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In this paper, we take a data-driven approach and apply machine learning to the moment 
closure problem for the radiative transfer equation in slab geometry. Instead of learning the 
unclosed high order moment, we propose to directly learn the gradient of the high order 
moment using neural networks. This new approach is consistent with the exact closure 
we derive for the free streaming limit and also provides a natural output normalization. A 
variety of benchmark tests, including the variable scattering problem, the Gaussian source 
problem with both periodic and reflecting boundaries, and the two-material problem, show 
both good accuracy and generalizability of our machine learning closure model.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The radiative transfer equation (RTE) describes particle propagation and interaction with a background medium. It has 
been widely applied in many fields of science and engineering including astrophysics [50], heat transfer [29], remote sensing 
[56], and medical imaging [28]. The RTE is a high-dimensional integro-differential kinetic equation. Common numerical 
methods for computing RTE can be classified into two categories: probabilistic methods such as the direct simulation Monte 
Carlo (DSMC) method [4], and deterministic schemes including the discrete ordinates method (SN ) [34] and the moment 
method [10,39] among others. In general, any mesh based numerical discretization faces formidable computational cost due 
to the curse of dimensionality.

While there have been advances in solving high dimensional models, such as the RTE, using various approaches in 
dimensional and model reduction [11,12,16,17,7,57,49], for a large class of problems, moment methods are the only tractable 
solution. Moment methods study the evolution of a finite number of moments of the specific intensity. Typically, in this 
scenario, the evolution of the pth moment depends on the (p + 1)th moment, leading to what is known as the moment 
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closure problem. Hence, one has to introduce suitable closure relations that relates the highest moment with the lower order 
moments in order to get a closed system of equations. A given closure relation makes assumptions about micro-physics, 
which may not be true in all settings. Therefore, the trade off in introducing a closure relation and solving a moment model 
instead of a kinetic equation, such as the RTE, is generic accuracy verses practical computability. Many moment closure 
strategies have been developed. Some of the best known methods include: the PN model [10]; the variable Eddington factor 
models [38,47]; the entropy-based MN models [21,2,1]; the positive PN models [20]; the filtered PN models [45,32,51]; the 
B2 models [3]; and the MPN model [13,14,41]. Newly developed theory around the generic closure problem suggests an 
approach to constructing analytical closure models based on gradients that lead to globally hyperbolic moment models [41]. 
This approach encompasses many of the well known closure models and offers insight into this challenging problem.

Recently, thanks to the rapid development of machine learning (ML) [35] and data-driven modeling [6,52,18,60], a new 
approach to solving the moment closure problem has emerged based on ML. In [19], the authors introduced a framework to 
construct machine learning moment closure models for kinetic problems. They first learned a set of generalized moments 
using the auto-encoder to optimally represent the underlying velocity distribution, and then learned the moment closure 
model for the generalized moments with the aim of best capturing the associated dynamics of the kinetic equation. This 
framework was further applied to the Williams-Boltzmann equation for polydisperse evaporating sprays in [54]. In [25], 
based on the conservation-dissipation formalism [61] of irreversible thermodynamics, the authors proposed a stable closure 
model parametrized by multilayer perceptron (MLP) for the Boltzmann BGK equation. In [5], a nonlocal closure was proposed 
for the Vlasov-Poisson system using a convolutional neural network (CNN). In [43,58], the authors applied MLP, CNN and 
a discrete Fourier transform (DFT) network to learn the well-known Hammett–Perkins Landau fluid closure. In [44], the 
capability of neural networks to reproduce some known magnetized plasma closures was further investigated. We also note 
that in addition to the closure problem, ML is being investigated as a method for directly solving high dimensional kinetic 
equations. The physics informed neural networks (PINN) was applied to solve forward and inverse problems for kinetic 
equations including the Boltzmann BGK model [42], the phonon Boltzmann equation [40] and also the RTE [46]. In [59], the 
full Boltzmann collision operator was approximated by a neural network with the aim of reducing the computational cost.

In this work, we focus on using ML as a tool for model reduction to address the moment closure problem of the RTE. 
To close the moment model deduced from kinetic equations, the conventional approach is to provide an approximation to 
the unclosed high order moment. In optically thick regimes or intermediate regimes, it is easy to find an accurate closure 
relation. However, in optically thin regimes (or even the free streaming limit), the kinetic model does not possess intrinsic 
low dimensional structure, which makes any attempt at model reduction difficult [36,37,27,53]. To address this problem, 
we start from investigating the RTE in the free streaming limit and derive the exact closure relations with isotropic initial 
conditions. Motivated by this closure relation, we propose to directly learn the gradient of the unclosed moment using 
neural networks for the RTE in slab geometry. The advantages of our approach are twofold. First, the functional form of the 
model is consistent with the exact closure for the free streaming limit. Thus, it is expected to gain better accuracy using 
this ansatz, especially in the optically thin regime. Second, the unclosed high order moments usually have a wide range of 
magnitudes and become very small in the optically thick regime. Such a target function makes the neural network diffi-
cult to learn, unless an appropriate output normalization is applied [5]. Our approach in learning gradient provides a natural 
output normalization since the magnitude of ∂xmN+1 is close to that of ∂xmN , see equation (2.31) in Section 2.3. In addition, 
we incorporate the scale invariance of the closure model into the neural networks by learning the normalized gradient. We 
demonstrate numerically that enforcing scale invariance in the closure model makes the model more generalizable, espe-
cially when applied to initial data whose dynamic range is outside of the training set used to create our ML closure model.

In our numerical tests, the training data is generated by initial conditions consisting of a truncated Fourier series with 
random coefficients [43,5] and constant scattering and absorption coefficients. The well-trained model is uniformly accurate 
in the optically thick regime, intermediate regime and the optically thin regime. Moreover, the accuracy of our model is 
much better than the approach based on creating a ML closure directly trained to match the moments, as well as the con-
ventional PN closure and the filtered PN closure [51]. This is demonstrated on a wide range of 1D test problems, including 
the variable scattering problem, the Gaussian source problem, the two-material problem, and the reflective boundary con-
ditions. An important observation is that our ML closure is able to nearly exactly reproduce the moments for the kinetic 
equation, even for the two-material problem, with a small number (N = 5) of moments. The motivation for this choice is 
that, as shown below, at minimum four degrees of freedom are required to exactly close the moment equations in the free 
streaming limit with isotropic initial conditions. Therefore, it is natural to expect that more degrees of freedom are required 
in the closure for the variable scattering and absorption setting. In our numerical tests, we find that giving our ML closure 
the freedom to relate the gradient of the sixth-order moment to the gradient of the first six moments is enough to produce 
accurate results for a variety of different regimes.

Hyperbolicity is another important property in moment closure models, which is difficult to enforce for traditional clo-
sure models [9,41] as well as ML models [25]. Our ML closure model is not able to preserve hyperbolicity. We numerically 
stabilize the model by adding more numerical diffusion with larger penalty constants in the Lax-Friedrichs numerical flux. 
We also remark that we use ML to learn the gradient to close our system, while the contribution in [41] enforces the 
hyperbolicity with knowledge of the gradients, but does not involve ML. Incorporating the hyperbolicity in the ML closure 
model is an interesting topic, which is discussed in our subsequent works [24,23].

The remainder of this paper is organized as follows. In Section 2, we introduce the moment closure problem for the RTE 
in slab geometry. We derive the exact closure for the free streaming limit with isotropic initial conditions and propose the 
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approach to directly learn the gradient of the unclosed high order moment using ML. In Section 3, we present the details in 
data generation and the training of the neural networks. The effectiveness of our ML closure model is demonstrated through 
extensive numerical results in Section 4. Some concluding remarks are given in Section 5.

2. Moment closure for radiative transfer equation

In this section, we motivate a range of possible ML models. We start by introducing the moment method for the RTE 
in slab geometry. Next, we derive the exact closure for the free streaming limit with isotropic initial conditions. The ML 
closure formulations we produce are inspired by the exact free streaming closure. This includes the approach we propose 
based on directly learning the gradient of the unclosed high order moments using ML. At the end of this section, we go 
over the proposed functional forms for the various ML models.

2.1. Moment method

The time-dependent RTE for a gray medium in slab geometry has the form:

∂t f + v∂x f = σs

⎛
⎝1

2

1∫
−1

f dv − f

⎞
⎠ − σa f , (2.1)

where f = f (x, v, t) is the specific intensity of radiation. The variable v ∈ [−1, 1] is the cosine of the angle between the 
photon velocity and the x-axis. σs = σs(x) ≥ 0 and σa = σa(x) ≥ 0 are the scattering and absorption coefficients.

It is common to take moments of the RTE against Legendre polynomials. We denote the k-th order Legendre polynomial 
by Pk = Pk(x) for k ≥ 0. Next, we define the k-th order moment of the gray model as

mk(x, t) = 1

2

1∫
−1

f (x, v, t)Pk(v)dv, k ≥ 0. (2.2)

Multiplying (2.1) by Pk(v), then integrating over v ∈ [−1, 1] and using Bonnet’s recursion formula, we derive the moment 
equations up to moment mN as

∂tm0 + ∂xm1 = −σam0,

∂tm1 + 1

3
∂xm0 + 2

3
∂xm2 = −(σs + σa)m1,

· · ·
∂tmN + N

2N + 1
∂xmN−1 + N + 1

2N + 1
∂xmN+1 = −(σs + σa)mN .

(2.3)

This truncated system is clearly not closed, since in the last equation the evolution of mN depends on mN+1. There are 
various ways to close the system, including the classical PN model [10]; the entropy-based MN models [21,2,1]; the variable 
Eddington factor models [38,47]; the positive PN model [20]; the filtered PN (F PN ) models [45,51,32]; the B2 models [3]; 
and the MPN model [13,14,41].

In the numerical tests in Section 4, we will compare our ML closure model with the PN model [10] and the F PN model 
[51]. For the sake of completeness, we present the PN model and the F PN model here. The PN model assumes an ansatz 
of orthogonal polynomials in velocity space and the closure relation is mN+1 = 0. Therefore, the resulting PN model is

∂tm + A∂xm = Sm, (2.4)

with m = (m0, m1, · · · , mN)T and the coefficient matrix A ∈ R(N+1)×(N+1):

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
1
3 0 2

3 0 . . . 0
0 2

5 0 3
5 . . . 0

...
...

...
. . .

...
...

0 0 . . . N−1
2N−1 0 N

2N−1
0 0 . . . 0 N+1

2N+1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.5)

and

S = diag(−σa,−(σs + σa), · · · ,−(σs + σa)). (2.6)
3



J. Huang, Y. Cheng, A.J. Christlieb et al. Journal of Computational Physics 453 (2022) 110941
The F PN model proposed in [51] reads as

∂tm + A∂xm = Sm − νLm, (2.7)

with m = (m0, m1, · · · , mN)T . Here, the matrix A and S are the same with the PN closure. In the additional source term, 
ν > 0 is a tunable parameter estimating the effective opacity of the filter and

L = diag (l0, l1, l2, · · · , lN) (2.8)

with

lk = logρ( k
N+1 )

logρ( N
N+1 )

, k = 0,1, · · · ,N (2.9)

and ρ is the filter function. In our numerical test, we follow [51] and take ρ(η) = 1
1+η4 .

All of these methods relate the (p + 1)th moment to the pth moment as a way of closing the system. Each of them have 
a set of pros and cons, but none of them do very well in the optically thin limit. Our proposed ML closures have a functional 
form that is motivated by a limiting case, which we introduce in the next section.

2.2. Exact closure for the free streaming limit

For all moment closure models, it is very challenging to accurately capture the free streaming limit, i.e. when σs is close 
to zero in (2.1). In such a transport dominated regime, the model does not possess an intrinsic low dimensional structure, 
which makes any attempt at model reduction difficult. In this part, we aim to find an exact closure in such a challenging 
case under some suitable assumptions. This will motivate the functional form of our ML model.

We focus on the free-streaming limit in the simplified case of 1D:

∂t f + v∂x f = 0, (2.10)

with an isotropic initial condition

f (x, v,0) = f0(x), (2.11)

which serves as a baseline for our ML closure models. Here, we do not pay attention to boundary conditions, and the 
solution is considered to be either periodic or compactly supported.

The exact solution to (2.10)-(2.11) is

f (x, v, t) = f0(x− vt). (2.12)

Here, instead of using Pk , we define the k-th order moment by the projection with respect to a monomial basis:

nk(x, t) =
1∫

−1

f (x, v, t)vkdv, k ≥ 0. (2.13)

We note that the moments defined by the monomial basis are linearly equivalent to those defined by Legendre polynomials 
in (2.2). Here, we use the monomial basis moments since it is easier to derive the exact closure relations. In the free-
streaming limit, these moments satisfy the equations:

∂tnk + ∂xnk+1 = 0, k ≥ 0. (2.14)

Plugging (2.12) into (2.13), we have

nk(x, t) =
1∫

−1

f0(x− vt)vkdv

=
x−t∫

x+t

f0(w)

(
x− w

t

)k (
−1

t

)
dw

= t−(k+1)

x+t∫
f0(w)(x − w)kdw,

(2.15)
x−t

4
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which implies

tk+1nk(x, t) =
x+t∫

x−t

f0(w)(x − w)kdw. (2.16)

Taking a time derivative to the above equation yields

tk+1∂tnk(x, t) + (k + 1)tknk(x, t) = f0(x+ t)(−t)k + f0(x− t)tk. (2.17)

We immediately obtain

t∂tnk(x, t) + (k + 1)nk(x, t) = f0(x+ t)(−1)k + f0(x− t). (2.18)

We notice that the right-hand-side of the above equation only depends on f0(x ± t) and the fact that k is even or odd. Thus, 
we have that: for even k,

t∂tnk + (k + 1)nk = t∂tn0 + n0, (2.19)

and for odd k

t∂tnk + (k + 1)nk = t∂tn1 + 2n1, (2.20)

i.e. for any k ≥ 0,

t∂tnk + (k + 1)nk = 1+ (−1)k

2
(t∂tn0 + n0) + 1− (−1)k

2
(t∂tn1 + 2n1). (2.21)

Next, in the above equation, we replace the time derivatives by the spatial derivatives using (2.14):

−t∂xnk+1 + (k + 1)nk = 1+ (−1)k

2
(−t∂xn1 + n0) + 1− (−1)k

2
(−t∂xn2 + 2n1), (2.22)

and then derive

∂xnk+1 = 1+ (−1)k

2
∂xn1 + 1− (−1)k

2
∂xn2 + 1

t

(
(k + 1)nk − 1+ (−1)k

2
n0 − (1 − (−1)k)n1

)
. (2.23)

Notice that the above relation provides an exact closure for ∂xnk+1. However, the closure has dependence on t . Next, we 
remove the dependence on t . Taking k = 2 in (2.23) yields

∂xn3 = ∂xn1 + 1

t
(3n2 − n0), (2.24)

then eliminating t in (2.23)

∂xnk+1 = 1+ (−1)k

2
∂xn1 + 1− (−1)k

2
∂xn2 + (k + 1)nk − 1+(−1)k

2 n0 − (1− (−1)k)n1
3n2 − n0

(∂xn3 − ∂xn1) (2.25)

This is an exact closure for ∂xnk+1. We remark that this closure holds for any k ≥ 0 but it reduces to the trivial case for 
k = 0, 1, 2 and only make senses for k ≥ 3. Since the two sets of moments defined in (2.2) and (2.13) are equivalent, it is 
easy to derive similar closure relations for ∂xmk+1.

We also point out that the exact closure (2.25) cannot be written into a conservative form:

Theorem 2.1. The exact closure (2.25) for k ≥ 3 cannot be written into a conservative form. To be more precise, there exists no smooth 
function F such that (2.25) can be written as

nk+1 = F (n0,n1, · · · ,nk). (2.26)

Proof. We prove by contradiction. Assume that there exist a smooth function F such that (2.26) holds true. Using the 
equality of mixed partial derivatives, we have

∂

∂n3

(
1− (−1)k

2

)
= ∂

∂n2

⎛
⎝ (k + 1)nk − 1+(−1)k

2 n0 − (1− (−1)k)n1
3n2 − n0

⎞
⎠ (2.27)

This is equivalent to
5
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Fig. 2.1. Magnitudes of moments mk for k = 0, · · · ,6 with different scattering coefficients in the training dataset.

(k + 1)nk − 1 + (−1)k

2
n0 − (1− (−1)k)n1 = 0 (2.28)

Plugging (2.12)-(2.13) into the above equality, we have

0 = (k + 1)

1∫
−1

f0(x− vt)vkdv − 1+ (−1)k

2

1∫
−1

f0(x− vt)dv − (1− (−1)k)

1∫
−1

f0(x− vt)vdv

=
1∫

−1

f0(x− vt)

(
(k + 1)vk − 1+ (−1)k

2
− (1− (−1)k)v

)
dv.

For any fixed k ≥ 3, we can always find f0 such that the above relation does not hold true. �
2.3. Machine learning closure model

In this section, armed with what we just learned about the functional form of moment closures in the free-streaming 
limit in 1D, we introduce several models we will explore as possible closure models. As part of this work on closing moment 
based models of the RTE, we explore the effectiveness of each of these models.

A standard approach for moment closures is to find a relation between mN+1 and the lower order moments:

mN+1 = N (m0,m1, · · · ,mN). (2.29)

The ML based approach will find N : RN+1 → R that is represented by a neural network and trained from data. This is 
the regression in supervised learning and also a part of the end-to-end learning procedure in [19]. We call this approach 
Learning the Moment (LM). However, in our numerical implementation, we find that the training process usually gets 
stuck in local minimum when using this approach. Hence, the model has difficulty fitting the data well, see the detailed 
discussions of Fig. 3.3 in Section 3.

We also experiment with another approach, which we refer to as the weighted moment model. The weighted moment 
model recognizes the fact that equation (2.25) could loosely be viewed as relating many weighted moments as a closure. 
The Learning Weighted Moment (LWM) model takes the following form:

mN+1 =
N∑

k=0

Nk(m0,m1, . . . ,mN)mk. (2.30)

Here N = (N0, . . . , NN ) : RN+1 → RN+1 will be represented by a neural network. This formulation can deal with normal-
ization issues. However, as shown in Fig. 3.3 in Section 3, its behavior is similar to that of the simpler Learn Moment model, 
in (2.29).

Motivated by the exact closure (2.25) for the free streaming limit, we propose to directly learn the gradient of the 
unclosed moment. Specifically, we assume that ∂xmN+1 depends linearly on the gradients of the lower order moments with 
the coefficients being functions of the lower order moments:
6
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∂xmN+1 =
N∑

k=0

Nk(m0,m1, . . . ,mN)∂xmk. (2.31)

Here N = (N0, . . . , NN ) : RN+1 → RN+1 will be represented by a neural network and trained from data. We call this 
approach Learning the Gradient (LG).

The advantages of directly learning the gradient in (2.31) are twofold. First, this ansatz (2.31) is consistent with the exact 
closure for the free streaming limit (2.25). Therefore, it is expected to have better accuracy, especially in the optically thin 
regime. Second, the unclosed high order moments usually have a wide range of magnitudes and become very small in the 
optically thick regime. In Fig. 2.1, we show the L∞-norm (in space and time) of moments mk for k = 0, · · · , 6 with different 
scattering coefficients. It is observed that the magnitude of m6 ranges from 10−5 to 10−2. Such a target function makes the 
neural network difficult to learn, unless appropriate output normalization is applied. Similar problems were also noticed in 
closing the Vlasov-Poisson equation in [5], where the output normalization technique was applied to the heat flux with its 
estimation given by the Navier-Stokes approximation. Our antasz (2.31) provides a natural output normalization since the 
magnitude of ∂xmN+1 is similar to that of ∂xmN .

We further incorporate the scale invariance of the closure model into the neural networks and learn the gradient with 
normalized moments (LGNM):

∂xmN+1 =
N∑

k=0

Nk

(
m1

m0
,
m2

m0
, . . . ,

mN

m0

)
∂xmk. (2.32)

Here N = (N0, . . . , NN ) : RN → RN+1 will be replaced by a neural network and trained from data. Given the linearity of 
the RTE in (2.1), LGNM in (2.32) is expected to have better performance than LG in (2.31): (1) If f is scaled by a constant in 
(2.1), the antasz (2.32) can provide exactly the same prediction; (2) LGNM in (2.32) removes the linear redundancy of the 
training data and should be more data efficient; (3) LGNM in (2.32) does not sacrifice any expressive ability. This results in 
a ML model with better generalization performance, especially for testing data with a totally different magnitude. This will 
be further investigated numerically, see Fig. 4.15 in Example 4.3 in Section 4.

We also point out a disadvantage of the ML closure model with LG in (2.31) or LGNM in (2.32). This breaks the conser-
vation property of the last equation in (2.3) and generates a partially-conservative system. This might lead to problems in 
numerical implementations, especially when shocks exists [31,30].

3. Training of the neural network

In this section, we present the details of generating the training data and the training of the neural network. These 
details are provided for reproduce-ability of the results.

3.1. Data preparation

In this section, we outline how we generate the data we use for training our ML model. The data comes from simulating 
a simple 1D slab RTE problem over a range of initial conditions and scattering and absorption coefficients. The data is 
curated and used to create M time snapshots of the N moments, mtrue

N+1, of the kinetic solution over a fixed time window. 
This data is used in training our ML model (see section 3.2). We now go over the details for the creation of this data.

We consider the unit interval [0, 1] in the physical domain with periodic boundary conditions. Following [43,5], we take 
the initial conditions to be an isotropic distribution in the form of a truncated Fourier series:

f0(x, v) = a0 +
kmax∑
k=1

ak sin(2kπx+ φk). (3.1)

Here, we take kmax = 10 in our dataset. For k ≥ 1, ak and φk are random variables sampled from the uniform distributions on 
[− 1

k , 1k ] and [0, 2π ], respectively. We take a0 = c+∑kmax
k=1

1
k with c a random variable sampled from the uniform distributions 

on [0, 1]. This guarantees the positivity of the distribution function. Both σs and σa are constants over the domain for each 
run. The scattering coefficient σs is sampled from a log-uniform distribution on [0.1, 100]. The absorption coefficient σa are 
randomly sampled from [0, 10]. A possible function generated with (3.1) are shown in Fig. 3.2. In the current work, we train 
with 100 different initial data.

The space time discontinuous Galerkin (DG) method [11,12] is applied to solve the RTE in slab geometry (2.1). Piecewise 
polynomials of degree 2 in space and degree 1 in time are applied. We take 64 Gauss-Legendre quadrature points to 
discretize the velocity space. We take the number of grid points in space to be Nx = 512. The CFL condition is taken to be 
	t = 8	x and the final time is t = 1. In this work, we use the N moments of every time step taken for each of the 100 
initial conditions to form our groundtruth data set.
7
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Fig. 3.2. A possible initial condition generated from the truncated Fourier series in the training dataset.

Fig. 3.3. Relative L2 error of the target function during the training process. Four approaches are compared here: learning the moment (LM) in (2.29); 
learning the weighted moment (LWM) in (2.30); learning the gradient (LG) in (2.31); learning the gradient with normalized moments (LGNM) in (2.32).

3.2. Training

For our neural network model, we use a fully-connected neural network and choose to use the hyperbolic tangent for 
our activation function. The number of layers is taken to be 6 and the number of nodes in each hidden layer is taken to be 
256, unless otherwise stated. The input normalization is applied: each component of the input is linearly scaled to have zero 
mean value and unit variance. For the training of the neural network, we take 1000 total epochs (the number of iterations 
8
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Fig. 3.4. Relative L2 error in the training data with different depths and widths of the neural networks. The number of layers: 2, 3, . . . , 7; the number of 
nodes in the hidden layers: 8, 16, . . . , 1024. The number of moments in the system is N = 5.

in the optimization process). The learning rate is set to be 10−3 in the initial epoch and decays by 0.35 every 100 epochs. 
L2 regularization is applied with weight 10−7. The batch size is taken to be 1024. The training is implemented within the 
PyTorch framework [48]. We refer readers to [22] for the details on the basic concepts of ML.

For the moment model and weighted moment model, (2.29) and (2.30), the loss function is taken to be the mean squared 
error (MSE):

L = 1

Ndata

∑
j,n

∣∣mtrue
N+1(x j, tn) −mappx

N+1(x j, tn)
∣∣2 . (3.2)

Here, mtrue
N+1(x j, tn) denote the (N + 1)-th order moment at x = x j and t = tn computed from the kinetic solver and 

mappx
N+1(x j, tn) is given by the antasz in equations (2.29) or (2.30), the moment model and weighted moment model re-

spectively. Here, Ndata denotes the total count of the data used in training the neural network. For the gradient model and 
normalized gradient model, (2.31) and (2.32), the loss function is taken to be:

L = 1

Ndata

∑
j,n

∣∣∂xmtrue
N+1(x j, tn) − ∂xm

appx
N+1(x j, tn)

∣∣2 . (3.3)

Here, ∂xmtrue
N+1(x j, tn) denotes the spatial derivative of (N + 1)-th order moment at x = x j and t = tn computed from the 

kinetic solver and ∂xm
appx
N+1(x j, tn) comes from the evaluation of the neural network using (2.31) or (2.32).

In the training process, we find that the approach to learn the moment in (2.29) and learn the weighted moment in 
(2.30) usually get stuck in a local minimum and does not fit the data well, no matter how we tune the hyperparameters. As 
a comparison, the approach to learn the gradient in (2.31) and (2.32) has much smaller relative errors, see Fig. 3.3. Moreover, 
we observe that increasing the number of moments will result in the smaller training error in Fig. 3.3. The relative L2 error 
in Fig. 3.3 is defined to be the relative error between the target function and the approximated function. Specifically, for the 
moment model, (2.29) and (2.30), the relative L2 error for the moment models is defined to be

E2 =
√√√√∑

j,n(m
true
N+1(x j, tn) −mappx

N+1(x j, tn))2∑
j,n(m

true
N+1(x j, tn))2

. (3.4)

Likewise, for the gradient model, (2.31) and (2.32), the relative L2 error for the gradient model is defined to be

E2 =
√√√√∑

j,n(∂xm
true
N+1(x j, tn) − ∂xm

appx
N+1(x j, tn))2∑

j,n(∂xm
true
N+1(x j, tn))2

. (3.5)

The depth and width of neural networks (i.e., the number of hidden layers and the number of nodes in the hidden layers) 
are also crucial hyperparameters in a neural network. Here, we test the number of layers to be 2, 3, · · · , 7 and number of 
nodes in hidden layers to be 8, 16, · · · , 1024. The results of learning the gradient are shown in Fig. 3.4. The error decreases 
when we increase the number of layers and nodes in hidden layers and saturate when they reach a certain level. These 
tests indicate that taking number of layers to be 6 and number of nodes to be 256 are good hyperparameters for our neural 
network. As such these are the values used in this work unless otherwise stated.
9
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4. Numerical tests

In this section, we show the performance of our ML closure model on a variety of benchmark tests, including prob-
lems with constant scattering and absorption coefficients, variable scattering problems, Gaussian source problems and 
two-material problems. In all the numerical examples, we take the physical domain to be the unit interval [0, 1]. We 
consider periodic boundary conditions and reflective boundary conditions.

To numerically solve the ML moment closure system, we apply the fifth-order finite difference WENO scheme [26] with 
a Lax–Friedrichs flux splitting for the spatial discretization. For the time discretization, we employ the third order strong-
stability-preserving Runge-Kutta (RK) scheme [55]. We take the grid number in space to be Nx = 256. The CFL condition is 
taken to be 	t = 0.1	x. The penalty constant in the Lax-Friedrichs numerical flux is taken to be αLF = 5, unless otherwise 
stated.

We mainly focus on the comparison of the ML closure based on Learning the Gradient with Normalized Moments (LGNM) 
(2.32), ML closure based on Learning the Moments (LM) (2.29), and the PN closure [10]. In addition, we consider the F PN

closure [51] and make comparisons with the other three models in the context of modeling transport on bounded domains 
with reflecting walls in Example 4.3 and in the study of the two-material problem in Example 4.5. We note that, in most 
cases, the ML model based on LGNM (2.32) has better accuracy than the Learn Gradient (LG) model (2.31). In particular, the 
benefit of using (2.32) will be illustrated using the Gaussian source problem in Example 4.3.

An important observation is that our ML closure is able to nearly exactly reproduce the moments for the kinetic equation, 
even for the two-material problem, with a small number (N = 5) of moments. In our numerical tests, we find that giving our 
ML closure the freedom to relate the gradient of the sixth-order moment to the gradient of the 0th through 5th moments 
is enough to produce accurate results for different regimes. Moreover, we numerically observe that if we use fewer than 
N = 5 moments in our model, where the ML closure would relate the gradient of the highest moment to the gradient of 
the lower moments, the method can still produce accurate results in the intermediate regime, but struggles to describe the 
solution near the optically thin regime.

Example 4.1 (constant scattering and absorption coefficients). The setup of this example is the same as the data preparation. 
The scattering and absorption coefficients are taken to be constants over the domain.

We test three different regimes: the optically thick regime (σs = σt = 100); the intermediate regime (σs = σt = 10); and 
the optically thin regime (σs = σt = 1). All closures work well in the optically thick regime and thus we omit the results 
and only focus on the intermediate and optically thin regimes.

In Fig. 4.5, we show the numerical solutions of m0 and m1 at t = 0.5 with two moments (N = 1) in the closure model. 
We observe that, in the intermediate regime (σs = σt = 10), the solution generated by the closure model with LGNM agrees 
well with the solution to the kinetic model. As a comparison, there exist some deviations for the other two closure models, 
the LM model and the PN model. However, in the optically thin regime (σs = σt = 1), all closures fail to capture the correct 
physical phenomenon for the kinetic model. This indicates that taking only two moments is not enough to close the kinetic 
equation in this regime. This is also consistent with what we discovered in Section 2.2, that is, as we move to the free 
streaming limit, the closure is related to the gradients of many moments.

In Fig. 4.6, we show the numerical solutions of m0 and m1 at t = 0.5 with N = 5. In the intermediate regime, all the 
closures predict the solution quite well. Moreover, it is observed that the ML closure model based on the LGNM formulation 
has the smallest error (see the zoomed-in figure). In the optically thin regime, only the closure model based on the LGNM 
formulation agrees well with the kinetic equation, while the other two closures have large deviations in the moments.

In Fig. 4.7 and Fig. 4.8, we display the log–log scatter plots of the relative L2 error versus the scattering coefficient 
for N = 1 and N = 5, respectively. In the case of N = 1, we observe that building a closure model based on the LG and 
LGNM formulations does not always result in smaller errors than the PN closure, see Fig. 4.7. This indicates that it seems 
impossible to find a model with only two moments that will be able to approximate the moments accurately in the optically 
thin case. In the case of N = 5, the LG and LGNM models have a much smaller error than the LM model and the PN model, 
especially for smaller scattering coefficients, see Fig. 4.8. Moreover, we notice that, in most cases, the model based on LGNM 
has better accuracy than the LG model.

Similar to many analytical closure models, our ML closure models do not guarantee hyperbolicity. We now use this 
example to investigate the numerical stability of our closure model. We take the penalty constant in the Lax-Friedrichs flux 
to be αLF = 2. In Fig. 4.9, we output the number of grid points with imaginary eigenvalues and L∞-norm of the numerical 
solution during the time evolution. We find that this model does not preserve the hyperbolicity property and the numerical 
solution starts to blow up at around t = 0.27. We then increase the penalty constant to αLF = 5. As shown in Fig. 4.10, this 
helps stabilize the model numerically. Even though there are still a large number of grid points with imaginary eigenvalues 
during the time evolution, the numerical solution does not blow up. We conclude that incorporating hyperbolicity in the 
ML closure model is an important topic, which is discussed in our subsequent work [24,23].

Example 4.2 (variable scattering problem). In this example, we investigate the performance and generalizability of our clo-
sure models by testing them on problems that have spatially varying scattering coefficients. In these tests, the scattering 
coefficient is taken to have the following form
10



Fig. 4.5. Example 4.1: constant scattering and absorption coefficients. Here we are plotting the numerical solutions of m0 and m1 for three moment 
closures, including PN , Learning Moment (LM) and Learning Gradient with Normalized Moments (LGNM), at t = 0.5 with N = 1 in the intermediate regime 
(σs = σt = 10) and the optically thin regime (σs = σt = 1). We note that the closure based on the LGNM performs slightly better than the other two 
methods for the N = 1 case.

σs(x) = c1(tanh(1 + c2(x − x0)) + tanh(1 − c2(x− x0))) + σs,base, (4.1)

with c1, c2, σs,base and x0 being constants. Here, the parameters are taken to be c1 = c2 = 15, x0 = 0.5 and σa = 1. We test 
two cases with σs,base = 1 and σs,base = 10. The profiles of scattering coefficients with σs,base = 1 and σs,base = 10 are shown 
in Fig. 4.11. It is observed that, in the case of σs,base = 1, the middle part of the domain is in the intermediate regime and 
the domain near the boundary is in the optically thin regime. On the other hand, the whole domain is in the intermediate 
regime when σs,base = 10.

The profiles of numerical solutions with σs,base = 1 and σs,base = 10 are presented in Fig. 4.12 and Fig. 4.13, respectively. 
In the test case that spans the optically thin to intermediate regime, we observe good agreement between our LGNM closure 
model and the kinetic model, see Fig. 4.12, while the other two closure models do not produce satisfactory solution profiles. 
In Fig. 4.13, we plot the results when σs,base = 10. In this case, all closure models work well. We note that our LGNM model 
still has the smallest error.

Example 4.3 (Gaussian source problem). In this example, we investigate the Gaussian source problem, which simulates parti-
cles with an initial intensity that is a Gaussian distribution in space [15,13]

f0(x, v) = c1
(2πθ)1/2

exp

(
− (x − x0)2

2θ

)
+ c2. (4.2)

In this test, we take c1 = 0.5, c2 = 2.5, x0 = 0.5 and θ = 0.01.
In Fig. 4.14, we present the results obtained using various closure models in the optically thin regime (σs = σt = 1). We 

observe good agreement between the LGNM closure model and the kinetic model, while the other two closure models have 
J. Huang, Y. Cheng, A.J. Christlieb et al. Journal of Computational Physics 453 (2022) 110941
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Fig. 4.6. Example 4.1: constant scattering and absorption coefficients. Here we are plotting the numerical solutions of m0 and m1 for three moment 
closures, including PN , Learning Moment (LM) and Learning Gradient with Normalized Moments (LGNM), at t = 0.5 with N = 5 in the intermediate regime 
(σs = σt = 10) and the optically thin regime (σs = σt = 1). We note that the closure based on the LGNM performs better than the other two methods for 
the N = 5 case.

Fig. 4.7. Example 4.1: constant scattering and absorption coefficients. In this figure we are plotting the relative L2 error of m0 and m1 with different 
scattering coefficient at t = 0.5 with N = 1. All methods perform about the same for N = 1.
12
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Fig. 4.8. Example 4.1: constant scattering and absorption coefficients. The figure plots the relative L2 error of m0 and m1 with different scattering coefficient 
at t = 0.5 with N = 5. Here Learning Gradient (LG) and Learn Gradient with Normalized Moments (LGNM) methods perform better than Learning Moment 
(LM) and the PN closure.

Fig. 4.9. Example 4.1: constant scattering and absorption coefficients. The number of grid points with imaginary eigenvalues and L∞ norm of numerical 
solutions during the time evolution in the optically thin regime (σs = σt = 1) with N = 5 and αLF = 2.

Fig. 4.10. Example 4.1: constant scattering and absorption coefficients. The number of grid points with imaginary eigenvalues and L∞ norm of numerical 
solutions during the time evolution in the optically thin regime (σs = σt = 1) with N = 5 and αLF = 5.
13
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Fig. 4.11. Example 4.2: variable scattering problem. Plots of the profiles of scattering coefficient functions given in equation (4.1), with σs,base = 1 and 
σs,base = 10 respectively.

Fig. 4.12. Example 4.2: variable scattering problem. Numerical solutions of m0 and m1 at t = 0.5 with N = 5 and σs,base = 1.

Fig. 4.13. Example 4.2: variable scattering problem. Numerical solutions of m0 and m1 at t = 0.5 with N = 5 and σs,base = 10.

large deviations from the kinetic model. This illustrates that the ML closure model exhibits good generalization to other 
types of initial conditions beyond the training data.
14
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Fig. 4.14. Example 4.3: Gaussian source problem. Numerical solutions of m0 and m1 at t = 0.5 with N = 5 in the optically thin regime (σs = σt = 1).

Fig. 4.15. Example 4.3: Gaussian source problem. Numerical solutions of m0 and m1 at t = 0.5 with N = 5 in the optically thin regime (σs = σt = 1). Left: 
results from the original initial condition, equation (4.2); right: results from the original initial condition × 1000, equation (4.3).

From (3.1), it is easy to see that the upper bound of the initial conditions in our training dataset is 1 + 2 
∑kmax

k=1
1
k ≈ 6.86. 

To investigate the generalization of our model to problems that have a magnitude that is outside of the range of training 
data, we amplify the initial condition (4.2) by 1000 times. That is, in this test we take the initial condition to be

f0(x, v) = 1000

(
c1

(2πθ)1/2
exp

(
− (x − x0)2

2θ

)
+ c2

)
(4.3)

with the same parameters c1, c2, x0 and θ as in (4.2). For the original initial condition (4.2), the ML closure model based on 
the LG and LGNM both predict the solution well, see Fig. 4.15 (a). The relative L2 errors are 1.05 ×10−4 and 6.42 ×10−5 for 
LG and LGNM approaches respectively. When we amplify the initial condition by 1000 times, the two models still generate 
good predictions, see Fig. 4.15 (b). The relative L2 errors are 3.89 × 10−4 and 6.38 × 10−5 for LG and LGNM approaches 
respectively. This implies that the model without the scale invariance constraint automatically learns this invariance property 
from data. Nevertheless, enforcing the scale invariance property will lead to better results when the magnitude of the 
problem initial conditions is very different from that used in the training dataset.

We also test the performance of the ML closure model with non-periodic boundary conditions. In the initial Gaussian 
distribution (4.2), we take c1 = 0.5, c2 = 10−6, x0 = 0.6 and θ = 0.005. The reflective boundary conditions are imposed 
on both the left and right boundaries. Assume that the grid points in the interior domain are x j = ( j + 1

2 )	x with j =
0, · · · , Nx − 1. To treat the reflective boundary conditions for the moment closure system, we set several ghost points 
outside of the domain: x j = ( j + 1

2 )	x with j = −3, −2, −1 on the left and j = Nx, Nx +1, Nx +2 on the right. In each time 
step, the moments at the ghost points are updated by

mk(x j, tn) = (−1)kmk(x− j−1, tn), j = −3,−2,−1 (4.4)

and
15
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Fig. 4.16. Example 4.3: Gaussian source problem with reflective boundary conditions. Numerical solutions of m0 , m1, m4 and m5 at t = 0.5 with N = 5 in 
the optically thin regime (σs = σt = 1).

mk(x j, tn) = (−1)kmk(x2Nx− j−1, tn), j = Nx,Nx + 1,Nx + 2. (4.5)

The numerical results with N = 5 in the optically thin regime (σs = σt = 1) are shown in Fig. 4.16. We observe that the 
PN closure has large deviations from the exact solution to the kinetic model. The F PN closure is more accurate than PN in 
m0 and m1, but has relatively larger error compared to that of the LGNM model, especially near the boundaries. Moreover, 
the LGNM model predicts the higher order moments m4 and m5 much more accurately than both the PN and F PN models.

We also remark that there exist a lot of work on inflow boundary conditions (including vacuum boundary condition as 
a special case), see e.g. [21,8,14]. This remains an open problem, even for analytical moment models. This is not the focus 
of the current paper and we leave it to our future work.

Example 4.4 (higher wave number test). To further test the generalizability of our ML closure model, we consider initial 
conditions across a range of wave numbers that extends outside of the wave numbers present in the training data:

f0(x, v) = 2+ sin(2πkx+ φ). (4.6)

Here k is the wave number of the initial data and φ is a random number from [0, 2π). In the test, we take k = 1, 2, · · · , 25. 
This is a challenging test, since the magnitudes in the training data in (3.1) decay with the wave number, so it is naturally 
difficult for the well-trained model to capture the correct behavior for the initial condition in (4.6) with non-decaying 
magnitudes. We test the optically thin regime, i.e., σs = σt = 1, since the intermediate regime and the optically thick regime 
are relatively easy to capture for the moment closure model. We run the simulations to time t = 0.4.

Fig. 4.17 shows the relative L2 error of m0 when using our LGNM closure model with N = 5. Overall, the method 
performs well for these waves that are outside of the training data. For low wave numbers (1 ≤ k ≤ 10), the error stays 
16



Fig. 4.17. Example 4.4: higher wave number test. relative L2 error of m0 at t = 0.4 and optically thin regime σs = σt = 1. The number of moments in the 
system is N = 5.

Fig. 4.18. Example 4.5: two-material problem. Numerical solutions of m0, m1, m4 and m5 at t = 0.4 with N = 5. We take ν = 20 in the F PN closure. The 
gray part in the middle is in the optically thin regime and the other part is in the intermediate regime.

in the magnitude of 10−4 to 10−3. For high wave numbers (11 ≤ k ≤ 25), the error slightly increases and saturates in the 
magnitude of 10−3 to 10−2. This shows that our ML closure model generalizes well when the initial conditions are outside 
of the training data.
J. Huang, Y. Cheng, A.J. Christlieb et al. Journal of Computational Physics 453 (2022) 110941
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Fig. 4.19. Example 4.5: two-material problem. Numerical solutions of m0, m1, m4, m5, m8 and m9 at t = 0.4 with N = 9. We take ν = 20 in the F PN closure. 
The gray part in the middle is in the optically thin regime and the other part is in the intermediate regime.
18
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Table 4.1
Example 4.5: two-material problem. The relative L2 errors of m0 and mN at t = 0.4 with 
N = 5, 6, 7, 8, 9. We take ν = 20 in the F PN closure.

N
Relative L2 error of m0 Relative L2 error of mN

PN F PN LGNM PN F PN LGNM

5 8.61e-03 9.55e-04 7.28e-04 1.14e+00 7.72e-01 6.06e-01
6 4.93e-03 6.40e-04 6.74e-04 1.01e+00 7.79e-01 7.81e-01
7 5.84e-03 6.83e-04 5.71e-04 9.36e-01 7.66e-01 1.13e-01
8 5.56e-03 6.78e-04 4.52e-04 9.03e-01 7.68e-01 8.92e-02
9 4.00e-03 5.25e-04 4.21e-04 8.24e-01 7.71e-01 5.06e-02

Example 4.5 (two-material problem). The two-material problem models a domain with a discontinuous material cross sec-
tions [33]. In our problem setup, there exist two discontinuities 0 < x1 < x2 < 1 in the domain, and σs and σa are piecewise 
constant functions:

σs(x) =
{
σs1, x1 < x < x2,

σs2, 0 ≤ x < x1 or x2 ≤ x < 1,

and

σa(x) =
{
σa1, x1 < x < x2,

σa2, 0 ≤ x < x1 or x2 ≤ x < 1.

Specifically, we take x1 = 0.3, x2 = 0.7, σs1 = 1, σs2 = 10 and σa1 = σa2 = 0.
In Fig. 4.18 and Fig. 4.19, we compare our LGNM moment closure with the PN closure and the F PN closure for N = 5

and N = 9, respectively. The gray background region is in the optically thin regime and the white background region is in 
the intermediate regime. Here, we tune the parameter ν in the F PN closure (2.7) in the range of [1, 100] and find that 
ν = 20 is the optimal parameter for the best performance of m0 in F PN closure. For both N = 5 and N = 9, we observe 
that the PN closure has large deviations from the kinetic solution in the optically thin portion of the domain, see the gray 
part in Fig. 4.18 and Fig. 4.19. As a comparison, in the ML closure and the F PN closure, the low order moments m0 and 
m1 agree well with the kinetic model, see Fig. 4.18 (a) and Fig. 4.18 (b) for N = 5 and Fig. 4.19 (a) and Fig. 4.19 (b) for 
N = 9. For the high order moments, the ML closure behaves slightly better than the F PN closure in m4 and m5 for N = 5, 
see Fig. 4.18 (c) and Fig. 4.18 (d). Moreover, for N = 9, the ML closure behaves much better than the F PN closure in the 
high order moments m4, m5, m8 and m9. This illustrates the potential for better performance of our ML closure over the 
traditional approaches including the PN and F PN closures, especially for the case of capturing the higher order moments.

We further investigate the performance of the ML closure quantitatively. In Table 4.1, we show the relative L2 errors of 
m0 and mN moments at t = 0.4 with N = 5, 6, 7, 8, 9. We first note that all three closure models show convergence with an 
increasing number of moments. Second, we note that for the zeroth order moment m0, the F PN closure and the ML closure 
have similar performance, and both are more accurate than PN closure. Third, we note that for high order moments mN , 
the ML closure is much more accurate than both the PN and F PN closures.

5. Conclusion

In this work, we investigate the moment closure problem for the RTE in slab geometry and learn a closure relation from 
data. Instead of learning the moment itself, we use neural networks to directly learn its gradient. This new approach is 
consistent with the exact closure we derive for the free streaming limit and also provides a natural output normalization. 
Moreover, we incorporate the scale invariance of the closure model into the neural networks, which brings better gener-
alization and performance, especially when applied to initial conditions that have their magnitude outside of the training 
data. A variety of benchmark tests, including the variable scattering problem, the Gaussian source problem and the two-
material problem, were investigated. All tests show that the Learn Gradient ML closure model has both good accuracy as 
well as that the ML closure model using a simple training procedure has a strong generalization property, i.e., we did not 
need additional training to maintain accuracy even when applied to problems with discontinuities in the scattering cross 
section.

We also remark that the methodology of learning the gradients can be generalized to the multidimensional case. In this 
case, we would relate the spatial derivatives in each direction of the higher order moments to the derivatives of the lower 
order moments in all the spatial directions. We are currently working on this topic and hope to report the progress in the 
near future.

Finally, we point out that hyperbolicity is an important property in moment closure models, which is difficult to enforce 
for traditional closure models [9,41] as well as ML models [25]. Our current ML closure model is not able to preserve 
hyperbolicity and thus have some numerical instabilities. How to incorporate hyperbolicity in the ML closure model is 
certainly an interesting topic and constitutes our ongoing work [24,23].
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