
Order-Unity Correction to Hawking Radiation

Eanna E. Flanagan *

Department of Physics, Cornell University, Ithaca, New York 14853, USA
and Cornell Laboratory for Accelerator-Based Sciences and Education (CLASSE), Cornell University,

Ithaca, New York 14853, USA

(Received 14 February 2021; revised 3 June 2021; accepted 22 June 2021; published 22 July 2021)

When a black hole first forms, the properties of the emitted radiation as measured by observers near
future null infinity are very close to the 1974 prediction of Hawking. However, deviations grow with time
and become of order unity after a time t ∼M7=3

i , where Mi is the initial mass in Planck units. After an
evaporation time, the corrections are large: the angular distribution of the emitted radiation is no longer
dominated by low multipoles, with an exponential falloff at high multipoles. Instead, the radiation is
redistributed as a power-law spectrum over a broad range of angular scales, all the way down to the scale
Δθ ∼ 1=Mi, beyond which there is exponential falloff. This effect is a quantum gravitational effect, whose
origin is the spreading of the wave function of the black hole’s center-of-mass location caused by the kicks
of the individual outgoing quanta, discovered by Page in 1980. The modified angular distribution of the
Hawking radiation has an important consequence: the number of soft hair modes that can effectively
interact with outgoing Hawking quanta increases from the handful of modes at low multipoles l to a large
number of modes, of order ∼M2

i . We argue that this change unlocks the Hawking-Perry-Strominger
mechanism for purifying the Hawking radiation.
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Introduction.—In the half century since its discovery, the
Hawking evaporation of black holes and its associated
conundrums have proved to be a fertile source of insights
and progress in quantum gravity, from black hole thermo-
dynamics to holography to links between quantum infor-
mation and geometry [1–3]. At the same time, unresolved
theoretical tensions have led to repeated scrutiny of the
robustness of Hawking’s predictions. An evaporating black
hole is characterized by the small dimensionless parameter
1=M, where M is the mass in Planck units, and there are
small corrections that are perturbative in 1=M, as well as
smaller corrections nonperturbative in 1=M. Large correc-
tions, however, have been elusive.
There is a subtlety in classifying the size of corrections to

Hawking radiation, related to the fact that the number of
relevant field modes N ∼M2 is large, and fractional
corrections to expected values may be small for certain
classes of operators but large for other operators. Suppose
we decompose the Hilbert space H of radiation states at
future null infinity Iþ as the product H ¼ Hn ⊗ H0

n,
where Hn is the Hilbert space of a certain set of n modes

with n ≤ N. Given a correction Δρ to the density matrix ρ
on H, we define

εHn
¼ ktrH0

n
Δρk; ð1Þ

where kAk ¼ tr
ffiffiffiffiffiffiffiffiffi
A†A

p
, which gives a measure of the size of

the correction to the state when restricted toHn. There exist
perturbations Δρ for which εHn

is small whenever n ≪ N,
but for which εHn

is nevertheless of order unity when
n ∼ N. Such corrections have long been anticipated for
Hawking radiation, since an order-unity correction to an
entanglement entropy is required [4] for unitarity of the
evaporation process [2,3]. Indeed, recent calculations using
Euclidean path integrals have explicitly shown that the time
evolution of the entanglement entropy of the Hawking
radiation and the black hole is consistent with unitarity [6–
11]. Hence there are corrections to Hawking radiation that
are of order unity, for operators that involve ∼N modes,
although the new computational techniques do not yet
allow computation of the corrected state.
In this Letter, we confine attention to operators that act

on n ≪ N modes, for which the general expectation has
been that corrections to Hawking radiation are small. We
show that there are corrections at the level of individual
modes that are of order unity, arising from quantum
gravitational effects in the deep infrared. The mechanism
is straightforward: secularly increasing fluctuations in the
center-of-mass location of the black hole cause a change in
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the angular distribution of the radiation, with most of the
power being redistributed to small angular scales. Although
the modifications to the radiation do not directly impact the
issue of how unitarity of the evaporation is achieved, we
will argue that there is an important indirect effect.
In the remainder of the Letter, we first give a heuristic

argument for the effect, then give a detailed derivation,
and conclude with a discussion of some implications.
Throughout we use Planck units with G ¼ ℏ ¼ c ¼ 1.

Redistribution of power to small angular scales: Brief
heuristic argument.—As described by Page [12], the
emission of Hawking radiation causes the uncertainty in
the black hole’s center of mass to grow with time. This
growth is easy to understand: each outgoing quantum
carries off a momentum ∼M−1 in a random direction,
and the resulting perturbation to the velocity of the black
hole is of order ∼M−2. Over an evaporation time ∼M3, this
single kick yields a displacement of the center-of-mass
position of the black hole of order ∼M. Over the course of
the evaporation process, we have N ∼M2 such kicks that
accumulate as a random walk, giving a total net uncertainty
in the position of the black hole of order ∼

ffiffiffiffi
N

p
M ∼M2.

Now if a black hole displaced by ∼M2 emits a single
quantum in a wave packet mode of duration ∼M, the
energy flux at future null infinityIþ is delayed by ∼M2 on

one side ofIþ and advanced on the other. On a cut of fixed
retarded time, the energy flux due to this quantum will be
localized to a thin strip on the sphere of width Δθ ∼
M=M2 ∼ 1=M (see Fig. 1), and so the power spectrum of
the radiation as a function of angular scale will be peaked at
angular scales ∼1=M.
Redistribution of power to small angular scales:

Derivation.—Although the mechanism that modifies the
Hawking radiation is universal, for simplicity, we will
specialize here to a four-dimensional Schwarzschild black
hole coupled to a massless free scalar field Φ. NearIþ we
use retarded Bondi coordinates ðu; r; θ;ϕÞ. We resolve the
Bondi-Metzner-Sachs (BMS) transformation freedom in
these coordinates by choosing the canonical coordinates
[13] associated with the approximate stationary state of the
black hole shortly after it is formed at u ¼ 0, say, before it
has time to emit appreciable amounts of Hawking radiation
[15]. This choice also determines a particular Poincaré
subgroup of the BMS group.
We define the field φ on Iþ by

Φðu; r; θ;ϕÞ ¼ φðu; θ;ϕÞ
r

þO

�
1

r2

�
; ð2Þ

and we denote by H the Hilbert space of out-states on Iþ
parametrized by φ. We denote by Mi the initial mass of the
black hole at u ¼ 0, and by M ¼ Mðu1Þ < Mi the Bondi
mass at some later retarded time u1 with u1 ≫ Mi. We
denote by ρU the Hawking radiation state on H for an
eternal black hole of massM, i.e., the Unruh vacuum. In the
standard calculation, it is argued that this state provides a
good approximation to the n-point functions on Iþ of the
state for the gravitational collapse spacetime, for retarded
times u with ju − u1j small compared to the evaporation
time M3.
For any density matrix ρ onH, we define the regularized

two-point function

Gðu; θ; u0; θ0Þ ¼ tr½ρφðu; θÞφðu0; θ0Þ�
− outh0jφðu; θÞφðu0; θ0Þj0iout; ð3Þ

where j0iout is the out vacuum and θ ¼ ðθ;ϕÞ. For
stationary, spherically symmetric states, we have
G ¼ GðΔu; γÞ, where Δu ¼ u − u0 and γ is the angle
between θ and θ0. We define the Fourier transform
G̃ðω; γÞ ¼ R

dΔueiωΔuGðΔu; γÞ, and decompose this in
angular harmonics as

G̃ðω; γÞ ¼
X∞
l¼0

2lþ 1

4π
Plðcos γÞSðω; lÞ: ð4Þ

The quantity Sðω; lÞ is related to the energy flux _E to
infinity per unit frequency ω in field multipoles [16] of
order l by

FIG. 1. An illustration of the standard Unruh state of an
evaporating nonspinning black hole, at a particular instant of
retarded time at future null infinity, in a reference frame that is
displaced from the black hole center of mass by several
Schwarzschild radii. The quantity plotted is a typical realization
of the Gaussian random process on the sphere whose two-point
function is given by taking the two-point function of a scalar field
in the Unruh state at future null infinity and subtracting the two-
point function of the out vacuum. Fluctuations in individual wave
packet modes give rise to fluctuations on the sphere that are
confined to concentric thin strips, giving rise to a characteristic
angular scale that is small compared to unity.
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�
d _E
dω

�
l
¼ 2lþ 1

2π
ω2Sðω; lÞ: ð5Þ

We denote by GU the regularized two-point function of the
Unruh vacuum, for which the corresponding energy flux is

�
d _E
dω

�
U;l

¼ 2lþ 1

2π

ωjtlωj2
eβω − 1

: ð6Þ

Here tlω is the transmission coefficient through the effective
potential and β ¼ 8πM is the inverse temperature of the
radiation. As is well known, most of the power in the
spectrum (6) is concentrated at l ∼Oð1Þ, with an expo-
nential falloff at large l.
We now want to derive how the energy spectrum (6) as a

function of frequency and angular scale is modified. The
key idea is to supplement the standard computation by
including the evolution of a small number of relevant
infrared gravitational degrees of freedom, specifically the
BMS charges as computed on cuts u ¼ const ofIþ. In the
classical theory, the values of these charges determine the
spacetime geometry when the black hole is stationary, and
we assume that this is still true in the quantum theory when
both the charges and geometry have quantum fluctuations.
We focus, in particular, on the black hole’s center of mass
Δ, encoded in the orbital angular momentum associ-
ated with the Poincaré subgroup of the BMS group
discussed above.
The framework we use is anchored at Iþ, where the

coordinate system ðu; θ;φÞ and out Hilbert spaceH for the
scalar field are unaffected by the large quantum fluctuations
of the gravitational charges and of the geometry in the
interior. As described above, the fluctuations in Δ grow
with time due to repeated kicks from outgoing Hawking
quanta. We divide Iþ into an early portion Iþ

early with
u < u1 and a late portion Iþ

late with u > u1. The Hilbert
space H can be correspondingly factored [17] into the
tensor product Hearly ⊗ Hlate. The state of the center of
mass at time u1 is strongly correlated with the Hawking
radiation on Iþ

early, by momentum conservation for each
emission event, and if we trace over Hearly we obtain a
mixed state for the center of mass [23]. This state can be
described in terms of its Wigner function WðΔ;pÞ, a
function of the three-dimensional position Δ and momen-
tum p of the black hole. Denoting a position eigenstate by
jΔi, the corresponding state is

Z
d3Δ

Z
d3ξW̃ðΔ; ξÞjΔ − ξ=2ihΔþ ξ=2j; ð7Þ

where W̃ðΔ; ξÞ ¼ R
d3p exp½−ip · ξ�WðΔ;pÞ. Since the

kicks from the individual outgoing quanta are uncorrelated,
the Wigner function W is very nearly Gaussian by the
multivariate central limit theorem. Hence W̃ has the form

W̃ðΔ; ξÞ ¼ N exp

�
−
1

2

Δ2

σ2Δ
−
1

2
ð1 − ε2Þξ2σ2p − iε

σp
σΔ

Δ · ξ

�
;

ð8Þ

where N ¼ ð2πÞ−3=2σ−3Δ , the quantities σ2Δ and σ2p are the
variances in position and momentum, and ε with jεj < 1 is
a correlation coefficient. The evolution of these para-
meters is studied in Ref. [25], which shows that ε is of
order unity and

σ2Δ ¼
�
c0M4

i ð1 −M3=M3
i Þ3 Mi −M ≪ Mi;

c1M4
i

ffiffiffiffiffiffi
Mi

p
≪ M ≪ Mi;

σ2p ¼ c2 lnðMi=MÞ
ffiffiffiffiffiffi
Mi

p
≪ M; ð9Þ

where c0, c1, and c2 are dimensionless constants of order
unity.
We now turn to describing how the fluctuations in the

center of mass of the black hole affect the Hawking
radiation. In Minkowski spacetime we can define a dis-
placement operator UΔ, which displaces any state by an
amount Δ, which acts on the field operator according to
U†

ΔΦðt; rÞUΔ ¼ Φðt; r − ΔÞ. This operator extends natu-
rally to the Hilbert space H of out-states on the black hole
spacetime, where its action is defined by

U†
Δφðu; θÞUΔ ¼ φðuþ n · Δ; θÞ; ð10Þ

with n the unit vector in the direction specified by θ. The
Unruh state for a black hole displaced from the origin by an
amount Δ can be written as

jΔi ⊗
X
j

jχjiUΔjψ ji; ð11Þ

where jχji is a set of states on the future horizon and jψ ji is
a set of states inH. Taking the trace over the horizon states
gives for the corresponding Unruh state at Iþ

jΔihΔj ⊗ UΔρUU
†
Δ; ð12Þ

where ρU ¼ P
j c

2
j jψ jihψ jj with c2j ¼ hχjjχji.

Suppose now that the state of the black hole’s center of
mass were fixed and not evolving with time, given by
Eq. (7) for the fixed values of the parameters σΔ, σp, and ε
evaluated at u ¼ u1. Then by linearity from Eqs. (7), (11),
and (12), the corresponding out-state would be

Z
d3Δ

Z
d3ξW̃ðΔ;ξÞjΔ−ξ=2ihΔþξ=2j⊗UΔ−ξ=2ρUU

†
Δþξ=2:

ð13Þ

Tracing over the center-of-mass Hilbert space gives the
corrected version of the Unruh state

PHYSICAL REVIEW LETTERS 127, 041301 (2021)

041301-3



ρU;corr ¼
Z

d3ΔW̃ðΔ; 0ÞUΔρUU
†
Δ: ð14Þ

Of course the state of the center of mass is evolving with
time and not fixed. Nevertheless, the corrected Unruh state
(14) should give a good approximation to the n-point
functions onIþ of the field at retarded times u that satisfy
two conditions: (i) We have ju − u1j ≪ M3, so the mass of
the black hole as well as the state of the center-of-mass have
not evolved significantly from their values at u ¼ u1.
(ii) We have u − u1 ≫ σΔ ∼M2

i . This ensures that the
displacements (10) in retarded time caused by the operators
UΔ in Eq. (14) do not generate a dependence on degrees of
freedom on Iþ

early, which we have already traced over to
compute the state (7).
We now turn to showing that the modifications inherent

in the corrected Unruh state (14) are of order unity, for
individual outgoing wave packet modes at sufficiently late
times. Combining Eqs. (3), (10), and (14) gives for the
regularized two-point function of the corrected Unruh state

GU;corrðu; θ; u0; θ0Þ ¼
Z

d3ΔW̃ðΔ; 0Þ

×GUðuþ n · Δ; θ;u0 þ n0 · Δ; θ0Þ;
ð15Þ

using that the Wightman function in the second term in
Eq. (3) is invariant under translations. The corresponding
functions of frequency ω and angle γ are related by

G̃U;corrðω; γÞ ¼
Z

d3ΔW̃ðΔ; 0Þe−iωðn−n0Þ·ΔG̃Uðω; γÞ

¼ exp ½−2ω2σ2Δsin
2ðγ=2Þ�G̃Uðω; γÞ; ð16Þ

where we have used Eq. (8). Note that the transformation
(16) preserves G̃ðω; 0Þ, which is proportional to the total
energy flux per unit frequency, summed over all multipoles.
Hence the transformation redistributes power over angular
scales, but not from one frequency to another.
We next combine Eqs. (4), (5), and (16) to obtain for the

spectrum of outgoing radiation

�
d _E
dω

�
U;corr;l

¼ ð2lþ 1Þω2

Z
1

−1
dμPlðμÞe−ω2σ2Δð1−μÞG̃Uðω;γÞ;

ð17Þ

where μ ¼ cos γ. We now specialize to frequencies of the
order ω ∼M−1, where most of the outgoing power is
located. We thus exclude high frequencies ω ≫ M−1,
where the power is exponentially suppressed, and low
frequencies ω ≪ M−1, where it is power-law suppressed,
from the spectrum (6). Since the function ωG̃Uðω; γÞ
depends on ω and M only through the combination ωM

[26], which is of order unity, for such frequencies G̃U varies
with γ only on angular scales of order unity; there are no
other dimensionless parameters on which the function
depends. It follows that G̃U has negligible variation over
the range 0 ≤ γ ≲ 1=ðωσΔÞ ∼M=M2

i ≪ 1 that is not expo-
nentially suppressed by the exponential factor in Eq. (17).
Hence we can evaluate this function at γ ¼ 0 and pull it
outside the integral, and using Eqs. (4) and (5) we re-
express it in terms of the total power per unit frequency
d _E=dω ¼ P

lðd _E=dωÞl in the Unruh state. We evaluate the
remaining integral using the identity

R
dμPlðμÞeaμ ¼ffiffiffiffiffiffiffiffiffiffiffi

2π=a
p

Ilþ1=2ðaÞ, which expresses it terms of a modified
Bessel function of the first kind [27]. The final result is

�
d _E
dω

�
U;corr;l

¼
ffiffiffi
π

2

r �
d _E
dω

�
U

ð2lþ 1Þe−ω2σ2Δ

ωσΔ
Ilþ1=2ðω2σ2ΔÞ:

ð18Þ

Using the approximate formula Ilþ1=2ðaÞ¼ð2πaÞ−1=2ea½1þ
Oðl2=aÞ�, this simplifies to [28]

�
d _E
dω

�
U;corr;l

¼
�
d _E
dω

�
U

ð2lþ 1Þ
2ω2σ2Δ

�
1þO

�
l2

ω2σ2Δ

��
: ð19Þ

This corresponds to a power-law spectrum for angular
scales in the range 0 ≤ l ≪ lcrit with lcrit ¼ ωσΔ, with most
of the power in the vicinity of l ∼ lcrit. At scales l ≥ lcrit the
spectrum falls off exponentially, from the upper bound
Ilþ1=2ðaÞ ≤ ð2πaÞ−1=2ea exp½−l=ð4 ffiffiffi

a
p Þ� for l ≥ ffiffiffi

a
p

≫ 1.
We now consider the critical angular scale lcrit ¼ ωσΔ.

At sufficiently late times u≳M3
i , we have σΔ ∼M2

i from
Eq. (9), and so the critical angular scale is lcrit ∼M2

i =M ≫
1 using ω ∼M−1, which reduces to ∼Mi if M ∼Mi. At
early times, we have from Eq. (9) and using u=M3

i ∼ 1 −
M3=M3

i that lcrit ∼ u3=2M−7=2
i , so the modification effect

first becomes of order unity after an interval of retarded
time u ∼M7=3

i .
Discussion and conclusions.—We close with a number

of comments. First, the modification to the Hawking
radiation does not alter the amount of entanglement
between modes inside the horizon and those outside,
and so does not directly impact the unitarity of the
evaporation process. The exterior modes that are relevant
at late times depend, through the position of the black hole,
on which early time exterior modes are occupied (the total
number of relevant exterior modes has increased from ∼M2

i
to ∼M4

i ). This effect generates nontrivial mutual informa-
tion [2] between early Hawking radiation and late Hawking
radiation, but does not alter the total entanglement between
interior and exterior modes.
Second, the corrected Unruh state (14) is not a Gaussian

state, unlike the original Unruh state, although it is
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stationary and spherically symmetric. Thus it is not
determined by the two-point function (18), although it is
completely determined by the formulas (8) and (14).
Third, the general mechanism discussed here involving

spatial translations clearly also applies to other generators
of the BMS group. The black hole at late times determines a
BMS frame that is related to the initial BMS frame by a
transformation which includes a rotation, boost, and super-
translation, and secularly growing quantum fluctuations in
those transformations modify the outgoing Hawking radi-
ation. However, in Ref. [25] we estimate that the typical
boost [29] velocity scale is ∼1=M, and that the length scale
involved in the supertranslation fluctuations is ∼1, so the
corresponding modifications to the Hawking radiation
are small.
Fourth, consider the result of interpreting the corrected

Unruh state (14) on Iþ in terms of a single semiclassical
spacetime with the black hole at the origin. An outgoing
mode with l ∼Mi nearIþ corresponds near the black hole
to a large amplitude standing wave in a thin shell of width
∼1 in the nonevanescent region between the horizon and
potential barrier, which varies over transverse length scales
along the horizon of order ∼1. This Planckian behavior of
the extrapolated corrected Unruh state illustrates the poten-
tial pitfalls of thinking in terms of a single semiclassical
spacetime and focusing on near-horizon physics.
Fifth, we argue that the modification to the Hawking

process removes one of the primary objections to the
proposal that soft hair on black holes plays a key role in
resolving the information loss paradox [21,22,30–32]. Soft
hair consists of charges measurable at future null infinity
associated with an extension of the BMS group [33–36],
higher-l analogs of the center of mass that are encoded in
the asymptotic metric. Just as for the center of mass, the
expected value of soft hair charges can be set to zero by a
gauge transformation, locally in time, but their variances
cannot and can contain nontrivial information. Outgoing
Hawking quanta excite soft hair via the gravitational wave
memory effect. It has been suggested that the Hawking
radiation is purified at late times by its entanglement with
soft hair degrees of freedom [30].
A difficulty with this proposal has been that only low l

modes of the soft hair can be excited by the outgoing
quanta, because of the exponential falloff of the spectrum
(6) at high l. The soft hair fieldΦðθÞ is given in terms of the
scalar field φ on Iþ by [see, e.g., Eqs. (2.19) and (4.4) of
Ref. [14] ]

D2ðD2 þ 2ÞΦðθÞ ¼ 32πP
Z

duφ;uðu; θÞ2; ð20Þ

where D2 is the Laplacian on the two-sphere and P is a
projection operator that sets to zero l ¼ 0, 1 modes. Thus
only a handful of soft hair modes can be excited, too few to
play a relevant role for purifying the ∼M2

i outgoing
Hawking quanta.

The modified angular distribution of the Hawking
radiation completely changes this picture, since the source
term in Eq. (20) now extends effectively up to multipoles of
order l ∼Mi. This makes ∼M2

i soft hair modes potentially
accessible, enough for each outgoing quantum to interact
with its own soft hair mode. Note, however, that this
scenario cannot be analyzed within a single semiclassical
spacetime. The details of the interaction of the Hawking
radiation with the soft hair is an intriguing subject for
further study.
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