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The COVID-19 pandemic has highlighted the patchwork nature of disease epidemics, with infection
spread dynamics varying wildly across countries and across states within the US. To explore this issue,
we study and predict the spread of COVID-19 in Washtenaw County, MI, which is home to University
of Michigan and Eastern Michigan University, and in close proximity to Detroit, MI, a major epicenter
of the epidemic in Michigan. We apply a discrete and stochastic network-based modeling framework
allowing us to track every individual in the county. In this framework, we construct contact networks

g{g’ggﬁus based on synthetic population datasets specific for Washtenaw County that are derived from US
Epidemiology Census datasets. We assign individuals to households, workplaces, schools, and group quarters (such

as prisons or long term care facilities). In addition, we assign casual contacts to each individual at ran-
dom. Using this framework, we explicitly simulate Michigan-specific government-mandated workplace
and school closures as well as social distancing measures. We perform sensitivity analyses to identify
key model parameters and mechanisms contributing to the observed disease burden in the three months
following the first observed cases of COVID-19 in Michigan. We then consider several scenarios for relax-
ing restrictions and reopening workplaces to predict what actions would be most prudent. In particular,
we consider the effects of 1) different timings for reopening, and 2) different levels of workplace vs.
casual contact re-engagement. We find that delaying reopening does not reduce the magnitude of the
second peak of cases, but only delays it. Reducing levels of casual contact, on the other hand, both delays
and lowers the second peak. Through simulations and sensitivity analyses, we explore mechanisms driv-
ing the magnitude and timing of a second wave of infections upon re-opening. We find that the most sig-
nificant factors are workplace and casual contacts and protective measures taken by infected individuals
who have sought care. This model can be adapted to other US counties using synthetic population data-
bases and data specific to those regions.

Network-based model

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction Many prevention measures such as hand washing, social dis-
tancing, and quarantine have been instituted, and these have
lowered spread significantly (e.g. (Courtemanche et al., 2020;

Saez et al., 2020)). The wearing of masks and other personal pro-

Coronavirus disease 2019 (COVID-19) has spread rapidly
throughout the world and the United States (US) since it was

declared a global pandemic by the World Health Organization in
March 2020 (World Health Organization, 2020). COVID-19 is an
infectious disease caused by the virus SARS-CoV-2, which arose
in Wuhan, China, in December 2019 (Lai et al., 2020). Studies have
shown that COVID-19 is primarily spread from person to person
through droplets or direct contact (Li et al., 2020; Zhai et al.,
2020). Common symptoms include fever, cough, and shortness of
breath/difficulty breathing (C. of State, 2019; App, 2020). Many
COVID-19 patients require ventilation and/or intensive care
(Grant et al., 2020).

* Corresponding author.
E-mail address: kirschne@umich.edu (D. Kirschner).

https://doi.org/10.1016/j.jtbi.2020.110461
0022-5193/© 2020 Elsevier Ltd. All rights reserved.

tective equipment (PPE) has been a controversial issue in the US
throughout the pandemic, but data shows that it can stop the
spread and lower transmission rates (Howard et al., 2020). It is
not known how effective these measures will be at continuing
to keep case rates low during reopening, and if these measures
can prevent a second wave. Recent modeling studies have
suggested that relaxing restrictions could have disastrous
consequences (Feng et al, 2020). Casual contacts between
individuals, including going to bars, restaurants, and shops have
been associated with driving numbers significantly higher upon
reopening in some states like FL, AZ and CA (Knowles et al.,
2020).
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Mathematical and computational modeling efforts have had an
enormous impact on public health policy for the prevention and
control of COVID-19 in the US and abroad (Jewell et al., 2020;
Adam, 2020). For example, the Institute for Health Metrics and
Evaluation (IHME) model (IHME COVID-19, 2020) has been widely
cited by the media and policymakers. A number of model-based
forecasts received by the CDC have been made available online
(CDC, 2019). The majority of these models are developed to capture
trends and make predictions at the state or nation scale. Modeling
studies utilizing stochastic frameworks have also been used to
emphasize the importance of early contact tracing and surveillance
(Hellewell et al., 2020; Thompson, 2020). A variety of modeling
methods have been used, including statistical models, ordinary dif-
ferential equations, partial differential equations, stochastic mod-
els,and agent-based models. In addition to predicting disease
burden, models are of paramount importance for assessing re-
opening strategies (or “exit strategies”) and quantifying related
uncertainties (Ruktanonchai et al., 2020; Thompson et al., 2020).
Many such questions can only be addressed through modeling.
Outstanding questions and current challenges are nicely outlined
by Thompson et al. (Thompson et al., 2020).

While nation-wide and state-wide trends are clearly impor-
tant, predicting local trends of the COVID-19 pandemic is also
of imminent importance given the high heterogeneity (‘patch-
work’) of the US and the world. Michigan is one of the hardest
hit states in this pandemic in the US so far, with over 58,000 con-
firmed cases and 5,600 deaths as of June 1, 2020 (State of
Michigan, 2020). In addition to hosting University of Michigan
(UM), Washtenaw County is one of the hardest hit Michigan
counties outside of the Detroit metropolitan area. In addition,
many patients from the city of Detroit have been transferred to
UM during the course of the pandemic, raising case numbers in
the hospital system. We have thus chosen Washtenaw County,
MI as the focus of our study and as a template that can be
directly translated to other counties in the US.

In this work, we study COVID-19 in Washtenaw County, MI
using a network-based computational model paired with real-
world data and synthetic population datasets. The model tracks
each individual within the county population in a discrete and
stochastic way. We have recently created this model framework
and used it to study tuberculosis endemic dynamics within Washt-
enaw County, MI (Renardy and Kirschner, 2020). Importantly, this
model is built on synthetic population datasets built by RTI Inter-
national that are consistent with US Census datasets (Wheaton
et al., 2009). Such synthetic population datasets have been incor-
porated into other modeling frameworks such as FRED
(Grefenstette et al., 2013), and have been used to study epidemiol-
ogy of flu-like illnesses (e.g., (Cooley et al., 2010; Lee et al., 2010;
Lee et al., 2010; Lee et al., 2011; Macal et al., 2012; Macal et al.,
2014)). Network-based modeling frameworks utilizing these data-
sets can allow us to simulate realistic scenarios of social interven-
tions since household, school, workplace, and casual contacts are
explicitly accounted for every person. This is especially helpful
when examining strategies related to workforce re-entry and social
distancing.

We are particularly focused on first matching the model to cur-
rent Washtenaw COVID-19 datasets, and second, making predic-
tions that can guide re-opening in such a way as to minimize a
second wave of infections. We use both uncertainty and sensitivity
analyses to consider the effects of 1) different timings for reopen-
ing and 2) different levels of workplace vs. casual contact re-
engagement. Among other suggestions, we predict that casual con-
tacts between individuals drives the magnitude and timing of a
second wave of infections upon re-opening. And thus, we suggest
that an abundance of caution should be taken when re-opening
social and other non-work-related settings.

2. Methods

To study epidemic dynamics of COVID-19, we have taken a dis-
crete stochastic approach, as we believe it provides the most
detailed information about the population for the needs of
addressing questions about behavior modifications. We outline
the model framework, key assumptions, parameters, and how we
derived estimates through model calibration and from available
datasets through the UM COVID modeling group (University of
Michigan Epimath COVID-19, 2020). Model code can be found on
our lab website at http://malthus.micro.med.umich.edu/covid]/.

2.1. Computational model

We have previously developed a network-based model based
on synthetic datasets, and used that model to study the dynamics
of tuberculosis epidemiology in Washtenaw County, MI as a test
case (Renardy and Kirschner, 2020). Briefly, each node in the pop-
ulation network represents an individual in the population under
study, and virus transmission events occur in a stochastic fashion
through person-to-person contacts occurring within shared house-
holds, workplaces, schools, and group quarters, as well as through
casual contacts. This modeling framework allows for direct simula-
tion of school and workplace closures and social distancing efforts,
as it allows us to individually manipulate transmission dynamics
in these different settings.

For our purposes here, we utilize the synthetic population data-
sets based on US Census data for Washtenaw County as we have
done previously (Renardy and Kirschner, 2020); however, we have
translated our network model framework from studying tubercu-
losis to study COVID-19 dynamics. We did this by incorporating
the disease progression dynamics used for COVID-19 as developed
by University of Michigan Epimath COVID-19 (2020) and Brouwer
et al. (2020), as shown in Fig. 1. Additionally, we identified essen-
tial workplaces in the county so that those businesses would
remain open during and after the stay-at-home restrictions (see
Sections 2.1.1 and 2.2 for details).

In the network model, susceptible individuals (S) are exposed to
coronavirus through contact with an infectious individual (I), with
the probability of exposure dependent on the type of contact. For
example, we assume that household contacts are more likely to
lead to exposure than casual contacts, due to both greater frequen-
cies and duration of contacts. Each type of contact (household,
workplace, school, group quarter, and casual) is assigned its own
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Fig. 1. Model flow diagram. Upon exposure, individuals progress from susceptible
(S) to latent (L). Latent individuals can develop mild disease (I1), severe disease (12),
or recover (R) without developing disease. Severely infected individuals will
become hospitalized (H) and may then die (D) or recover (R). Mildly infected
individuals may seek medical care (I1c) before recovering or may recover without
seeking care. Recovered individuals (R) are no longer susceptible to infection.
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contact weight, reflecting the different probabilities of transmission
in these different settings. We discuss in Section 2.2 how contact
weights are determined. Since the time frame of our simulations
is relatively short (less than one year), we use a static network;
i.e., we do not include birth, death, or movement between house-
holds, workplaces, etc.

After exposure, individuals become latent (L) and then can
either recover (R) or progress to becoming infectious (I). Impor-
tantly, we assume that latent individuals do not transmit virus.
This assumption could be modified in the future as data becomes
available on asymptomatic and presymptomatic transmission.
Infectious cases are categorized as severe (I2) or non-severe (I1),
with ‘severe’ designating cases that will lead to hospitalization.
Non-severe cases may either recover without seeking care, or
may seek medical care (I1c) before recovery. Severe cases will lead
to hospitalization (H), after which individuals may either recover
or die (D). Hospitalized patients are no longer able to transmit
virus to others in the community, as we assume that they have
been effectively isolated. Since data is currently unavailable on
transmission within hospital settings, we do not include patient-
to-worker or worker-to-worker transmission in hospitals. We sim-
ulate protective and isolation measures for individuals who are
sick by allowing for reduced transmission from individuals who
have sought care (I1c) or who have severe disease (I12). Finally,
we assume that there is protective immunity and that recovered
individuals (R) are no longer susceptible to disease, as has been
suggested in recent studies (Wu et al., 2020; Altmann et al,
2020). Since our simulations span a relatively short time period,
we do not necessarily assume that this immunity is long-lasting;
we do assume, however, that it lasts for the time period under
study, which is up to nine months for our reopening scenarios.

The model is initialized by randomly assigning a fraction of the
population to be latently infected, and an additional fraction of the
population to be actively infectious. Initial infectious individuals
are split between the non-severe (I1) and severe (I2) compart-
ments according to the fraction of symptomatic individuals who
will be hospitalized (Table 1). We assume that all other individuals
are susceptible at the initial time.

2.1.1. Simulating closures

To simulate the societal changes imposed during the Michigan
state-wide “Stay Home, Stay Safe” order, which took effect on
March 24, 2020 and was replaced with relaxed guidelines on June
1, 2020 (The Office of Governor Gretchen Whitmer, 2020a; The
Office of Governor Gretchen Whitmer, 2020b), we made a number
of assumptions in the model. For parameter value estimations, see
Section 2.2 for details on how we calculated the proportion of
workplaces that are deemed essential and the casual contact

Table 1

weight during the stay-at-home order. Additionally, college dormi-
tories are removed entirely from the model based on the decisions
of UM and other Washtenaw county colleges to suspend in-person
classes. Individuals in other types of group quarters, such as pris-
ons and nursing homes, are able to transmit virus within the cor-
responding group quarter, but are not assigned any casual
contacts in the community at large.

To simulate school closures, the school contact weight drops
immediately to zero on March 16, 2020. We use a step function
for this transition since the closure of public schools occurred on
the same day for all elementary and secondary schools across the
state of Michigan (The Office of Governor Gretchen Whitmer,
2020c). To simulate closure of workplaces, the workplace contact
weight for non-essential workplaces drops linearly to zero over a
period of one week prior to March 24, 2020, when the stay-at-
home order went into effect. This one-week ramp-down period
reflects increasing closures and precautions implemented during
the time between the closure of public schools and the full stay-
at-home order, such as restrictions on the use of places of public
accommodation (The Office of Governor Gretchen Whitmer,
2020d).

A proportion of workplaces selected at random are deemed
“essential”. These were chosen to represent businesses such as gro-
cery stores, pharmacies, hospitals, and others that were not
restricted by the stay-at-home order. We reduced the correspond-
ing contact weights associated with essential workplaces to 50% of
their baseline values during the stay-at-home order due to man-
dated precautions such as use of PPE (e.g., masks) and physical dis-
tancing. This reduction was chosen arbitrarily and could be
modified if data were available on transmission between workers
in essential workplaces before and during the stay-at-home order.

To simulate social distancing effects, the casual contact weight
decreases linearly to a reduced value that is a fraction of the orig-
inal over the same one-week period leading up to the stay-at-home
order. This fraction is a parameter that is varied and calibrated to
match case count data (see Section 2.2).

2.1.2. Other model assumptions

As with any modeling effort, we make assumptions to build and
calibrate the model. In addition to assuming the above disease pro-
gression framework, we make a number of assumptions about
model parameters and the underlying contact network, which we
detail here.

Each individual is assigned between 10 and 50 casual contacts,
which are randomly selected from the population. Further, individ-
uals in large workplaces, schools, or group quarters (i.e., those with
more than 50 members) are assigned between 10 and 50 contacts
chosen randomly among the members. In smaller workplaces,

Fixed parameter estimates. We show here the parameter estimates for the COVID-19 disease progression framework (Fig. 1)) together with their units and references that we
used to estimate their values. Parameter values and definitions are from (University of Michigan Epimath COVID-19, 2020; Brouwer et al., 2020).

Parameter Value Unit References

Basic reproduction number 2 people (CDC, 2020; Li et al., 2020)
Incubation period 5 days (Lauer et al., 2020)
Infectious period 7 days (Young et al., 2019)
Mortality fraction among infected individuals age-dependent - (CDC COVID-19 Response Team, 2019)
Time from symptom onset to death 18.5 days (Zhou et al., 2020)

Fraction who are asymptomatic 0.18 - (Kenji et al., 2019)

Fraction of symptomatic who will seek care 0.5 - (Monto et al., 2014)

Time to seek care (non-hospital) 2.5 days (CDC, 2020)

Fraction of symptomatic who will be hospitalized age-dependent - (CDC COVID-19 Response Team, 2019)
Time from symptom onset to hospitalization 11 days (Zhou et al., 2020)

Duration of hospital stay 11 days (Zhou et al., 2020)

Initial proportion of population latent le-4 - assumption

Initial proportion of population infectious le-5 - assumption
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schools, and group quarters, all members are assumed to have con-
tact with each other. These limits on numbers of contacts are arbi-
trary and can be varied as needed or as data are available.

Hospitalization and mortality rates are age-dependent in our
model, i.e., they are a function of the age of the person in the pop-
ulation. Other parameters are constant across the population, i.e.,
they do not vary from individual to individual. We also assume
that hospitalized individuals do not transmit virus to the commu-
nity. An important caveat is that death occurs in our model only
after hospitalization, and thus we do not account for deaths hap-
pening at home, which have likely been significantly under-
reported in hard-hit areas such as New York City (Tamman et al.,
2020). This allows us to better compare with data on confirmed
COVID-related deaths, since almost all confirmed deaths occurred
in the hospital setting in Washtenaw County; this is possibly due
to low testing rates, particularly early in the epidemic. Thus, the
predicted numbers of deaths in our simulations are likely to be
under-estimates. If we were to model other areas with higher test-
ing and reporting rates, this assumption could be relaxed to allow
for deaths at home.

Importantly, we assume in our model that the latent period is
equal to the incubation period. This simplification is made due to
availability of data on the incubation period and not the latent per-
iod directly. However, it is known that presymptomatic transmis-
sion can occur and may contribute to a significant number of
infections (He et al., 2020; Wei et al., 2020; Ferretti et al., 2020).
The discrepancy between the latent and incubation periods may
have a significant effect on the spread of COVID-19 at the county
scale. Further, while we assume that individuals who have sought
care or who have severe disease will transmit virus at a reduced
rate due to precautionary measures, we do not account for the pos-
sibility of reduced infectivity of subclinical cases such as may be
the case for influenza (Ip et al., 2017). Such model assumptions
may present limitations on the reliability of model-based predic-
tions, and will be revisited in future work.

When comparing model simulations with case count datasets
(Health Department, 2020; Times et al., 2020), as in (University
of Michigan Epimath COVID-19, 2020; Brouwer et al., 2020), we
assume that only individuals who have sought medical care could
possibly be observed. Thus, we estimate the number of observed
cases by taking the sum of cases in the compartments I1c (infec-
tious, sought care) and H (hospitalized), multiplied by their respec-
tive reporting rates (see Section 2.2 for how reporting rates are
estimated). We assume that reporting rates are constant over time.

Many model parameters have been previously estimated
(University of Michigan Epimath COVID-19, 2020; Brouwer et al.,
2020), and are drawn from observational data in other COVID-19
(Lauer et al., 2020; CDC COVID-19 Response Team, 2019; Young
et al., 2019; Zhou et al., 2020; Kenji et al., 2019) or from influenza
studies (Monto et al., 2014), or by using ODE and age-structured
models in comparison with case count and death datasets for
Washtenaw County. These parameters, their estimated values,
and references for these estimates are given in Table 1. In our sim-
ulations, we set these parameters at their estimated values and
vary only the parameters that are unique to our network-based
model of COVID-19, with the exception of hospitalization and
death parameters, as detailed in Section 2.2.

2.2. Model calibration

Our model is tailored to specifically study Washtenaw County,
MI by building a contact network from a Washtenaw County syn-
thetic population dataset developed by RTI International (Public
Health Dynamics Laboratory, 2019). This synthetic dataset consists
of individuals with sociodemographic features (such as age) who
are assigned to households, workplaces, schools, and group quar-

ters such that the population is consistent with county-specific
US Census datasets (Wheaton et al., 2009).

The network model (Fig. 1) is calibrated to match observed
COVID-19 datasets on total cumulative cases, hospitalizations,
and deaths among Washtenaw County residents between the dates
of March 8, 2020 and May 19, 2020. Data are aggregated from
Washtenaw County Health Department (Health Department,
2020), which includes cases, hospitalizations, and deaths, and also
from the New York Times COVID-19 data reports (Times et al.,
2020), which contains numbers of cases and deaths. Data from
Washtenaw County Health Department were collected manually
from the web starting on April 6, 2020; however, some earlier time
points were recovered using the Internet Archive (https://archive.
org). Data from the New York Times are available for every date
beginning on March 12, 2020. We assume that cases, hospitaliza-
tions, and deaths each have their own constant reporting rate
and that these reporting rates are less than one (i.e., cases, hospi-
talizations, and deaths are under-reported).

For our measurement model and calibration models, we
adapted those of University of Michigan Epimath COVID-19
(2020) and Brouwer et al. (2020), using a measurement model rep-
resenting cumulative incidence of cases, hospitalizations, and
deaths. We assume that each has an unknown constant reporting
rate less than one, and use a hybrid sampling-estimation approach
to model fitting, which allows us to handle the structural and prac-
tical unidentifiability associated with many epidemic models when
faced with under-reporting (University of Michigan Epimath
COVID-19, 2020; Brouwer et al.,, 2020; Eisenberg et al., 2014;
D’Silva, 2017). We sample within the parameter space for parame-
ters that are unique to the network model (such as contact weights
and fraction of essential workplaces, see Table 2) using reasonably
broad ranges. We typically use Latin hypercube sampling methods
for this (Marino et al., 2008), but here we use Sobol sequences
which gives more uniform coverage of the large parameter space
(Kucherenko et al., 2020; Burhenne et al., 2011). Ranges for contact
weight parameters were chosen based on model exploration with
the COVID-19 model to establish reasonable upper bounds (data
not shown). Our contact weight ranges are also consistent with
estimates used in another study of COVID-19 in the Seattle region
(Kerr et al., 2020).

In addition, since initial exploratory sampling revealed a high
number of hospitalizations and a low number of deaths when com-
pared with data, and since death rates can be notoriously difficult
to estimate during an outbreak (Lipsitch et al., 2015), we also var-
ied parameters pertaining to hospitalization and death to obtain
the best possible fits. We allow for reduced transmission from
infected individuals who have sought care or who have severe dis-
ease, to simulate protective measures. Thus, the list of parameters

Table 2

Parameter ranges for uncertainty and sensitivity analyses. Minimum and maximum
values indicate the ranges used for the initial Sobol sample used to calibrate the
model. Py denotes the best-fitting parameter values from this sample.

Parameter Minimum Maximum Py

Household contact weight 0.8 1.2 1.16
Group quarter contact weight 0.8 1.2 1.13
School contact weight 0.05 0.2 0.190
Workplace contact weight 0.05 0.2 0.064
Casual contact weight 0.01 0.05 0.042
Fraction of essential workplaces 0.01 0.1 0.084
Relative transmission from I1c 0.5 1 0.843
Relative transmission from 12 0.5 1 0.601
Death fraction multiplier 1 2 1.77
Hospitalization fraction multiplier 0.5 1 0.786
Fraction of casual contacts during 0.01 0.5 0.084

shutdown
Time to hospitalization (days) 5.5 22 6.12
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that we vary for model calibration are: all contact weights, the
fraction of workplaces designated as essential, fraction of casual
contacts during shutdown, relative transmission from infected
individuals who have sought care, relative transmission from indi-
viduals with severe infection, mortality fraction among infected
individuals (age-dependent), fraction of infectious individuals
who will be hospitalized (age-dependent), and time to hospitaliza-
tion. We assume that death and hospitalization rates remain pro-
portional to national rates by age group reported by the CDC
(CDC COVID-19 Response Team, 2019).

As is typical when we study discrete stochastic models, we
explore both epistemic and aleatory uncertainty in the parameter
set (Marino et al., 2008). This allows us to understand how varia-
tions in parameters affect the model outputs (epistemic) and
how probabilistic events affect model outputs (aleatory). We sam-
pled 500 parameter sets and performed 5 replications for each
parameter set, for a total of 2500 simulations. For each simulation,
reporting rates for total cases, hospitalizations, and deaths were
individually estimated between 0 and 1 to minimize the respective

relative error. Relative errors are measured as Ef = -3z where y
s

denotes model output and y denotes observed data, k denotes
the replication number, and i denotes cases, hospitalizations, or
deaths. We define a cost function, as a function of the input param-
eters p, to be the average across replications of the sum of the rel-
ative errors.

k k k
_ ZIT:] (Ecuses + Ehosp + Edeath)
m

Overall cost = C(p) (1)

where m = 5 is the number of replications for each parameter set.

The model was then calibrated by identifying the parameter set

P, for which cost is best minimized, i.e., Py = argmin C(p) where S
psS

is the set of parameter values sampled. This results in a single esti-
mate for each varied model parameter. One caveat to this approach
is that some parameters (particularly those to which model outputs
are not sensitive) may not be identifiable. Ranges for each of the
sampled parameters, as well as the calibrated parameter values
Py, are provided in Table 2.

Once we identified the parameter set Py, we then considered a
small range around this parameter set by defining new parameter
ranges to be Py(1 4+ 0.1). We again performed Sobol sampling to
generate a new set of 2500 samples (500 parameter sets with 5
replications each). These simulations yielded model fits that fit
well against datasets for Washtenaw County; see Fig. 2 for compar-
ison with observed cumulative data. This same parameter range is
used to evaluate each reopening scenario.

2.3. Uncertainty and sensitivity

We want to determine which system mechanisms, defined via
model parameters, can drive different model outputs of interest.
To do this, we perform sensitivity analyses for three different
model outputs: 1) disease prevalence over time for the first 90 days
of simulation under stay-at-home restrictions, 2) the time at which
a second peak occurs after reopening, and 3) the peak prevalence
after reopening. For outputs 2 and 3 that involve reopening, we
use the scenario in which non-essential workplace and casual con-
tact weights return to 50% of normal by July 15, 2020. For output 1,
we do not include reopening since the time frame is reasonably
short and restrictions were not significantly relaxed within the
90 days following March 8, 2020. For each of these outputs, we
compute sensitivities using a set of 2500 simulations as described
in Section 2.2.

We quantify parameter sensitivity using partial rank correlation
coefficients (PRCC), as this is a nonlinear system and linear corre-
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Fig. 2. Model fits. Model simulations and observed data are shown for cumulative
confirmed cases, deaths, and hospitalizations in Washtenaw County. Black dots
indicate observed data, blue lines indicate best fits, and shaded regions indicate the
1%, 10%, and 50% of model runs in the parameter range Po(1 + 0.1) that best fit the
data according to the cost function (1).

lations may not be appropriate. We follow our usual approach
established in (Marino et al., 2008). We evaluate significance of
PRCC values using a t-test. Since correlations are computed simul-
taneously for multiple parameters, p-values are corrected using
Bonferroni correction. PRCCs and corresponding p-values are com-
puted over time for temporal model outputs, such as numbers of
reported cases over time, by calculating them independently at
each time step.

Due to the high level of stochasticity in our model, single best fit
estimates may show variation that is purely due to chance. Thus, in
our reopening scenarios, we quantify uncertainty in our model pre-
dictions by taking the full range of simulations that fall within a
10% error tolerance of the observed data for cases, hospitalizations,
and deaths for all dates with at least 20 observations.

2.4. Simulating reopening scenarios

We consider two distinct sets of reopening scenarios based on
those in University of Michigan Epimath COVID-19 (2020) and
Brouwer et al. (2020), one in which we vary the timing of lifting
stay-at-home restrictions and one in which we vary the level of
casual contact after reopening. In the first set of scenarios, we
increase both non-essential workplace and casual contact weights
from stay-at-home levels to 50% of normal, occurring over a period
of either one, two, or three months beginning on May 15. Here,
“normal” refers to the pre-epidemic contact weights defined in
Table 2. In the second set of scenarios, we consider the case of
reopening over the course of two months from May 15 to July
15. During this time, we increase the non-essential workplace con-
tact weight to 50% of normal while also increasing the saturation
level for casual contacts to 50% of normal, 25% of normal, or not
increasing casual contacts at all from stay-at-home levels. We do
not consider a 100% return to normal since we assume that addi-
tional precautions such as physical distancing and using masks
or other PPE will still be taken, and will reduce the probability of
spreading disease through workplace and casual contacts. These
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measures have been shown to be effective in reducing transmis-
sion (Chu et al., 2020). We are assuming here that these measures
reduce probability of transmission by 50%; this assumption can be
modified in the future as data on effectiveness and compliance
becomes available.

Lifting stay-at-home restrictions is simulated by setting contact
weights for workplaces and casual contacts equal to functions of
the form

r(t) =m+ (M — m)f(¢t)

where m denotes the contact weight under stay-at-home restric-
tions, M denotes the final contact weight after reopening, and f(t)
is a logistic function that increases from 1% on May 15 to 99% on
June 15, July 15, or August 15 depending on the timing of reopening.
Fig. 3 shows curves of non-essential workplace and casual contact
weights over time for each of these scenarios. For each set of
reopening scenarios, runs are simulated for a 9-month time frame
beginning on March 8, 2020.

3. Results
3.1. Mechanisms driving disease prevalence

We use sensitivity analyses to evaluate relationships between
model inputs (model parameters) and model outputs. Here, we
explore the daily disease prevalence for each day of the simulation.
This represents the total number of active infections in the popula-
tion that could possibly be reported at any given time, i.e., the
number of cases we would observe with 100% reporting. Due to
low levels of COVID-19 testing, although it is improving, true dis-
ease prevalence over time is a quantity that cannot currently be
empirically measured and can only be inferred through modeling
or by making additional assumptions about testing rates.

We perform PRCC analysis using 2500 simulations, consisting of
500 Sobol samples with 5 replications each in the parameter range
Po(1+£0.1) as described in Section 2.2. Simulations are run for
90 days beginning on March 8, 2020, which is four days before
the first confirmed cases in Washtenaw County. Fig. 4 shows the
correlation coefficients over time for all parameters that are signif-
icant (p < 0.01) at any time point during the 90 day window.

The sensitivity analysis predicts that model parameters that are
highly correlated (p < 0.01) with numbers of daily cases are: con-

(A) Scenario Set 1

12

-

Proportion of regular contacts
[=) [=}
S (=2}
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Time
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—— Scenario 1a (June 15)
— Scenario 1b (July 15)
Scenario 1c (August 15)

Solid = workplace contact
(non-essential)
Dashed = casual contact

—— Household contact
—— Workplace contact
School contact
—— Casual contact
I1c relative infectivity
Casual contact during shutdown

PRCC

Jun 1

Apr 1

May 1
Time

Fig. 4. Sensitivity results for disease burden over time predict model mechanisms
driving different epidemic outputs. Partial rank correlation coefficient (PRCC) values
over time are shown for all parameters that were significant at any time point
(p < 0.01), using cumulative COVID-19 case count as the model output. Gray
shaded area indicates statistical non-significance.

tact weights for workplaces, schools, and casual contacts; relative
transmission from individuals who have sought care vs. those
who haven’t; and the amount of casual contacts that persist during
the stay-at-home order. We find that household contact is less sig-
nificant than other forms of contact, and only becomes signifi-
cantly correlated with case counts later in the simulations (after
May 1). The relative unimportance of household contacts may be
due to small household sizes in our population. The median house-
hold size in our synthetic population for Washtenaw County is 2,
and the average household size is 2.38

These results suggest that uncertainty in the aforementioned
parameters leads to significant uncertainty in our model prediction
of cumulative numbers of COVID-19 cases. Thus, accurate and reli-
able estimates for these parameters would enable us to reduce the
uncertainty in our model-based predictions for true case load. Fur-
ther, these parameters represent strong candidates for interven-
tion strategies. Our analysis additionally suggests that reducing
contact in workplaces, schools, and casual contacts and encourag-
ing those who are ill to isolate themselves are effective ways of
reducing the spread of disease. Reductions in these contact weights
could be achieved either through distancing/isolation or through
use of protective equipment such as masks and barriers. This aligns
with intuition and with the flattening of the epidemic curve that

(B) Scenario Set 2
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Fig. 3. Reopening scenarios. Workplace and casual contact weights over time for two sets of reopening scenarios: 1) varying timing of lifting stay-at-home restrictions (panel

A), and 2) varying saturation levels for casual contact (panel B).
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has been observed in many regions from precisely these types of
interventions (Courtemanche et al., 2020; Saez et al., 2020; Xiao
et al., 2020).

3.2. Scenario Set 1: varied speed of lifting stay-at-home

One of the major questions facing officials regarding reopen-
ing is the different speeds for reopening non-essential work-
places and for relaxing social distancing guidelines. While
maintaining reduced levels of contact is known to reduce trans-
mission, social and economic costs provide immense pressure to
reopen (Thunstrom et al,, 2020). Thus, it is critical to evaluate
the effects of reopening speed on disease burden. To address this
question, as discussed in Methods Section 2.4, we consider three
scenarios. We increase the contact weights for workplace and
casual contacts from stay-at-home levels to 50% of pre-
epidemic levels over a period of one, two, or three months start-
ing on May 15, 2020.

Fig. 5 shows model projections for each of the three timings
considered. We find that decreasing the speed of lifting stay-at-
home restrictions only serves to delay the peak of the second wave,
but not to decrease its magnitude. Each additional month taken to
reach full reopening levels delayed the occurrence of the peak by
approximately 18 days on average. In all three scenarios, the med-
ian proportion of the population that has been infected (true bur-
den) by early December 2020 is approximately 50%. Therefore,
delayed timing affects the timing of the peak, but not its height
or the final number of cumulative cases.

These results indicate that delaying reopening by one or two
months is not sufficient to reduce case load at the second peak,
but will provide additional time to prepare. The lack of impact
on case load appears to be due to a lack of immunity in the popu-
lation even as reopening occurs over a longer time frame. In partic-
ular, by the end of the reopening period (June 15, July 15, and

Current cases

Current hospitalizations

August 15 for scenarios 1a, 1b, and 1c, respectively), the median
proportion of the population that is predicted to have become
infected is less than 2.5% for each of the three timings, leaving
the vast majority of the population still susceptible to infection.
Different initiation times or levels of maximum social distancing
may allow population immunity to build slowly, potentially reduc-
ing peak and cumulative cases by eliminating the ‘overshoot’ as the
population approaches herd immunity (Kissler et al., 2020; Handel
et al., 2007). Thus, to control case load without an effective vaccine
to build individual immunity within the population, we must
instead maintain reduced transmission of the virus by maintaining
reduced contact.

3.3. Scenario Set 2: varied saturation levels for casual contact

A second question plaguing officials is to what levels to allow a
lifting of the Stay-Home, Stay-Safe restrictions. Since slowed
reopening has little effect on disease burden during a second wave,
as shown above, the degree to which social functions are allowed
to reopen and whether PPE and distancing measures should be
required will be of utmost importance. To address this question,
we consider a second set of scenarios, with a fixed reopening
speed, in which casual and workplace contact levels increase from
May 15 to July 15. We allow the workplace contact weight to
increase to 50% of the normal level, and we vary the final levels
of casual contacts to be 50% of normal, 25% of normal, or no change
from stay-at-home levels, giving three scenarios in this set. Model
predictions for these scenarios are shown in Fig. 6.

The model predicts that decreasing the level of casual contacts
(i.e., contacts between people who do not share a household, work-
place, school, or group quarter) both delays the second peak and
decreases its magnitude by a significant amount, likely due to
the continued reduction in casual contacts reducing overall con-
tacts over the entire simulation period, as well as the slower spread
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Fig. 5. Model projections for Scenario Set 1 (Varied speed of lifting stay-at-home) for reported cases, hospitalizations, and deaths. “Current cases” refers to the number of
reported infections that are active on a given day. “Cumulative cases” refers to the total number of reported cases that have occurred up until a given date, including
recovered cases and deaths. See Section 2.2 for how reporting rates are estimated. Solid lines indicate the simulation that best fit the observed data up to the end of May, and
shaded regions indicate the full range of simulations that remained within a 10% error tolerance of all data points with at least 20 observations.
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Fig. 6. Model projections for Scenario Set 2 (Varied saturation levels for casual contact) for reported cases, hospitalizations, and deaths. Solid lines indicate the simulation that
best fit the observed data up to the end of May, and shaded regions indicate the full range of simulations that remained within a 10% error tolerance of all data points with at

least 20 observations.

due to reduced casual contacts reducing the ‘overshoot’ as the epi-
demic progresses toward herd immunity. By reducing the final
casual contact weight from 50% of normal to 25% of normal, we
obtain a 52% reduction in the predicted average peak number of
cases and a 34-day delay in the average time to peak. Thus, reduc-
ing the amount of casual contacts would both lessen the burden on
the local healthcare system (by decreasing the height of the peak)
and provide additional time to prepare for the second wave (by
delaying the peak). This decrease in casual contact weights could
be achieved through physical distancing (i.e., decreasing the
amount/duration of contact) or through the use of PPE such as
masks and barriers (i.e., reducing the transmission probability
per contact).

By further eliminating any increase in casual contact from stay-
at-home levels, we obtain an 83% reduction in the predicted aver-
age peak number of cases in comparison to the case where casual
contacts increase to 50% of normal, and a 64% reduction in compar-
ison to the case where casual contacts increase to 25% of normal.
The peak for the case of no increase in casual contact occurs at least
31 days later on average than for the case of casual contacts
increasing to 25% of normal; we say “at least” because not all
model simulations achieved a peak within the 9 months simulated
time frame. Here, averages are computed among all model simula-
tions that remained within a 10% error tolerance of data points
with at least 20 observations for cumulative cases, deaths, and
hospitalizations.

3.4. Mechanisms driving peak timing and prevalence in a second wave

We again utilize sensitivity analysis using PRCC to identify
model parameters that are significant for determining both magni-
tude (based on predicted true burden) and timing of the peak of
the second wave of infection that occurs as a result of reopening.
We thus use two model outputs for the sensitivity analysis: the

number of active cases that have sought or received medical care
at the time of the second peak, and the time that the second peak
occurs. We performed the analyses presented here for the case of
increasing both non-essential workplaces and casual contact
weights to 50% of normal levels by July 15, 2020, i.e., Scenario
1a/2b from the above sets of reopening scenarios. Results of the
sensitivity analysis are shown in Fig. 7.

The most significant parameters for both magnitude and timing
of the second peak are workplace contact weight, casual contact
weight, and relative transmission from people who sought care
(Fig. 7). This suggests that effective strategies for both reducing
the peak number of cases and delaying the peak include: (1) reduc-
ing workplace and casual contact levels, and (2) encouraging that
people who seek care to take protective (such as PPE and distanc-
ing) or isolation measures. It further suggests that obtaining accu-
rate data on these parameters would lead to less uncertainty in our
model-based predictions for the magnitude and timing of the sec-
ond peak. We note that there is significant overlap between the
most significant parameters for determining the behavior of the
second peak and those for determining true case counts during
the first wave (see Section 3.1). Other less significant parameters
for determining the behavior of the second peak included house-
hold contact weights, relative transmission from people with sev-
ere disease, and hospitalization rates.

Though we observe a negative relationship between the school
contact weight and the height of the second peak, this does not
necessarily indicate that school re-openings are safe since our re-
opening scenarios did not include school re-openings. Thus, in our
simulations, a larger school contact rate contributes to more infec-
tions early on, but does not contribute to the second peak. The neg-
ative relationship is thus explained by the following: for a larger
school contact weight, a larger proportion of early infections are
attributed to school contacts and thus fewer infections are attribu-
ted to other types of contact. Since school contacts do not con-
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Fig. 7. Sensitivity results to identify drivers of case load and timing of the second peak. PRCC results are shown for all varied parameters in the case that workplace and casual
contacts increase to 50% by July 15 (Scenario 1b/2a). We consider two model outputs: the number of active cases during the second peak, and the time that the second peak

occurs. Asterisks indicate statistical significance (p < 0.01).

tribute to infections later on, the second peak is then reduced.
Importantly, this negative relationship should not be expected to
hold if schools are re-opened.

4. Discussion

We predict that delaying reopening on its own is effective only
at delaying a second wave, but is ineffective at reducing its magni-
tude. Similar predictions have been made in modeling studies for
exit strategies in Europe (Ruktanonchai et al., 2020). However, con-
tinued lower levels of casual contacts after reopening is effective at
both delaying the second wave and reducing its magnitude. This
dual effect of reducing contacts has been observed in other
COVID-19 studies (Davies et al., 2020; Thompson, 2020; Prem
et al., 2020). Further, we predict that casual and workplace contact
weights and the reduction in transmission due to protective mea-
sures upon seeking care are the most important factors for deter-
mining the magnitude and timing of the peak of a second wave.
Thus, social distancing and the use of protective equipment such
as masks will be of utmost importance moving forward.

In our model, the contact weights represent relative probabili-
ties of transmission given a certain type of contact. These weights
account for frequency and duration of contact as well as other fac-
tors that would affect transmission in these settings, such as mask-
wearing and social distancing. Thus, the reduced workplace and
casual contact weights in our reopening scenarios can be attained
either by requiring less frequent or shorter duration of contact or
by reducing the probability of transmission through the use of per-
sonal protective equipment (PPE) and proper social distancing
measures. Similarly, efforts such as contact tracing with subse-
quent quarantine/isolation can be viewed as reducing the number
of workplace and casual contacts. The contributions of these differ-
ent approaches to reducing probability of transmission cannot be
inferred separately in our model based on fitting to data, since
the contact weight represents only the cumulative effect of these
efforts. However, if reliable data were available to inform the
effects of these interventions on contact weights, effects at the
population level for each intervention could be predicted.

In this study, the majority of our model parameters are constant
across the population, with the exception of probabilities of hospi-
talization and mortality, which vary with age. We have not consid-
ered here the effects of other sociodemographic features such as
race or household income. Since the synthetic population dataset
used in our model includes such sociodemographic data, these fea-
tures could be used in the future to implement subpopulation-

specific parameter values. For example, COVID-19 mortality is
exceptionally high among African Americans and other communi-
ties of color (Ferdinand and Nasser, 2020; Dorn et al., 2020). Model
parameters could also be altered to reflect therapeutic interven-
tions and vaccines as they are developed. These interventions
could be applied to and affect the population heterogeneously
based on age or other features. Age-dependent rates of asymp-
tomatic or presymptomatic transmission could also be incorpo-
rated into the model when such data becomes available.

Given the constantly changing social and political landscape,
long-term predictions about COVID-19 epidemiology are likely
unreliable. Going forward, model assumptions and parameters
should be continually modified according to social and public
health policy changes. For example, one critical limitation of our
current model is that it does not include school re-openings, which
may have a significant impact over the coming year. In addition,
our current model assumes that group quarters (e.g. prisons and
nursing homes) are completely cut off from the outside population
and that residents mix only among themselves. This strict assump-
tion will need to be modified as restrictions are relaxed, and may
not be valid in other areas in the US.

Our model can be adapted for use by any other US counties or
states, as synthetic population datasets are available for every
county and state in the US (Public Health Dynamics Laboratory,
2019) that can be easily incorporated into the model. Since a real-
istic contact structure is explicitly built into the model based on US
Census data, predictions can be made specific to the social land-
scape of a specific geographical area. Thus, our model could be
used to predict “hotspots” and tailor societal intervention strate-
gies at the county level. As future research, cross comparisons
could be used to investigate whether the qualitative results herein
still hold in different locations. Other future work using our model
framework could also include exploring staged re-opening strate-
gies and providing recommendations for how to define stages
and transition between them.
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