megapixels per second depending on the application.

3We use single-core performance because all algorithms trivially parallelize in tiles,
and parallelism increases bench-marking noise while not impacting relative perfor-
mance. For our neural network baselines, since there were no fast implementations
available at the time of writing, we used the correlation equation for our programs
between modeled cost and measured runtime to estimate throughput.
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Fig. 7. Joint demosaicking and super-resolution quality vs. throughput for
our automatically generated Pareto frontier of programs and state-of-the-
art algorithms on the HDR-VDP and Moiré datasets. Most work on joint
demosaicking and super-resolution (DNDMSR & TENet) has been focused
on designing deep neural networks that are very computationally expen-
sive. ESPCN+GradientHalide is the best performing baseline out of those
that operate near the regime of throughputs we consider in our search.
Our search produces a program that dominates ESPCN+GradientHalide
by > 30× in throughput and 0.13 dB in quality and another program that is
nearly 1dB be!er with 1.7× faster throughput. The best joint demosaicking
and super-resolution deep model is DNDMSR, which has 0.84 dB higher
quality than our best program but is more than 300× slower. Our search
produces a dense range of Pareto-dominant joint demosaicking and super-
resolution algorithms across a throughput regime where there were previ-
ously very few options.

4.1.1 Bayer Demosaicking. For the Bayer demosaicking task,
we compare quality and throughput against implementations of
AHD, LMMSE, and VNG4 from librtprocess [CarVac 2021], a li-
brary extracted from RawTherapee [The RawTherapee Team 2021]
(Figure 5). Parameters are set to place these algorithms as close to
the Pareto frontier as possible, typically by tuning for maximum
performance. For AHD, we add a #nal chroma median #ltering
step to replicate what is done in RawTherapee. We also compare
against variants of two published demosaicking algorithms, Gradi-
ent Halide [Li et al. 2018] and Demosaicnet [Gharbi et al. 2016].
We scale the Gradient Halide model by increasing the size and
number of #lters and we structurally prune Demosaicnet via grid
search over layer and channel counts to span a range of compute
budgets. For reference we also show where the published version
of Demosaicnet and another even larger neural network demo-
saicker [Henz et al. 2018] lie on the tradeo" space. [Henz et al.
2018] has higher quality than Demosaicnet but is 7.5× slower; both
are orders of magnitude too expensive for most production use
cases. The programs produced by our method cover a wide range

Fig. 8. Super-resolution quality vs. throughput for our automatically gen-
erated Pareto frontier of programs and state-of-the-art algorithms, evalu-
ated on standard super-resolution datasets: BSD100, Urban100, Set5, and
Set14. ESPCN is the best performing baseline out of those that operate
near the regime of throughputs we consider in our search. Our method
found a program that achieves the same PSNR as ESPCN while being
nearly 50× faster and another program that achieves 1.45 dB be!er qual-
ity while being 2× faster. SRCNN and ESPCN are significantly Pareto-
dominated by our models which shows that finding e"icient high-quality
super-resolution models requires more than just scaling down a deep con-
volutional neural network. The fastest large neural network, FALSR-B, is
0.47 dB be!er than our best model but 90× slower.

of compute budgets and signi#cantly outperform all of our base-
lines. Our method produces programs that achieve signi#cantly
better image quality (> 1 dB) at the same compute budget of exist-
ing baselines, or comparable image quality with nearly 10× higher
throughput. Figure 11 visualizes the demosaicked outputs of 3 pro-
grams produced by our method compared to the outputs of our
baseline methods and Demosaicnet on images from our test sets.
Our programs avoid producing the artifacts seen in the baselines,
such as zippering in the #rst column of LMMSE, AHD, and Gra-
dient Halide, color fringing and Bayer grid artifacts in the second
column of AHD and GradientHalide, and the Bayer grid and zip-
pering artifacts in the #fth and sixth columns of LMMSE. As ex-
pected, the output quality of our programs improves as their cost
increases.

4.1.2 X-Trans Demosaicking. It is even more di!cult to write
good demosaicking algorithms for the X-Trans mosaic due to
its large periodicity and irregular pattern. This is evidenced by
the fact that very few X-Trans demosaicking algorithms have
been created compared to those for Bayer. In such cases, it is
especially bene#cial to have a system that can automatically gen-
erate good demosaickers. For the X-Trans demosaicking task we
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compare against the Markesteijn algorithm, also from RawTher-
apee, and the X-Trans variant of Demosaicnet (Figure 6). Our
search produced a program that is 3.2 dB better in quality than
Markesteijn at a similar throughput, and another program that is
5.4× faster than Markesteijn and 0.4 dB better in quality. The high-
est quality program found by our search is a staggering 3.7 dB bet-
ter than Markesteijn and more than 100× faster than Demosaic-
net while producing high quality outputs with a test set perfor-
mance of 33.25 dB on the di!cult HDR-VDP and Moiré datasets.
Figure 12 visualizes the outputs of 3 programs produced by our
method that cover a range of throughputs as well as the outputs of
the Markesteijn algorithm and the X-Trans Demosaicnet variant.
Our programs avoid the artifacts produced by the Markesteijn al-
gorithm such as the moire artifacts in the #rst and third column,
the color fringing in columns 2 through 6, and the maze pattern in
the third column.

4.1.3 Joint Bayer Demosaicking and Super-resolution. Most re-
cent work on super-resolution has been focused on designing
high quality models in a very low throughput regime of less than
0.002 Megapixels per second (e.g., DRLN [Anwar and Barnes 2020],
RCAN [Zhang et al. 2018], PROSR [Wang et al. 2018]). FALSR [Chu
et al. 2021b] uses genetic search to #nd cheaper super-resolution
models but the fastest model produced by their approach, which
operates at less than 0.05 Megapixels per second, is still 50× slower
than the slowest model produced by our method with less than
0.5 dB higher quality. ESPCN [Shi et al. 2016] and SRCNN [Dong
et al. 2014] are two smaller super-resolution models that operate
closer to the throughput regime we consider for real-time perfor-
mance programs and we compare to them as baselines for our
super-resolution applications.

For the joint Bayer demosaicking and super-resolution task we
compared against the best variant of the GradientHalide model
(15 #lters, each 7 × 7) for demosaicking chained with either
SRCNN, ESPCN, or bicubic upsampling. We also show perfor-
mance of Demosaicnet chained with SRCNN, ESPCN, and bicu-
bic upsampling for completeness. For context, we report the
performance of several large super-resolution deep neural net-
works: DRLN, ProSR, RCAN, and FALSR, each chained with De-
mosaicnet, and two joint demosaicking super-resolution deep neu-
ral networks: TENet [Qian et al. 2019] and DNDMSR [Xing and
Egiazarian 2021], which all lie outside the typical commercial ap-
plication throughput requirements.

ESPCN+GradientHalide is the best performing baseline out
of those that operate near the regime of throughputs we con-
sider in our search. Our search found a program that dominates
ESPCN+GradientHalide by >30× in throughput at similar quality
and another program that is nearly 1 dB better and 1.7× faster.
The best joint demosaicking and super-resolution deep model is
DNDMSR, which has 0.84 dB higher quality than our best pro-
gram but is more than 300× slower. Note that chaining an ex-
pensive model like Demosaicnet with SRCNN produces a model
with 40× lower throughput than our best program with only
0.25 dB higher quality, but for only a 3× decrease in throughput
our search can improve program quality by more than 0.25 dB,
indicating that it is more e!cient to search over a joint model.
Our search produces a dense range of Pareto dominant joint de-

Fig. 9. Search space design ablation. Our domain-specific building blocks
and search space factorization yield significant improvements to the
achievable Pareto frontier. The gap in program quality between our search
method with and without these domain-specific choices is significant,
with a di"erence of up to 1 dB between programs with the same through-
put, or a gap of up to 3× in throughput between programs of the same
quality. The further gap in quality between our method without domain
specific choices and a grid search over structurally pruned versions of De-
mosaicnet shows that our method of using genetic search over a space of
programs represented as mutable DAGs is crucial as well.

mosaicking and super-resolution algorithms across a throughput
regime where there were previously very few options. Figure 13
shows the outputs of one of our Pareto dominant programs along
with several of other methods. Our program avoids the high fre-
quency speckling seen in the #rst and #fth columns, the color fring-
ing in the third column, and the zippering artifacts in the last col-
umn of Bicbuic+GradientHalide, ESPCN+GradientHalide and SR-
CNN+GradientHalide.

4.1.4 Super-resolution. We also applied our method to the
super-resolution task alone and compared against the same super-
resolution models from the joint task excluding TENet and
DNDMSR which are joint models. ESPCN is the best performing
baseline out of those that operate near the regime of through-
puts we consider in our search. Our method found a program that
achieves the same PSNR as ESPCN while being nearly 50× faster
and another program that is 1.45 dB better and almost 2× faster.
SRCNN and ESPCN are signi#cantly Pareto dominated by our mod-
els which shows that #nding Pareto-dominant super-resolution
models require more than just scaling down a deep convolutional
neural network. The fastest deep neural network, FALSR-B, is 0.47
dB better than our best model but 90× slower. In Figure 14, we
show the outputs of several other methods along with one of our
Pareto dominant models. SRCNN tends to produce over-blurred
outputs and ESPCN introduces false high frequencies as seen in
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Fig. 10. Modeled vs. measured runtimes for the four tasks. Our search procedure is guided by estimated program costs from our cost model. It is crucial
that these costs correlate well with the actual runtimes of our programs (or at least monotonically increase with respect to actual runtime) in order for our
search to e"ectively explore the Pareto frontier of programs. Actual benchmarked runtimes of our programs show that there is a strong correlation between
our estimated costs and true runtimes with R2 ranging from 0.96 to 0.99 across all four applications. Our cost model is accurate in absolute terms, as well:
one unit of cost translates to 1.6 CPU cycles per SIMD vector of output when compiled to AVX2 code on a single core of our Skylake X test machine.

the #rst, third, and sixth columns. SRCNN also produces zippering
artifacts as shown in the third column.

4.2 Ablation: Search Space Design
We investigate the bene#ts of our two main design choices: (1) us-
ing domain speci#c building blocks and (2) modularizing the de-
mosaicking task into chroma reconstruction guided by a green re-
construction sub-task. In Figure 9, we compare our search space
to an alternative design, “Ours without domain-speci#c decisions”,
which is restricted to using only conventional NAS building blocks:
convolution, ReLU, element-wise addition, and stacking. It is still
allowed to mutate channel and group counts for convolutional op-
erations. This alternative search space construction also does not
factor the green reconstruction task from the red and blue recon-
struction task. Note that this search space is larger than or equiv-
alent to that considered by other NAS approaches like FALSR and
LEMONADE, with the exception that we do not use BatchNorm
(used by LEMONADE which searches for image classi#cation mod-
els) because is not used for regression tasks like demosaicking and
super-resolution. For fair comparison, this alternative design was
run for 40 generations and we compare it to our method run for 20
generations for green reconstruction and another 20 for chroma
reconstruction.

We also compare our search method to a grid search over vari-
ants of Demosaicnet with di"erent layer and #lter counts to see
how our method compares to structured pruning. We do not com-
pare to unstructured pruning because in unstructured pruning, re-
moving parameters does not guarantee or directly translate to a
faster model.

Figure 9 shows that our two search space design choices
yield signi#cant improvements to the Pareto frontier. The gap in
program quality between our method and “Ours without domain-
speci#c decisions” is signi#cant, with a di"erence in favor or our
method of up to 1 dB between programs with the same throughput,
or up to 3× di"erence in throughput between programs of the same
quality, indicating that a modularized search with domain speci#c
building blocks is crucial for producing Pareto dominant programs.

The further gap in quality between “Ours without domain-speci#c
decisions” and the grid search shows that even without domain
speci#c intelligence, our method of using genetic search over a
space of programs represented as mutable DAGs yields notable im-
provements to the frontier on its own. We limited the range of pro-
gram throughputs that our search considers to stay within the real-
time performance regime, and the grid search method explored
a few models that were orders of magnitude more expensive than
those considered by our search. Thus, the quality range of the
grid search programs extends above those produced by our search.
However, since the grid search’s search space is a subset of our
method’s search space, our system can be easily con#gured to
cover lower throughput ranges if desired, to expand the range of
program quality. For the range of throughputs considered by our
search, both our method and “Ours without domain-speci#c deci-
sions” produce frontiers that signi#cantly Pareto dominate struc-
tured pruning via grid search. Our domain speci#c search method
produces programs that are up to 6.4× faster at the same quality
or up to 1 dB better at the same throughput compared to the grid
search models.

4.3 Correlation Between Program Cost and Runtime
Given that our search procedure is guided by program costs based
on estimated $oating point operations, it is important to know that
these costs correlate well with the actual runtimes of our programs.
Figure 10 shows a strong correlation between our estimated costs
and actual benchmarked runtimes of our programs (R2 > 0.96 for
all tasks). Performance is also good in absolute terms: one unit
of cost in our cost model translates to around 1.6 CPU cycles per
SIMD vector of output when compiled to AVX2 code on a single
core of our Skylake X test machine.

5 FUTURE WORK, LIMITATIONS, AND CONCLUSION
Our work opens exciting avenues for future work in synthesiz-
ing high-performance hybrid algorithms that combine aspects of
deep learning and task-speci#c classical operations. For instance,
for image processing, our method could potentially be extended to
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Fig. 11. Bayer demosaicking qualitative comparison. We show a selection of results from the Bayer demosaicking task for 3 algorithms we discovered,
covering a range of computation budgets, and a selection of baselines. The Gradient Halide implementation uses 15 7 × 7 filters. We report the speed of
each algorithm in megapixels per second (Mpix/s). Our programs avoid producing the artifacts seen in the baseline methods, such as zippering in the first
column of LMMSE, AHD, and GradientHalide, color fringing and Bayer grid artifacts in the second column of AHD and GradientHalide, and the Bayer grid
and zippering artifacts in the fi#h and sixth columns of LMMSE. The output quality of our programs improves as their cost increases.
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Table 1. $antitative Comparison for the Four Tasks

PSNR Throughput
(dB) (Mpixels/s)

Bayer Demosaicking
hdrvdp moire kodak mcm

Demosaicnet 33.73 35.65 40.75 39.05 0.116
Gradient Halide 30.53 32.26 37.47 35.72 7.82
VNG4 28.19 29.93 35.58 34.28 8.65
AHD 27.69 30.01 35.41 33.81 9.25
LMMSE 29.47 31.79 35.61 33.71 21.0
ours 31.05 32.98 38.05 36.28 33.9
ours 31.27 33.12 38.60 36.91 18.3
ours 31.74 33.31 39.25 37.50 7.6

X-Trans Demosaicking
hdrvdp moire kodak mcm

Demosaicnet 32.52 35.51 39.58 37.80 0.038
Markesteijn 28.35 30.79 36.38 34.58 6.78
ours 30.67 33.48 37.44 35.23 20.9
ours 31.27 34.15 38.13 36.14 10.89
ours 31.74 34.76 38.48 36.48 4.09

PSNR Throughput
(dB) (Mpixels/s)

Super-resolution from Bayer
hdrvdp moire kodak mcm

Dnet+DRLN 24.83 27.75 32.56 32.02 0.002
Dnet+ESPCN 24.00 26.66 31.18 30.44 0.110
Dnet+FALSR-A 24.71 27.46 32.39 31.73 0.013
Dnet+FALSR-B 24.64 27.39 32.31 31.68 0.034
Dnet+FALSR-C 24.64 27.37 32.30 31.68 0.029
Dnet+ProSR 24.53 27.25 32.19 31.46 0.001
Dnet+RCAN 24.81 27.68 32.60 32.02 0.0039
Dnet+SRCNN 24.32 27.00 31.89 31.37 0.076
Dnet+Bicubic 23.49 26.16 30.84 30.12 0.116
GrHalide+Bicubic 22.95 25.53 30.10 28.99 7.70
GrHalide+ESPCN 23.25 25.74 30.03 28.85 1.80
GrHalide+SRCNN 23.45 26.00 30.56 29.36 0.217
TENet 24.73 27.23 32.59 32.12 0.005
DNDMSR 25.01 27.50 32.77 32.37 0.010
ours 23.69 26.30 31.05 30.05 18.0
ours 23.83 26.45 31.27 30.35 10.2
ours 24.01 26.54 31.48 30.60 5.26
ours 24.16 26.67 31.75 31.00 3.04

Super-resolution
bsd100 set14 set5 urban100

DRLN 30.88 32.11 36.20 31.00 0.002
ESPCN 28.93 29.51 33.16 26.24 2.34
FALSR-A 30.57 31.27 35.50 29.40 0.015
FALSR-B 30.42 31.05 35.28 28.77 0.048
FALSR-C 30.41 31.05 35.32 28.76 0.038
ProSR 30.23 31.09 34.51 29.68 0.001
RCAN 30.86 32.04 36.20 30.91 0.0040
SRCNN 29.66 30.30 34.40 27.25 0.223
Bicubic 28.03 28.46 31.87 25.10 517
ours 29.72 30.43 34.55 27.25 19.0
ours 29.88 30.59 34.79 27.57 10.8
ours 29.93 30.64 34.83 27.70 7.90
ours 29.99 30.76 34.90 27.91 3.20

For all demosaicking tasks, we report PSNR on test images from the Gharbi et al. [2016], Kodak, and McMaster datasets for our baselines and several algorithms we
discovered that span a range of runtime costs. For the superresolution task, we report PSNR on the test images from the standard BSD100, Set14, Set5, and Urban100
superresolution test datasets. Figures 11–14 show qualitative results for programs produced by our search compared to baseline algorithms.

cover other operations that have classical solutions such as multi-
scale tone and detail transfer, photographic style transfer, dehaz-
ing [Chen et al. 2017], blurring and sharpening [Lou et al. 2016b],
or matting [Li et al. 2019]. Our method could also be extended to
explore whether the task-speci#c set of building blocks or primi-
tives could be automatically extracted from example classical pro-
grams, unlike in this article’s case where the building blocks are
pre-speci#ed and #xed.

One limitation and area for future work is that we have not
yet explored #xed-point quantization of the network weights

[Lin et al. 2016], which would further improve throughput, and
would be necessary for implementation on a DSP or imaging ASIC.

In conclusion, we have presented a discrete and continuous
search for demosaicking and super-resolution algorithms that are
able to synthesize pipelines that Pareto-dominate state-of-the-art
algorithms when both quality and performance matter. These algo-
rithms lower to highly-e!cient SIMD code and combine the bene-
#ts of classical and deep methods. We believe our approach opens
up an important new direction for task-speci#c learning via pro-
gram search.
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Fig. 12. X-Trans demosaicking qualitative comparison. We show a selection of outputs from the X-Trans demosaicking task for 3 algorithms we discovered,
covering a range of computation budgets, as well as the outputs of the Markesteijn algorithm and the X-Trans Demosaicnet. We report the speed of each
algorithm in megapixels per second (Mpix/s) Our programs avoid the artifacts produced by the Markesteijn algorithm such as the moire artifacts in the
first and third column, the color fringing in columns 2 through 6, and the maze pa!ern in the third column while being up to 3× faster. Our programs obtain
visual quality close to that of Demosaicnet, which is 100× more expensive than our most expensive program.
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Fig. 13. Joint demosaicking with super-resolution qualitative comparison. We show a selection of results on the joint demosaicking and super-resolution
task from a program we discovered and a selection of baselines. The Gradient Halide implementation uses 15 7 × 7 filters. We report the speed of each
algorithm in megapixels per second (Mpix/s). Our program is 1.5× faster than ESPCN+GradientHalide and 15× faster than SRCNN+GradientHalide while
avoiding the high-frequency speckling seen in the first and fi#h columns, the color fringing in the third column, and the zippering artifacts in the last
column of Bicbuic+GradientHalide, ESPCN+GradientHalide, and SRCNN+GradientHalide.
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Fig. 14. Super-resolution qualitative comparison. We show a selection of results on the super-resolution task from a program we discovered and a selection
of baseline algorithms. We report the speed of each algorithm in megapixels per sec (Mpix/s). SRCNN tends to produce over-blurred outputs and ESPCN
introduces false high frequencies as seen in the first, third, and sixth columns. SRCNN also produces zippering artifacts as shown in the third column. For
nearly 300× faster throughput our program’s output quality approaches that of FALSR-A, a large expensive deep neural network.
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