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Cooperative small harvesting robots, mimicking a group of human pickers, have the poten-
tial to significantly reduce labor dependence in strawberry production. A tri-layered algo-
rithm is investigated to effectively assign rows to robots with each robot incentivized to
maximize its total number of picked strawberries within the fleet’s harvesting time. The pro-
posed algorithm consists of a decentralized local auction and negotiation strategy as the
primary phase with a centralized fallback algorithm that guarantees an assignment. The
salient features of the algorithm are reduced communication time, scalability, constant
time complexity in the decentralized phase, and ease of implementation. The proposed algo-
rithm is evaluated in a Monte Carlo simulation and the superior performance (e.g., signifi-
cantly reduced computational time) is observed when compared with a centralized
approach. It is expected that this row negotiation algorithm can address an important

e-mail: yunjun.xu@ucf.edu

gap in strawberry harvesting via cooperative, small harvesting robots.
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1 Introduction

High production costs, increasing populations, and labor short-
ages have driven the demand for automation in the agricultural
industry [1-3]. Many operations in agricultural fields, such as
weed control [4] and harvesting [5], have been or are being auto-
mated. Specialty crops, such as strawberries, are a research and
engineering focal point of automation [6]. However, it is challeng-
ing to use robotics in some strawberry field operations which
require more control and dexterity, such as harvesting, than grains
or field crops [7]. To date, most strawberries are manually har-
vested, accounting for over 25% of the total production costs
[7.8]. In Florida, many strawberry growers reported labor shortages
while crops are in season [8], resulting in some of the yield being
abandoned. Although autonomous harvesting has shown promising
results in greenhouse conditions [9-11], advancements in field set-
tings are quite limited. To increase the harvesting efficiency, indus-
try players such as Agrobot” and Harvest Croo” developed robotic
platforms with multiple independent harvesters that span the width
of several strawberry rows. However, these approaches have fore-
seen inadequacies in the long run such as transportation difficulty,
prone to single-point-of-failure, significant downtime impact, low
platform flexibility, and low adaptation to field variations. It
becomes natural to utilize cooperative, small robotic platforms in
strawberry harvesting, analogous to a group of human pickers. Nev-
ertheless, multirobot systems must address additional technique
challenges, one of which is effectively scheduling a robot to a
row in real-time.

So far, all research in scheduling can be broadly categorized as
centralized or decentralized. To the best of our knowledge, central-
ized approaches are popular in solving robotic platform scheduling
problems in agricultural fields, mainly due to the possibility that not
many robots, if multiple robots are present, would work in one field
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at the same time [12-18]. For example, an automatic system for
vineyards [12] utilizes a central computer to assign paths for
robots to irrigate high-priority vines. Restricted by the layout of
vineyards, robots can only change rows at row headlines [12,16].
In the case of an herbicide-spraying robot, task sets are assigned
from a central computer that generates random solutions, improving
at each iteration and converging on a set of assignments [13]. Using
a cost matrix to assign tasks in a centralized approach can account
for external factors like crop rotation, weather constraints, and
urgency to harvest [14]. Agricultural surveillance drones can have
flight paths calculated and assigned via a centralized computer
[18], sometimes assisted by negotiations among agents [17].

Decentralized approaches such as bundle algorithms, greedy
algorithms, and auction algorithms are widely seen in other applica-
tion domains [19-21]. Choi et al. [20] proposed a two-layer decen-
tralized algorithm to optimally assign multiple tasks to each agent
with applications in office cleaning and building emergency survey-
ing [19]. In those studies [19,20], each agent generates a bundle list
via an auction algorithm in Phase 1, and conflicts are resolved via a
consensus approach in Phase 2. Auction algorithms involve a
bidding process where tasks are assigned based on the associated
values [21], and the process is overseen by a centralized computer
to reduce communication time and achieve consensus.

In this paper, a tri-layered negotiation algorithm is proposed for
real-time scheduling consisting of a decentralized bidding process
between neighboring robots (layer 1 and layer 2) and, if needed, a
centralized algorithm afterward (layer 3). In layer 1, robots deter-
mine if they are able to continue harvesting. Layer 2 contains two
algorithms: one for robots bidding to help neighbors and another
for robots overseeing the bidding process initiated by its neighbors.
If a solution cannot be obtained in the decentralized layer, the Hun-
garian Algorithm [22] is utilized in layer 3 to assign tasks to each
robot requesting a new assignment. Robots are incentivized to
cooperate like human pickers to harvest the field in minimal time
while collecting as many strawberries as they can. However the
robots are subjected to motion limitations due to row size and
their own capabilities.

The work in this paper proposes a row allocation negotiation
algorithm to address an important gap in strawberry harvesting
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via cooperative, small harvesting robots. The technical contribu-
tions of the study are summarized here. (i) The decentralized part
of the algorithm is scalable. The complexity of the centralized
part is O(N?), but the probability of using it is low. (ii) The compu-
tational time is significantly reduced as compared to centralized
approaches. (iii) The algorithm is easy to implement.

The remainder of the paper is organized as follows. In Sec. 2, the
row allocation problem for robots in a strawberry field is defined
with a list of assumptions. The algorithm is discussed in Sec. 3,
and its communication, convergence, and computational complex-
ity analyses are given in Sec. 4. The proposed approach is validated
in a Monte Carlo simulation and its performance is discussed in
Sec. 5. Conclusions are given in Sec. 6.

2 Problem Definition and Assumptions

There are a total of N, rows in a strawberry field. For a typical
field, two lines of trees are planted in every row, with mostly
uniform distances between trees. There are N, harvesting robots
in the fleet, each with identical functionalities and physical
characteristics.

Figure 1 depicts a potential configuration of robots in a field, in
which robots, their velocities, and the rows they occupy are
shown along with descriptive information about the dimensions
of the rows and the sets they belong to.

DEeriNITION 1. The Ny rows are grouped into three sets: set €2,
includes unharvested rows, set €2, includes rows currently under
harvesting, and set £, includes rows that have already been
harvested.

DEFINITION 2. " and ¥~ denote the rows that are the right and left
neighbors of row r in the same set, respectively.

DerINITION 3. The row that robot i is currently in is denoted as
row(i), and the number of robots in row r is defined as num(r).

The following assumptions and constraints are considered in the
scheduling algorithm development.

AssuUMPTION 1. Similar to a human picker, the total number of
strawberries robot i harvested n; , is proportional to the overbed
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Fig. 1 Sketch of a farm and harvesting robot fleet configuration
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robot will try to maximize this length within the total harvesting
time. This assumption incentivizes a robot to help harvest a neigh-
boring robot’s row instead of going to a new, unharvested row that
is far away from its current position.

AssumpTION 2. Robot i, i=1, ..., Ny, has constant but distinct
nonharvesting and harvesting speeds Vi, and v;p (Viun>Vin),
respectively.

ASSUMPTION 3. Robot i, i=1, ..., Ny, will continue to harvest for

as long as they can, e.g., they still have sufficient battery life and
rows are available for harvesting (2, # @ or Q, # @).

AssUMPTION 4. Robot i has a finite basket capacity C;, i=1, ...,
Ny, (i.e., the maximum number of strawberries) and can monitor
the current number of strawberries in the basket n;p,. The robot
delivers the basket to the collection truck when the basket is full:
¢;=n;p/C; = 1. Basket delivery times are calculated by dividing
the distance between a robot and the collection truck by its delivery
speed.

ASSUMPTION 5. A robot always delivers its basket to the collection
truck after completing a row and returns to the current row before
requesting a new assignment.

ASSUMPTION 6. Robot i can calculate the distance to the end of
row(j), meaning d;j, Vj € £,, U L,. The distance to each row is
the known width of each row multiplied by the number of rows
between the robot and the row of interest. The turning distance is
relatively small, thus omitted here.

AssuMPTION 7. All robots in the fleet spend the same amount of
time T in the farm. In reality, all robots in a fleet will be transported
at the same time between a field and a storage facility. This implies
that no robot should be idle if the overall objective is to minimize
the harvesting time.

AssuMPTION 8. There are collection trucks at both ends of the
rows, allowing a robot to harvest up or down a row and deliver
its basket to the truck on the closer end, assuring no motion conflict
between two robots in the same row.

ASSUMPTION 9. No more than two robots are allowed per row
(harvesting in opposite directions), meaning num(r) <2. A robot
will deliver the basket to the collection truck on its side after finish-
ing a row, according to Assumption 8.

AssumpTION 10. There are many nonharvesting events, such as
moving toward a collection truck, repairing the powertrain, and
replacing the onboard battery. Only the nonharvesting related trav-
eling is modeled, and all the other nonharvesting operations will be
neglected.

The objective of the algorithm is to allocate a row to a robot when
necessary in a decentralized fashion for the fleet to finish harvesting
in the minimum time, i.e., min{7’}. Based on Assumption 7, T;=
T=T;,+T;m i=1, ..., Ny, denotes the time robot i spent on
the farm including the times spent in harvesting operations T,
and nonharvesting operations T;,,,. Following Assumptions 1 and
2, T;=L;p/Vip+Li Vi s, in which L; ,;, is the total distance robot
i travels in nonharvesting operations. To minimize 7;, we seek to
minimize the time when robot i is in nonharvesting operations.
This can be done by reducing the distance traveled with constant
speeds (Assumptions 2 and 10), reinforcing the incentive for
robots to help nearby neighbors instead of traveling to a new row
further away from its current row. Therefore, the performance
index for the allocation algorithm to minimize is

sup{T1un> Touhs - - > TNy } (D

The optimization is subject to the constraints implied in the afore-
mentioned assumptions. The nearest-neighbor topology is chosen
for the communication considering typical commercial strawberry
farm size, off-the-shelf wireless communication range, and
number of harvesting robots in a fleet. Robot i, i=1, ..., Nj,, can
only communicate with its neighboring robots in row(i*) and
row(i”), as well as the truck when necessary. The maximum
number of bid iterations n,,, among neighboring robots is set to
two, but can be adjusted by users.
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Table 1 Algorithm 1 in decision layer 1

Read in information from an onboard file
repairs are needed”, etc.

LTS

1

2 if “no battery”,

3 Stop harvesting, wait for maintenance

4 elseif 4; =100%

5 Deliver strawberries to a truck

6 If 3 rows in [row(i)~, row(i)] U [row(i), row(i)*], and these rows

€Q,

7 go to the nearest row which belongs to ,,; break; end

8 Enter Algorithm 2 in Decision Layer 2

9 elseif =1

10 Deliver strawberries to a truck, go back to the current position of
row(i) Continue harvesting

11 else if “any neighboring robot sent an offer”

12 Enter Algorithm 3 in Decision Layer 2

13 else
14 Continue harvesting
15 end

3 A Decentralized, Auction-Based Row Allocation
Algorithm

The algorithm is divided into three decision layers comprised
four algorithms. The first layer’s algorithm executes every time a
robot finishes harvesting a distance equal to its body length /;. If
robot i receives a request from its neighbor in row(j) € [row(i)”,
row(i)~], it will not process the request until it finishes its current
harvesting distance (e.g., [;= 1m).

3.1 Algorithm 1 in Layer 1. The algorithm begins in layer 1
(the pseudo code in Table 1), which is triggered when robot i har-
vests a distance /; and reads in information from its file to decide
if it should continue harvesting, etc. (line 1 of Table 1). Data in
the file, updated by robot i itself, its neighboring robots, and/or
the collection trucks, contain information about the farm, the pro-
gress, and condition of the robot fleet, and the inquiries sent by
its neighboring robots. A robot will check for conditions that
render it unable to harvest (lines 2 and 3 of Table 1). If robot i is
at the end of its row, i.e., ; = 100% (line 4 of Table 1), it delivers
its basket to the collection truck and returns to its row (Assumption
5). Robot i will determine which row to harvest next (lines 68 of
Table 1) by either going to a new nearby row or entering Algorithm
2 to offer help to neighboring robots. Line 9 of Table 1 comes
directly from the basket capacity definition in Assumption 4. If a
robot receives an offer for a neighboring robot to come help (line
11 of Table 1), it enters Algorithm 3 to determine if this offer
will be accepted. Otherwise, robot i will continue harvesting (line
14 of Table 1, Assumption 3).

3.2 Algorithm 2 in layer 2. In Algorithm 2, robot i initiates the
bidding process by sending time incentives to its neighboring robots.
Time incentives are used as currency in an auction process, where
smaller time incentives are more valuable. The neighboring robots
that receive time incentives will oversee the auction and determine
the appropriate outcomes. We define n,,, as the number of times
robot i offers to help its neighbor. Robot i offers to help one of its
neighboring robots in row(j) € [row(i)*, row(i)"] and waits long
enough for robot j to respond (e.g., #. ranging between 1 and 3 s)
(line 5 of Table 2). The time incentive used in Algorithm 2 is calcu-
lated as follows. Per Assumption 5, arobot has an empty basket when
calculating time incentives, therefore it does not need to factor in
basket delivery times. The remaining fraction of row(j) that has not
been harvested yet is defined as L; (1 — 4;), where L; is the length of
row(j) and 4, is the percentage of the overbed length harvested.
The distance robot i covers in transit is the distance between robot
i and the end of row(j), d; ; (Assumption 6), plus L(1 — 4,)/2. Further-
more, the time needed for both robot i and robot j to finish harvest-
ing the row where robot j is in is counted in the time incentive.
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This yields the time incentive for robot i to help robot j,
tl =[dij + Li(1 = 4)/2)/vipn + Li(1 — )/ (vip + v;;),  consistent
with Assumption 9. If robot i receives positive responses (indicating
it has won the bid) from both neighbors, the neighbor corresponding
to the smaller 7/ will receive help from robot i, based on Eq. (1), and it
will update Q,, €, and Q,. If neither neighbor sends a positive
response initially, robot i will offer to help a second time (72,., = 2).
If it has not won a bid in the second iteration, it will enter the next
decision layer. The bid offering process is shown in lines 5-16 of
Table 2.

3.3 Algorithm 3 in layer 2. In Algorithm 3 (Table 3), robot i
has finished harvesting a section of length /; and checks to see if a
neighboring robot in row(j) € [row(i)*, row(i) "] has offered to help
(line 9 of Algorithm 1). Since the time incentives sent by
the robot(s) on the far side of a row will be larger than that of the
one(s) just on the near side and its motion is constrained by the
field layout, it will decline the help offer immediately, and only
focus on selecting between those that are closest to itself. Robot i
compares the time incentive tj’ to the time it would spend harvesting
the remainder of the row by itself # and informs robot j if it won or
not. If more than one time incentive was received from robots in dif-
ferent rows and robot j declines to come help after winning a bid,
robot i will select the other time incentive tj’ accordingly. If the

Table 2 Algorithm 2 in decision layer 2

1 If there is a row k € Q, between row(i) and row(j), j=[i*, i"]
2 go to row k; break; end
3 Set 1y =1
4 while n,,, <2
5 Calculate and send tl-j to robot j, j= [i*, i"], and wait for 7. seconds
6 if a positive response is received from both robots j=i* and j=i"
7 Select the smaller one of [#i" ¢ ]
8 Inform robot j it will receive help, and the other robot will not
9 Update Q,,, Q,,, and Q,
10 Go to row(j); break
11 else if only one neighboring robot in row(j) sends a positive response
12 Inform robot j it will receive help
13 Update Q,, €, and Q,,
14 Go to row(j); break; end
15 else if n,,,=2
16 Enter Algorithm 4 in Decision Layer 3; break
17 end
18 Myeqg=Nreg+ 1
19 end
Table 3 Algorithm 3 in decision layer 2
1 Set g =1
2 while n,,, <2
3 Read in the time incentives t}
4 if there are two robots in either row(j) that send tj’f
5 Inform the robot(s) on the far end of row(j) that it has lost the bid
6 for remaining tj’f received, starting with the smaller t]’f, j=t, i)
7 if tj’ <t
8 Inform robot j it won the bid
9 Wait for ¢. seconds
10 if robot j confirms it will help
11 Inform the other robot that it losts the bid; break; end
12 end
13 else
14 Inform robots j they lost the bid; break
15 end
16 end
17 Myeqg="Nreg+ 1
18 end
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Fig.2 (Scenario on the left) Robot i selects unharvested row k as the new assign-
ment. (Scenario on the right) Robot i wins the bid to help robot j and selects row(j) as

the new assignment.

second neighboring robot also declines to help, robot i will not
be helped. A robot offering help will repeat the offer a second
time if it fails to win a bid in the first iteration, therefore it is neces-
sary for robot i to check for a second offer before resum-
ing Algorithm 1. In this algorithm, the time incentive value for
robot i to harvest its current row by itself is computed as
1 = Li(1 — 2;)/vi. It is noting that the harvesting time is included
in the time incentive calculated in Algorithm 2 so to compare
with robot i itself in Algorithm 3.

Figure 2 is shown with two example scenarios of a robot select-
ing rows affiliated with the lowest travel time as an unharvested row
(left), and a partially harvested row occupied by a neighbor (right).

3.4 Algorithm 4 in layer 3. Algorithm 4 begins when a robot
fails to receive an assignment from its neighbors and requests an
assignment from the collection truck. The truck’s computer will
wait 7, (e.g., between 1 and 3) seconds after receiving the first
inquiry to allow other robots to submit requests before sending out
the list of rows in Q,, and Q,, (line 3 of Table 4). The computer will
then wait for 7. seconds for the robots to calculate and send time
incentives. The time incentives are used to determine the row

Table 4 Algorithm 4 in decision layer 3

Receive a row request from a robot

Wait for #,, seconds for more robots to send requests

Send out Set Q,, to robots that requested a new row

Wait 7, to receive t/, j € Q, from robots requesting a new row
Optimal assignment using the Munkres Assignment Algorithm [22]
Send the row assignments to all robots that requested a new row
Update Sets Q,,, Q;,, and Q,

NN AW =
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assignments via the Munkres Assignment Algorithm [22] in line 5
of Table 4. The collection truck computer will then update sets €,,,
Q, and Q,,, shown in line 7. As mentioned before, Algorithm 4 is
centralized; however, this algorithm has a low chance of being
used. If the candidate row j belongs to €, the time incentive for
robot i to move from its current row end to that row is
t! = yV=rovOlg, ; /v p. Mimicking a human picker (Assumption 1),
the discount factor y> 1 is used to show the hesitation of a robot to
go to a remote row. If the candidate row j belongs to €2, the time
incentive for robot i to move from its current row end to the remaining
middle of row j is #/ = yU="Olg; ; /v,y + Li(1 — 4)/2/ Vi

Here, the tri-layered, decentralized auction-based row allocation
algorithm is abbreviated as DARA, and the decision process is
shown in Fig. 3.

4 Algorithm Analyses

4.1 Communication Complexity. Information will be
exchanged among robots and/or trucks periodically. A robot will
not update its global information such as the row sets until it
reaches a truck. In the communication complexity analysis (the
worst case scenario), we assume that any information regardless
of its type (e.g., Booleans, integers, or floating point numbers) is
stored as one unit.

In Algorithm 1 (Table 5), robot i will read information from its
onboard file, which is updated by the collection trucks and its neigh-
bors. The only information that will be transmitted from robot i to a
truck is the robot index (one unit) and a Boolean (one unit) indicat-
ing if repairs, a battery replacement, etc., are needed.

In Algorithm 2, robot i sends an array of three units (a time incen-
tive, its corresponding row, and the robot index) to a maximum of
two available neighbors. The neighboring robots respond by each
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Table 5 Communication complexity
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1 0 0 2 0
2 16 8 3 0
3 0 0 N,+3 N,+3
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[_4
2
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2
o
o

Fig. 4 Communications between robot i and truck in Algorithm
4 (layer 3)

sending two units of information (a Boolean and its index). If no bid
is won, robot i resends the offers as three units of information and
receives two units of information from each neighbor. Robot i then
responds to each of its neighbors with two units of information and
informs the truck of the row status changes by sending three units of
information (the row that has been completed, the row it is moving
to, and its index).

In Algorithm 3, robot i evaluates up to four time incentives sent
by neighbors. It will immediately respond to two neighbors with a
Boolean and an index (two units) to remove them from the bidding
process and will send an additional two-unit response to the robot
with the smallest time incentive. Robot i then receives a Boolean
response and index (two units). Two units will be sent to its other
neighbor if the initial response declines the offer, prompting it to
send a two-unit response.

In Algorithm 4, as shown in Fig. 4, the collection truck receives a
robot index and an integer prompting the algorithm to execute (two
units) from a maximum of Ny, robots. Then the truck will send N,
integers indicating which rows are unharvested (N, is the number of
rows in €,,) and the truck index to each of the N, robots. It will then
receive the robot index and N, time incentives corresponding to the
unharvested rows from the N, robots and will send back two units
of information to each robot containing the robot index and an
integer representing the new row assignment.

4.2 Convergence Analysis. Consider a general instance where
ny robots, 1<n; <N, finished their rows and requested new

ASME Letters in Dynamic Systems and Control

Interactions among decision layers

assignments at around the same time. According to DARA, a
robot requesting a new row will always receive an assignment if
Q,#@orQ, #@.If Q, =g and Q, = @, the robot will wait in
the farm until all robots finished their current rows.

The maximum time for the algorithm to converge is defined as
the time needed for all the related robots (7, robots, their neighbors,
and the trucks) to execute the algorithms including communication
time, code execution time, and waiting time. Two cases are consid-
ered here. In case 1, a robot is seeking an assignment; in case 2, a
robot receives a message from its neighbor offering help. The
time needed for a truck to run its algorithm is included in these
two cases.

Case I: The robot enters Algorithm 2 to offer help to its neigh-
bors and will enter Algorithm 4 if it does not win a bid. The
Munkres Assignment Algorithm [22] in layer 4 guarantees an
assignment for each robot requesting a new row if one is available.
Thus, the robot will have a fixed number of instances of communi-
cation to obtain an assignment. The waiting time and the code exe-
cution time in all three layers are fixed and upper bounded.
Therefore, the maximum time for a robot to obtain a new assign-
ment is finite.

Case 2: The robot enters Algorithm 3 overseeing two iterations of
the bidding process for up to four neighbors. In each iteration, a
robot completes a fixed number of instances of communication
for each neighbor. Combining the initial reception of help messages
and the instances of rejecting robots on the far sides, there are also a
fixed total instances of communication. The process finishes after
the second iteration regardless of the results of the bidding
process. Therefore, a robot receiving a help offer will oversee the
bidding process in finite time.

Combining these two cases, the algorithm will converge in finite
time.

4.3 Computational Complexity. The computational com-
plexities of the two cases mentioned in Sec. 4.2 are analyzed here.

Case I: The CPU time used in calculating the time incentives is
constant since only addition and multiplication operations are used.
Communicating information about new rows is of constant com-
plexity. Calculating time incentives corresponding to these rows
is of O(n,) complexity, where n, is the number of rows related to
n; robots and is bounded by the size of the strawberry field. The
complexity of the centralized process, the Munkres Assignment
Algorithm, has a O(ng) time complexity [22], where ns is the
larger of the number of rows in Q, and Q, and the number of
robots requesting a new assignment. Therefore, the upper bound
of time complexity for case 1 is O(n3).

Case 2: The robot receives a help inquiry and oversees the
bidding process, which is upper bound by the complexity of Algo-
rithm 3 process. Reading in the time incentives, comparing these
values, and communicating the results, each have constant time

JULY 2022, Vol. 2 / 031007-5



Table 6 Settings in the Monte Carlo simulation

Values
# of stops per row 100
Width of each row (m) 2
Distance between the truck and the nearest row (m) 2
Basket capacity (# of strawberries) 500
Delivery speed (m/s) 2.5
Harvesting speed (m/s) 0.1
Table 7 Independent variables in the Monte Carlo simulation
Values
h (boolean) {0,1}
n (%) (floating) [0,100]
¢ (%) (integers) [0,100]
row(i) (integers) [0,30]
A of each robot (%) (integers) [0,100]
# of harvesting robots [5,80]
# of rows [30,480]
7 2

complexities. The process is limited to two iterations, resulting in an
overall constant time complexity.

Combining both cases, the complexity of the centralized part in
DARA is O(ng), while that of the decentralized part is O(n;). The
chances of using the centralized part are low.

5 Simulation Results and Discussions

5.1 Simulation Setup. The Monte Carlo simulation aims to
evaluate the ability of DARA to produce a new row assignment
within the constraints. Table 6 lists the constant settings related to
a simulated farm and harvesting robot fleet.

Different scheduling scenarios are mimicked by different combi-
nations of the independent variables shown in Table 7. For example,
a “repair” event is triggered when the Boolean representing a
mechanical failure, A, is set to 1 or the battery life n (between 0%
and 100%) is below a threshold. The determination of /4 is biased
in favor of 0, as robots are not expected to fail frequently. Variables
such as £, 4, and 5 are assigned with a normal distribution centered
at 50%. When the variable indicating the percent fullness of a
robot’s basket, £, is at 100%, it will trigger the robot to deliver
the basket to a nearby collection truck. The number of robots in
the fleet is proportionate to the size of the farm ranging between
30 and 480 rows.

Each simulated robot is assigned to a randomly selected row;
however, no more than two robots will be assigned to the same
row. To reliably trigger a row assignment event, we let robot i
always be at the end of its row, with other robots in the fleet

25 T
3 20
£ "Benchmark" -
£ 15 7
= ‘
510 F
§ sl o DARA
%< E
m o I . i
240/40 480/80

0_60/10
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Fig. 5 CPU time complexity comparison

given a random overbed position A ranging between 0% and
100% of the row length. Since robots are likely to progress
through the field near the rest of the fleet, robot i in row(i) has
two available neighbors, with other robots being randomly assigned
to nearby rows.

Q,, Q,, Q,, and time incentives are the dependent variables,
which are computed based on the independent variables in
Table 7. Set Q, is determined by row(i) in Table 7 and set Q,
includes rows randomly selected from all the rows excluding
those in set Q,,.

5.2 Results and Discussions. The Monte Carlo simulation of
DARA is executed for 100,000 trials and compared to a benchmark
central process (Benchmark). Benchmark utilizes only the central-
ized Munkres Assignment Algorithm [22] to award assignments
from a set of available rows and is evaluated under the same condi-
tions as DARA. The actual row assignment for each simulation run
is not shown which is not crucial in demonstrating the advantages of
the algorithm against the benchmark algorithm.

In Table 8, Benchmark and DARA assignments and execution
times are observed for varying farm and fleet sizes. DARA assign-
ments are globally optimal when they match the Benchmark assign-
ments, which occurs a majority of the time. Discrepancies are
caused by DARA assigning rows within the scope of its neighbors
and Benchmark assigning unharvested rows outside of this range
(e.g., the number of robots in the fleet) in cases where the
overbed distance to travel to the starting point of an partially har-
vested row is significant. In these cases, DARA assignments are
locally optimal. The results of the simulation indicate that, at
minimum, the locally optimal assignment is obtained using
DARA when compared to Benchmark with 100% of trials resulting
in successful row assignments. Figure 5 shows the average execu-
tion times from Table 8 as the numbers of rows and robots increase,
with DARA outperforming Benchmark and displaying much better
scalability. It is worth noting that the waiting times are not included
in the execution times.

Remark 1. The percentage of mismatches between DARA and
Benchmark assignments reduces as y increases since the increase
of y encourages Benchmark assignments to be within the

Table 8 Results of the Monte Carlo simulation

Average execution
time (ms)

Match (%) — high quality

Nonmatch (%)-Low Quality
Nonmatch (%)-Low Quality DARA to

#of Rows #of Robots DARA Benchmark Both assign neighboring row (%) Both assign new rows (%) neighbor Benchmark to new row (%)
30 5 0.061 0.169 72.3 7.80 19.9
60 10 0.081 0.548 80.7 5.10 14.2
120 20 0.164 1.564 80.1 7.10 12.8
240 40 0.590 6.456 78.9 8.80 12.3
480 80 2.449 24.066 78.1 10.0 11.9
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Table 9 Effects of the discount factor on the Monte Carlo
simulation

Match
Nonmatch

DARA to neighbor,

Both assign Both assign

Gamma neighboring row (%) new row (%) benchmark new row (%)
1.1 66.9 7.35 25.7

1.5 80.9 7.12 12.0

2 86.6 7.14 6.25

2.5 90.9 7.33 1.78

3 91.1 7.19 1.77

neighboring range. This effect is shown in Table 9. In this case,
there are 120 rows in the field, with the row width and length to
be 2.5m and 50m, respectively. By increasing the discount
factor, the cases where the DARA results differ from the Bench-
mark results can be reduced to less than 2% of total cases.
Remark 2. Increasing the width of each row reduces the percentage
of mismatches between DARA and Benchmark assignments.
Larger traveling distances between rows results in Benchmark pre-
ferring to assign rows within the neighboring range.

Remark 3. DARA and Benchmark assign rows outside of the
neighboring range more often for smaller fleet sizes since the
decreased span of the neighboring range reduces the traveling dis-
tance to get to new rows.

Remark 4. The DARA algorithm is designed based on the nearest-
neighbor topology. If communication devices with wider ranges are
adopted in the harvesting robot fleet, all-to-all communication
topology and thus centralized algorithms can be used to achieve a
better optimality with some latency. One of the future tasks is the
detailed calculation of latency and bandwidth when using different
communication topologies.

The applicability of algorithm is mainly constrained by the
assumptions listed in Sec. 2. As one example, if Assumption 1 is
invalid, meaning the total number of strawberries harvested is not
proportional to the length a robot covered, the result achieved via
this algorithm may only be a feasible solution. In this case, a sto-
chastic optimization algorithm will need to be considered, which
is beyond the scope of this study. Additionally, if collection
trucks are only present on one side of the field (against Assumption
8), the distance calculation will be different. In this case, the algo-
rithm is still applicable, but the results will be different.

6 Conclusions

The row assignment problem for a fleet of cooperative, small har-
vesting robots in strawberry fields is studied including local negoti-
ations and a centralized fallback algorithm. The algorithm allocates
anew row to a robot based on the time the robot predicts it will take
to complete the row. The algorithm is validated in a Monte Carlo
simulation and compared to a benchmark centralized algorithm.
The results show that the algorithm finds local optimal solutions
and has a lesser computational cost with superior scalability.
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