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Abstract

This paper presents a vision‐based, subspace optimal controller aiming to improve

the row transition performance of an agricultural robot in a strawberry field. The

contribution of this paper is twofold. First, only RGB cameras, instead of complicated

sensor suites, are used for cross‐bed navigation and row alignment. Second, a real‐

time adaptive dynamic programming‐based algorithm is designed for an optimal row

transition. The conditions for row alignment are derived in an augmented pixel

coordinate frame. Based on these conditions, a simple motion rule is utilized to

reduce the search space dimension so that the proposed algorithm can be im-

plemented in real‐time. Additionally, the inverse‐dynamics policy of the algorithm is

updated using vision feedback at each control step to adapt to uncertainties. The

proposed controller is tested in both simulations and field experiments. In a simu-

lation comparison, the minimum‐time solution achieved using the proposed algo-

rithm is 44.7 s, which is very close to that of a benchmark algorithm (44.4 s).

However, the CPU time required by the proposed algorithm is only 4.3% of time

needed by the benchmark algorithm. Twenty field experiments using the presented

design were all successful in row transition, with a mean final alignment error

of 0.5 cm.
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1 | INTRODUCTION

Recent advances in mechatronics, robotics, and machine learning

techniques, as well as the prevalence of low‐cost sensors, have

prompted the development of agricultural robots to mitigate the

pressure from an increase in global population (United Nations, 2019;

Valin et al., 2014) and the ever‐increasing labor costs (Shangguan

et al., 2021). Agricultural robots with custom‐designed hardware and

software are expected to fulfill different requirements in agricultural

field operations with minimal human interference. To date, many

different robots have been developed and/or deployed in both

greenhouse environments (Arad et al., 2020; Mahmud et al., 2019;

Schor et al., 2016; van Henten et al., 2002; Xiong et al., 2020) and

field conditions (Åstrand & Baerveldt, 2002; Birrell et al., 2020;

Nagasaka et al., 2009; Underwood et al., 2017). Growers are en-

thusiastic about using robotic technologies to reduce labor costs and

increase profit margins in harvesting (Arad et al., 2020; Birrell et al.,

2020; van Henten et al., 2002; Xiong et al., 2020), phenotyping

(Narvaez et al., 2017; Underwood et al., 2017), transplanting

(Nagasaka et al., 2009), weed control (Åstrand & Baerveldt, 2002),

disease detection (Dusadeerungsikul & Nof, 2019; Schor et al., 2016),

and so on.

A reliable motion control system is crucial to the success of a

mobile agricultural robot, whether it is used in greenhouses or field

environments. Navigation in a greenhouse is relatively easy, as the

environment is usually known and well‐structured (Le et al., 2020). In

many cases, robots are limited to move on constrained track systems

(Arad et al., 2020; van Henten et al., 2002). In comparison, controlling
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agricultural robots in an unstructured or semistructured field is

challenging. For a large portion of farmlands that have row crops,

robot motion control normally consists of row‐wise translations (or

over‐bed) and row transitions at headland (or cross‐bed) (Freese &

Xu, 2019; Underwood et al., 2017). There is a rich literature on row‐

wise translation in different types of farmlands (Ball et al., 2016; de

Paula Veronese et al., 2016; Dong et al., 2011; Freese & Xu, 2019;

Higuti et al., 2019; Le et al., 2020; Nagasaka et al., 2009; Schwendner

et al., 2014; Underwood et al., 2015, 2017; van Henten et al., 2002;

Winterhalter et al., 2021; Xiong et al., 2020); nevertheless, studies on

row transition controls are limited (Ball et al., 2016; Freese & Xu,

2019; Le et al., 2020; Li et al., 2020; Nagasaka et al., 2009;

Underwood et al., 2017; Xiong et al., 2020). In this paper, we present

a real‐time subspace optimal control method that significantly

improves the row transition performance of a field robot in a

strawberry field.

1.1 | Related work

A survey of state‐of‐the‐art agricultural robots reveals that the

majority of existing motion control methods rely on global posi-

tioning system (GPS; Ball et al., 2016; de Paula Veronese et al.,

2016; Nagasaka et al., 2009; Tu et al., 2019; Underwood et al.,

2017; Winterhalter et al., 2021) or time‐of‐flight (TOF) sensors

like laser scanners (Le et al., 2020; Schwendner et al., 2014) and

LIDAR (Higuti et al., 2019; Hiremath et al., 2014; Underwood

et al., 2015; Xiong et al., 2020) for localization in a field. With the

emergence of high accuracy GPS, centimeter‐level navigation can

be achieved at an accessible cost for long‐term and offline

planning (Ball et al., 2016; Thuilot et al., 2002). On the other

hand, TOF‐based methods can give robots situational awareness,

which is ideal for navigating in a dynamic environment (Kragh &

Underwood, 2020).

GPS‐ or TOF‐based methods have some limitations. GPS

signals are weak in tall‐growing fields (Higuti et al., 2019) and can

be easily perturbed by electromagnetic interference (Ball et al.,

2016). Furthermore, building accurate GPS maps of an agriculture

field is usually done by manually driving the robot throughout the

area, which is time‐consuming and labor‐intensive. This approach

is nonideal for cases where the GPS map needs to be built mul-

tiple times in one growing season (Defterli et al., 2016). Ad-

ditionally, GPS needs to work with other sensors such as inertial

measurement unit (IMU), camera, and/or LIDAR to provide or-

ientation information (Bak & Jakobsen, 2004; Ball et al., 2016; de

Paula Veronese et al., 2016; Nagasaka et al., 2009; Winterhalter

et al., 2021). Meanwhile, TOF sensor‐based methods need to

prebuild a point cloud map of the environment for navigation

(Schwendner et al., 2014; Underwood et al., 2015; Xiong et al.,

2020). Because depth is a relative measurement, unless the point

cloud map is thoroughly labeled (Underwood et al., 2015), such

methods rely on additional sensors like encoders and/or cameras

to help locate a robot on the map (Xiong et al., 2020). As outdoor

LIDAR and laser scanners are already expensive, TOF‐based so-

lutions are costly if additional sensors are required.

Cameras are often integrated with GPS or TOF to provide visual

information (Ball et al., 2016; Gai et al., 2021; Schwendner et al.,

2014; Winterhalter et al., 2021). In Winterhalter et al. (2018) and

Kneip et al. (2020), Hough pattern and stereovision‐based row de-

tection methods are proposed, respectively. Although camera‐based

navigation methods are popular in indoor environments (de la Puente

& Rodríguez‐Losada, 2014; Ji et al., 2015; Liang et al., 2013; Nguyen

et al., 2020), there is not much research done in terms of using

camera‐only methods for outdoor agricultural fields, whether in row‐

wise translation or row transition. Hague and Tillett (1996) proposes

to use vision‐based sensing techniques to localize the robot with

respect to crop rows. Our previous work (Freese & Xu, 2019) uses

the color pattern of a typical row‐based field to transit between rows,

which is not robust in varying lighting conditions and often results in

alignment errors when the rows are not perfectly straight. In Li et al.

(2020), the visual marker‐based cross‐bed motion is studied, which

can mitigate the influence of changing lighting conditions. These two

existing control schemes (Freese & Xu, 2019; Li et al., 2020) are not

optimal. It is worth noting that visual fiducial systems that provide

measurements by visual markers have been widely used in robotics

(Fiala, 2005; Kalaitzakis et al., 2021; Olson, 2011). For example, visual

fiducial systems use a two‐dimensional (2D) barcode to provide re-

lative position and orientation information between cameras and tags

(Fiala, 2005; Olson, 2011).

Proportional‐integral‐derivative (PID) controllers, and their var-

iations, are the most widely used methods in row transition and/or

headland maneuvering that follow paths or waypoints that are pre-

planned using different methods (Bakker, 2009; Ball et al., 2016; Le

et al., 2020; Nagasaka et al., 2009; Shojaei, 2021; Underwood et al.,

2017; Xiong et al., 2020). A pole detection algorithm is used in Le

et al. (2020) to identify row ends and then square trajectories are

followed in row transition using a pure pursuit controller. In

Underwood et al. (2017), the shortest path is selected in a manually

built map for the Ladybird robot to conduct row‐crop phenotyping

tasks. A metric map is prebuilt via SLAM in Xiong et al. (2020), and

the strawberry picking robot follows straight‐line trajectories con-

necting user‐selected waypoints. The GPS/IMU‐guided rice trans-

planter in Nagasaka et al. (2009) follows a fixed steering command

during headland turns. A search‐based lattice planner is used in Ball

et al. (2016) to generate obstacle‐free paths every 10 s.

To date, advanced control methods have yet to be used a lot in

row transition motions. A fuzzy logic controller is designed for grain

carts to mimic human behaviors in harvesting (Shangguan et al.,

2021). A robust adaptive tracking controller is developed for a farm

vehicle, where the time‐invariant sliding is estimated via projection

mapping and the time‐varying sliding is compensated by variable

structure control (Fang et al., 2006). Neural network and genetic

algorithms are applied for path planning of an agricultural robot in

simulation (Noguchi & Terao, 1997).

Field conditions such as terrain type and friction can have a big

impact on the motion control performance of agricultural robots.
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In some scenarios, ground condition is evaluated a priori, and un-

favorable areas or paths are excluded (Angelova et al., 2007; Auat

Cheein et al., 2017; Rankin & Matthies, 2010). For example, terrain

appearance and geometry information are used in an experience‐

based method to predict slippage conditions, so that the robot can

reroute to avoid such areas (Angelova et al., 2007). In other scenarios,

adverse influence from poor slippage conditions will be compensated

according to the actual deviation from its desired trajectories (Cariou

et al., 2009; Kayacan et al., 2018). As an example, Cariou et al. (2009)

estimated the skidding effect of a four‐wheel‐steering robot in low

grip conditions based on the measured deviations in its lateral and

angular movements.

1.2 | Our work and contributions

The presented work is a part of research designing a multitask field

robot scouting throughout a typical strawberry field with raised beds.

The robot transits between rows at headlands, only relying on RGB

cameras. As discussed earlier, our previous row transition (or cross‐

bed) controllers follow a nonoptimal square trajectory (Freese & Xu,

2019; Li et al., 2020). Additionally, sands in a typical strawberry field

are loose and tend to build up under the wheels when the robot is

turning, causing both slippage and inconsistent turns.

In this paper, adaptive dynamic programming (ADP)‐based sub-

space optimal control is designed to improve the field robot row

transition performance while sticking to RGB cameras only. The main

contributions are summarized as follows:

(1) The center point of the visual marker at a row headland is pro-

jected in an augmented pixel coordinate frame. Via this projec-

tion, the row alignment problem during row transition is

converted into a pixel trajectory tracking problem.

(2) The necessary and sufficient conditions for row alignment are

developed in the augmented pixel coordinate frame to guarantee

a perfect row alignment in the local north‐east‐down (NED)

coordinates.

(3) The real‐time ADP subspace optimal control method (Li & Xu, 2020)

is significantly revised and enhanced to be used in the augmented

pixel coordinate frame. The search dimension is significantly reduced

from 3D to 1D, so the computational cost and the memory usage are

dramatically reduced. State and control constraints are considered,

and the row transition time is greatly reduced.

(4) A vision‐based adaptation rule is derived to update the un-

certainty parameters in longitudinal and rotational mobilities of

the robot at each time step.

(5) Installing visual markers in an agriculture field requires far less

skills than building a GPS waypoint map or LIDAR point cloud

map, thus the proposed row transition solution can be easily

deployed in any row‐based farmland. Furthermore, the solution

only uses RGB cameras and is, therefore, much cheaper than

GPS‐ or LIDAR‐based solutions.

1.3 | Structure of the paper

Section 2 describes the field conditions of a typical strawberry field

and introduces the robot platform. The row transition control pro-

blem is formulated in Section 3. Section 4 develops the row align-

ment conditions in the augmented pixel coordinate frame. The

subspace, minimum‐time ADP controller is presented for row tran-

sition in Section 5. Simulation validations and field trials are shown in

Sections 6 and 7, respectively. The study is further discussed in

Section 8 and concluded at the end.

2 | RESEARCH BACKGROUND

2.1 | Strawberry field navigation

Figure 1 shows the satellite photo of a nearby commercial strawberry

field where our robot is tested. The dark vertical lines are the

strawberry beds that are covered by black plastic films. The average

distance between adjacent strawberry beds is 1.5 m. Our robot is

F IGURE 1 A satellite photo of a local
strawberry field (Google maps) [Color figure can
be viewed at wileyonlinelibrary.com]
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custom‐designed to navigate through the strawberry field and per-

form tasks such as detecting disease and collecting strawberries.

As discussed in Freese and Xu (2019) and Li et al., (2020), navi-

gation in a typical strawberry field consist of two phases, over‐bed

and cross‐bed. Controllers corresponding to these two phases serve

distinctive purposes using feedback information from different sets

of sensors.

Previously, a compound cross‐bed transition procedure of mul-

tiple closed‐loop and open‐loop steps was developed (Li et al., 2020).

Yet, the transition speed is mediocre and the performance can be

easily affected by uncertainties in tire/terrain interaction such as tire

sinkage, friction, compaction resistance, and bulldozing force (Liang

et al., 2004). In this paper, we present the development and experi-

ment verification of a new minimum‐time cross‐bed controller that is

capable of adapting to the uncertainty in ground surface conditions

based solely on vision feedback.

2.2 | Robot platform

The robot platform designed to scout strawberry fields is shown in

Figure 2. A detailed discussion about this robot platform can be

found in Menendez‐Aponte et al. (2016). The robot is an all‐wheel‐

drive, skid‐steering vehicle, equipped with two electric motors to

drive the wheels, a laptop computer running the navigation and

control software, a front‐facing camera for cross‐bed navigation, and

eight bottom‐mounted ultrasonic sensors for over‐bed navigation.

Telescoping tubes are used in the robot frame so that the distance

between the robot wheels can be adjusted to fit different strawberry

field dimensions. Communications among the laptop computer, the

ultrasonic sensors, and the powertrain system are hosted on an Ar-

duino microcontroller board. The robot includes a leaf sampling

subsystem formed by an X–Y–Z table, a 3DOF manipulator, an end‐

effector, and halogen lights, which will not be discussed here. Ar-

duino C codes are programmed for sensors and actuators aboard the

robot. The navigation and control algorithms are programmed in

MATLAB. The information is transmitted via serial communication

between C and MATLAB software. It is worth mentioning that de-

signs with differential drive system and castors wheels are popular in

existing agricultural robots (Marchant et al., 1997). However, the

drive system design of the robot is not the focus of this study, and

the current robot in Figure 2 is used here to experimentally validate

the effectiveness of the new vision‐based minimum‐time row tran-

sition controller.

Here we only list the important specifications or modifications

that are related to the constraints considered in the new controller

design. The detailed architecture of the navigation and control sys-

tem is illustrated in Figure 3. The pose of the robot is estimated using

the camera feedback in the cross‐bed phase and the ultrasonic sensor

readings in the over‐bed phase. When the camera feedback is used at

the cross‐bed phase, the pose of the robot is estimated relative to the

AprilTag (Olson, 2011) installed at the strawberry bed end. The

identity number of each AprilTag is used to distinguish the otherwise

indistinguishable strawberry beds in the field. At the over‐bed phase,

ultrasonic sensor readings are used to estimate the orientation of the

robot with respect to the direction of the strawberry bed. The po-

sition of the robot along the strawberry bed is estimated based on

the encoder feedback from the motor motion controller. The sche-

duler keeps track of the identified strawberry beds within the field of

view (FOV), and determines which phase the robot is currently in

based on the estimated robot pose, before activating the corre-

sponding controller.

Some important robot specifications for the design and ver-

ification of the new navigation and control algorithm are summarized

inTable 1. These parameters are either important factors of the robot

performance or constraints affecting the controller design, as will be

discussed in the next section. Note that the tire radius is measured

different from the value listed in Menendez‐Aponte et al. (2016). A

wide FOV is necessary to avoid the scenario that the marker is

outside of the camera view when the robot is moving to the marker

while the robot is not turning towards it.

3 | MINIMUM‐TIME ROW TRANSITION
CONTROL PROBLEM

3.1 | Robot dynamics

As shown in Figures 4 and 5, the following five reference frames are

used in the robot dynamic modeling and visual information proces-

sing. The first one is the local NED frame O X Y Z( ; , , )N N N N , of which

the origin ON is located at the end of a strawberry bed. As the

strawberry beds are in the north‐south direction in the experimental

field, the XN axis overlaps the centerline of a strawberry bed. The

second frame is the robot frame O X Y Z( ; , , )R R R R , of which the origin

OR is located at the center point of the robot top plate, and XR, YR,

and ZR point forward, rightward, and downward, respectively.

The third frame is the camera frame O X Y Z( ; , , )C C C C . The center of

F IGURE 2 The scouting robot platform [Color figure can be
viewed at wileyonlinelibrary.com]
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F IGURE 3 Architecture of the navigation and control system. Solid boxes represent the hardware. Dashed boxes represent the software.
Line arrows represent the directions of information flow

TABLE 1 Important specifications of the robot

Names Values

Wheelbase 0.65m

Track width 1.46m

Maximum wheel angular velocity 0.78 rad/s

Constrained wheel angular velocity 0.3 rad/s

Tire radius 0.27m

Height of the robot 1.17m

Mounting height of the camera 0.86m

Tilt angle of the camera 40°

Camera FOV 91° × 51°

Camera resolution 1280 × 720

Laptop CPU frequency 2.3 GHz

F IGURE 4 Illustration of the local NED
frames affixed to the strawberry beds. When the
robot navigates with respect to a strawberry bed,
its location is given in the corresponding local
NED frame. NED, north‐east‐down [Color figure
can be viewed at wileyonlinelibrary.com]

F IGURE 5 Illustration of the robot, camera, pixel, and augmented
pixel frames. The camera, pixel, and augmented pixel frames share
the same origin and orientation but use different measurement units
[Color figure can be viewed at wileyonlinelibrary.com]
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the projection is designated as the origin OC. The XC and YC axes

point rightward and downward in the image plane, respectively, and

the ZC axis overlaps the principal axis of the camera and points

outward perpendicular to the image plane. The fourth coordinate

frame is the pixel coordinate frame O X Y( ; , )P P P that has an origin at

the principal point. The directions of XP and YP are the same as those

of XC and YC. The last one is the augmented pixel frame

O X Y Z( ; , , )A P P C that combines the pixel coordinates and the ZC axis of

the camera frame. Let us use x, y, and z to denote the coordinates

along the X, Y, and Z axes of a reference frame, respectively. The

capitalized superscript refers to the coordinate frame. For example,

xR denotes the XR coordinate of the robot frame.

The robot motion in the local NED frame is described by the

following discrete‐time model that is modified based on the kine-

matic model in Laumond et al. (1998)




































ψ ψ

Tr η

ψ ψ

ψ ψ

ρ W ρ W

x x
u= +

cos cos

sin sin

2 / −2 /

,
r t
N

r t

r t
N

r t
w

r t r t

r t r t

r r

t
,

,

,

,

, ,

, ,
i

i

i

i

i i

i i i
+1

+1

(1)

where subscript ti, i f= 0, 1, 2, …, , denotes the time steps.

x yx = [ ]r
N

r
N

r
N T is the location of the robot in the NED coordinate

frame. ψr is the heading angle of the robot around the ZN axis,

which is 0 when the robot is heading north. T is the sampling time.

rw is the radius of the robot wheels. Different from Laumond et al.

(1998), two uncertainty parameters η0 < < 1 and ρ0 < < 1 are

introduced here to account for the effect of tire/terrain inter-

action on the longitudinal and rotational motions of the robot,

respectively. Additionally, these two uncertainties will count for

the wear of the drivetrain subsystem. It is worth mentioning that

in Kayacan et al. (2018) a similar set of traction parameters is

included in a simple kinematic model to represent slip conditions.

Here ρ (called “ground condition factor”) and η (called “decom-

position factor”) are the uncertain parameters that will be adap-

tively estimated. Wr is the track width of the robot, that is, the

distance between the centerlines of its left and right wheels. The

angular velocity of the wheels u = [Ω Ω ]t L t R t
T

, ,i i i is the control

input, with subscripts L and R denoting the left and right sides of

the robot, respectively. For convenience, we define

ψx̄ x= [( ) ]r t
N

r t
N T

r t
T

, , ,i i i and˘ zx x= [( ) ]r t
N

r t
N T

r
N T

, ,i i , where zr
N is the height

of the robot that is known and assumed to be constant.

Denote the desired robot location‐to‐go at ti as

x yx = [ ]d t
N

d t
N

d t
N T

, , ,i i i . Then based on Equation (1), the desired heading

angle for the robot to reach ψd t, i is

≜






( ) ( ) ( )ψ tan y y x x x x= − / − Ψ , .d t d t

N
r t
N

d t
N

r t
N

d t
N

r t
N

,
−1

, , , , , ,i i i i i i i (2)

Define x x x= −e t d t
N

r t
N

, , ,i i i
and ψ ψ ψ= −e t d t r t, , ,i i i. From the equal-

ities in Equation (1), we have

Tr ηxΩ + Ω = ‖ ‖ / ,L t R t e t w, , , 2i i i
(3)

and

ψ W Tr ηρΩ − Ω = /(2 ).L t R t e t r w, , ,i i i
(4)

Following the inverse‐dynamics (ID) policy idea (Forrest‐Barlach

& Babcock, 1987) and comparing Equations (3) and (4), the control

needed to reach state xd t
N
, i

is

≜











Tr η

ψ W

ψ W
πu

x

x
x̄ x̄=

1

2

‖ ‖ +

‖ ‖ −
( , ).t

w

e t ρ e t r

e t ρ e t r

r t d t

, 2
1

2 ,

, 2
1

2 ,

, ,i

i i

i i

i i (5)

Remark 1. The control commands generated via Equation (5) are direct

motor commands. When saturated individually, the difference between

the left and right motor commands may be truncated, causing the robot

to understeer and rendering it unable to reach ψd t, i. Consequently, xd t
N
, i

will not be reached. Thus, it is important to saturate the control

commands coordinately to reserve the difference in motor speeds

3.2 | Minimum‐time row transition control
problem

The minimum‐time cross‐bed alignment can be formulated as an

optimal control problem minimizing the following performance index

J t t= − ,f 0 (6)

subject to the robot dynamics Equation (1) and the initial condi-

tions of

ψ ψx x= , = .r t
N

r
N

r t r, ,0 , ,00 0
(7)

The robot is aligned with the target strawberry bed if and only if

y ψ= 0, = 0,r t
N

r t, ,i i
(8)

which defines the terminal constraints.

Limited by the vertical FOV of the onboard camera, the visual

marker will inevitably enter the blind zone of the front camera as the

robot drives towards the target bed. Meanwhile, the ultrasonic sen-

sors will be inactive before the robot enters that bed. Thus, there will

be a session connecting the cross‐bed motion and the over‐bed

motion driven by an open‐loop controller. To ensure a successful

transfer for this session, the terminal constraints in Equation (8) is

adjusted so that the robot stops at a safety distance ds away from the

strawberry bed as follows:







d ψx = − 0 , = 0.r t

N
s

T

r t, ,f f (9)
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Additionally, the area that is available for the cross‐bed trajectory

planning needs to be constrained so that the robot will not bump

into neighboring strawberry beds. Therefore, the following

constraints

x d≤ − ,r t
N

s, i
(10)

and

d y d− ≤ ≤b r t
N

b, i
(11)

need to be considered, where db is the distance between the

neighboring strawberry beds.

Besides the above constraints relating to the cross‐bed motion

task, the robot design also imposes some constraints on the row

transition problem. To start with, the camera used for navigation has

a limited horizontal FOV. To localize the robot based on visual

feedback, the visual marker needs to remain inside the camera FOV.

This limitation imposes an inequality constraint on the heading angle

of the robot:

ψ ψ ζ‖ − ‖ < /2,b t r t, ,i i
(12)

where ψ y x= arctan( / )b t r t
N

r t
N

, , ,i i i
is the bearing angle of the robot in the

local NED frame. ζ is the horizontal FOV angle of the camera. Since

ψb t, i is a function of xr t
N
, i
, this constraint is time‐varying.

Furthermore, because the maximum torque output from an

electric motor decreases as it reaches the top of its revolution

curve, it is necessary to impose a control constraint on the wheel

speed to secure an ample torque output for the smooth operation

of the robot. Therefore, the following control constraint needs to

be satisfied

‖Ω ‖ ≤ Ω , ‖Ω ‖ ≤ Ω .L t R t, max , maxi i
(13)

In summary, the studied algorithm will find the optimal com-

mands t t tu*, = , …,t i f0i
to minimize the performance index

Equation (6), subject to the equality constraints of Equations (7)–(9)

and the inequality constraints of Equations (10)–(13).

4 | VISION‐BASED ROW ALIGNMENT
CONDITIONS

4.1 | Coordinate transformations

To solve the minimum time cross‐bed motion control problem de-

fined in Section 3.2 using visual feedback information, we need to

establish the coordinate transformations among those related co-

ordinate frames.

Let Qm be the center point of the visual marker, and the pro-

jected location of Qm in the camera frame is (Zhang, 2000)

zx M p= ,m
C

m
C −1 (14)

where x y zx = [ ]m
C

m
C

m
C

m
C T is the coordinate vector of Qm in the

camera frame. x yp = [ 1]m
P

m
P T is the coordinate vector of Qm in the

pixel frame. M is the intrinsic matrix of the camera as

f fM = diag{ , , 1}x y , where fx and fy are the pixel focal lengths of the

camera.

The location of Qm in the robot frame via the coordinate trans-

formation is given by

x x R x= + ,m
R

c
R RC

m
C (15)

where x y zx = [ ]c
R

c
R

c
R

c
R T is the position vector of the camera in the

robot frame. RRC is the coordinate transformation matrix from the

camera frame to the robot frame as













θ θ

θ θ

R =

0 sin cos

1 0 0
0 cos − sin

,RC

c c

c c

(16)

where θ < 0c is the pitching angle of the camera around the YR axis.

The robot location in the local NED frame then can be expressed

as follows:

x̆ x R x= − ,r
N

m
N NR

m
R (17)

where zx = [0 0 ]m
N

m
N T is the coordinate vector of the marker in the

local NED frame. RNR is the coordinate transformation matrix from

the robot frame to the local NED frame as













ψ ψ

ψ ψR =

cos − sin 0

sin cos 0

0 0 1

.NR

r r

r r (18)

Substituting Equations (14) and (15) into Equation (17) yields the

following expression of the robot location

˘ zx x R x R M p= − − ,r
N

m
N NR

c
R

m
C NC −1 (19)

where













ψ ψ θ ψ θ

ψ ψ θ ψ θ

θ θ

R R R= =

− sin cos sin cos cos

cos sin sin sin cos

0 cos − sin

.NC NR RC

r r c r c

r r c r c

c c

(20)

Note that in Equation (19), p can be directly obtained from the vision

feedback, while zm
C andψr can be measured and then calculated by using

the AprilTag imaging processing toolbox (Olson, 2011). Therefore, the full

state feedback can be provided for Equation (1).

The measurement model is obtained by inversing Equation

(19) as
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˘( ) zp M R x x R x= ( ) − − .NC
m
N

r
N NR

c
R

m
C−1 (21)

Noticing that R R( ) =NC CN−1 and R R R=CN NR CR, Equation (21) can

be expanded as



























˘( )
( )

( )

( )

zp M R x x R x= − −

=

−

−

−

.

CN
m
N

r
N CR

c
R

m
C

f y ψ x ψ

z

f x θ z z θ x θ ψ y θ ψ

z

x θ z z θ x θ ψ y θ ψ

z

cos − sin

sin − − cos + sin cos + sin sin

cos + − sin + cos cos + cos sin

x r
N

r r
N

r

m
C

y c
R

c m
N

r
N

c r
N

c r r
N

c r

m
C

c
R

c m
N

r
N

c r
N

c r r
N

c r

m
C

(22)

4.2 | Necessary and sufficient conditions of row
alignment

Let x y zp = [ ]a m
P

m
P

m
P T be the coordinates of the marker center Qm

in the augmented pixel frame. For the robot to be aligned with the

visual marker, the following necessary and sufficient conditions

exist.

Lemma 1 (Necessary condition). If the robot is aligned with the target row,

the augmented pixel coordinates ofQm satisfies the following conditions:



















( ) ( )

( )
( ) ( )

f θ

x x θ z z θ

x dp =

0

tan −

− + cos − − sin

, ≤ − .a
y c

z z θ

x x z z θ

c
R

r
N

c m
N

r
N

c

r
N

s

− sec

+ + − tan

m
N

r
N

c

c
R

r
N

m
N

r
N

c

2

(23)

Proof. Substituting the alignment condition Equation (8) into

Equation (22), we have




























( ) ( )

( ) ( )

x x θ z z θ

x x θ z z θ

x dp =

0

− + sin − − cos

− + cos + − sin

, ≤ − .

f

z c
R

r
N

c m
N

r
N

c

z c
R

r
N

c m
N

r
N

c

r
N

s

1

y

c
m

m
C

(24)

Since x yp = [ 1]m
P

m
P T , it is straightforward to get the first and

third equalities of Equation (23) from Equation (24). Substituting the

third equality of Equation (23) into the second equality of Equation

(24), we have the following necessary condition on ym
P for alignment

( ) ( )
( ) ( )

y f
x x θ z z θ

x x θ z z θ
x d=

+ sin − − cos

+ cos + − sin
, ≤ − ,m

P
y

c
R

r
N

c m
N

r
N

c

c
R

r
N

c m
N

r
N

c

r
N

s (25)

which can be further simplified into the second equality of Equation

(23). Therefore, Equation (23) is the necessary condition of a perfect

row alignment. □

Lemma 2 (Sufficient condition). If the augmented pixel coordinates of

Qm satisfies Equation (23), the robot perfectly aligns with the target

row.

Proof. From the proof of Lemma 1, we know that Equations (23) and

(24) are equivalent. Because fx , fy , and zm
C are nonzero, from the first

equalities of Equations (22) and (24), we have

y ψ x ψcos − sin = 0,r
N

r r
N

r
(26)

or

x ψ y ψsin = cos .r
N

r r
N

r
(27)

From the second and third equalities of Equations (22) and (24),

we have

x θ ψ y θ ψ x θsin cos + sin sin = sin ,r
N

c r r
N

c r r
N

c
(28)

and

x θ ψ y θ ψ x θcos cos + cos sin = cos .r
N

c r r
N

c r r
N

c
(29)

Because θsin c and θcos c cannot simultaneously be zero, from

Equations (28) and (29), we get

x ψ x y ψcos = − sin .r
N

r r
N

r
N

r
(30)

Summing up the squares of both sides of Equations (27) and (30)

correspondingly, we have

( ) ( ) ( ) ( )x y ψ x y ψ

x y ψ

= cos + + sin

− 2 sin ,

r
N

r t
N

r r
N

r
N

r

r
N

r
N

r

2

,

2
2

2 2
2

i+1
(31)

or

( )y y x ψ− 2 sin = 0,r
N

r
N

r
N

r (32)

which indicates y = 0r
N or

y x ψ= 2 sin .r
N

r
N

r
(33)

If Equation (33) holds true, by substituting Equation (27) into

Equation (33), we obtain

y ψ(1 − 2 cos ) = 0,r
N

r
(34)

which again indicates y = 0r
N or

ψcos = 1/2.r (35)
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If Equation (35) is true, by substituting it back to Equations (27)

and (30),

y x ψ= 2 sin ,r
N

r
N

r
(36)

and

x y ψ= 2 sin ,r
N

r
N

r
(37)

are derived.

Substituting Equation (37) into Equation (36) yields

y ψ(4 sin − 1) = 0.r
N

r
2 (38)

Since ψsin = 1/4r
2 and Equation (35) conflict, the only solution is

y = 0r
N .

Because x d≤ −r
N

s, the normal range ofψr is [−90°, 90°]. Substituting

y = 0r
N back into Equation (27) yields ψ = 0r . Therefore, Equation (23) is

the sufficient condition of a perfect alignment. □

5 | ROW TRANSITION CONTROL

5.1 | Row alignment reference trajectory

In this section, a reference trajectory following the virtual motion

camouflage (VMC) rule (Srinivasan & Davey, 1995; Xu & Li, 2014) is

designed to guide the system state towards the desired terminal

conditions.

Set p
3
a
includes all pa that satisfy the row alignment conditions in

Equation (23). Notice that xr
N is the only independent variable in

Equation (23). Both ym
P and zm

C depend on xr
N. However, because ym

P is

nonlinear in xr
N, the VMC rule cannot be directly applied to ∈pa p

3
a
.

To overcome this, a new variable

≜
( ) ( )

( )
w

f

y f θ

x x z z θ

z z θ
x d

− tan
= −

+ + − tan

− sec
, ≤ − ,

y

m
P

y c

c
R

r
N

m
N

r
N

c

m
N

r
N

c

r
N

s
2

(39)

which is linear to xr
N, is defined. Note that in Equation (39), z z≠m

N
r
N is

guaranteed by the fact that the robot is taller than the visual marker.

Define ≜






w zw 0 m

C
T

, then we have











( ) ( )

( ) ( )
( )

x x θ z z θ

w =

0

−

− + cos − − sin

.

x x z z θ

z z θ

c
R

r
N

c m
N

r
N

c

+ + − tan

− sec

c
R

r
N

m
N

r
N

c

m
N

r
N

c
2 (40)

Remark 2. The second equality of Equation (40) holds when pa

satisfies the alignment conditions in Equation (23). Thus, w also

satisfies the alignment conditions.

Let w w=d x d=−r
N

s
and w w=ref t x x, =i r

N
r ti
N
,
be the two endpoints of a

w trajectory that satisfies the alignment conditions. We denote thisw

trajectory as w
3 . Following the VMC rule (Li & Xu, 2020), any

∈wt w
3

k can be expressed as follows:

∈ ∈υ υ k i fw w w w= + ( − ), , [ , ],t ref t t d ref t t, ,
1

k i k i k
(41)

where ∈υt
1

k is the path‐control‐parameter (PCP) (Li & Xu, 2020;

Xu & Li, 2014) in the 1D PCP space 1.

Remark 3. The projection of w
3 in the x–y plane of the local NED

coordinates is the straight line that connects xr t
N
, f

and xx = [ 0]ref t
N

ref t
N T

, ,i i .

As we have proven in Section 4.2, for alignment conditions to be

established, ψ = 0r . Therefore, wtk corresponds to a robot state

xx̄ = [ 0 0]r t r t
N T

, ,k k that satisfies the terminal condition in Equation (8).

Definition 1. The projection of w
3 in the x̄ r space is a state

trajectory that ensures the robot to be aligned with the visual marker.

We name this state trajectory as the alignment reference trajectory,

which is denoted as l t,
3
i
.

In the cross‐bed alignment scenario, = [0, 1]1 can ensure there

is no overshoot. Similar to Li and Xu (2020), the inverse mapping of

Equation (41) is given by

υ w w w w w w= − , − /‖ − ‖ ,t t ref t d ref t d ref t, , , 2k k i i i (42)

Since ds is fixed, wd can be calculated beforehand. However,

wref t, i changes corresponding to xr t
N
, i
, which is calculated based on the

vision feedback at every time step.

5.2 | Minimum‐time row transition controller

From the bijection defined by Equations (41) and (42), reaching wd is

equivalent to reaching υd. Given υtk , the corresponding wtk can be

calculated using Equation (41). Then ym t
P
, k

can be calculated by in-

verting Equation (39) as

y f w θ w= (1 + tan )/ .m t
P

y t c t, k k k
(43)

Since pa t, k and wtk share the same third element, pa t, k is obtained.

From Equation (19), ∈x̆ r t
N

l t, ,
3

k i
can then be calculated as

˘ zx x R x R M p= − − .r t
N

m
N NR

c
R

m t
C NC

t, ,
−1

k k k (44)

Remark 4. Since ∈pa t tp, ,
3

k a i
satisfies the visual alignment condition

Equation (23), which is a projection of Equation (8) in the vision

system, ∈x̆ r t
N

l t, ,
3

k i
satisfies Equation (8). For ∀ ∈x̆ r t

N
l t, ,
3

k i
, the

robot's yaw angle ψ = 0r t, k . Therefore, from Equations (18) and (20),

RNR and RNC are constant in Equation (44).
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For brevity, we define the above procedure of calculating

∈x̆ r t
N

l t, ,
3

k i
using ∈υt

1
k as a mapping h : → l t

1
,
3
i
. Then, for

∀ ∈υt
1

k , ˘ υx h= ( )r t
N

t, k k is used to find the control input

πu x̄ x̄= ( , )t r t d t, ,k k f via the ID approach discussed in Section 3.1 to

reach xd t
N
, f
. Applying utk to the dynamic model in Equation (1), a

prediction of xr t
N
, k+1

can be made and subsequently used to find the

corresponding υ h x= ( )t r t
N−1
,k k+1 +1

.

Customized from the ID‐VMC based value iteration (ID‐VMC‐VI)

algorithm (Li & Xu, 2020), the original problem Equation (6) can be solved

over the VMC subspace using the Bellman equation (Howard, 1960) of

∀ ∈V υ L υ γV υ υ( ) = ( ) + ( ), ,j t t j t t−1
1

k k k k+1
(45)

where γ is the discount factor.Vj denotes the value function of the jth

iteration. L υ( ) is the step cost and is defined as







L υ

T

( ) =

, when constraints Equations(10)‐ (13)

are satisfied.

penalty, otherwise.

(46)

The above value iteration will stop once the following criterion

(Howard, 1960) is met

∈
V υ V υ εmax ‖ ( ) − ( )‖ ≤ ,

υ
j j−1

1 (47)

at which point, V υ( )j is reckoned to have converged to the optimal

value function V υ*( ) for ∀ ∈υ 1.

Here, a multistep lookahead, similar to Bertsekas (2013, 2020)

and Sutton (1988), will be taken from the current robot state x̄ r t, i

towards ≜υ υ υx̄ h h x( ) [( ( )) Ψ( ( ), )]d t
T

r t
N T

, ,i i , for ∀ ∈υ 1. The optimal

PCP‐to‐go from x̄ r t, i is then found by searching 1 via

∈









∑υ γ L υ γ V υ* = arg min ( ) + *( ) ,
υ p

l
p

t
l

t
=0

−1

i p i l
1

+ + (48)

where l is the number of steps it takes to reach υx̄ ( )d t, i from x̄ r t, i,

which is not a determined value.

Remark 5. The ID policy, shown in Equation (5), tries to drive the

system state from x̄ r t, i to x̄ d t, i in one time step. However, because of

the control constraints, this may not be attainable. Therefore, the

output of the ID policy is saturated according to the control

constraints, and a multistep lookahead (Bertsekas, 2013, 2020;

Sutton, 1988) is used in Equation (48) to ensure that the control

constraints are satisfied when searching for the optimal PCP‐to‐go.

Remark 6. As we discussed in Remark 3, there ∃ ∈x̄ l t,
3
i
for

∀ ∈υ 1. Therefore, Equation (48) essentially searches all possible

trajectories from x̄ r t, i to l t,
3
i
that follow the ID policy and satisfy the

control constraints. υ* corresponds to the optimal state‐to‐go on the

alignment reference trajectory, which is υx̄ ( *)d t, i . In comparison to Xu

and Li (2014), where the search is limited to the straight line

connecting x̄ r t, i and x̄ r t, f , the search strategy presented in this paper

covers a much larger search space and thus delivers improved

solution optimality.

After the optimal PCP‐to‐go is found, the optimal control to take

at ti is then calculated via ID Equation (5) as

π υu x̄ h* = ( , ( *)).t r t,i i
(49)

The above procedure will be repeated at every time step until

x̄ d t, f is reached.

Remark 7. Once x̄ r t, i reaches l t,
3
i

following Equation (49), the

alignment conditions are satisfied. The robot will then follow the

alignment reference trajectory until it reaches xr t, f . The row transition is

finished at that point.

5.3 | Ground condition estimation via
vision feedback

Deviations between the visual feedback and the predicted visual

information are used to update the ID policy. Let η ρχ = [ ]T . χ̂ de-

notes the estimate of χ . p̂ a and ψ̂ r represent the predictions of pa

and ψr based on χ̂ , respectively. χ̂ will be updated so that p̂ a and ψ̂ r

will approach pa and ψr . This is equivalent to solving the following

optimization problem (Curry, 1944)

eχ̂ = arg min ,
χ̂ (50)

where ( )e ψp̃ p̃= + ˜ 2a
T

a r
2

, p̃ p p̂= −a a a, and ψ ψ ψ˜ = − ˆ
r r r .

By solving Equation (50), seeing Appendix A, the respective up-

date rules for η̂ and ρ̂ are

( )η η α α ψ ψ

ρ ρ α ψ ψ

x a p̃ˆ = ˆ + + ˜

ˆ = ˆ + ˜
,

t t e t
T

a t e t r t

t t e t r t

1 , 2 3×1 , 2 , ,

3 , ,

i i i i i i

i i i i

+1 +1 +1

+1 +1

(51)

where


























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The convergence analysis follows a similar approach in (Curry,

1944), thus omitted here. It is worth noting that when tuning Equa-

tion (51), α2 should be kept close to 1 to maintain the balance be-

tween the effects of p̃a and ψ̃r on η̂, respectively. α1 and α3 only need

to be tuned once when the robot is working on a different terrain

condition to achieve a balanced convergence speed and a proper

estimation of uncertain parameters.

5.4 | Row transition algorithm

Table 2 summarizes the proposed algorithm, significantly revised

based on ID‐VMC‐VI (Li & Xu, 2020), to solve the discrete‐time

constrained optimal control problem defined in Section 3. The main

structure of the algorithm is the same as any ADP approaches

(Bertsekas, 2013, 2020; Sutton, 1988; Wei et al., 2017). The state

search space is reduced to the PCP search space in Line 7. The

control policy is listed in Line 9. The projections among the aug-

mented pixel, pixel, and robot NED coordinates are in Line 18. The

unknown parameters are updated in Line 20 and Line 21. The algo-

rithm executes at every time step ti during the alignment with the

target row. The algorithm runs in real‐time, which is a significant

advantage over many other ADP‐based optimal controls (Ni et al.,

2015; Nosair et al., 2010; Zhou et al., 2018).

Remark 8. Since the computational cost of the algorithm is low, it is

executed at each time step in the framework of model predictive

control (MPC). The stability of the proposed algorithm can be easily

proven following similar approaches as in many MPC‐related studies

(Mayne & Raković, 2003; Mayne et al., 2000).

Remark 9. Since the proposed algorithm is executed in a MPC

framework as discussed in Remark 8, the control commands along

the time horizon of t t[ , ]i i+1 are calculated using the real‐time

feedback information obtained at the beginning of this horizon.

Therefore, although the proposed controller is not a robust

controller, it can reject noise and mismatches to a certain degree.

In addition to the CPU time advantage, because the search space

dimension is significantly reduced to 1D, the memory required to

store the data is dramatically lowered. This feature will benefit field

robots having only a limited RAM capacity.

6 | SIMULATION RESULTS AND
DISCUSSION

6.1 | Simulation settings

The proposed row transition controller is first tested in a simulation

environment before field experiments. The MATLAB simulation, il-

lustrated in Figure 6, consists of the navigation software and the

simulated environment model. The cross‐bed navigation software

includes the proposed control algorithm, the ID policy improvement

algorithm, and the necessary coordinate transformations for the ro-

bot pose estimation. The environment model is comprised of the

robot dynamic model, the visual marker model, and the wheel‐terrain

interaction parameters. Here, the uncertainty parameters in the tire/

terrain interaction are adaptively adjusted, whereas the simulation

robot model uses the assumed actual values. The assumed actual η is

0.9 and ρ is 0.85. The PCP space 1 is discretized into 70 nodes. The

simulation time step size is 0.3 s. The step sizes of the ID policy

improvement are chosen to be α = 4 × 101
−4, α = 12 , and α = 0.83 .

The simulation environment also uses the robot specifications from

Table 1 and the actual test field dimensions as listed in Table 3.

6.2 | Simulation results and analyses

The following contains the results from the proposed algorithm and a

benchmark dynamic programming (DP) algorithm for comparison.

TABLE 2 Custom‐Designed ID‐VMC‐VI Algorithm at ti

1: Given 1, stopping criterion ε , and update step sizes α α α, ,1 2 3.

2: w w←d
x d=−r
N

s
, w w←ref t

x x
,

=i
r
N

r ti
N
,

3: j = 0

4: ∀ ∈V υ υ( ) ← 0,j
1.

5: while
∈

 V υ V υ εmax ( ) − ( ) >
υ

j j−1
1

6: j j← + 1

7: for ∀ ∈υ υ\{ }t d
1

k

8: ˘ υx h← ( )r t
N

t, k k

9: πu x̄ x̄← ( , )t r t d t, ,k k f

10: Propagate x̄ r t, k to x̄ r t, k+1 by substituting utk into
Equation (A4).

11: υ h x← ( )t r t
N−1
,k i+1 +1

12: V υ L υ γV υ( ) ← ( ) + ( )j t t j t−1k k k+1

13: end

14: end

15: ∀ ∈V υ V υ υ*( ) ← ( ), 1

16:
∈

{ }υ γ L υ γ V υ* ← arg min ∑ ( ) + *( )
υ

p
l p

t
l

t=0
−1

i p i l
1

+ +

17: π υu x̄ h* ← ( , ( *))t r t,i i

18: Update pa t, i+1 and x̄ r t, i+1 from the vision feedback.

19: Update predictions p̂ a t, i+1 and ψ̂ r t, i+1.

20:

ψ ψ ψ

p̃ p p̂← −

˜ ← − ˆ

a t a t a t

r t r t r t

, , ,

, , ,

i i i

i i i

+1 +1 +1

+1 +1 +1

21: ( )η η α α ψ ψ

ρ ρ α ψ ψ

x a p̃ˆ ← ˆ + ‖ ‖ + ˜

ˆ ← ˆ + ˜

t t e t
T

a t e t r t

t t e t r t

1 , 2 3×1 , 2 , ,
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i i i i i i

i i i i

+1 +1 +1

+1 +1
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The benchmark DP generates the optimal solution in the whole state

space. The PCP space is discretized into 70 nodes, while the search

space of the benchmark DP algorithm is discretized into 4900 nodes.

It is observed that the minimum‐time row transition solution given by

the benchmark DP algorithm is 44.4 s, whereas the proposed algo-

rithm gives 44.7 s. This 0.3 s difference is due to the small oscillation

in the control commands of the proposed algorithm between 28.2 s

and 30.3 s. The minimum‐time solution of the proposed algorithm is

very close to that of the optimal one. As a significant feature, the

proposed algorithm takes only 0.27 s on average to compute at each

control time step. 90% of the control commands are computed within

0.52 s using the proposed algorithm (as shown in Figure 7). The

corresponding computing time for the benchmark DP algorithm is

6.4 s on average (as shown in Figure 8). To conclude, the proposed

algorithm is about 23 times faster than the benchmark DP algorithm

on average, while delivering nearly an identical optimal solution.

Since the results obtained using the benchmark algorithm and the

proposed algorithm are very similar, only the plots of the proposed al-

gorithm are shown here. In the simulation, the robot drives off the first

bed (“Bed 1”) and then aligns with the second bed (“Bed 2”). The con-

trolled robot trajectory in the simulation is shown in Figure 9. We refer to

the visual markers fixed to Bed 1 and Bed 2 as Marker 1 and Marker 2,

respectively. The open‐loop trajectories are inserted in Figure 9 to help

illustrate the complete cross‐bed transition, which starts at the end of Bed

1. After the initial open‐loop motion, the robot covers the drive‐off dis-

tance with reference to Marker 1. Then, the proposed visual alignment

controller takes over and guides the robot to achieve an alignment with

Marker 2 in the minimum time. The local NED coordinate frame is fixed

to Bed 2 during the cross‐bed transition.

Figures 10 and 11 show the heading angle and the bearing angle of

Marker 2 with respect to the robot position in the local NED coordinate

frame during the alignment. Because the control commands (shown in

Figure 12) are saturated in the attempt to achieve the minimum‐time

performance index, the alignment section appears to be separated into

three stages. During Stage 1, the robot adjusts its heading angle towards

the desired value. Since in this stage the left and right wheels rotate in the

opposite directions at the constrained angular velocity, the robot stays at

the circle maker position in Figure 9 with a constant bearing angle. During

Stage 2, the robot translates towards its desired final alignment position

F IGURE 6 Structure of the simulation environment

TABLE 3 Some dimension parameters of the test field

Names Values (m)

Distance between the adjacent beds 1.5

Drive‐off distance 3.4

Stopping safety distance 0.9

F IGURE 7 Distribution of the CPU time spent on calculating the
control command at each time step using the proposed algorithm in
simulation. The average CPU time is 0.27 s
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with some micro adjustments in the heading angle. Therefore, its bearing

angle steadily reduces towards 0° while its heading angle appears con-

stant. At the end of Stage 2, the robot reaches the triangle marker po-

sition in Figure 9, and the first terminal constraint in Equation (8) is met.

During Stage 3, the robot adjusts its heading angle to 0° to satisfy the

second terminal constraint in Equation (8). Again, the left and right wheels

rotate in the opposite directions at the saturated angular velocity and the

robot position and bearing angle are constant.

Figures 13 and 14 present the trajectories of the Marker 2 center

point during alignment in the pixel coordinates and the augmented pixel

coordinate frame, respectively. Figure 13 shows that xm
P reaches 0 at the

end of Stage 3, which partially reflects that the alignment condition

Equation (23) is met. Due to the adjustment of the robot heading angle at

Stages 1 and 3, the center point pixel location changes mostly along the

XP axis, creating the steep changes in the line of sight (LOS) angle of the

marker center point as shown in Figure 15. On the other hand, because

of the robot transition during Stage 2, the center point trajectory moves

steadily in the 3D augmented pixel coordinate frame, corresponding to

the gradual LOS angle change shown in Figure 15. Figure 15 also shows

that the controller can achieve alignment without violating the FOV

constraint.

F IGURE 8 Distribution of the CPU time spent on calculating the
control command at each time step using the benchmark DP
algorithm in simulation. The average CPU time is 6.4 s

F IGURE 9 Robot trajectory in the local north‐east‐down
coordinates (Square: beginning of the drive‐off section; Circle:
beginning of the alignment section; Triangle: end of the alignment
section.) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 10 Heading angle of the robot during the row alignment

F IGURE 11 Bearing angle of Marker 2 with respect to the robot
position in the local north‐east‐down coordinates during the row
alignment

F IGURE 12 Robot wheel angular velocity controls during the row
alignment (Red‐dashed lines: control constraints.) [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 13 Trajectory of the Marker 2 center point in the pixel
coordinates during the row alignment (Circle: beginning of the
alignment; Triangle: end of the alignment.)
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The ID policy improvement starts as soon as Marker 1 becomes

visible to the robot, even before the ID‐VMC‐VI controller that relies

on Marker 2 begins to work. The adaptive adjustments of the un-

certainty parameters are shown in Figure 16. The adjustment to ρ̂ is

indiscernible during the drive‐off and Stage 2 of alignment due to the

fact that the decomposition factor ρ has no effect on the marker

location prediction in the straight translation. On the other hand, η̂ is

adjusted throughout the cross‐bed transition because it affects all

stages of the robot motion. Figure 16 shows that the estimates of

both uncertainty parameters converge to the assumed values under

the adaptive ID policy improvement rule.

7 | EXPERIMENT RESULTS AND
DISCUSSION

7.1 | Experiment settings

The proposed cross‐bed controller is tested in the field as shown in

Figure 1 with the same task as described in the simulation section. To

help illustrate the complete cross‐bed trajectory, some over‐bed and

open‐loop trajectory sections are included. However, the discussions

about these non‐cross‐bed sections are beyond the scope of this

paper.

The PCP space 1 is discretized into 50 nodes. The robot soft-

ware (shown in Figure 3) is not real‐time, therefore a fixed time step

size cannot be guaranteed. Based on the statistics obtained in 20 field

experiments, as shown in Figure 17, 93.31% of the control steps take

less than 0.5 s to compute. Therefore, we choose the control time

step size to be 0.5 s for the field experiments.

The step sizes of the ID policy improvement are chosen to be

α = 2 × 101
‐6, α = 12 , and α = 6 × 103

‐3. All the other experiment

parameters follow Tables 1 and 3. During these experiments, the

ground is dry and the surface has a loose layer of light sand. The

length of the AprilTag edge is 0.172m. Different 2D barcode images

will be used for different rows, so the AprilTag visual fiducial system

(Olson, 2011) can find out which row the robot is moving towards.

7.2 | Experiment results and analyses

The system was tuned once, involving 11 trials to better match the

specific hardware and field conditions. The parameters to be tuned

can be separated into three groups: the discretization of the PCP

space, the constraints considering the actual dimensions of the field,

and the adaptation step sizes. Once tuned, a total of 20 cross‐bed

experiments were conducted and all were successful. The statistics of

the 20 experiments are shown in Figures 18 and 19, where the mean

finishing time for the cross‐bed section is 71.3 s. In comparison, a

F IGURE 14 Trajectory of the Marker 2 center point in the
augmented pixel coordinates during the row alignment (Circle:
beginning of the alignment; Triangle: end of the alignment.)

F IGURE 15 Horizontal line of sight (LOS) angle of the Marker 2
center point in the camera FOV during the row alignment (Red‐
dashed lines: FOV constraints.). FOV, field of view [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 16 Estimates of uncertainty parameters (Square:
beginning of the drive‐off section; Circle: beginning of the alignment
section; Triangle: end of the alignment section.)

F IGURE 17 Distribution of the CPU time spent on each control
step for 20 cross‐bed experiments
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typical cross‐bed section based on Li et al. (2020) takes 138 s. The

row transition time can be lower if the speed limit setting of the robot

is higher. However, the robot may damage the soil in row headlines.

The average row alignment error is 0.5 cm, and in most cases the

alignment error is within 3 cm. This alignment accuracy is sufficient

for the robot row transition. Once the robot is aligned with the row

headline, the range finders will start to help the robot in its further

alignment before it starts to move over the row. In the following

paragraphs, we discuss the performance of the proposed controller

using the results from one experiment.

The complete cross‐bed trajectory from one experiment is

shown in Figure 20. The robot starts traveling along Bed 1 relying on

the over‐bed controller (Li et al., 2020). Once it reaches the end of

Bed 1, the robot drives off straight for 1 m in open‐loop. Figure 20

shows that the robot actually ends at 1.54m from Bed 1 at the end of

the open‐loop drive‐off. This is where Marker 1 has entered the FOV

of the camera and begins to provide visual feedback for the distance

calculation and the ID policy improvement. The robot continues

driving off for another 2.5 m, then the “scheduler” in Figure 3 in-

itializes the cross‐bed controller to align the robot with Marker 2. As

shown in Figure 20, the proposed cross‐bed controller is capable of

aligning the robot with Marker 2 and stopping it at the predefined

safety distance of 0.9 m at the end of the alignment section. The

small gap between the end of the drive‐off trajectory and the be-

ginning of the alignment trajectory is partially due to the switching

between two visual markers. Another reason for this gap is that the

accuracy of the AprilTag visual fiducial system (Olson, 2011) falls as

the distance between the tag and the camera increases. After the

alignment, the robot drives in open‐loop until the over‐bed controller

takes over, and the cross‐bed translation is completed.

Corresponding to the alignment section in Figure 20, the following

figures all share the three‐stage pattern. During Stage 1, the control

commands for the left and right motors saturate in opposite directions to

steer the robot in the minimum time, resulting in the steep changes in the

robot heading angle (shown in Figure 21) and the horizontal LOS angle of

Marker 2 in the camera FOV (shown in Figure 22). The trajectories of the

Marker 2 center point in the pixel coordinates (shown in Figure 23) and

the augmented pixel coordinates (shown in Figure 24) also exhibit a

distinguishable Stage 1 that changes mostly along the XP axis. During

Stage 2, the robot steadily translates towards Marker 2 with gradual

adjustments in the heading angle (shown in Figure 21). Stage 2 in

Figure 25 shows that the proposed controller can reserve the difference

between the left and right motor commands without violating the control

constraint. While changes in the horizontal LOS angle of Marker 2 are

slow (shown in Figure 22), its center point trajectories in the pixel and

augmented pixel coordinates change dramatically along the YP and ZC

axes (shown in Figures 23 and 24). During Stage 3, the controller rotates

the robot to satisfy the visual alignment condition. Figure 21 shows that

at the end of Stage 3, the heading angle of the robot is 0o, indicating that

the alignment condition is met. Figure 22 shows that the horizontal LOS

angle of Marker 2 is close to 0 at the end of Stage 3, which meets the

expectation of a visual alignment. The same is true at the end of Stage 3

as shown in Figures 23 and 24.

Figure 26 shows the ID policy improvement result in the ex-

periment. At the end of the cross‐bed transition, η̂ and ρ̂ converge to

F IGURE 18 Distribution of the final alignment errors for the 20
cross‐bed experiments (Dashed line: the mean final alignment error.)

F IGURE 19 Distribution of the finishing time of the cross‐bed
alignment section for the 20 experiments (Dashed line: the mean
finishing time.)

F IGURE 20 Robot trajectory in the local north‐east‐down
coordinates (Square: beginning of the drive‐off section; Cross: end of
the drive‐off section; Circle: beginning of the alignment section;
Triangle: end of the alignment section.)

F IGURE 21 Heading angle of the robot during the row alignment
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0.66 and 0.96, respectively. The tendency shown in Figure 26 at

different stages highly resembles those of the simulation result.

Overall, the experiment results demonstrate that the proposed

minimum‐time row transition controller can reliably accomplish the

task while satisfying the control and state constraints.

8 | DISCUSSION

In this paper, we developed a vision‐based minimum‐time row tran-

sition solution for a field robot in a strawberry field.

The solution has been tested with simulation and field trials. When

implementing the proposed control algorithm, the constraints relating

to the dimension of the field, the FOV of the camera, and the driving

motors should be considered. These constraints will ensure that the

trajectory satisfies the final alignment conditions while meeting the

proper working conditions of the hardware. We consider the fol-

lowing aspects for future improvements.

(i) The proposed solution is currently implemented and demon-

strated for transition operations between adjacent rows utilizing

the front and rear cameras. Nevertheless, it can be easily mod-

ified for transition operations between remote rows by in-

troducing a headland translation between the current drive‐off

and the alignment operations. Additional side cameras will be

helpful to localize the robot during long headland translations.

(ii) The robot software can be further optimized. In the current

implementation, the image processing task takes roughly 0.17 s

to process 1280 × 720 image frame. In comparison, the average

control loop CPU time is 0.36 s when running the software. It is

expected that parallelizing the image processing task with the

rest of the control loop will halve the runtime. Another ob-

servation is that, when implemented in MATLAB, the computa-

tional overhead of the current robot software is very high.

Therefore, it is suggested to use a different programming lan-

guage such as C/C++ to speed up the code execution.

(iii) We expect that the presented row transition solution can be

customized for vision‐based control applications other than

those in agricultural fields. The underlying subspace ADP‐based

optimal control method can be adopted to solve a broad class of

real‐time optimal control problems subject to environment

uncertainties.

(iv) The robot drive system design is sensitive to the soil type or surface

condition of a field. We have conducted experiments in two extreme

cases: flat solid surfaces in laboratory settings and very loose, sandy

surfaces in a nearby commercial U‐pick farm (a very challenging

F IGURE 22 Horizontal LOS angle of the Marker 2 center point in
the camera FOV during the row alignment (Red‐dashed lines: FOV
constraints.) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 23 Trajectory of the Marker 2 center point in the pixel
coordinates during the row alignment (Circle: beginning of the
alignment; Triangle: end of the alignment.)

F IGURE 24 Trajectory of the Marker 2 center point in the
augmented pixel coordinates during the row alignment (Circle:
beginning of the alignment; Triangle: end of the alignment.)

F IGURE 25 Robot wheel angular velocity controls during the row
alignment (Red‐dashed lines: control constraints.) [Color figure can be
viewed at wileyonlinelibrary.com]
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condition). Within the scope of this study, we demonstrate the ef-

fectiveness of the algorithm in a very challenging condition.

9 | CONCLUSION

Row transition motion control is a routine task for autonomous robots to

traverse semistructured agricultural fields with raised beds. In this study,

an ADP‐based optimal control method in a pixel subspace is developed to

improve the cross‐bed performance of a robot designed for scouting

strawberry fields using only RGB cameras. Visual markers at the end of

strawberry beds are used to estimate the robot posture. Based on the

derived row alignment conditions, the pixel trajectory of the visual marker

center point is guided by a bioinspired motion rule, via which, the search

space dimension of the algorithm is significantly reduced. The developed

algorithm provides a real‐time prediction of the optimal augmented pixel

location‐to‐reach, which is converted to the robot pose‐to‐reach, and

then used to calculate the control commands following the ID policy. Two

uncertainty parameters that account for ground conditions and wear of

drivetrain subsystem are adaptively adjusted based on the visual feedback

to improve the control performance in field conditions.

The proposed algorithm shows great reliability and satisfactory per-

formance in both simulation and field experiments. In simulation, the

proposed algorithm generates a near‐optimal solution in a fraction of the

CPU time required by a benchmark DP method. Via the adaptation al-

gorithm, uncertain parameters can rapidly converge to their actual values.

Different from the widely used PID type controllers in row transition

operations, the developed optimal control algorithm complies with the

constraints imposed by the dimension of the field, the FOV of the

cameras, and the driving motors. All 20 experiments were successful in

row transition and showed a significant improvement in row transition

time as compared with our previous PID‐based design. A centimeter‐level

row alignment accuracy is achieved solely relying on a RGB camera.

In the future, implementation of the proposed row transition

control algorithm can be further enhanced along the following di-

rections. (i) Parallelizing the software and programming in C/C++ will

further improve the overall computational efficiency. (ii) The current

application is limited to transition operations between adjacent rows.

Transition controls between remote rows can be the next interesting

step. It is expected that the studied algorithm can be customized and

adopted in a wide range of vision‐based control applications.
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APPENDIX A

To solve Equation (50), the basic gradient descent procedure in Curry

(1944) is followed, that is,
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where α > 0 is an update step size, and
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At ti, the control inputs are calculated via the ID approach in

Equation (5) based on χ̂ ti, that is,
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Meanwhile, by substituting χ̂ ti into Equation (1), we have the

state prediction following:
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Substituting Equation (A3) into Equation (A4) yields
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from which it is apparent that x̂r t
N
, i+1

and ψ̂r t, i+1 are not functions of χ̂ti.

Therefore, x̂ χ̂ 0∂ /∂ =r t
N

t, i i+1
and ψ χ̂ 0∂ ˆ /∂ =r t t, i i+1 . Thus, Equation (A2)

can be simplified as follows:
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where, following the chain rule, we have
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To calculate the derivatives on the right‐hand side of Equation

(A7), let us substitute Equation (A3) into the actual dynamics Equa-

tion (1), leading to
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Extracting the first two equations from Equation (A8) gives
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Note that x‖ ‖e t, 2i is not a function of χ̂ ti. Take the partial deri-

vative of Equation (A9) with respect to χ̂ ti, the following equation is

achieved:
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Next, we are going to calculate p x∂ /∂a t r t
N

, ,i i+1 +1
in Equation (A7).

Since the third element of p is 1, from the third equality in Equation (22),

we have
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which when substituted back into Equation (22) yields
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Taking the derivative of the above expression with respect to xr t
N
, i+1

leads to















 


 































( )

( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

( )

θ ψ

θ ψ

=

−

− cos cos

− cos sin

.

f z z ψ θ x ψ θ y θ

x x ψ y ψ θ

z z θ

f z z ψ

x x ψ y ψ θ z z

c r t

f z z ψ θ x ψ θ x θ

x x ψ y ψ θ z z θ

f z z ψ

x x ψ y ψ θ z z θ

c r t

p

x

∂

∂

− sin sin + sin cos + cos

+ cos + sin cos

+ − sin

− cos

+ cos + sin cos + − si

,

− cos sin + cos cos + cos

+ cos + sin cos + − sin

− sin

+ cos + sin cos + − sin

,

a ti

r ti
n

x m
N

r
N

r ti c c
R

r ti c r ti
N

c

c
R

r ti
N

r ti r ti
N

r ti c

m
N

r ti
N

c

y m
N

r
N

r ti

c
R

r ti
N

r ti r ti
N

r ti c m
N

r ti
N

i

x m
N

r
N

r ti c c
R

r ti c r ti
N

c

c
R

r ti
N

r ti r ti
N

r ti c m
N

r ti
N

c

y m
N

r
N

r ti

c
R

r ti
N

r ti r ti
N

r ti c m
N

r ti
N

c

i

, +1

, +1
( )

, +1 , +1 , +1

, +1 , +1 , +1 , +1

, +1

2

, +1

, +1 , +1 , +1 , +1 , +1

+1

, +1 , +1 , +1

, +1 , +1 , +1 , +1 , +1

, +1

, +1 , +1 , +1 , +1 , +1

+1

(A13)

Substituting Equation (A10) and Equation (A13) into Equation

(A7), we have









η

η

p

χ̂
x a 0

∂

∂
= −

ˆ
‖ ‖ ,

a t

t t
e t

,

2 , 2 3×1 3×1
i

i i

i

+1

(A14)

where 03×1 is a zero vector and





































( )

{
}

(

)

( ) ( )

( ) ( )

( ) ( )

( ) ( )

θ ψ ψ

a

=

− cos cos −

f z z θ x θ ψ ψ x ψ

y ψ θ

x x ψ y ψ θ z z θ

f z z ψ ψ

x x ψ y ψ θ z z θ

c r t r t

3×1

− sin + cos sin − + sin

− cos cos

+ cos + sin cos + − sin

− cos −

+ cos + sin cos + − sin

, ,

x m
N

r
N

c c
R

c r ti r ti r ti
N

r ti

r ti
N

r ti c

c
R

r ti
N

r ti r ti
N

r ti c m
N

r ti
N

c

y m
N

r
N

r ti r ti

c
R

r ti
N

r ti r ti
N

r ti c m
N

r ti
N

c

i i

, , +1 , +1 ,

, +1 ,

, +1 , +1 , +1 , +1 , +1

2

, , +1

, +1 , +1 , +1 , +1 , +1

2

+1

(A15)

To calculate ψ χ̂∂( ) /∂r t
T

t, i i+1 , the third equation from Equation (A8)

is rewritten as

ψ ψ
ηρ

η ρ
ψ= +

ˆ ˆ
.r t r t

t t
e t, , ,i i

i i
i+1 (A16)

The partial derivative of Equation (A16) with respect to χ̂ ti is









ψ ηρ

η ρ
ψ ρ η

χ̂

∂

∂
= −

ˆ ˆ
ˆ ˆ .

r t

t t t
e t t t

,

2 2 ,
i

i i i

i i i
+1

(A17)

Substituting Equation (A14) and Equation (A17) into Equation

(A6), the following equation:

















e η

η

ηρ

η ρ
ψ ψ ρ η

χ̂
x p̃ a 0

∂

∂
= −

ˆ
‖ ‖

−
ˆ ˆ

˜ ˆ ˆ

t

t t
e t a t

T

t t
e t r t t t

2 , 2 , 3×1 3×1

2 2 , ,

i

i i

i i

i i

i i i i

+1

+1

+1

(A18)

is derived, which is then substituted into Equation (A1) to obtain

























α
η

η

ηρ

η ρ
ψ ψ ρ η

χ̂ χ̂ x a 0 p̃= +
ˆ
‖ ‖

+
ˆ ˆ

˜ ˆ ˆ .

t t
t

e t

T

a t

t t
e t r t t t

T

2 , 2 3×1 3×1 ,

2 2 , ,

i i

i

i i

i i

i i i i

+1 +1

+1

(A19)

In Equation (A19), η and ρ are the real values and unknown. Yet,

since η0 < < 1, the direction of the gradient is not affected by the un-

certainty in η. The same is true for ρ. By defining α αη η= / ˆ t1
2
i
, α ρ ρ= /ˆ t2 i

and α αηρ η ρ= /(ˆ ˆ )t t3
2

i i
, we have the respective update rules for η̂ and ρ̂ as

( )η η α α ψ ψ

ρ ρ α ψ ψ

x a p̃ˆ = ˆ + + ˜

ˆ = ˆ + ˜ .

t t e t
T

a t e t r t

t t e t r t

1 , 2 3×1 , 2 , ,

3 , ,

i i i i i i

i i i i

+1 +1 +1

+1 +1

(A20)
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