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1 Introduction

Diffeomorphism invariance is a defining feature of gravitational theories such as general
relativity, giving rise to charges that comprise an important set of observables in these
theories. Although diffeomorphisms supported only in the bulk are pure gauge and hence
associated with vanishing charges, transformations that act on the boundary of a spacetime
manifold or subregion yield nontrivial charges that provide notions of energy and angu-
lar momentum in the region, including contributions from the gravitational field. These
charges have found applications in a number of recent works, including symmetries of
asymptotically flat space [1–10], asymptotic observables in holography and AdS/CFT [11–
13], soft hair for black hole horizons and its relation to the information problem [14–21],
and edge modes and entanglement for subregions [22–28].

When dealing with subregions bounded by a finite, timelike hypersurface, the construc-
tion of Brown and York [29] gives a prescription for determining the gravitational charges
in terms of the variational principle for the subregion. By taking the on-shell subregion
action Scl[hij ] to be a functional of the induced metric hij on the boundary, one can define a
boundary stress tensor in the usual way as the functional derivative T ij = 2√

−h
δScl

δhij
. Given

an infinitesimal boundary diffeomorphism generated by a vector ξi, an associated bound-
ary current can be formed using the stress tensor according to the formula jξ = T ij ξ

jηi,
where ηi is the volume form on the boundary. Integrating this current over a cut of the
boundary yields the gravitational charge, and by choosing the vector field ξi appropriately,
one obtains in this way the Brown-York quasilocal energy and angular momentum.

– 1 –



J
H
E
P
0
1
(
2
0
2
2
)
0
2
9

These charges can be shown to agree with canonical charges generating the associated
symmetry transformations on the gravitational phase space [11–13]. This agreement holds
when imposing Dirichlet boundary conditions to define the subregion phase space, or more
generally for charges constructed using the Wald-Zoupas procedure [30] with a Dirichlet
form of the flux [18]. Since the Wald-Zoupas construction deals with open Hamiltonian
systems associated with subregions, the charges obtained are colloquially referred to as
“nonintegrable,” which, more precisely, means that the transformations they generate on
phase space do not reproduce the action of their associated diffeomorphism. Generally, the
Wald-Zoupas procedure suffers from a number of ambiguities related to the nonintegrability
of Hamilton’s equation for the diffeomorphism transformation, but these ambiguities can
be resolved by demanding a Dirichlet form for the nonintegrable contribution [18, 31]. Al-
though the Brown-York charges appear to sidestep these subtleties involving integrability,
the fact that they agree with Wald-Zoupas charges with the Dirichlet flux condition demon-
strates that they are simply employing the same resolution to the integrability problem.1

In addition to providing a means for constructing canonical charges, the boundary stress
tensor T ij also features prominently in holographic dualities such as AdS/CFT, where it
is interpreted as the stress tensor operator of the dual conformal field theory [32–34].

In many cases of interest, including exteriors of black hole event horizons, entangle-
ment wedges in holographic setups, and asymptotically flat spacetimes, one is interested
in subregions bounded by null hypersurfaces, as opposed to timelike ones. A natural ques-
tion arises as to whether the Brown-York procedure can be generalized to accommodate
null hypersurfaces in order to obtain gravitational charges in this context. The goal of
the present paper is to answer this question in the affirmative, and to derive an explicit
expression for the null analog of the Brown-York stress tensor for general relativity. The
stress tensor has the surprisingly simply expression

T ij = − 1
8πG

(
W i

j −Wδij

)
, (1.1)

where the shape operator W i
j , defined in (3.4), is the null surface analog of the mixed-index

extrinsic curvature Ki
j of a timelike hypersurface. In fact, the null stress tensor (1.1) de-

pends on W i
j in precisely the same way as the standard Brown-York stress tensor depends

on Ki
j , making the analogy quite sharp.

The expression (1.1) is obtained by considering the variational principle for general rel-
ativity in a subregion bounded by a null hypersurface. This variational principle requires a
notion of Dirichlet boundary conditions for the null surface in order to write the subregion
action as a functional of boundary geometric data. Unlike the timelike case, where the
intrinsic geometry is naturally that of a pseudo-Riemannian structure associated with the
induced metric hij , there are a number of different choices for how to define the intrinsic
quantities of the null surface that are fixed in a Dirichlet variational principle. The choice

1In the Brown-York context, instead of finding that Hamilton’s equations are not integrable, one instead
sees that the subregion action is not stationary for perturbations involving nonzero δhij . Demanding that
the subregion action be stationary except for terms involving δhij is equivalent to the Dirichlet flux condition
for the Wald-Zoupas charges [31].
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leading to (1.1) comes from imbuing the null boundary with a Carrollian structure, consist-
ing of a degenerate metric qij and a preferred null generator ni satisfying niqij = 0 [35–39].
This structure arises naturally from the spacetime geometry after fixing a preferred normal
na to the null surface. The variational principle for general relativity with this bound-
ary condition was explored extensively in [18], and utilizes a null analog of the Gibbons-
Hawking-York boundary term that has appeared in a number of recent works [40–44].

Previously there have been two other proposals for a null Brown-York stress tensor,
put forward by Jafari [45] and Donnay and Marteau [46], each of which differs from the
expression (1.1). The discrepancies are due to the different choices of geometric structures
to associate with the null surface and the corresponding differences in boundary conditions
to employ when defining the subregion variational principle. Jafari’s construction utilizes
a spacelike foliation of the null surface in lieu of a preferred normalization of the null
generator. Donnay and Marteau obtain their stress tensor using a null-limit of timelike
hypersurfaces, which induces a scalar function on the null surface that can be interpreted as
a local surface gravity. In section 3.3, we describe the precise relation between the different
null Brown-York stress tensors, and examine how they arise from these different choices of
geometric structures on the null surface.

The demonstration of the equivalence between Brown-York and canonical charges re-
quires the stress tensor to satisfy a conservation equation. In the timelike case, this con-
servation equation simply states that the stress tensor is divergenceless with respect to
the unique connection Di compatible with the induced metric. Null surfaces are more
subtle in this regard, since a Carrollian structure does not determine a unique connec-
tion with respect to which to define the covariant conservation of T ij . Nevertheless, we
show in section 3.1 that there is a class of torsion-free, but generically not metric compati-
ble, connections associated with the Carroll structure that are naturally induced from the
spacetime Levi-Civita connection as rigged connections, using a construction of Mars and
Senovilla [47]. While such connections have appeared previously in describing null infinity
and finite null surfaces embedded in spacetime [48–50], they have not been considered in
the recent literature on Carroll geometry (see, however, [51]), and we comment on their
main properties in appendix A. We further show that the conservation of the stress tensor
with respect to any such connection is equivalent to the constraint equations of general
relativity on the null surface, consisting of the Raychaudhuri and Damour-Navier-Stokes
equations [52, 53]. The connection between the gravitational constraint equations and
conservation laws was also explored by Donnay and Marteau for their null-limit stress ten-
sor [46], and in section 3.3 we compare their conservation equation to the one obtained for
the stress tensor in the present work.

After demonstrating the equivalence between the null Brown-York charges and canon-
ical charges for transformations that act covariantly on the Carrollian geometry, we turn
our attention in section 4 to so-called anomalous transformations. These arise from bulk
diffeomorphisms that do not fully preserve the fixed null normal na, and were shown in [18]
to be the essential feature determining extensions of gravitational charge algebras, which,
when evaluated on a black hole horizon, lead to information about the horizon entropy.
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We demonstrate that for such anomalous transformations, the Brown-York and canonical
charges in general do no agree, instead differing by a functional of the intrinsic geome-
try. We explicitly exhibit this difference by comparing the Brown-York expression to the
canonical charges associated with BMS-like transformations on finite null surfaces that
were obtained by Chandrasekaran, Flanagan, and Prabhu [50].

We conclude in section 5 with some discussions on potential applications to symmetries
of asymptotically flat space, celestial holography, and the fluid-gravity correspondence, and
comment on some directions for future work.

1.1 Notation

Latin letters from the beginning of the alphabet a, b, c, . . . are used to denote spacetime
tensor indices, while those from the middle of the alphabet i, j, k, . . . are used for tensors de-
fined on a timelike or null bounding hypersurface. Differential forms such as the spacetime
volume form ε or hypersurface volume form η are often written with indices suppressed.
When denoting a contraction on one or more indices, we will use the shorthand εa to indi-
cate the indices which are contracted, while continuing to suppress the remaining indices.
We also use the notation iV for contraction with a vector V a into a differential form.

2 Timelike boundary

We begin by reviewing the construction of Brown-York charges for timelike boundaries,
and the argument demonstrating their equivalence to canonical charges. This argument is
familiar from previous considerations regarding so-called “counterterm subtraction charges”
in asymptotically anti-de Sitter spaces [11, 12] and also discussions of integrable charges
for finite timelike boundaries [13].

Given an open subregion U bounded in spatial extent by a timelike surface T , the
action for the subregion is given by a sum of a bulk Einstein-Hilbert term and the boundary
Gibbons-Hawking-York term,2

S =
∫
U
L−

∫
T
` (2.1)

L = 1
16πG(R− 2Λ)ε (2.2)

` = − 1
8πGKη, (2.3)

where ε is the spacetime volume form, R is the spacetime Ricci scalar, and K is the trace
of the extrinsic curvature of T . Also η is the induced volume form on T , defined such that
ε
T= −n ∧ η, where na is the outward pointing unit normal to T . The orientation of T is

2We leave out contributions from future or past boundaries and codimension-2 corners, which are not
needed in obtaining the Brown-York charges.
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chosen to be that determined by η.3 The boundary term ` is chosen so that the action
satisfies a Dirichlet variational principle with respect to the induced metric hij on T . Its
variation is given by (see e.g. [13, 54])

δS =
∫
U
Eabδgab +

∫
T

(
πijδhij − dβ

)
, (2.4)

where Eab = 0 are the vacuum Einstein field equations, the momenta πij are given by

πij = − 1
16πG(Kij −Khij)η, (2.5)

and β contributes terms that localize to the past and future boundaries of T ; explicitly, it
is given by

β = 1
16πG

(
gab − nanb

)
ncδgbcηa, (2.6)

although we will drop these terms since we are ignoring contributions from future and past
boundaries.

The action S is therefore stationary4 when the bulk equations of motion hold and the
induced metric hij is fixed. This then allows us to view the classical action as a functional
of hij , Scl[hij ], and the boundary stress tensor is given by the variation of this functional
with respect to hij ,

T ij = 2√
−h

δScl

δhij
= − 1

8πG
(
Kij −Khij

)
. (2.7)

This stress tensor can be used to construct boundary Noether currents associated with
infinitesimal diffeomorphisms that preserve the hypersurface T . These are generated by
vector fields ξa tangent to T , and if ξi is the restriction of the vector to T , the current is
given by5

jξ = −T ij ξjηi. (2.8)

The Noether current is conserved when ξi generates a symmetry of the boundary
metric, which can be seen by computing its divergence,

djξ = −η(T ijDiξj +DiT
i
j ξ

j) = −η2T
ij£ξhij − (div T )jξjη, (2.9)

3This sign convention for η is opposite to that used in reference [13], and is opposite the orientation
induced on T when viewed as a component of ∂U . This implies that Stokes theorem for the subregion
takes the form

∫
U dα = −

∫
T α (dropping contributions from other components of ∂U). This orientation

for T ensures that Stokes theorem for integrals over a segment of T 2
1 between two cuts S1 and S2 of T ,

with S1 to the past of S2 takes the form
∫

T 2
1
dα =

∫
S2
α −

∫
S1
α, where the orientations of S1,2 are those

induced by viewing them as the boundary of bulk spacelike hypersurfaces Σ1,2. Hence, if we take U2
1 to be

the region of U bounded spatially by T 2
1 and to the past and future by Σ1,2, these conventions imply that

∂U2
1 = −T 2

1 +Σ2−Σ1 (where the sign indicates the relative orientations), ∂Σ1,2 = S1,2, and ∂T 2
1 = S2−S1.

4Up to contributions from future and past boundaries.
5The sign in this equation is somewhat nonstandard, and arises due to the choice of orientation of T . The

stress tensor (2.7) is insensitive to the choice of orientation, since it arises from the
∫

T π
ijδhij term in (2.4)

after stripping off the volume form η and the integral over T . Since under a change in orientation η → −η
and

∫
T → −

∫
T , these signs cancel out in the definition of T ij . However, the current jξ is constructed

by contracting with the volume form η, and hence it flips sign under a change in orientation. As we will
see below, the current that reproduces the canonical charges is the one associated with the orientation on
T naturally induced as a component of ∂U . The volume form for this induced orientation is −η, which
accounts for the sign in (2.8).
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where Di is the connection compatible with hij . The second term in this expression involv-
ing div T is recognized as the momentum constraint of general relativity associated with
the hypersurface T , and hence vanishes on-shell. This is a feature that will continue to hold
in the null case: the covariant conservation of the Brown-York stress tensor is equivalent
to imposing the momentum constraints of vacuum general relativity on T . When matter is
present, there would be an additional boundary contribution from the matter stress tensor
so that the total boundary stress tensor is conserved. The first term in (2.9) clearly vanishes
when ξi is a Killing vector for hij , and hence in this case jξ defines a conserved current.

Even when ξi does not generate a symmetry of the boundary metric, the current jξ
defines an important quantity due to its relation to gravitational charges constructed using
canonical methods. In particular, the Wald-Zoupas procedure [30, 50, 55] employs covari-
ant phase space techniques to construct charges that generically are not conserved due to
the presence of fluxes through the subregion boundary T . Instead of a conservation equa-
tion, these charges satisfy a continuity equation where the change in the charge is related to
a well-defined flux. Utilizing the reformulation of the Wald-Zoupas procedure given in ref-
erences [18, 31], which applies the techniques developed by Harlow and Wu [13] for dealing
with boundaries in the covariant phase space, the gravitational charges can be defined as
the integral of a current hξ over a cut of the boundary T . The explicit expression for hξ is

hξ = Qξ + iξ`− β[£ξgab], (2.10)

where
Qξ = − 1

16πGεab∇
aξb (2.11)

is the Noether potential, ` is the boundary term (2.3), and β[£ξgab] is the quantity (2.6)
evaluated with δgab = £ξgab. Using that the boundary term ` transforms covariantly under
any diffeomorphism generated by a vector field ξa that is tangent to T , one can derive a
continuity equation for hξ of the form

dhξ = −πij£ξhij , (2.12)

where the expression on the right represents the flux density through the boundary T .
Since πij = 1

2ηT
ij , comparing to equation (2.9) and imposing the constraint div T = 0

allows us to conclude
dhξ = djξ. (2.13)

Hence the charge densities hξ and jξ can differ at most by a closed form sξ. Furthermore,
since hξ and jξ are covariantly constructed from ξi and the boundary fields for arbitrary
choices of ξi, we can apply a theorem due to Wald [56] to conclude that sξ is exact, sξ = dcξ.
This then implies that the charges obtained by integrating the charge densities over a cut
S of T are insensitive to the choice of cξ, implying that the Wald-Zoupas and Brown-York
charges coincide,

Hξ =
∫
S
hξ =

∫
S
jξ ≡ QBY

ξ . (2.14)

Finally, as discussed in refs. [12, 31, 32, 34, 57, 58], when taking a limit of the surface
T to an asymptotic boundary, additional boundary terms `ct must be added to the action
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in order to obtain finite charges in a process known as holographic renormalization. These
additional counterterms are required to be covariant functionals of the intrinsic geometry
in order to preserve the Dirichlet form of the variational principle. Such terms then change
πij by the variational derivative πijct = δ`ct

δhij
. Covariance of `ct is crucial for ensuring that

the new stress tensor continues to be conserved, which requires Diπ
ij
ct = 0. This conserva-

tion equation is simply the Noether identity associated with the covariant functional `ct,
which holds identically due to invariance of `ct under boundary diffeomorphisms [59–61].
Hence, we can conclude that the equality of Wald-Zoupas and Brown-York charges is unaf-
fected by the process of holographic renormalization, provided the boundary counterterms
are covariant functionals of the intrinsic boundary geometry.6 Note that subtleties can
arise for transformations that are only tangential to T asymptotically, as occurs for some
asymptotic symmetry transformations. These can induce anomalous transformations on
`ct and the intrinsic quantities on T , due to the nonzero transverse component of the vector
field. In these cases, the canonical and Brown-York charges can differ by terms related to
holographic Weyl anomalies [12, 32, 34, 57, 62, 63]. A related example of this effect that
occurs for null surfaces is examined in section 4.

3 Null boundary

We can now repeat this analysis for a subregion bounded by a null hypersurface N .
The main subtlety is that the intrinsic geometry is no longer characterized by a pseudo-
Riemannian structure, involving a nondegenerate metric. Instead, the geometry consists
of a degenerate metric qij with a single null direction, and a preferred generator ni of the
kernel of qij , i.e. a vector satisfying niqij = 0. Together, these objects define a (weak) Car-
roll structure for the null surface N [35–39]. While the degenerate metric qij is naturally
induced as the pullback of the spacetime metric to N , the additional structure encoded in
ni arises after choosing a distinguished normal form na of the null surface, after which ni is
determined by raising the index with gab and restricting the vector to N . These structures
were argued in [18] to be the natural quantities with respect to which to formulate the
Dirichlet variational principle for null boundaries.

There are two main subtleties associated with working with a Carrollian, as opposed to
a pseudo-Riemannian, structure. First, the process of lowering indices with the degenerate
intrinsic metric does not produce an isomorphism between tangent and cotangent vectors,
and hence the index placement for tensors becomes important. Second, there is no preferred
connection available for defining covariant derivatives of tensors. Despite these complica-
tions, we will find that a null version of the Brown-York stress tensor T ij can be obtained
independent of any choice of connection. It is naturally defined with one contravariant
and one covariant index, as is appopriate when viewing the stress tensor as a linear map
from vectors ξi into their associated charge densities jξ = −T ij ξjηi, with ηi the volume
form [64]. Furthermore, a connection-independent notion of the covariant conservation of

6These anomalous transformations manifest as a mismatch between the transformation of `ct on the
phase space and its transformation under the Lie derivative, δξ`ct 6= £ξ`ct.
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the stress tensor (div T )j = 0 also arises from the definition, and this condition turns out
to precisely coincide with the imposition of the constraint equations on the null surface.

3.1 Geometry of null surfaces

In order to describe the Dirichlet variational principle with a null boundary, we need to
review a few details on the intrinsic and extrinsic geometry of null surfaces. The degenerate
metric qij determines a spatial volume form µ (up to a sign, which can be fixed by a choice
of orientation), which is a horizontal form of maximal degree, meaning it is one degree
below a top form and inµ = 0. This spatial volume form is such that on any codimension-1
cut of N , µ pulls back to the induced volume form compatible with the pullback of qij
and the chosen orientation of the cut. The preferred null generator ni also determines a
volume form η on the full null surface, which is the unique top form that satisfies inη = µ.
These structures then determine a set of first order differential invariants, the expansion
Θ, extrinsic curvature Kij ,7 and shear σij according to the equations

dµ = Θη (3.1)

Kij = 1
2£nqij (3.2)

σij = Kij −
1

n− 1Θqij . (3.3)

where n = d− 1 is the dimension of the null hypersurface.
The extrinsic geometry is characterized by the shape operator or Weingarten map W i

j

of the null surface, which is determined after fixing a preferred spacetime 1-form na at N
to serve as the null normal. Letting Πa

i denote the pullback map to N , we note that the
spacetime covariant derivative of the null normal ∇anb upon taking a pullback produces a
tensor Πa

i∇anb whose b index is tangential. This therefore defines a tensorW i
j on N which

we refer to as the shape operator; explicitly it can be defined as the unique tensor satisfying

W i
j Πb

i = Πa
j∇anb. (3.4)

Some components of the shape operator are determined by the intrinsic geometry of N ; in
particular, the extrinsic curvature is obtained by lowering an index with qij ,

W i
j qik = Kkj . (3.5)

The remaining components involve terms in W i
j of the form niρj , which do not contribute

to equation (3.5). One such component arises from the equation

W i
j n

j = kni, (3.6)

which holds since na is parallel to null geodesics in spacetime. Hence, ni is an eigenvector
of the shape operator, and its eigenvalue k is called the inaffinity.

7Despite this terminology, the “extrinsic curvature” Kij is fully determined by the intrinsic quantities
(qij , ni).
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To be more explicit about the decomposition of the shape operator, we need to intro-
duce an auxiliary one-form li, normalized relative to the null generator by nili = −1. Note
that there is no preferred choice for li for a generic null surface. Intrinsically, li defines
an Ehreshmann connection [65, 66], which is just a projector sij = −nilj onto vertical
vectors parallel to ni. This similarly allows us to define a projector qij onto horizontal
forms through the relation

qij = δij + nilj , (3.7)

as well as a partial inverse qij of the degenerate metric qjk through the relations qijqjk = qik ,
qijlj = 0. From the extrinsic perspective, li can be taken to arise from a null rigging vector,
which is a transverse vector la defined on the null surface satisfying l · n = −1, l · l = 0.
This implies that la is an outward pointing vector at the null surface. Then li = Πa

ila
defines the desired one-form on the null surface. Having introduced li, the shape operator
can then be decomposed as

W i
j = Ki

j + niρj (3.8)
ρj = $j − klj (3.9)

where Ki
j = qikKkj , ρj is the rotation one-form defined by,

ρj = −Πa
jlb∇anb, (3.10)

and the Hájíček one-form $i is the spatial projection of ρj ,

$i = qjiρj . (3.11)

We can also explicitly express the volume form on N in terms of la and the spacetime
volume form by writing η = Π∗(−ilε), where Π∗ indicates a pullback. Note as in the
timelike case, the volume form η is associated with an orientation of N that is opposite
the natural orientation induced on N as a component of the boundary of U .

The rigging vector la also provides a natural projector for spacetime vectors onto the
null surface, given by

Πa
b = δab + lanb, (3.12)

which then allows us to define an inclusion map Πi
a that inverts the pullback map for

covectors in the sense
Πi

bΠa
i = Πa

b. (3.13)

We can then use Πi
a and Πb

j to map intrinsic tensor fields on the null surface into spacetime
tensor fields defined at N .

Additionally, this projector induces a natural rigged connection on the null surface from
the spacetime Levi-Civita connection through a construction of Mars and Senovilla [47]. If
V a is tangent to N , we can define the rigged covariant derivative as

DaV
b = Πc

aΠb
d∇cV d, (3.14)

– 9 –
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which then defines an intrinsic covariant derivative on the vector V i = Πi
aV

a to be

DiV
j = Πa

iΠ
j
bDaV

b. (3.15)

Di is extended to covectors Ui by first mapping it to spacetime using the inclusion map
Πi

a, taking the covariant derivative, and then pulling back,

DiUj = Πa
iΠb

j∇a(Πk
bUk). (3.16)

Di is then extended in the usual way to tensors of arbitrary degree. It is important to
emphasize that this intrinsic connection Di depends on the choice of auxiliary one-form li.
Note that it is manifestly torsion-free, but generically does not preserve any of the intrinsic
structures on the surface. Instead, we have the following relations (derived in appendix A):

Diqjk = ljKik + lkKij (3.17)

Din
j = W j

i = Kj
i + njρi (3.18)

Diη = −ρiη (3.19)

Diµ = Kj
iηj (3.20)

From the intrinsic perspective, these relations can also be used as the definition of a con-
nection compatible with a given Carroll structure and associated Ehresmann connection
li. In doing so, the rotation one-form ρi appears as additional data needed to fully specify
the connection, beyond that contained in (qij , ni, lj). Additionally, there is a final relation
involving Dilj that is not fixed by equations (3.17)–(3.20), as shown in equation (A.8). The
data in Dilj that is not fixed by quantities already defined is captured by its symmetric,
horizontal component, νij = qmiq

n
jD(mln). As equation (3.19) shows, ρi characterizes the

failure of the connection to preserve the volume form. Similarly, νij measures the failure
of the connection to preserve the Ehresmann connection li, although there are additional
obstructions to the vanishing of Dilj described in appendix A. Intrinsically, one is free to
work with a connection that imposes ρi = 0 and νij = 0; however, there are preferred,
generically nonzero, choices for these quantities when working with a rigged connection
induced from the spacetime connection.

Finally, we mention how to express the divergence of a vector field on the null surface in
terms of the connection Di. Since the null surface has a preferred volume form η, the diver-
gence of a vector field V ican be defined independently of a connection through the equation

diV η = (div V )η. (3.21)

Because the connection Di generally does not preserve the volume form, the expression for
div V in terms of Di contains a contribution from ρi,

div V = DiV
i − ρiV i. (3.22)
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3.2 Null Brown-York stress tensor

We can now describe the construction of the null boundary Brown-York stress tensor, and
demonstrate the equivalence between the charges constructed from it and the canonical
charges. Before deriving the result, we first comment on an important point regarding the
index placement of the stress tensor we are seeking to obtain. On timelike surfaces, the pres-
ence of a nondegenerate metric allows indices to be raised and lowered, and so the tensors
Tij , T ij and T ij all contain the same information. This is no longer true on a null surface,
and there is a question as to which index placement is correct. The answer is that the stress
tensor is naturally defined as a mixed index object, T ij . This is because the stress tensor
should be viewed as a map from a vector field ξi to an associated current jξ, which can be
integrated over codimension-1 surfaces inside of N to obtain fluxes of energy and momen-
tum. This current is obtained by contracting the vector T ij ξj into the volume form η on N
(see related comments in [64]). Note that the presence of a volume form η as a natural struc-
ture characterizing the geometry of N is important for obtaining a two-index tensor. This
suggests that an even more natural object characterizing the stress-energy of the theory is
the covector-valued differential form T ij ηi. However, since there is a preferred volume form
when working with a fixed null normal na, we will focus on the associated stress tensor T ij .

We begin as before with an open subregion U in spacetime, now bounded in spatial
extent by a null hypersurface N . Nullness of N is imposed as a boundary condition for
the phase space of field configurations, and we further impose that N be equipped with
a preferred null normal that is also fixed when taking variations, δna = 0. The action is
taken to contain the same bulk term (2.2), but in place of the Gibbons-Hawking-York term,
the boundary term for the null surface is constructed from the inaffinity k according to8

` = − 1
8πGkη, (3.23)

and the subregion action is defined to be

S =
∫
U
L−

∫
N
`, (3.24)

where the orientation of N is again chosen to be opposite the induced orientation as a
component of ∂U . The variation of the action with this boundary term takes the form of
a Dirichlet variational principle [18],

δS =
∫
U
Eabδgab +

∫
N

(
πijδqij + πiδn

i − dβ
)

(3.25)

where

πij = − 1
16πG

(
Kij − (Θ + k)qij

)
η (3.26)

πi = 1
8πG (Θli +$i) η (3.27)

β = 1
16πG

(
gabnc − nagbc

)
δgabηc. (3.28)

8Another choice for the boundary term is − 1
8πG (k + Θ)η [40, 43, 44]. The additional term involving Θ

can be shown to be a total derivative on N , and hence only changes the definition of the corner term β

(see (3.28)), and does not affect the Dirichlet variational principle.
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This action is stationary when the bulk equations of motion hold and the intrinsic Carroll
structure defined by (qij , ni) is held fixed, which allows the classical action to be viewed as
a functional of this structure, Scl[qij , ni].

Since the classical action is now a functional of two geometric quantities (qij , ni) instead
of a single metric hij , defining a stress tensor associated with it requires slightly more
care than in the timelike case. In general, the stress tensor should characterize how the
action responds to a diffeomorphism acting on the boundary, for which δξqij = £ξqij and
δξn

i = £ξn
i. Using the expression (3.25) for a general variation of the action and dropping

terms that localize to the boundary of N , we find that δξScl = −
∫
N Eξ, with

Eξ = −πij£ξqij − πi£ξn
i = −πij(ξkDkqij + 2Diξ

kqkj)− πi(ξkDkn
i − nkDkξ

i), (3.29)

where Di is taken for the moment to be an arbitrary torsionless affine connection on N .
Since the first equality here only involves Lie derivatives, the expression does not depend
on the choice of Di. The expression on the right hand side of (3.29) can be rearranged to
express the equation in the form

Eξ = djξ − fξ, (3.30)

where jξ and fξ are unambiguously determined by requiring that they both depend linearly
and algebraically on ξi. We will use this decomposition to define the stress tensor by the
relation jξ = −T ij ξjηi (see footnote 5 regarding this choice of sign), as well as a generalized
divergence by the equation fξ = −(div T )jξjη. Using the undensitized momenta (pij , pi),
defined by πij = ηpij , πi = ηpi, the boundary stress tensor and its generalized divergence
are found to be9

T ij = 2pikqkj − nipj (3.31)
(div T )j = DiT

i
j − ρiT ij − pikDjqik − piDjn

i (3.32)

Note that the corrections appearing in the generalized divergence are similar to those that
occur in the divergence formula (3.22) for a vector field with respect to a connection Di that
does not preserve the volume form. Although the expression for (div T )j appears to depend
on the choice of connection, such dependence is superficial, as can be seen by noting that

(div T )jξjη = d(T ij ξjηi)− πij£ξqij − πi£ξn
i, (3.33)

9These expressions for a stress tensor and generalized divergence are not special to general relativity, but
instead hold for any theory whose action is a functional of a Carroll structure, S[qij , ni]. The Carrollian
momenta pij and pi can be defined by variational derivatives of such an action with respect to qij and
ni, and the stress tensor of the theory is still given by (3.31). This allows generalizations not only to
other theories of gravity possessing a Dirichlet variational principle, but also to more general Carrollian
field theories defined intrinsically on a null surface (see e.g. [67]). A similar expression for a stress tensor of
asymptotically flat 3D gravity in terms of Carrollian momenta was presented in [68]. A related construction
of Carrollian momenta and conservation laws was considered in [69], although they utilize a slightly different
set of geometric structures and momenta. Their conservation laws are naturally interpreted as a null limit
of ordinary covariant conservation with respect to a pseudo-Riemannian connection, as explored in [70, 71].
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with all terms on the right hand side manifestly independent of the connection.10 The
expression (3.31) gives the null version of the Brown-York stress tensor, which can be re-
arranged using the expressions (3.26) and (3.27) and the decomposition (3.8) of the shape
operator to give

T ij = − 1
8πG

(
W i

j −Wδij

)
(3.35)

where W = W i
i = Θ + k. This expression is exactly analogous to the timelike Brown-York

stress tensor (2.7), with the null shape operator W i
j replacing the extrinsic curvature ten-

sor Ki
j in the timelike case. In fact, Ki

j has the interpretation of a shape operator for
a timelike surface, which further tightens the analogy between the two cases. An impor-
tant property of the null Brown-York stress tensor (3.35) is that because it is constructed
directly from W i

j , it is completely independent of the choice of li, despite a superficial de-
pendence on this choice in the expressions for the individual momenta pij and pi. It is worth
pointing out that the mixed index structure T ij is important for obtaining an object that
is independent of li: any procedure for raising or lowering an index to obtain tensors T ij

or Tij will necessarily introduce dependence on some auxiliary structure such as li, or else
kill some components if, for example, the degenerate metric qij is used to lower an index.

To prove equality between the Brown-York current jξ and the charge density hξ con-
structed using the Wald-Zoupas procedure [18], we must show as in the timelike case that
the divergence of the stress tensor (3.32) vanishes as a consequence of the constraint equa-
tions on N . To do so, we now take the connection Di to be an induced rigged connection,
satisfying equations (3.17)–(3.20). The first term in div T takes the expected from as a
covariant divergence with respect to the connection Di. The remaining terms can be shown
to cancel:

2ρiW i
j − 2Wρj +

(
Kik −Wqik

)
(liKjk + lkKji)− 2($i + Θli)W i

j

= −2
[
− ρiW i

j +Wρj + ρiW
i
j + (Θ + k)liW i

j

]
= 0 (3.36)

where we have used that liKik = liq
ik = 0 and $i = ρi + kli. Hence, the divergence of the

stress tensor when evaluated using an induced rigged connection is given simply by

(div T )j = DiT
i
j . (3.37)

The final step is to relate this divergence to the constraint equations on N . The
contracted Codazzi equation of the null surface is given by equation (6.3) reference [52],

10Such a generalized divergence can be defined for any tensor Aij for which nj is an eigenvector, Aijnj =
αni, and whose spatial component is symmetric, Aijqik = Aikqij . Any such tensor can be decomposed as
Aij = 2aikqkj −niaj with aij symmetric, and the pair (aij , aj) are only determined up to shifts of the form
aij → aij + V inj + niV j , aj → aj + qjkV

k. Defining the divergence by

(divA)jξjη = d(Aijξjηi)− η(aij£ξqij + ai£ξn
i), (3.34)

one can check that the resulting expression is insensitive to the ambiguity in the definition of aij and ai.
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which evaluates to

Πb
cRabn

a = Πb
c [∇aKa

b + na∇aρb + (k + Θ)ρb −∇b(k + Θ)−Kbcl
a∇anc] (3.38)

= DaK
a
c + naDaρc +Wρc −DcW (3.39)

= DaW
a
c −DcW (3.40)

where to get to the second line we used ∇aKa
b = Πa

d∇aKd
b − nalc∇cKa

b = Πa
d∇aKd

b +
lc∇cnaKab, and for the third line we used Dan

a = W . We immediately recognize this to be
proportional to the divergence of the null Brown-York stress tensor, and hence we conclude
that this divergence vanishes on shell,

DiT
i
j = −8πGΠb

jRabn
a = 0. (3.41)

Often, the null Codazzi equations are separated into the nj component, which is just the
Raychaudhuri equation, and a spatial component, which is known as the Damour-Navier-
Stokes equation [52, 53].

As in the timelike case, the vanishing of (div T )j allows us to now conclude the equality
of the Wald-Zoupas and Brown-York charge densities. The Wald-Zoupas charge densities
associated with a Dirichlet flux condition are again given by the general formula (2.10)
using the expressions (3.23) and (3.28) for ` and β. They satisfy the continuity equation
dhξ = Eξ [18], which, according to (3.29), is equal to djξ after imposing the stress tensor
conservation equation fξ = 0. We can therefore conclude the equality of hξ and jξ, subject
to the same caveats described above equation (2.14) regarding the addition of exact forms
dcξ to each. This then demonstrates that for symmetries that act covariantly on qij and ni,

Hξ =
∫
S
hξ =

∫
S
jξ = QBY

ξ . (3.42)

The on-shell continuity equation dhξ = djξ = Eξ implies that the Brown-York charges (3.42)
are not conserved between cuts of the boundary N , but instead satisfy a flux-balance
equation in which the difference of the charges is given by the integral of Eξ between the
cuts [18, 31].

When utilizing additional intrinsic boundary terms during holographic renormalization
procedures for asymptotic charges, the two notions of charges will continue to agree, pro-
vided the boundary counterterms `ct are fully covariant with respect to the diffeomorphisms
from which the charges are being constructed.

3.3 Comparison to other null Brown-York stress tensors

While the expression (3.35) for the Brown-York stress tensor on a null surface is a novel
result of the present work, the idea of applying the Brown-York construction to null surfaces
has been considered previously, see e.g. [45, 46, 72, 73]. Of particular note are the works
of Jafari [45] and Donnay and Marteau [46], which both offer proposals for a full stress
tensor associated with a null surface. These proposals each differ slightly from the stress
tensor (3.35) due to different choices in boundary conditions and intrinsic structures on the
null surface when defining the subregion variational principle, and in this section we briefly
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describe the difference between these various proposals for the null Brown-York stress
tensor. In making comparisons, we will refer to the stress tensor (3.35) of the present work
as the normal Brown-York stress tensor, since it arises from a variational principle that
fixes the null normal na at N .

The stress tensor defined by Jafari [45] bears many similarities to (3.35), as both are
derived from a Dirichlet variational principle. The main difference is that Jafari does not
impose the boundary condition that the surface N remain null for all variations of the
metric, and the variations that change the null character of the surface are related to the
energy density computed by the stress tensor. Additionally, Jafari employs a foliation by
codimension-2 surfaces in the region of spacetime near N , following the constructions in
refs. [42, 44, 74], which induces a preferred foliation of the null hypersurface. This has the
effect of allowing for some variations that rescale the null generator, δna ∝ na, in contrast
to the boundary condition δna = 0 employed in the present work. A final difference is
that Jafari obtains a stress tensor with covariant indices Tij , making the comparison to the
mixed index version T ij somewhat subtle. However, because the null surface in Jafari’s
construction comes equipped with a preferred auxiliary null vector la due to the local
foliation by codimension-2 surfaces, a prescription can be given to define an equivalent
mixed-index tensor. This amounts to defining an intrinsic Lorentzian metric on the null
surface using the induced auxiliary one-form li via

hij = −lilj + qij , (3.43)

whose inverse is given by hij = −ninj + qij . This choice then implies that lowering the
index of the null generator ni yields the auxiliary one-form, nihij = lj . When computing
the components of the stress tensor, this prescription can be implemented through the
relation T ij li = Tijn

i.
The most straightforward way to compare to Jafari’s expressions is then to decompose

the normal Brown-York stress tensor (3.35) into an energy density E, momentum Pi, and
a spatial stress tensor Σi

j according to

E = −T ij njli = Θ
8πG (3.44)

Pk = T ij liq
j
k = $k

8πG (3.45)

Σi
j = T kl q

l
jq
i
k = − 1

8πG
(
Ki

j − (Θ + k)qij
)
. (3.46)

The expressions for the momentum density Pj and the spatial stress tensor Σi
j coincide with

Jafari’s expressions in equations (37) and (38) of ref. [45]; however, the energy density (3.44)
differs from Jafari’s expression, which instead involves the expansion of the codimension-2
foliation along the auxiliary null direction la transverse to the surface. The difference in
the expression for the energy density is entirely due to the different choice of background
structures and boundary conditions Jafari employs in defining the null surface variational
principle.

The stress tensor of Donnay and Marteau [46] is obtained by a somewhat different pro-
cedure. Rather than working directly on the null surface, they consider a sequence of time-

– 15 –



J
H
E
P
0
1
(
2
0
2
2
)
0
2
9

like surfaces that limit to the null surface. On each timelike surface, the usual Brown-York
stress tensor can be constructed from the extrinsic curvature Ki

j as in (2.7). Although this
diverges as the null limit is taken, the densitized stress tensor T ij ηi has a finite limit, which
defines a tensor (TNL)ij on N that we refer to as the null-limit Brown-York stress tensor.

To see how this works in more detail, it is helpful to consider an unnormalized normal
vector to the timelike hypersurfaces, which smoothly limits to the null normal na of the
null surface. Hence, we consider a function Φ whose level sets foliate the region near N ,
such that the unnormalized normal na = ∇aΦ limits to the null normal at Φ = 0. The
norm of na vanishes as the null surface is approached, and hence there must be a function
κ which we refer to as the surface gravity, that satisfies the equation

gabnanb = 2κΦ, (3.47)

and generically κ has a nonzero limit to N .11 In terms of na, the projector onto the timelike
surfaces can be expressed as

hab = δab −
nanb
2κΦ . (3.48)

Using this projector, we can construct a shape operator K̃a
b from the covariant derivative

of the normal by the relation

K̃a
b = hach

d
b∇dnc = hdb

[
∇dna −

1
2n

a∇d log κ
]

(3.49)

where in obtaining the final expression on the right hand side of (3.49), we used the fact
that hab∇aΦ = habna = 0. By definition, this tensor is tangential to the constant Φ
surfaces on its contravariant index, and hence pulls back to a well defined tensor K̃i

j on
the surface, whose defining relation is

K̃i
jΠa

i = Πb
j

[
∇bna −

1
2n

a∇b log κ
]

(3.50)

where Πa
i is the pullback map to each constant Φ surface. It is related to the more familiar

extrinsic curvature of the surface Ki
j , which is constructed from the covariant derivative

of the unit normal n̂a = na√
2κΦ by a simple rescaling [47],

Ki
j = 1√

2κΦ
K̃i

j . (3.51)

The terms appearing in (3.50) have manifestly finite limits to N , and we see that K̃i
j limits

to a shifted version of the null surface shape operator,

K̃i
j

Φ→0−→ W i
j − niaj (3.52)

where
aj = 1

2Dj log κ (3.53)

is the acceleration of the normal vector of the timelike foliation.
11For generic null surfaces, the surface gravity κ defined by equation (3.47) can differ from the inaffinity

k defined by equation (3.6), although these two definitions agree for Killing horizons, as well as whenever
na is chosen to be a pure gradient.
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Since K̃i
j has a finite limit, it is clear from equation (3.51) that the extrinsic curvature

tensor Ki
j diverges as Φ−

1
2 in the null limit. The Brown-York tensor on the timelike

surfaces will then similarly diverge in the null limit. However, as discussed at the beginning
of section 3, a more natural object to consider is the densitized stress tensor T ij η̂i, where
η̂ is the induced volume form. Since η̂ vanishes as

√
2κΦ as the surface becomes null, we

see that the densitized stress tensor has a finite null limit. We can then turn this into a
tensor on the null surface using the volume form η associated with the null normal na to
obtain the null-limit Brown-York stress tensor,

(TNL)ij = − 1
8πG

(
K̃i

j − K̃δij
)

= − 1
8πG

(
W i

j −Wδij − niaj + (nkak)δij
)
. (3.54)

This final expression is the stress tensor obtained by Donnay and Marteau [46], which
differs from the normal Brown-York stress tensor (3.35) by the acceleration terms aj which
involve gradients of the surface gravity,

(TNL)ij = T ij + 1
8πG

(
niaj − nkakδij

)
. (3.55)

An interesting feature is that these corrections cancel out of the energy density, which is
still given by (3.44) when using the null-limit stress tensor. Gradients of κ then enter into
expressions for the momentum Pk and the spatial stress tensor Σi

j .
Finally, we mention that the conservation equation for the null-limit stress tensor is

somewhat different from the conservation equation (3.41) for the normal Brown-York stress
tensor (3.35). Continuing to employ the induced rigged connection defined in 3.15 and using
that Di(W i

j −Wδij ) = 0 on shell and da = 0, we find that

Di(TNL)ij = 1
8πGDi

(
niaj − δij (nkak)

)
= − 1

8πG
(
W i

j −Wδij

)
ai

= (TNL)ijai (3.56)

where the last line uses ai(niaj−δijnkak) = 0. This correction to the conservation equation
involving the acceleration is expected from the perspective of the null limit, since (TNL)ij
arises as the limit of rescaled version of the timelike Brown-York stress tensor,

(TNL)ij = lim
Φ→0

[
−
√

2κΦ
8πG

(
Ki

j −Kδij
)]
. (3.57)

Since the usual Brown-York stress tensor constructed from Ki
j is covariantly conserved on-

shell with respect to the induced connection on the timelike surfaces, the rescaled stress ten-
sor satisfies a modified conservation equation exactly of the form (3.56). It would be inter-
esting to explore in more detail these modifications of the conservation equation, and their
relation to the Carrollian conservation equations described in [46, 69–71]. In particular,
there may be a different notion of connection on the null surface that is naturally induced
from the null limit that makes the interpretation of the conservation more straightforward.
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4 Anomalous transformations

The previous sections demonstrated that the Brown-York and canonical Wald-Zoupas
charges agree, provided that the diffeomorphisms being considered act covariantly on the
intrinsic boundary structures and on the boundary term ` in the action. In some contexts,
however, it is useful to consider charges for transformations that act anomalously on these
structures. For example, the appearance of central extensions in the algebra of Virasoro
charges on black hole horizons [16, 17] was shown in [18] to be a consequence of such
anomalous transformations. They arise in situations where additional background struc-
ture is introduced when constructing the subregion action that was not originally present
in the definition of the field configuration space. Transformations which do not preserve
the background structure will act anomalously on functionals that depend on it.

In this section, we investigate whether the two notions of charges continue to agree
when considering these more general, anomalous transformations. For finite timelike sur-
faces, all diffeomorphisms that are tangent to the surface act covariantly on the GHY
boundary term (2.3) and the intrinsic metric hij , and hence the equality between Brown-
York and canonical charges holds. By contrast, it was shown in [18] that certain diffeo-
morphisms of a null surface can act anomalously on the boundary term (3.23) and intrinsic
quantities. For this reason, we restrict attention to null surfaces in this section. In principle,
anomalous transformations can also arise for timelike surfaces if the diffeomorphism con-
tains a nonzero transverse component. This situation is particularly relevant for asymptotic
symmetries of anti-de Sitter space, where such transformations give rise to the well-known
holographic Weyl anomalies of the dual CFT [12, 32, 34, 57, 62]. Although we do not
analyze this case in detail due to subtleties in handling transverse surface deformations,
we expect similar reasoning to apply in this case as well. It would be interesting to explore
this case in more detail in the future.

As discussed in section 3.2, since the Dirichlet variational principle with a null bound-
ary is formulated by fixing a preferred null normal na, anomalies can arise from diffeomor-
phisms which are tangent to N but only preserve na up to a rescaling. This rescaling wξ
is known as the boost weight of the transformation, and is defined through the equation

£ξna = wξna. (4.1)

On the other hand, since na is taken to be a fixed quantity, it cannot in particular transform
nontrivially under diffeomorphisms, so that δξna = 0. It is convenient to parameterize the
failure of na to transform covariantly through an anomaly operator ∆ξ [74], defined by

δξna = £ξna + ∆ξna. (4.2)

By the above discussion, we immediately find ∆ξna = −wξna, and this equation also fixes
the anomalous transformation of the intrinsic null generator,

∆ξn
i = −wξni. (4.3)
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Such transformations also act anomalously on the null boundary term (3.23), and this
anomaly was computed in [18] to be

∆ξ` = (na∇awξ)η
8πG . (4.4)

Since the degenerate induced metric is independent of the normalization of na, it continues
to transform covariantly, ∆ξqij = 0.

Note that the conservation equation (3.41) for the null Brown-York stress tensor is
independent of the vector field ξa and whether or not it acts anomalously. Because of this,
once the gravitational constraint equations are imposed, the divergence of the Brown-York
charge density always satisfies

djξ = Eξ, (4.5)

with Eξ given in (3.29). On the other hand, the canonical charge density hξ satisfies a
modified continuity equation derived in [18],

dhξ = −πij£ξqij − πi£ξn
i − πi∆ξ̂n

i −∆ξ̂` (4.6)

= djξ + (div T )jξjη −
η

8πG(Θwξ + niDiwξ). (4.7)

The final term in (4.7) reduces to the exact term − 1
8πGd(wξµ) on the null surface. We can

therefore conclude that on shell, the Brown-York and Wald-Zoupas charge densities are
related via

hξ = jξ −
1

8πGwξµ, (4.8)

and therefore the charges differ by the integral of the anomaly over the cut S,

Hξ = QBY
ξ − 1

8πG

∫
S
wξµ. (4.9)

As an explicit example of how such a difference between Brown-York and Wald-Zoupas
charges can arise, we now consider the symmetries and charges at a finite null boundary
found by Chandrasekaran, Flanagan, and Prabhu (CFP) [50].12 In this example, the field
configuration space for general relativity in a subregion with a null boundary is further
restricted to fix ni and k on the null surface. It was shown that the symmetry group of
this field configuration space is

diff(S) n s, (4.10)

where S is the base space of N , viewing N as a fiber bundle where the null generators are
fibered over S, and s consists of the set of vector fields ξa = fna for functions f : S → R
which satisfy

£n(£n + κ)f = 0. (4.11)

The solutions correspond to angle-dependent translations and angle-dependent rescalings
of the integral curves of the null generator. The diff(S) generators are represented by
vector fields ξa = Xa where Xana = Xala = 0. The Wald-Zoupas charges associated to

12The same algebra was recently considered as an extended symmetry algebra of null infinity in ref. [10].
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this symmetry group were computed in CFP using covariant phase space methods, with
the result that on any cross-section S of the null boundary,13

Hξ = − 1
8πG

∫
S
µ
(
Θf −£nf +W i

jX
jli − li£Xn

i
)
, (4.12)

where we have shifted the boundary term used in CFP by ` → ` − 1
8πG(k − Θ)η in order

to agree with the choice of boundary term and total derivative term β in the present
work. We now compare these charges to the ones which result from the Brown-York stress
tensor (3.35).

The Brown-York charges for these symmetries are

QBY
ξ = −

∫
S
T ij ξ

jηi = − 1
8πG

∫
S
µ
(
Θf +W i

jX
jli
)
, (4.13)

which differs from the Wald-Zoupas charges. However, note that the field space defined
in CFP contains an anomalous transformation of ni (4.3). A simple computation of wξ
results in

wξ = −£nf − li£Xn
i. (4.14)

Therefore, the Wald-Zoupas and Brown-York charges differ by the term

Hξ −QBY
ξ = − 1

8πG

∫
S
µ wξ, (4.15)

in agreement with the general relation (4.9).
We further remark on an important difference between the Wald-Zoupas and Brown-

York charges. Choose coordinates (u, xA) on N , where u is an affine parameter for the
null generator, i.e. ni = ∂u, k = 0, and xA are coordinates for S. Furthermore, we
can always choose u such that S is at u = 0. The condition (4.11) can be solved to
get f(u, xA) = f0(xA) + uf1(xA). The angle-dependent translations, f0(xA), contribute to
both (4.12) and (4.13), but the angle-dependent rescalings f1(xA) only contribute to (4.12).
In particular, they only contribute through the anomaly term. Ultimately this is because
the rescaling generators come from boost generators in the bulk spacetime, which vanish at
S but have non-vanishing first derivative there. While the Wald-Zoupas charges depend on
first derivatives of the symmetry generators, the Brown-York charges do not.14 Note that if
we take N to be the Killing horizon of a stationary black hole, then the Wald entropy [75]
arises purely from the anomaly.

5 Discussion and future work

This paper has presented a novel expression for a Brown-York stress tensor associated with
null hypersurfaces in general relativity and has established its two key features: covariant

13In CFP the Wald-Zoupas charges were found using the stationarity condition that the flux should vanish
for all perturbations on a solution for which N is stationary. For the field space considered in CFP, which
imposes boundary conditions fixing ni and k, this happens to agree with the Dirichlet variational principle
adopted in the present paper.

14Of course, if we evaluate the Brown-York charges for the rescaling symmetries on any other cross-section,
after having fixed S to lie at u = 0, then it will be non-vanishing.

– 20 –



J
H
E
P
0
1
(
2
0
2
2
)
0
2
9

conservation with respect to an induced connection on the null surface, and the relation-
ship between the associated Brown-York charges and canonical charges obtained via the
Wald-Zoupas construction. The conservation equation was shown to be equivalent to the
gravitational constraint equations on the null surface, consisting of the Raychaudhuri and
Damour-Navier-Stokes equations. The latter name refers to the analogy made by Damour
between this evolution equation for kinematical quantities on a black hole horizon and the
Navier-Stokes equation of hydrodynamics. Reformulating it as a conservation equation for a
stress tensor sheds light on the reason for this analogy: at their core, hydrodynamical equa-
tions are simply conservation equations for a fluid stress tensor. The striking feature of the
conservation equation (3.41) for the null Brown-York stress tensor (3.35) is that it explicitly
takes the form of a covariant divergence of stress tensor with respect to a well-defined con-
nectionDi on the null surface. This is in contrast to previous works [46, 53], which generally
separate these conservation equations into components, somewhat obscuring their interpre-
tation. It is also in contrast to formulations which express the conservation equations as
flux balance equations such as in [74], which are more analogous to the on-shell relation
djξ = Eξ as in equation (3.30). While imposing the flux balance equation for every choice of
ξi implies the conservation equation and vice-versa, the conservation equation (3.41) is more
directly related to the dynamics of the system and the hydrodynamical equations of motion.

Note that the connection between gravitational equations and hydrodynamics features
prominently in the fluid-gravity correspondence in holography [76, 77]. We therefore ex-
pect the identification of the null Brown-York stress tensor and its conservation equation
to yield important insights into holographic correspondences involving null boundaries,
including celestial holography and for holographic descriptions of subregions bounded by
null surfaces. Some ideas in this direction have been explored in [68, 71, 78–80]. It would
also be interesting to relate this Brown-York stress tensor with the stress tensor of celestial
conformal field theory [81] to see if there exists an equivalence between the two, analogous
to that in AdS/CFT. This would be an important step in establishing the holographic dic-
tionary between general relativity in asymptotically flat spacetimes and celestial conformal
field theory.

An immediate future direction would be to carry out this analysis at future null infinity
in four-dimensional asymptotically flat spacetimes to compare the Brown-York charges
with the charges obtained, for example, in [8, 55, 82] for the symmetries corresponding to
the (generalized) Bondi-Metzner-Sachs (BMS) algebra. For ordinary BMS symmetries in
Bondi coordinates, it has been demonstrated in [72] that the Brown-York charges reproduce
the expression for BMS charges when realizing null infinity as a null limit of timelike
surfaces. More generally, however, applying the Brown-York construction to asymptotic
boundaries requires additional boundary counterterms `ct in the subregion action to yield
a finite renormalized on-shell action functional Scl. These counterterms must be suitably
covariant to preserve the conservation equation of the stress tensor and to yield agreement
with the canonical charges, and it is an interesting question whether a fully covariant
renormalized action can be obtained. There are also choices in how one foliates spacetime
near null infinity, and for some choices of foliation, the null-limit stress tensor of Donnay
and Marteau [46] may be a more appropriate object to consider, especially when looking
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for covariant counterterms. It would further be interesting to determine how the continuity
equation for the Brown-York charges relates to the flux-balance equations for generalized
BMS charges explored in [83]; given that both are consequences of the Einstein equation,
establishing a relationship should be possible.

Although we focused on vacuum general relativity in this work, generalizations involv-
ing the inclusion of matter or modified gravitational theories are possible. As long as the
modified action admits a Dirichlet variational principle, the general construction of the
boundary stress tensor follows. With matter fields, the on-shell action will also depend on
the boundary values of the fields, and there will be contributions to the stress tensor coming
from the matter action. Similarly, higher curvature theories such as Lovelock gravity will
also yield a well-defined boundary stress tensor utilizing modified expressions for πij and πi
on the null surface after adding the appropriate null boundary terms for these theories [84].
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A Connections for Carroll geometries

In this appendix, we derive the compatibility relations for a class of connections associ-
ated with a Carroll geometry arising from a spacetime rigging vector. As explained in
section 3.1, the first step in defining an affine connection associated with a Carroll ge-
ometry (qij , ni) is to choose an Ehresmann connection, defined in terms of a one-form li,
whose only requirement is that lini = −1. This connection allows one to specify a class
of horizontal vectors, consisting of any vector satisfying V ili = 0. The choice of li already
determines a set of differential invariants coming from the exterior derivative dl that are
defined independently of any choice of affine connection. In general, this exterior derivative
can be decomposed as

dl = b ∧ l + r (A.1)
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where bi and rij are both horizontal differential forms. We refer to bi as the boost form
and rij as the curvature of the Ehresmann connection.15

We wish to show that a connection Di on a Carroll manifold induced as a rigged con-
nection associated with an embedded null surface in spacetime implies the relations (3.17)–
(3.20). Additionally, we will derive the expression for Dilj arising from such a connection.
Equation (3.18) follows immediately from the definitions of the induced connection and the
shape operator, (3.15) and (3.4). To derive (3.17), we note that qij maps via the inclusion
Πi

a to a spacetime tensor qab that annihilates both na and la, given by

qab = gab + lanb + nalb. (A.2)

Then we can compute

Diqjk = Πa
iΠb

jΠc
k (∇a(gbc + lbnc + nblc))

= Πa
iΠb

jΠc
k (lb∇anc + lc∇anb)

= ljKik + lkKij . (A.3)

For the relation (3.19), we note that the inclusion map sends η defined intrinsically on
the null surface N to a spacetime (d− 1)-form ηa... that is related to the spacetime volume
form by the equation ε = n∧ η. Furthermore ηa... must satisfy laηa... = 0, and hence it can
be defined by the equation η = −ilε. Then we have

Diηj... = −Πa
iΠb

j · · · ∇alcεcb...
= −Πa

iΠb
j · · · ∇alc

(
ncηb... − (d− 1)ηc[...nb]

)
= −ρiηj.... (A.4)

Then using that µ = inη in N , relations (3.18) and (3.19) fix the expression for Diµ:

Diµ = Di(njηj) = W j
i ηj − n

jρiηj = Kj
iηj . (A.5)

Finally, we should examine the expression for Dilj . Since Di is torsionless, the an-
tisymmetric components are fixed in terms of bi and rij in terms of (A.1). We can also
compute the components parallel to li by the relations

njDilj = Πa
in
b∇alb = ρi (A.6)

niDilj = Πb
jn
a∇alb = Πb

j(na(dl)ab + na∇bla) = bj + ρj . (A.7)

The remaining components of Dilj are purely horizontal, and the antisymmetric horizontal
component is simply rij according to equation (A.1). The remaining horizontal symmetric
component is an independent tensor νij characterizing the extrinsic geometry of the null
surface. Hence, using ρi = −kli +$i, we arrive at the final decomposition of Dilj ,

Dilj = klilj −$ilj − li$j − libj + 1
2rij + νij . (A.8)

15In [66], the quantity bi was referred to as the “acceleration” and rij as the “Carrollian torsion.”
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From the intrinsic perspective, we can ask to what extent these relations fully specify
an affine connection that is in a certain sense compatible with the Carroll structure. Ac-
cording to the above relations, we see that the additional data needed to fix a torsionless
connection on the intrinsic Carroll geometry is an Ehresmann connection li, a rotation
one-form ρi, and a horizontal symmetric tensor νij . Choosing a coordinate system (u, xA)
in which ni = ∂iu and xA are coordinates for the horizontal directions, a generic Ehresmann
connection can be parameterized by li = −∇iu+ wB∇ixB. Then, defining the connection
coefficients in this coordinate system according to DiV

j = ∂iV
j + γijkV

k, one can then
check that equations (3.17), (3.18), and (A.8) fully fix all components of γijk , and hence
these equations uniquely specify the connection Di.

Note that much of the work on connections associated with Carrollian structures has
focused on connections that preserve qij and ni [65, 66, 68]. When Kij is nonvanishing,
these connections necessarily must involve torsion [85]; for example, torsion is necessary in
order to be compatible with the equation Kij = 1

2£nqij . In the present work, however,
we found that the natural connection that arises in considerations of the null Brown-York
stress tensor and conservation equations involves a torsionless connection that generically
does not preserve qij and ni. Such connections do not appear to have been considered
in recent works on Carrollian geometry, and it would be interesting to further investigate
the geometric properties of these connections in the future. A related set of connections
satisfying equation (3.17) but not (3.18) have been examined previously in [51], and general
properties of affine connections in Carrollian geometries have been explored in [86].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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