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Abstract

The fairness in machine learning is getting increasing atten-
tion, as its applications in different fields continue to expand
and diversify. To mitigate the discriminated model behav-
iors between different demographic groups, we introduce a
novel post-processing method to optimize over multiple fair-
ness constraints through group-aware threshold adaptation.
We propose to learn adaptive classification thresholds for
each demographic group by optimizing the confusion ma-
trix estimated from the probability distribution of a classifi-
cation model output. As we only need an estimated proba-
bility distribution of model output instead of the classifica-
tion model structure, our post-processing model can be ap-
plied to a wide range of classification models and improve
fairness in a model-agnostic manner and ensure privacy. This
even allows us to post-process existing fairness methods to
further improve the trade-off between accuracy and fairness.
Moreover, our model has low computational cost. We pro-
vide rigorous theoretical analysis on the convergence of our
optimization algorithm and the trade-off between accuracy
and fairness. Our method theoretically enables a better up-
per bound in near optimality than previous method under the
same condition. Experimental results demonstrate that our
method outperforms state-of-the-art methods and obtains the
result that is closest to the theoretical accuracy-fairness trade-
off boundary.

Introduction

Machine learning is broadening its impact in various fields
including credit analysis, job screening and etc. Conse-
quently, the importance of fairness in machine learning is
emerging. However, recent models have been found to be-
have differently between demographic groups in favorable
predictions. For example, it has been discovered that COM-
PAS, the criminal risk assessment software currently used
to help pretrial release decisions, has biases between dif-
ferent races (Dressel and Farid 2018). Specifically, blacks
got higher risk scores predicted from the model than whites
with similar profiles. Therefore, discrimination truly exists
and resolving it is critical as its direct and potential impact
is growing tremendously.
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However, obtaining fairness is not a trivial problem, as
the dataset itself will be biased when it is accumulated ar-
tificially (Jang, Zheng, and Wang 2021). Simply modify-
ing sensitive features (such as race, gender) from the data
does not solve the bias, because there is indirect discrimi-
nation (Pedreshi, Ruggieri, and Turini 2008) caused by the
feature relevance, which means sensitive information can be
inferred from other features.
In order to alleviate discrimination from different per-

spectives, various quantitative measurements of group eq-
uity (Hardt, Price, and Srebro 2016; Kleinberg, Mul-
lainathan, and Raghavan 2016; Chouldechova 2017) have
been proposed. It has been proven that the pursuit of fair-
ness is subject to a trade-off between fairness and accuracy
(Liu et al. (2019), Kim et al. (2020)).
Moreover, Pleiss et al. (2017) studied the trade-offs be-

tween fairness notions that cannot be satisfied at the same
time. Therefore, recent works (Feldman et al. 2015; Zhang,
Lemoine, and Mitchell 2018; Hardt, Price, and Srebro 2016)
usually target at a certain fairness notion. However, these
approaches suffer from the lack of flexibility, i.e., target fair-
ness cannot be adjusted to meet the needs. If the fairness
constraints change under some circumstances, traditional
fairness models need to be re-trained from scratch, which
is computationally demanding and sometimes inapplicable
due to model settings.
To overcome the limitations, we propose a novel post-

processing method to improve fairness in a model-agnostic
manner i.e., we only need the prediction of an unknown
model. Our GSTAR (Group Specific Threshold Adapta-
tion for faiR classification) model learns adaptive classifi-
cation thresholds for each demographic group in classifica-
tion task to improve the trade-off between fairness and ac-
curacy. Given an existing classification model, GSTAR ap-
proximates the probability distribution of the model output
and utilizes confusion matrix to quantify accuracy and fair-
ness w.r.t. the group-aware classification thresholds. This al-
lows us to: 1) prevent from burdening additional complexity
or deteriorate the stability of the training process of the clas-
sifier; 2) integrate different fairness notions into one unified
objective function; 3) easily adapt one pre-trained model to
other fairness constraints.
We summarize our contributions of this paper as follows:

1. We propose a novel post-processing method, named



GSTAR, which can learn group-aware thresholds to opti-
mize the fairness-accuracy trade-off in classification. We
empirically show that GSTAR outperforms state-of-the-
art methods.

2. With GSTAR, we can simultaneously optimize over mul-
tiple fairness constraints with a low computational cost.
GSTAR does not require multiple iterations over data, in-
stead, it takes at most one pass of data in training for fast
computation.

3. We conduct extensive rigorous theoretical analysis on our
method, in terms of convergence analysis and fairness-
accuracy trade-off. We introduce theoretical improve-
ment in terms of near optimality.

4. We derive Pareto frontiers of our model for the fairness-
accuracy trade-offs that contextualize the quality of fair
classification.

Related Works

In order to achieve group fairness, which quantifies the dis-
crimination among different sensitive groups, a diverse no-
tion of fairness has been introduced. Equalized odds (Hardt,
Price, and Srebro 2016) enforce equality of true positive
rates and false positive rates between different demographic
groups. Pleiss et al. (2017) relaxed equalized odds to sat-
isfy group-wise calibration. Demographic parity or disparate
impact (Barocas and Selbst 2016) suggests that a model is
unbiased if the model prediction is independent of the pro-
tected attribute.
Among different fairness methods, post-processing tech-

niques propose to improve fairness by modifying the out-
put of a given classifier. Hardt et al. (2016) propose to en-
sure equalized odds by constraining the model output. Kim
et al. (2020) utilize confusion matrix and propose least-
square accuracy-fairness optimization problem. Kamiran et
al. (2012) propose to give a favorable outcome to unprivi-
leged and an unfavorable outcome to the privileged group
when the confidence of the prediction is in a certain range.
However, such static confidence window keeps the same re-
gardless of the demographic group and is determined by grid
search, so it is less efficient.
Threshold adjustment (a.k.a. thresholding) was intro-

duced to improve the performance of static thresholds. In
the literature, Menon et al. (2018) prove that instance-
dependent thresholding of the predictive probability func-
tion is the optimal classifier in cost-sensitive fairness mea-
sures. Also, when considering immediate utility, Corbett-
Davies et al. (2017) show that optimal algorithm is achieved
from group-specific threshold which is determined by group
statistics. However, to the best of our knowledge, the thresh-
old adjustment approach has not been deeply studied that
neither encompasses broad group fairness metrics nor de-
scribes an explicit method to achieve the threshold.
Trade-off between fairness and accuracy exists when

we impose fairness constraint to a model. Recent stud-
ies (Chouldechova 2017; Zhao and Gordon 2019) prove that
models targeting at such fairness notions conform to an in-
formation theoretic lower bound on the joint error across dif-
ferent sensitive groups. Therefore, our work presents a prac-

tical upper bound of the best achievable accuracy given the
fairness constraints.
Here, our work is the most related to the post-processing

methods (Hardt, Price, and Srebro 2016; Kim, Chen, and
Talwalkar 2020). However, ours differ from theirs in several
aspects. First, we theoretically prove that GSTAR achieves
a better upper bound of near optimality than Hardt et
al. (2016) as we directly operate on ROC curve instead of
linear intersections in Hardt et al. (2016). Also, GSTAR cor-
rects the predicted label by the confidence of the prediction
from a given model instead of randomly flipping the output
to achieve equalized odds, which is more reliable in post-
processing. FACT (Kim, Chen, and Talwalkar 2020) utilizes
a single point (static) from the classifier to be post-processed
as a reference which does not fully utilize the classifier for
the post-processing. In contrast, by approximating the dis-
tribution of the continuous predicted logits, GSTAR model
enables a larger feasible region than Kim et al. (2020) with a
better fairness-accuracy trade-off. We validate the improve-
ment in this trade-off via both theoretical and empirical re-
sults. It is notable that these related methods can be consid-
ered as a special case of GSTAR.

GSTAR for Fair Classification

Motivation

Consider a binary classification problem with a binary sensi-
tive feature, such that the sensitive featureA 2 {0, 1} and la-
bel Y 2 {0, 1}. In general, for a given dataX , a binary clas-
sification model outputs an unnormalized logit h(X) 2 R
with the class label probability R(X) = �(h(X)) 2 [0, 1],
where � is an activation function (e.g., sigmoid function). It
is not necessary to calculateR in a classification model, e.g.,
support vector machines directly use the positiveness/nega-
tiveness of logit h(X) to determine classification outcome.
For traditional models, we use a cut-off threshold ✓h = 0

for h(X) (i.e., ✓R = �(0) = 0.5 for R(X)) in clas-
sification, such that the predicted label is determined by
Ŷ = I{h(X) � ✓h}. In the following context, unless oth-
erwise mentioned, we use ✓ to refer to the threshold ✓h on
logit h since it is applicable to a wider range of classification
models, and the corresponding threshold on label probabil-
ity ✓R can be easily inferred from the threshold on logit h.
Traditional models use the same cut-off threshold ✓ for dif-
ferent demographic groups. However, since the distribution
of logits h in different demographic groups can be different,
using the same threshold ✓ brings biased classification.
In Fig. 1, we use a real-world example of image classi-

fication on CelebA dataset with ResNet50 (He et al. 2016)
to show that the default setting of classification thresholds
affects both accuracy and fairness in classification. The goal
is to predict whether the image of a person is attractive or
not, and consider sensitive attribute as gender. This can be
generalized to different sensitive attributes in image classifi-
cation task, e.g., age or race (Lokhande et al. 2020). We can
observe an obvious difference in the distribution of logit h
between two gender groups. If we use a unified classifica-
tion threshold ✓1 = ✓0 = 0, it naturally brings a difference
in the true positive rate and true negative rate between two



Figure 1: Histograms of logit h distribution from logistic re-
gression on CelebA data, where ✓ is the threshold to assign
predicted label based on h. The top and bottom plot is for
positive samples (Y = 1, attractive), and negative samples
(Y = 0, unattractive). Bars represent the distributions of
logit h of sensitive groups, and curves are estimated proba-
bility density functions of logit h of sensitive groups as in the
legend. ✓ = 0 (black dashed line) is the default classification
thresholds. The default thresholds result in biased prediction
towards the unprivileged group (A = 0) due to the different
logit h distributions in different sensitive groups. (✓⇤0 , ✓⇤1)
(colored dashed line) are group-aware thresholds for each
sensitive group achieved by GSTAR.

gender groups, thus it behaves as a biased classification. In-
stead, we observe that the optimal group-specific threshold
obtained from GSTAR (✓⇤1 > ✓1, and ✓

⇤
0 < ✓0) can adapt to

such discrepancy in distribution between two demographic
groups to improve both fairness and accuracy.

Group-Aware Classification Thresholds

Given an existing classification model and a sensitive at-
tribute a, we can denote true positive rate (TPa), false posi-
tive rate (FPa), true negative rate (TNa), and false negative
rate (FNa) in the confusion matrix. Most fairness notions
can be represented with entries in the confusion matrix. For
instance, Equal Opportunity (EOp) (Hardt, Price, and Sre-
bro 2016) requires TP0 = TP1, and Demographic Parity
(DP) (Barocas and Selbst 2016) requires

TP1n11 + FP1n01

N1
=

TP0n10 + FP0n00

N0
,

where nya denotes the number of samples in the subset
{Y = y,A = a}, Na =

P
y
nya denotes the number of

samples in {Y = y}, andN =
P

y,a
nya is the total number

of samples.
Consider the group-aware classification threshold ✓ =

(✓1, ✓0)T, where ✓a is the classification threshold for sen-
sitive group A = a. We can formulate the entries in the

confusion matrix w.r.t. ✓ as below:

TPa(✓a) ⇡ 1�
Z

✓a

�1
f1a(x)dx, FNa(✓a) ⇡ 1� TPa(✓a)

FPa(✓a) ⇡ 1�
Z

✓a

�1
f0a(x)dx, TNa(✓a) ⇡ 1� FPa(✓a)

(1)

where fya(x) is an estimated probability density function of
the distribution of output logit h in the subset {Y = y,A =
a}.
Then, we formulate the fairness-constrained classification

problem with the objective of minimizing classification er-
ror into a least-squared optimization problem. We denote
our objective function as L(✓) which consists of the per-
formance loss Lper(✓) and fairness loss Lfair(✓) that are
represented with the entries of the confusion matrix. In other
words, our goal is to minimize the objective function L(✓)
as below:

L(✓) = Lper(✓) + �Lfair(✓), (2)
where � is a hyperparameter that determines how much fair-
ness is enforced in the optimization. The performance error
Lper(✓) can be written as

Lper(✓) =
⇣
n01

N
FP1(✓1) +

n11

N
FN1(✓1)

+
n00

N
FP0(✓0) +

n10

N
FN0(✓0)

⌘2
.

As for Lfair(✓), it can be formulated to any fairness met-
rics that are expressible with confusion matrix. For instance,
when we impose EOp (TP1 = TP0) and predictive equal-
ity (PE) (FP1 = FP0) (Chouldechova 2017), we can get the
corresponding Lfair(✓) by summing over the least squared
form of each constraint. Also, satisfying EOp and PP is
equivalent to satisfying Equalized Odds (EOd) (Hardt, Price,
and Srebro 2016), This can be formulated in our Lfair as

LEOd

fair
(✓) = LEOp

fair
(✓) + LPP

fair
(✓)

=
�
TP1(✓1)� TP0(✓0)

�2
+
�
FP1(✓1)� FP0(✓0)

�2
.

(3)

Note that a lower Lfair value indicates a fairer threshold.
When LEOD

fair
(✓) = 0, we can interpret as the ✓ satisfies the

perfect EOd fairness. Similar to (3), we can enforce multi-
ple fairness constraints by summing over the least square of
each metric with different weight constant � to each fairness
constraints if needed.
Also, it is notable that compared to FACT (Kim, Chen,

and Talwalkar 2020) that enforces fairness through confu-
sion tensor, our formulation of fairness in Lfair(✓) repre-
sents a direct notion of fairness metrics and improves the
measures that allows us to achieve better performance and
Pareto frontiers that is shown in Section and Fig. 2. For ex-
ample, FACT integrates multiple constraints as a weighted
sum with the weights being the number of samples in each
class. In this expression, the imbalance between the two fair-
ness criteria will grow as the degree of imbalance in the data
increases. In contrast, our formulation expresses the con-
straints as the exact notion of each metric that is not bi-
ased by the statistics of the datset and we observe improved
Pareto frontier as in Fig. 2.



Optimization of GSTAR

Our GSTAR objective in (2) lies in the family of Non-
linear Least Squares Problem (NLSP) (Gratton, Lawless,
and Nichols 2007). To optimize objective (2) and find the
threshold ✓, we adopt the Gaussian-Netwon optimization
method (Gratton, Lawless, and Nichols 2007). Here we take
EOp constraint as an example to show the alternating opti-
mization steps, then Lfair(✓) can be written as

LEOp

fair
(✓) = (TP1(✓1)� TP0(✓0))

2
. (4)

To solve NLSP with the Gauss-Newton method, we first
convert the nonlinear optimization problem to a linear least
square problem using Taylor expansion. That is, the param-
eter values are calculated in an iterative fashion with

✓a ⇡ ✓
k+1
a

= ✓
k

a
+�a, (5)

in the k-th iteration number, with the vector of increments
� = {�a} = {✓k+1

a
� ✓

k
a
} (also known as the shift vector).

We rewrite our objective function as a real vector func-
tion r(✓) =

�
r1(✓), r2(✓)

�
= (Lper,�Lfair). We linearize

each component in the loss function to a first-order Taylor
polynomial expansion as

ri(✓) ⇡ ri(✓
k) +

X

a

@ri(✓
k)

@✓a
�a (6)

with ✓k = (✓k0 , ✓
k
1 ). Plugging this linearized equation into

the objective function, we get the usual least square problem.
Then, the optimal solution can be obtained as

� = �(JT
J)�1

J
T
f(✓k), (7)

where J = {Jia} with Jia = {@ri(✓)
@✓a

} is the Jacobian. Each
entry of the jacobian can be expressed with linear combina-
tion of pdf and cdf of fya for i, a, y 2 {0, 1}. we can finalize
the alternating optimization as

✓
⌧

0 = ✓
⌧�1
0 +�⌧

0 , ✓
⌧

1 = ✓
⌧�1
1 +�⌧

1 . (8)
It is notable that in each iteration we derive the optimal up-
date step �a, which eliminates the burden of tuning hyper-
parameter (such as learning rate) in iterative algorithm. See
the supplementary for detailed optimization process.
The alternating optimization of GSTAR model is of low

computational cost. We take at most one pass of the data
for learning the estimated probability density functions fya
in (1) (we do not even need to traverse the data if the param-
eters (such mean and variance in Gaussian distribution) for
the estimated probability density functions fya can be pro-
vided). The optimization of ✓ with alternating optimization
is efficient since we only need fya. Therefore, we need a
constant time for each update. Overall, the time complexity
of GSTAR is O(n+ T ), where n is the number of samples,
and T is the number of iterations in alternating optimization.

Besides, if a unified threshold is necessary (Corbett-
Davies et al. 2017), i.e., ✓1 = ✓0, the optimization algorithm
also applies and we only have one scalar variable in (2).
When we have a unified threshold, we do not require sen-
sitive information in the testing phase that we can conform
more strict privacy regulations than group-aware threshold-
ing. However, we have to sacrifice both fairness and accu-
racy as the thresholding is less flexible.

Theoretical Analysis

Upper Bounds on FPR/FNR Gap between Groups We
first state the assumptions we need to make for Theorem 1
and 2.
Assumption 1 For any given classier h and its induced
PDF fya and CDF Fya, we assume the following holds:
• The PDF fya(x) is uniformly bounded, i.e., there is an
f̂ya(x) = maxx fya(x).

• The inverse CDF F
�1
ya

(x) is Lipschitz continuous with
Lipschitz constant Mya.

• The difference in the CDF between two groups is uni-
formly bounded, i.e.,

|Fy1(x)� Fy0(x)|  uy, 8x.
Theorem 1 For any given classifier that satisfies Assump-
tion 1 and any given pair of thresholds (✓0, ✓1) that satisfies
the perfect EOp condition, the gap between false-positive
rates of the two group is upper bounded by

|✏1| =
��FP0(✓0)� FP1(✓1)

��  u0 + C1u1, (9)

where C1 = f̂01M10.
Theorem 2 For any given classifier that satisfies Assump-
tion 1 and any given pair of thresholds (✓0, ✓1) that satis-
fies the perfect PE condition, the gap between false-negative
rates of the two group is upper bounded by

|✏2| =
��FN0(✓0)� FN1(✓1)

��  u1 + C0u0, (10)

where C0 = f̂11M00.
Theorem 1 and 2 characterize the upper bound of false

positive/negative rate gap between two groups when the
false negative/positive rate gap is 0. At the same time, it cap-
tures the upper bound of additional accuracy loss due to the
two different thresholds for different groups under a perfect
fairness (EOp or PE) condition.

Trade-off between Accuracy and Fairness Now we
prove a theorem to characterize the trade-off between ac-
curacy and fairness. Let ✓⇤

a
= argmin✓a Lper(✓a), and its

perturbed value ✓̃a as

|FN1(✓1
⇤)� FN1(✓̃1)|  �/2,

|FN0(✓0
⇤)� FN0(✓̃0)|  �/2,

(11)

for some perturbation coefficient �. Then for optimal per-
turbed version ✓̃

⇤
a
= argmin

✓̃a
Lper(✓̃a), we state the theo-

rem below:
Theorem 3 Under Assumption 1 and condition (11),

Lper(✓
⇤
1)� Lper(✓̃

⇤
1)  C�,

where

C = 2L⇤
✓
r1

2
+r0

f̂01M11

2
+
n00

N

⇣
f̂00M10+

✏̂01M11

2

⌘
+
n10

N

◆

and ✏̂
0
1 = max ✏̃01 is the maximum of the derivative of ✏̃1.

Theorem 3 quantifies the decrease in accuracy loss (i.e.,
the improvement in accuracy) when we allow a gap of true
positive rates between two groups, i.e., relaxation from the
perfect fairness cases in Theorem 1 and 2.



Convergence Analysis of GSTAR Our objective function
and the optimization solution algorithm belong to the family
of Gauss-Newton algorithm. Given the assumptions A1 and
A2 below,

• A1. There exists ✓⇤ such that JT (✓⇤)r(✓⇤) = 0,
• A2. The Jacobian at ✓⇤ has full rank,

we state the following theorem of convergence:

Theorem 4 Assume that the estimated density function f(·)
satisfy assumptions A1 and A2. Further, f(·) satisfies that

||Q(✓k)(JT
J)�1(✓k)||2  ⌘

for some constant ⌘ 2 [0, 1) for each iteration k, whereQ(✓)
denotes the second order terms

P
i
ri(✓)r2

ri(✓). Then as
long as the initial solution is sufficiently close to the true
optimal with ||✓0�✓

⇤||2  ✏, the sequence of Gauss-Newton
iterates {✓k} converges to ✓⇤.

Near Optimality of GSTAR Following the proof of The-
orem 5.6 of Hardt et al. (2016), we provide the following
near optimality theorem for our GSTAR model.

Theorem 5 With a bounded loss function ` and a given es-
timated density function f(x), let R̂h 2 [0, 1] be the induced
random variable from the density f(x) of logit h(x). Then
the equalized odds predictor Ŷh derived from (R̂h, A) using
the method in our paper can achieve near optimality in the
following sense:

E[`(Ŷh, Y )]  E[`(Y ⇤
, Y )] + 2dK(R̂h, R

⇤).

Here, Y is the true label, Y ⇤ is the optimal equalized odds
predictor derived from the Bayes optimal regressor R

⇤ as
given in Hardt et al. (Hardt, Price, and Srebro 2016), and
dK(R̂h, R

⇤) is the conditional Kolmogorov distance.

Theorem 5 provides that GSTAR has tighter bound of near
optimality than Hardt et al. (2016) under the same condition.
See the supplementary for the proof of Theorem 1 - 5.

Experiments

In this section, we validate GSTAR model on four well-
known fairness datasets and compare with other state-of-the-
art methods.

Experimental Setup

We compare with multiple fairness approaches in the ex-
periments. For clear demonstration of results, we use differ-
ent shapes of marker for each comparing methods in Fig. 2
and Fig. 4. The comparing methods include: FGP (Tan et al.
2020), FACT (Kim, Chen, and Talwalkar 2020), DIR (Feld-
man et al. 2015), AdvDeb (Zhang, Lemoine, and Mitchell
2018), CEOPost (Pleiss et al. 2017), Eq.Odds (Hardt, Price,
and Srebro 2016), LAFTR (Madras et al. 2018), and Base-
line: For CelebA dataset, we use ResNet50 (He et al. 2016)
as a reference, and logistic regression for all other datasets.
We choose broadly used fairness metrics in evaluation in-

cluding: equal opportunity difference (EOp) and equalized
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(c) Compas Dataset
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(d) German Dataset

Figure 2: Pareto frontiers of equalized odds to show the up-
per bound of best achievable accuracy under different fair-
ness constraints. Upper right region under the boundary is
desired. The variations of GSTAR generally achieve the best
trade-offs as they are the closest to the Pareto frontier.

odds difference (EOd) (Hardt, Price, and Srebro 2016); 1-
disparate impact (1-DIMP) (Barocas and Selbst 2016); bal-
anced accuracy difference (BD). We use balanced accuracy
(BA) and accuracy (ACC) as performance metrics.
We evaluate the methods on four fairness datasets:



(a) CelebA Dataset (b) Adult Dataset

(c) Compas Dataset (d) German Dataset

Figure 3: Evaluation on fairness and performance metrics. The bar plots indicate fairness measures of each model. The line
plots indicate the performance measure of each model. Lower fairness values (left y-axis) and higher performance values (right
y-axis) show better fairness and performance respectively. We consider three variations of GSTARmodels (DP, EOd, DP+EOd).
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(b) Compas Dataset

Figure 4: Illustration of post-processing (magenta colored points) on existing fairness models (blue colored points). Given the
outputs of each model, GSTAR efficiently improves most existing fairness models with optimized group-aware thresholds.

CelebA dataset (Liu et al. 2015), Adult dataset (Kohavi
1996), COMPAS1 dataset, and German dataset (Dua and
Graff 2019). More details of the comparing methods, evalua-
tion metrics, and datasets are provided in the Supplementary.

Performance and Fairness-Accuracy Trade-Offs

In this subsection, we look into the performance evaluation
of GSTAR comparing with other state-of-the-art methods.
We consider Pareto frontier to visualize the trade-offs be-
tween fairness and accuracy to demonstrate the measure of

1https://github.com/propublica/compas-analysis

performance.
In Fig. 2, we plot Pareto frontier, which is the upper bound

for the accuracy-fairness trade-offs, desired output locates
at the upper right region under the boundary which cor-
responds to higher values in accuracy and lower values in
fairness discrepancy. With the same fairness constraints are
given, we achieve a better frontier than the FACT (Kim,
Chen, and Talwalkar 2020) as we equally weigh on demo-
graphic statistics and have a better feasible region. To ob-
tain our results (star points), we first estimate the logit dis-
tribution from the output of the baseline model, and then we
get optimal adaptive thresholds with corresponding fairness



metric by updating w.r.t. the objective function in (2). Here
we have three combinations of fairness imposed to GSTAR:
demographic parity (DP), equalized odds (EOd), and with
both constraints (DP+EOd). By post-processing on a simple
baseline, we achieved significantly better fairness with small
or no sacrifice in accuracy. In all datasets, GSATR got com-
petitive or better results than other state-of-the-art methods
on both fairness and accuracy.
For example, we got ✓⇤

EOd
= (1.570,�0.525)T for the

CelebA dataset. This shows that we have a higher thresh-
old for the privileged group and a lower threshold for the
unprivileged group. This optimal thresholding from GSTAR
allows more samples from the privileged group to be cor-
rectly predicted as unattractive that would compensate for
the discrimination of the original model. In other words, this
improves false positive rate difference (also known as pre-
dictive equality (Chouldechova 2017)) with a huge amount
from 0.235 to 0.014. Also, true positive rate difference (also
known as equality of opportunity (Hardt, Price, and Srebro
2016)) got reduced from 0.282 to 0.018. It is notable that
GSTAR only sacrificed 2.2% of accuracy to bring the big
improvement in fairness.
Since the objective function of our model is independent

to data dimensionality, our model is much more efficient
especially for high dimensional data. We mostly outper-
form the computational cost comparing to the other meth-
ods. The comparison of computational time and auxiliary
experiments can be found in the Supplementary material.

Flexibility and Multiple Fairness Constraints

Since each fairness metric has different interests, it has been
theoretically proven that they cannot be perfectly satisfied all
together (Pleiss et al. 2017; Chouldechova 2017; Kleinberg,
Mullainathan, and Raghavan 2016). Because of this inher-
ent trade-offs between fairness metrics, most of the recent
works focus on a single metric at a time to achieve fairness.
However with GSTAR, we have the flexibility to optimize
on multiple fairness constraints that can be represented in
the confusion matrix format. Moreover, given the estimated
distribution fya of a arbitrary classification model, we can
adjust the optimal ✓ based on the needs by accommodating
different fairness criteria.
Fig. 3 demonstrates the result of the methods with fair-

ness metrics and accuracy trade-off evaluations. Overall, the
variations of GSTAR achieve the best fairness on each tar-
get fairness while preserving the performance. For exam-
ple in Fig. 3(a), GSTAR with EOd constraint has good per-
formance in most fairness metrics with comparable accu-
racy (80.3%). Comparing with GSTAR (EOd), when we in-
troduce EOd and DP together (DP+EOd), we achieve sig-
nificantly better w.r.t. DP fairness with sacrificing a small
amount of accuracy and EOd.
In general, by sacrificing individual fairness performance,

we could introduce multiple constraints. Also, we observe
that the more fairness constraints are introduced, the more
accuracy is sacrificed. We empirically found that in some
cases (e.g., Fig. 3(c)), introducing multiple fairness is com-
plementary to each other that improves both conditions.

Post-Processing on an Existing Fair Model

For a binary classifier that has a single fixed classification
threshold (0 for out logit, and 0.5 for label probability),
we can provide better trade-off between fairness and accu-
racy with GSTAR. Given the logit/probability in the model-
agnostic manner, we can improve the fairness as illustrated
in Fig. 4. In most cases, we observe improvement in fairness
after GSTAR post-processing. It is also interesting to note
that by optimizing the different thresholds for each protected
group, we even obtain better performance on both fairness
and accuracy, which indicates that the threshold optimiza-
tion can not only improve fairness but also accuracy.
However, when the distribution of the logits/probability

is highly extreme (such as the results of using GSTAR to
post-process CEOPost), it is difficult to estimate the distribu-
tion and thus causes erroneous optimization in GSTAR. We
empirically found that when the dataset is extremely imbal-
anced such that we do not have enough samples to estimate
the logit/probability distribution, or the given classification
model is too certain to the prediction that samples are con-
centrated to certain output, this problem arises.

Conclusion and Discussion

In this paper, we propose a group-aware threshold adaptation
method (GSTAR) to post-process in model-agnostic manner
and optimize over multiple fairness constraints.We directly
optimize the classification threshold for each demographic
group w.r.t. the classification error and multiple fairness con-
straints in a unified objective function, such that we can
practically achieve an optimal trade-off between accuracy
and fairness in fair classification. Our method is applicable
to diverse notions of group fairness as the majority of fair-
ness notions can be expressed as a linear or quadratic equa-
tion through confusion matrix. We empirically show that
GSTAR is flexible with fairness regularization, efficient with
low computational cost. We also notice that the adaptive
thresholds benefit accuracy in some cases. GSTAR agrees to
protect privacy such as article 17 of EU’s GDPR (Regulation
2016). We only require the estimated distribution of the out-
put from a given model i.e., our post-processing method is
oblivious to features. Thus training data is no longer needed
and allowed to be discarded after training the model that to
be post-processed. Thus, GSTAR can be applied to relaxed
scenarios where practitioners cannot access individual-level
sensitive information but have estimated distributions of log-
its for each sensitive group.
Further, we empirically find that GSTAR is not applicable

to post-process some classification models in the following
situations: 1) the model does not provide logit/probability
as the outcome; 2) The model provides an extreme distribu-
tion of the output logit/probability. For example, when the
model is too certain about its prediction, it will be difficult to
perform probability density estimation. In our future work,
we will study possible strategies to solve the above limi-
tations, and extend GSTAR to multi-class, multi-sensitive
group problems and improve the fairness-accuracy trade-off
in a more general scheme.



Acknowledgements

This work was partially supported by NSF IIS #1955890,
Purdue’s Elmore ECE Emerging Frontiers Center.

References

Barocas, S.; and Selbst, A. D. 2016. Big data’s disparate
impact. Calif. L. Rev., 104: 671.
Chouldechova, A. 2017. Fair prediction with disparate im-
pact: A study of bias in recidivism prediction instruments.
Big data, 5(2): 153–163.
Corbett-Davies, S.; Pierson, E.; Feller, A.; Goel, S.; and
Huq, A. 2017. Algorithmic decision making and the cost
of fairness. In KDD, 797–806.
Dressel, J.; and Farid, H. 2018. The accuracy, fairness, and
limits of predicting recidivism. Sci. Adv, 4(eaao5580): 1–5.
Dua, D.; and Graff, C. 2019. UCI Machine Learning Repos-
itory. University of California, Irvine, School of Information
and Computer Sciences.
Feldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.;
and Venkatasubramanian, S. 2015. Certifying and removing
disparate impact. In KDD, 259–268.
Gratton, S.; Lawless, A. S.; and Nichols, N. K. 2007.
Approximate Gauss–Newton methods for nonlinear least
squares problems. SIAM, 18(1): 106–132.
Hardt, M.; Price, E.; and Srebro, N. 2016. Equality of op-
portunity in supervised learning. In NIPS, 3315–3323.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Jang, T.; Zheng, F.; and Wang, X. 2021. Constructing a
fair classifier with generated fair data. In AAAI, volume 35,
7908–7916.
Kamiran, F.; Karim, A.; and Zhang, X. 2012. Decision the-
ory for discrimination-aware classification. In ICDM, 924–
929. IEEE.
Kim, J. S.; Chen, J.; and Talwalkar, A. 2020. Model-
Agnostic Characterization of Fairness Trade-offs. arXiv
preprint arXiv:2004.03424.
Kleinberg, J.; Mullainathan, S.; and Raghavan, M. 2016.
Inherent trade-offs in the fair determination of risk scores.
arXiv preprint arXiv:1609.05807.
Kohavi, R. 1996. Scaling up the accuracy of naive-bayes
classifiers: A decision-tree hybrid. In KDD, volume 96,
202–207.
Liu, L. T.; Simchowitz, M.; and Hardt, M. 2019. The im-
plicit fairness criterion of unconstrained learning. In ICML,
4051–4060.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep learning
face attributes in the wild. In ICCV, 3730–3738.
Lokhande, V. S.; Akash, A. K.; Ravi, S. N.; and Singh, V.
2020. FairALM: Augmented Lagrangian Method for Train-
ing Fair Models with Little Regret. In ECCV, 365–381.
Springer.
Madras, D.; Creager, E.; Pitassi, T.; and Zemel, R. 2018.
Learning adversarially fair and transferable representations.
arXiv preprint arXiv:1802.06309.

Menon, A. K.; and Williamson, R. C. 2018. The cost of
fairness in binary classification. In ACM FAccT, 107–118.
Pedreshi, D.; Ruggieri, S.; and Turini, F. 2008.
Discrimination-aware data mining. In KDD, 560–568.
Pleiss, G.; Raghavan, M.; Wu, F.; Kleinberg, J.; and Wein-
berger, K. Q. 2017. On fairness and calibration. In NIPS,
5680–5689.
Regulation, G. D. P. 2016. Regulation EU 2016/679 of the
European Parliament and of the Council of 27 April 2016.
OJEU, 43–44.
Tan, Z.; Yeom, S.; Fredrikson, M.; and Talwalkar, A. 2020.
Learning fair representations for kernel models. In AISTATS,
155–166.
Zhang, B. H.; Lemoine, B.; and Mitchell, M. 2018. Miti-
gating unwanted biases with adversarial learning. In AIES,
335–340.
Zhao, H.; and Gordon, G. 2019. Inherent tradeoffs in learn-
ing fair representations. In NeurIPS, 15675–15685.



Supplementary Material for “Group-Aware Threshold Adaptation for Fair

Classification”

Optimization Procedure of GSTAR

The threshold ✓ is optimized with alternating optimization
method in GSTAR. Here we take EOp constraint as an exam-
ple to show the alternating optimization steps, then Lfair(✓)
can be written as

LEOp

fair
(✓) = (TP1(✓1)� TP0(✓0))

2
, (1)

and overall objective is to minimize

L(✓) = Lper(✓) + �LEOp

fair
(✓). (2)

The first step is to fix ✓0 and update ✓1. We can approximate
the terms that are related to ✓1 (e.g., TP1, FP1,TN1, FN1)
in (9) with first-order Taylor expansion at ✓⌧�1

1 . For example,

TP1(✓1) ⇡ TP1(✓⌧�1
1 ) +

@TP1
@✓1

���
✓1=✓

⌧�1
1

(✓1 � ✓
⌧�1
1 ) (3)

From (9), we can easily derive that

TP1(✓⌧�1
1 ) = 1�

Z
✓
⌧�1
1

�1
f11(x)dx,

@TP1
@✓1

= � f11(✓
⌧�1
1 ).

(4)

Similarly, we can find the first order Taylor expansion of
FP1, FN1, and TN1. Then, the update of ✓1 w.r.t. (2) can be
approximated with the following minimization problem w.r.t.
�1

�⌧

1 := argmin
�1

(⌘⌧1 + ↵
⌧

1�1)
2 + �(✏⌧1 + �

⌧

1�1)
2
, (5)

where �1 = ✓1 � ✓
⌧�1
1 and

↵
⌧

1 =
n11

N
f11(✓

⌧�1
1 )� n01

N
f01(✓

⌧�1
1 ),�⌧

1 = �f11(✓
⌧�1
1 ),

⌘
⌧

1 =

Z
✓
⌧�1
1

�1

�n11

N
f11(x) +

n01

N
(1� f01(x)

�
dx

+

Z
✓
⌧�1
0

�1

�n10

N
f10(x) +

n00

N
(1� f00(x)

�
dx,

✏
⌧

1 =

Z
✓
⌧�1
1

1
f11(x)dx�

Z
✓
⌧�1
0

1
f10(x)dx.

(6)
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Algorithm 1: Optimization Algorithm of GSTAR Model

Input datasetX⇥A⇥Y = {(xi, ai, yi)}ni=1, classification
model h(X), hyperparameter �.
Output Group-specific threshold ✓ = (✓1, ✓0).
Initialize ✓ = (✓1, ✓0) = (0, 0).
1. Given a classifier H(x), estimate probability density
function fya, y, a 2 {0, 1} by maximum likelihood esti-
mation.
while not converge do

2. Calculate the optimal step�1 as�1 = �↵1⌘1+��1✏1

↵2
1+��2

1
,

with ↵1,�1, ⌘1, ✏1 values shown in (6);
3. Update the threshold: ✓1  ✓1 +�1;
4. Calculate the optimal step�0 as�0 = �↵0⌘0+��0✏0

↵2
0+��2

0

with ↵0,�0, ⌘0, ✏0 values calculated in a similar way as
in (6):
5. Update the threshold:✓0  ✓0 +�0.

end while

Taking the derivative of (5) w.r.t.�1 and setting it to 0, we
can easily obtain the closed-form solution of �⌧

1 as

�⌧

1 = � ↵
⌧
⌘
⌧ + ��

⌧
✏
⌧

(↵⌧ )2 + �(�⌧ )2
. (7)

The second step is to fix ✓1 and update ✓0, and this can
be achieved in a similar way of updating ✓1. Then we can
finalize the alternating optimization as:

✓
⌧

0 = ✓
⌧�1
0 +�⌧

0 , ✓
⌧

1 = ✓
⌧�1
1 +�⌧

1 . (8)

It is notable that in each iteration we derive the optimal
update step�a, which eliminates the burden of tuning hyper-
parameter (such as learning rate) in iterative algorithm. The
optimization step is summarized in Algorithm 1. The above
algorithm can easily extend to multiple fairness constraints
by adding corresponding squared-loss fairness terms to (2).

Upper Bounds on False-Positive/Negative Rate

Gap Between Groups

Notations

We start from defining notations. We denote fya(x) for the es-
timated parametric probability density function (PDF) of the



distribution of output logit h in the subset {Y = y,A = a}.
Correspondingly, we denote the corresponding cumulative
distribution function (CDF) as

Fya(x) =

Z
x

�1
fya(x)dx.

We use F�1
ya

(x) to denote the inverse of the CDF.
Then, following the definitions given in the main paper,

we have
TPa(✓a) = 1� F1a(✓a), FNa(✓a) = F1a(✓a),

FPa(✓a) = 1� F0a(✓a), TNa(✓a) = F0a(✓a).
(9)

Characterizing the Accuracy Loss Function under

Perfect EOp Condition

Before stating the theorem, we illustrate the difference be-
tween Lper(✓) used in our paper versus loss function one
would use in a population-wise classification problem (with-
out considering group-aware thresholds). That is, one would
only consider the loss function on accuracy

L̄per(✓) = (r1F̄N(✓) + r0F̄P(✓))
2
, (10)

where only one threshold ✓ (for both groups) needs to be
decided, ry = (ny0 + ny1)/N is the population ratio of
data samples with label y, F̄N(✓), F̄P(✓) are the population-
wise false-negative and false-positive rate. F̄N(✓), F̄P(✓) are
defined in a similar way as in (9) except that we just use the
population-wise pdf f̄y(x) in the integral for label y. (10)
will be our benchmark to compare with Lper(✓) used in our
paper.

We start from considering the case that we achieve perfect
EOp condition, that is

TP1(✓1) = TP0(✓0), (11)

or equivalently

FN1(✓1) = FN0(✓0).

This means that ✓0 and ✓1 satisfies the following condition

F11(✓1) = F10(✓0). (12)

Equivalently, we have

✓0 = F
�1
10

�
F11(✓1)

�
. (13)

Under any given pair of (✓0, ✓1) that satisfies (13), recall
that the performance error Lper(✓) is defined as

Lper(✓) =
⇣
n01

N
FP1(✓1) +

n11

N
FN1(✓1)+

n00

N
FP0(✓0) +

n10

N
FN0(✓0)

⌘2
. (14)

From (11), we get
n11

N
FN1(✓1) +

n10

N
FN0(✓0) =

n11+n10
N

FN(✓1)

= r1FN(✓1),

where r1 denotes, over the entire population (across different
groups), proportion of samples with positive labels. In other

words, r1FN(✓1) represents the proportion of data samples
(from both groups) with positive label but falsely classified
as negative out of the entire dataset.
Next, we look at the other two terms:

n01

N
FP1(✓1) +

n00

N
FP0(✓0).

This sum can be written as
n01
N

FP1(✓1) + n00
N

FP0(✓0)

= n01+n00
N

FP1(✓1) + n00
N

�
FP0(✓0)� FP1(✓1)

�

= r0FP(✓1) + n00
N

�
FP0(✓0)� FP1(✓1)

�
.

We denote ✏1 =
�
FP0(✓0)� FP1(✓1)

�
. Hence,

Lper(✓) = Lper(✓1) =
⇣
r1FN(✓1) + r0FP(✓1) +

n00

N
✏1

⌘2
. (15)

Comparing (10) with (15), we can see that, when
FP0(✓0) > FP1(✓1), the term n00

N
✏1 captures the additional

accuracy loss due to that we have chosen two different thresh-
olds even though that condition (12) is satisfied. Next, we
characterize an upper bound for ✏1.

Theorem 1 and Its Proof

Proof. Recall that FP1(✓1) = 1 � F01(✓1) and FP0(✓0) =
1� F00(✓0). Hence,

��FP0(✓0)� FP1(✓1)
�� =

��F01(✓1)� F00(✓0)
��


��F01(✓1)� F01(✓0)

��

+
��F01(✓0)� F00(✓0)

��.

To bound ✏, we just need to bound
��F01(✓1)� F01(✓0)

�� and��F01(✓0)� F00(✓0)
��.

For the second one, we note that from Assumption 1 that
��F01(✓0)� F00(✓0)

��  u0.

For the first one, we note that
��F01(✓1)� F01(✓0)

��  f̂01|✓1 � ✓0|,

where f̂01 = maxx f01(x).
Next, we bound |✓1 � ✓0|. Note that from (13),

|✓1 � ✓0| =
��F�1

10

�
F11(✓1)

�
� ✓1

��

=
���F�1

10

�
F11(✓1)

�
� F

�1
10

�
F10(✓1)

����

 M10

��F11(✓1)� F10(✓1)|
 M10u1.

Theorem 1 provides an upper bound on the difference
in the false positive rate between the two groups, for any
given pair of (✓0, ✓1) such that the false negative rates are
the same for the two groups (i.e., satisfies the perfect EOp
condition). As discussed in Section , this upper bound also
characterize the additional accuracy loss due to that we have
group-dependent thresholds compared to the case with only
one threshold for both groups.



Theorem 2 and its Proof

For predictive equality (PE) condition, we prove a similar
result. That is, assuming we achieve perfect PE condition
with

FP1(✓1) = FP0(✓0), (16)
or equivalently

TN1(✓1) = TN0(✓0). (17)
This means that ✓0 and ✓1 satisfies the following condition

F01(✓1) = F00(✓0). (18)
Equivalently, we have

✓0 = F
�1
00

�
F01(✓1)

�
. (19)

Under any given pair of (✓0, ✓1) that satisfies (19), the
performance error Lper(✓) can be written as

Lper(✓) =
⇣
n01

N
FP1(✓1) +

n11

N
FN1(✓1)

+
n00

N
FP0(✓0) +

n10

N
FN0(✓0)

⌘2

=
⇣
r1FN(✓1) + r0FP(✓1) +

n10

N
✏2

⌘2
,

where
✏2 =

�
FN0(✓0)� FN1(✓1)

�
.

Similar to Theorem 1, we can provide an upper bound on
✏2 under Assumption 1.

Proof. The proof is similar to that of Theorem 1. We provide
the main steps and omit details that repeat with the proof of
Theorem 1. We have��FN0(✓0)� FN1(✓1)

�� =
��F11(✓1)� F10(✓0)

��


��F11(✓1)� F11(✓0)

��

+
��F11(✓0)� F10(✓0)

��

 f̂11|✓1 � ✓0|+ u1

 f̂11M00u0 + u1.

Theorem 2 provides an upper bound on the difference in
the false negative rate between the two groups, for any given
pair of (✓0, ✓1) such that the false positive rates are the same
for the two groups (i.e., satisfies the perfect PE condition).

To sum up, Theorem 1 and 2 characterize the upper bound
of false positive/negative rate gap between two groups when
the false negative/positive rate gap is 0. At the same time,
it captures the upper bound of additional accuracy loss due
to the two different thresholds for different groups under a
perfect fairness (EOp or EP) condition.

Characterizing the Trade-Off between

Accuracy and Fairness

In this section, we prove a theorem to characterize the trade-
off between accuracy and fairness. That is, we start from the
perfect EOp or PE conditions and perturb the solution by a
small amount. We then bound the difference in the accuracy
loss by comparing the perturbed solution with the original
solution that satisfies the perfect fairness conditions.

Perturbed EOp Condition

To start with, let us consider solutions (✓0, ✓1) that satisfy
the perfect EOp condition (13). Under this condition, the
optimization problem becomes one dimensional, that is,

✓
⇤
1 = argmin

✓1

Lper(✓1),

where

Lper(✓1) =
⇣
r1FN1(✓1) + r0FP1(✓1) +

n00

N
✏1(✓1)

⌘2

and
✏1(✓1) = FP0(✓0)� FP1(✓1)

= F01(✓1)� F00

�
F

�1
10 (F11(✓1))

�
.

From ✓
⇤
1 , we can get the corresponding ✓

⇤
0 =

F
�1
10 (F11(✓⇤1)). We further denote this optimal accuracy loss

value as
L
⇤ = Lper(✓

⇤
1).

Now with the optimal solution (✓⇤0 , ✓
⇤
1), we investigate

the changes in Lper(✓⇤1) when we perturb the perfect EOp
condition and allow a small difference. That is, now consider
solution (✓̃0, ✓̃1) such that

|FN1(✓1
⇤)� FN1(✓̃1)|  �/2,

|FN0(✓0
⇤)� FN0(✓̃0)|  �/2.

(20)

Consequently, the solution (✓̃0, ✓̃1) satisfy the following per-
turbed EOp condition:
��TP1(✓̃1)� TP0(✓̃0)

�� =
��FN1(✓̃1)� FN0(✓̃0)

��  �. (21)
Without loss of generality, we assume that (i) the true positive
rate of group 1 is higher than that of group 0, and (ii) the
above inequality is binding (because if not binding, then we
can always choose a smaller � to make it binding). Thus, we
have TP1(✓̃1) � TP0(✓̃0) = �, or equivalently, FN0(✓̃0) �
FN1(✓̃1) = �. This gives us

✓̃0 = F
�1
10

�
F11(✓̃1) + �)

�
. (22)

Next, we analyze Lper(✓̃1) by substituting (✓̃0, ✓̃1) in (14),
which gives us

Lper(✓̃1) =
⇣
r1FN1(✓̃1) + r0FP1(✓̃1) +

n10

N
� +

n00

N
✏̃1(✓̃1)

⌘2
,

where
✏̃1(✓̃1) = FP0(✓̃0)� FP1(✓̃1)

= F01(✓̃1)� F00

�
F

�1
10

�
F11(✓̃1) + �)

��
.

We denote the optimal value for this perturbed version as
✓̃
⇤
1 , and its corresponding loss value as

L̃
⇤ = Lper(✓̃

⇤
1).

Furthermore, from (20), we have

|FN1(✓
⇤
1)� FN1(✓̃

⇤
1)| = |F11(✓

⇤
1)�F11(✓̃

⇤
1)|  �/2. (23)

Under Assumption 1, we have

|✓⇤1 � ✓̃
⇤
1 | =

��F�1
11 (F11(✓

⇤
1))� F

�1
11 (F11(✓̃

⇤
1))

��

 M11

��F11(✓
⇤
1)� F11(✓̃

⇤
1)
��

= M11�/2.



Theorem 3 and Its Proof

We are ready to compare Lper(✓⇤1) and Lper(✓̃⇤1). The latter
loss should be no larger than the former since we relaxed the
perfect EOp condition (constraint) in the optimization, i.e.,
L
⇤ � L̃

⇤.

Proof. We have that

Lper(✓
⇤
1)� Lper(✓̃

⇤
1)

 2L⇤
���r1FN1(✓

⇤
1) + r0FP1(✓⇤1) +

n00

N
✏1(✓

⇤
1)

�
⇣
r1FN1(✓̃

⇤
1) + r0FP1(✓̃⇤1) +

n10

N
� +

n00

N
✏̃1(✓̃

⇤
1)
⌘���

 2L⇤�
r1�/2 + r0|FP1(✓⇤1)� FP1(✓̃⇤1)|

+
n00

N

��✏1(✓⇤1)� ✏̃1(✓̃
⇤
1)
��+ n10

N
�
�
,

where we further have that

|FP1(✓⇤1)� FP1(✓̃⇤1)| = |F01(✓
⇤
1)� F01(✓̃

⇤
1)|

 f̂01|✓⇤1 � ✓̃
⇤
1 |

 f̂01M11�/2,

and
��✏1(✓⇤1)� ✏̃1(✓̃

⇤
1)
�� 

��✏1(✓⇤1)� ✏̃1(✓
⇤
1)
��

+
��✏̃1(✓⇤1)� ✏̃1(✓̃

⇤
1)
��


��F00(F

�1
10 (F11(✓

⇤
1)))

�F00(F
�1
10 (F11(✓

⇤
1) + �))

��

+✏̂
0
1M11�/2

= (f̂00M10 + ✏̂
0
1M11/2)�.

Here, ✏̂01 = max ✏̃01 is the maximum of the derivative of ✏̃1.
Combining all the terms in front of � gives us the desired
upper bound.

Theorem 3 quantifies the decrease in accuracy loss (i.e.,
the improvement in accuracy) when we allow a gap of true
positive rates between two groups (i.e., relaxation from the
perfect EOp condition).

Repeating the analysis for the perturbed PE condition, we
can obtain a similar bound for the changes in the accuracy
loss function. We omit the details here in the interest of space.

Convergence Analysis of GSTAR

GSTAR as Nonlinear Least Squares Problem

Our objective function and the optimization solution algo-
rithm belong to the family of Gauss-Newton algorithm to
solve Nonlinear Least Squares Problem (NLSP). To specify,
NLSP is to solve

min
✓

||r(✓)||22,

where the decision variables, ✓, is an n-dimensional real
vector and the objective function r is an m-dimensional real
vector function of ✓. Connecting to our setting and using
two groups as an example, our decision variables is the two-
dimensional vector ✓ = (✓0, ✓1) for group 0 and group 1,

and our objective function is the following 2-dimensional
real vector function:

r(✓) =
�
r1(✓), r2(✓)

�

with

r1(✓) = r1(✓0, ✓1) =
n01

N
FP1(✓1) +

n11

N
FN1(✓1)

+
n00

N
FP0(✓0) +

n10

N
FN0(✓0),

r2(✓) = r2(✓0, ✓1) =
p
� (TP1(✓1)� TP0(✓0))

when taking the EOp constraint. The L2 norm ||r(✓)||22 =
r1(✓)2 + r2(✓)2 recovers the objective function in Equation
(2) in the main paper.

A classic family of algorithms to solve NLSP is the Gauss-
Newton Method. The main idea is to convert the nonlinear
optimization problem to a linear least square problem using
Taylor expansion. That is, the parameter values are calculated
in an iterative fashion with

✓j ⇡ ✓
k+1
j

= ✓
k

j
+�j ,

in the k-th iteration number, with the vector of increments
� = {�j} = {✓k+1

j
� ✓

k

j
} (also known as the shift vector).

We linearize each component in the f function to a first-order
Taylor polynomial expansion as

ri(✓) ⇡ ri(✓
k) +

X

j

@ri(✓
k)

@✓j
�j (24)

with ✓k = (✓k0 , ✓
k
1 ). Plugging this linearized equation into

the objective function, we get the usual least square problem.
Then, the optimal solution can be obtained as

� = �(JT
J)�1

J
T
f(✓k), (25)

where J = {Jij} with Jij = {@ri(✓)
@✓j

} is the Jacobian. Note
that in the GSTAR algorithm, we ignore the terms for j 6= i

in the Taylor expansion (24). Thus, in calculating J
T
J , we

only kept the diagonal terms
✓
@r1(✓)

@✓j

◆2

+

✓
@r2(✓)

@✓j

◆2

for j = 0, 1. Plugging in the form of r1 and r2 as specified
above, we achieve the solution provided in (7).

Convergence Property for Gauss-Newton

Algorithm

There is a long history of studying the convergence property
of the Gauss-Newton algorithm, e.g., see (Gratton, Lawless,
and Nichols 2007). The convergence of the algorithm is gen-
erally not guaranteed, e.g., if the initial solution is far from
the true optimal or JT

J is ill-conditioned. In other words, the
convergence of the algorithm heavily depends on the density
estimation f(·). We state the following sufficient conditions
from (Gratton, Lawless, and Nichols 2007) to guarantee the
convergence of the algorithm. The following assumptions are
made in order to establish the theory.



• A1. There exists ✓⇤ such that JT (✓⇤)r(✓⇤) = 0;
• A2. The Jacobian at ✓⇤ has full rank.
We state Theorem 4 from (Gratton, Lawless, and Nichols
2007) on the sufficient conditions for convergence.
Theorem 4. Assume that the estimated density function f(·)
satisfy assumptions A1 and A2. Further, f(·) satisfies that

||Q(✓k)(JT
J)�1(✓k)||2  ⌘

for some constant ⌘ 2 [0, 1) for each iteration k, where Q(✓)
denotes the second order terms

P
i
ri(✓)r2

ri(✓). Then as
long as the initial solution is sufficiently close to the true
optimal with ||✓0� ✓

⇤||2  ✏, the sequence of Gauss-Newton
iterates {✓k} converges to ✓⇤.

Protection against Divergence

It is known that for general function f(·) such as estimates
from a neural network, the above sufficient conditions that
guarantee convergence do not necessarily hold. As a result,
protection against divergence is essential. In our numerical
experiments, we adopt a commonly used, simple protection,
the shift-cutting method. That is, we to reduce the length of
the shift vector � by a fraction ⌘. In other words, the update
becomes

✓
k+1
j

= ✓
k

j
+ ⌘�j .

Near Optimality of GSTAR

Here, we show regarding on how the accuracy of h affects
the accuracy of Ŷ . Following the proof of Theorem 5.6 of
Hardt et al. (2016), we provide the following near optimality
results for our method.

Before we prove the theorem, we first state the results from
Lemma 5.5 proved in Hardt et al. (2016), which will be used
in our proof.
Lemma 5 (Restatement of Lemma 5.5 in Hardt et al. (2016)).
Let R,R

0 2 [0, 1] be two random variables in the same
probability space as A and Y . Then, for any point p on
a conditional ROC curve of R, there is a point q on the
corresponding ROC curve ofR0 achieving the same threshold
such that

||p� q||2 
p
2dK(R,R

0),

dK(R,R
0) = max

a,y
sup
t

|Pr(R > t|A = a, Y = y)

� Pr(R0
> t|A = a, Y = y)|.

(26)

Proof. Similar to Hardt et al. (2016), we focus on proving
this theorem for equalized odds. The case of equal opportu-
nity is analogous. The optimal classifier Y ⇤ corresponds to a
point p⇤. Under the equalized odds condition, our algorithm
essentially finds the intersection point, q, of the two condi-
tional ROC curves of R̂h for a = 0 and a = 1. Then directly
applying the above lemma, we get that

||p⇤ � q||2 
p
2dK(R,R

0).

The rest follows the same argument as in Theorem 5.6
of Hardt et al. (2016). That is, by assumption on the loss
function, there is a vector v with ||v||2 

p
2 such that

E[`(Ŷh, Y )] = hv, qi and E[`(Y ⇤
, Y )] = hv, p⇤i. Applying

Cauchy-Schwarz, we get

E[`(Ŷh, Y )]� E[`(Y ⇤
, Y )] = hv, q � p

⇤i
 ||v||2 · ||p⇤ � q||2
 2dK(R,R

0).

Remark. In Hardt et al. (2016), the point q from their al-
gorithm under equalized odds condition is the intersection
point between two line segments, not the two ROC curves
as in our paper. That is, assume without loss of generality
that the first coordinate of q1 (for group a = 1) is greater
than the first coordinate of q0 (for group a = 0) on the ROC
curve plane; and that all points p⇤, q0, q1 lie above the main
diagonal. Then q 2 L0 \ L1 from their algorithm, where
L0 is the line segment between q0 and the point (1, 1), and
L1 is the line segment between the point (0, 0) and q1. As a
result, in proving their Theorem 5.6, they need to show that
q from this construction satisfies ||p⇤ � q||2  2dK(R,R

0).
However, because the point q from our algorithm lies on
the ROC curve, we can directly apply the results from the
lemma. This difference is further illustrated in figure 5 below,
where the purple pentagram corresponds to q found by our
algorithm, and the green cross corresponds to q from their
algorithm. The figure shows the intersection points found
from our algorithm versus Hardt et al.

Moreover, the requirement for achieving the near optimal-
ity in our method (our Theorem 5) and in Hardt et al. (their
Theorem 5.6) is the same. That is, the closeness between
the conditional densities is required, not just the conditional
probability estimates.

To specify, the closeness requirement in Hardt et al. based
on conditional Kolmogorov distance is shown in Equation
(26), where R 2 [0, 1] and R0 2 [0, 1] are real-valued scores,
i.e., two regressors. Note that the distance is taking sup over
all t 2 [0, 1], so this condition requires the entire conditional
density curves from R and R

0 to be close, not just close at
some given threshold t.
Next, the near optimality of Hardt et al. (their Theorem

5.6) shows:

E[`(Ŷh, Y )]  E[`(Y ⇤
, Y )] + 2

p
2dK(R̂, R

⇤),

where R
⇤ 2 [0, 1] is the Bayes optimal regressor and

R̂ 2 [0, 1] is a regressor whose density is estimated. In fact,
the distribution function of their corresponds to the score
function �(h) in our paper, where h is the logit and �(·) is
the softmax function.

Seeing this connection, we stress that the closeness require-
ment in our result is the same as in Hardt et al., and that the
near optimality of our algorithm follows:

E[`(Ŷh, Y )]  E[`(Y ⇤
, Y )] + 2dK(R̂, R

⇤),

where R⇤ 2 [0, 1] is the Bayes optimal regressor as given in
Hardt et al., and R̂ 2 [0, 1] comes from our estimated density,
i.e., , the distribution of R̂h comes from by applying softmax
function �(·) on logit h.



Figure 5: Comparison of optimal point of Hardt et al.and
GSTAR. Given the ROC curve of each protected group, ours
(magenta star) achieves better optimum than that of Hardt et
al.(green cross), as ours has higher TPR and lower FPR.

Experimental Details

Comparing Methods

We compared our method with multiple state-of-the-art meth-
ods to verify our work. The details about the comparing
methods are as below:

• Learning fair representations for kernel models (ab-
breviated as FGP) (Tan et al. 2020): a pre-processing
method to learn representation focusing on kernel-based
models. The fair model that satisfies certain fairness crite-
rion is obtained by Bayesian learning from fair Gaussian
process (FGP) prior.

• Fairness confusion tensor (abbreviated as FACT) (Kim,
Chen, and Talwalkar 2020): a post-processing model that
minimize the least-squares accuracy-fairness optimality
problem based on confusion tensor.

• Adversarial de-biasing (abbreviated as Ad-
vDeb) (Zhang, Lemoine, and Mitchell 2018): an
in-processing model that mitigates the conflicting
gradient directions in utility and fairness objectives by
projecting one gradient to another to remove the opposite
direction.

• Calibrated equal odds post-processing (abbreviated as
CEOPost) (Pleiss et al. 2017): a post-processing method
that minimizes the disparity in the predicted probability
to the preferred class among different sensitive groups,
while maintaining the calibration condition in a relaxed
condition.

• Equality of opportunity in supervised learning (abbre-
viated as Eq.Odds) (Hardt, Price, and Srebro 2016): a
post-processing method that learns the threshold to yield
the equalized odds/opportunity between different demo-
graphic by exploring the intersection of achievable true
positive rates and false positive rates.

• Learning adversarially fair and transferable repre-

sentations (abbreviated as LAFTR) (Madras et al. 2018):
a fair representation learning model that adopts fairness
metrics as the adversarial objectives and analyze the bal-
ance between utility and fairness.

• Baseline: For CelebA dataset, we use ResNet50 (He et al.
2016) as a reference because we input second last layer
(2048 features) of ResNet to all methods. For other tabular
datasets, logistic regression is used as all other methods
except for FGP and LAFTR are based on logistic regres-
sion.

Evaluation Metrics

In the experiments, we evaluate the methods on four fairness
and two performance measures. Four fairness metrics are as
below:
• Equal Opportunity (abbreviated as EOp) (Hardt, Price,
and Srebro 2016) : This measures absolute difference of
favorable prediction given positive label.

|P (Ŷ = 1|Y = 1, A = 1)� P (Ŷ = 1|Y = 1, A = 0)|.
• Equalized Odds (abbreviated as EOd) (Hardt, Price, and
Srebro 2016) : This measures the difference between the
probability given the true labels.

|P (Ŷ = 1|Y = 1, A = 1)� P (Ŷ = 1|Y = 1, A = 0)|+
|P (Ŷ = 1|Y = 0, A = 1)� P (Ŷ = 1|Y = 0, A = 0)|.

• Balanced Accuracy Difference (abbreviated as BD) :
This measures difference between balanced accuracy be-
tween the groups.
���P (Ŷ = 1|Y = 1, A = 1) + P (Ŷ = 0|Y = 0, A = 1)

���

�
���P (Ŷ = 1|Y = 1, A = 0) + P (Ŷ = 0|Y = 0, A = 0)

���.

If BD and EOd has the same value, it indicates that both
TPR and TNR are higher in a certain sensitive group.
However, if the gap between the two terms is large, we
can interpret as the classifier is more biased as a group
with higher TPR has lower TNR. This is more unfair as
a sample from the privileged group is more likely to be
falsely and correctly predicted as positive output. EOp is a
partial measure of EOd as it only measures the difference
from a favorable class.

• Absolute (1 - Disparate Impact) (abbreviated as 1-
DIMP) (Barocas and Selbst 2016) : This measures ra-
tio of the probability of the favorable prediction given a
protected group.

�����1�
P (Ŷ = 1|A = 1)

P (Ŷ = 1|A = 0)

����� .

We evaluate performance of the methods with two metrics.
• Balanced Accuracy (abbreviated as BA) : This measures
average between true positive rate and true negative rate.
Compared to the traditional accuracy, this measure ef-
fectively shows the whether the classifier is focusing on
the performance of a certain class when the dataset is
unbalanced.

1

2

⇣
P (Ŷ = 1|Y = 1) + P (Ŷ = 0|Y = 0)

⌘
.

• Accuracy (abbreviated as ACC) : This measures tradi-
tional classification accuracy of the method.



Experimental Setup

For experimental setup, all comparing methods apply EOd as
the fair constraint if fairness constraint is selectable, thus we
compare them via EOd in Figure 2 in the main paper. Both
the Pareto frontier from GSTAR and FACT are derived based
on EOd constraint for a fair comparison. We follow the setup
in Section G.3 of the FACT (Kim, Chen, and Talwalkar 2020)
to report their method, which does not require �.
For GSTAR, we estimate fya and optimize ✓a from the

training data, and report evaluation results (with the ✓a

learned from training data) on the testing data. We use the
same � for multiple fairness constraints for simplicity, but �
can be introduced individually. Our method is optimized with
� in the range of [10�1

, 104] with alternating optimization
method.
To find estimated distribution fya, we consider gamma,

Student’s t, and normal distribution as the candidates for
the experiments reported in the main paper, and select the
one that has the maximum likelihood with the output distri-
bution. Without loss of generality, this can be generalized
non-parametric density estimation such as kernel density
estimation to fit more complicated distribution. More experi-
ments with complicated distribution estimation is in Section
in the supplementary.

Figure 2 illustrates Pareto frontiers with 5 points of differ-
ent � values in [10�2

, 107] with equal logspace. To visualize
the plots, we sweep hyperparameters (e.g, weights for each
term in the objective function) for comparing methods. Fig-
ure 3 takes � or hyperparameter values from the upper-right
point of the Pareto frontiers in Figure 2, which indicates the
best trade-off for each method. Figure 3 paper presents the
5 runs with the setup chosen based on the Pareto frontier to
show the consistency of the performance of each model.

All experiments are implemented with Pytorch framework
on i9-9960X CPU and a Quadro RTX 6000 GPU.

Dataset Description

We evaluate the methods on four fairness datasets. The goal
for all datasets is binary classification on binary sensitive
feature. The details of the datasets are as below:

• CelebA image dataset
1 (Liu et al. 2015): The data

consists of 202,599 face images in diverse demograph-
ics. The images are annotated with 40 attributes (face
shape, skin tone, smiling, etc.). Similar to Quadrianto et
al. (Quadrianto, Sharmanska, and Thomas 2019), the goal
is to predict whether a person in the image is attractive or
not. The feature sex is used as the sensitive feature.

• Adult dataset from the UCI repository (Kohavi 1996)
contains 48,842 instances described by 14 features (work-
class, age, education, sex, race, etc) with the goal of the
income prediction whether a person’s income exceeds
50K USD per year. The feature sex is used as the sensitive
feature.

• COMPAS
2(Correctional Offender Management Profiling

for Alternative Sanctions) dataset includes 6,167 samples
1http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
2https://github.com/propublica/compas-analysis

CelebA
Model GSTAR FGP FACT CEOPost
Time 0.287 - 0.067 0.077
Model DIR Eq.Odds LAFTR AdvDeb
Time 183.20 0.062 107.04(min) 303.15

Adult
Model GSTAR FGP FACT CEOPost
Time 0.29 51.28 0.055 25.61
Model DIR Eq.Odds LAFTR AdvDeb
Time 168 0.037 53.04(min) 102.00

Compas
Model GSTAR FGP FACT CEOPost
Time 0.292 43.74 0.035 8.3
Model DIR Eq.Odds LAFTR AdvDeb
Time 123.20 0.034 57.04(min) 15.45

German
Model GSTAR FGP FACT CEOPost
Time 0.271 7.08 0.0257 2.64
Model DIR Eq.Odds LAFTR AdvDeb
Time 1.68 0.034 56.51(min) 2.17

Table 1: Computational time (in seconds) for all comparing
fairness methods for each dataset.

described by 401 features with the target of recidivism
prediction with the label showing if each person gets
rearrested within two years. The feature race is used as
the sensitive feature for this dataset.

• German credit dataset from the UCI repository (Dua
and Graff 2019) contains 1,000 samples described by 20
features. The goal is to predict the credit risks. The feature
sex is used as the sensitive feature.

All data is split as 70% for training and 30% for testing.

Computational Cost

In Table 1, we describe the computational time for each
method on each dataset. By introducing estimated PDF
functions for post-processing, we outperform other meth-
ods except Eq.Odds (Hardt, Price, and Srebro 2016) and
FACT (Kim, Chen, and Talwalkar 2020). As they both only
utilize the entries of the confusion matrix to find optimal
mixing rate in their methods, they have less computation than
ours. However, as we discussed in the main paper, we explore
better feasible region than theirs by group-specific threshold-
ing that results better in both fairness and performance by
sacrificing little efficiency, yet outperforms most of the other
works.

Auxiliary Experiments

GSTAR with Single Threshold

We conduct experiments on COMPAS dataset to evaluate
GSTAR with a single adaptive thresohld. Figure 7 presents
the trend of fairness-accuracy trade-off of two versions of
GSTAR based on � values. Comparing with the baseline
(✓ = 0), we observe that even with a single threshold in



Figure 6: Trend of converged ✓ values based on the variation of weight �. Dashed line indicates single threshold version and ✓a
indicates threshold for a group.
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Figure 7: Comparison of single threshold (squares, 1✓) and
group-aware threshold method (stars) on Pareto frontier. The
result suggests group-aware threshold greatly improve fair-
ness with comparable accuracy.

GSTAR (1✓ in the legend), the adaptive threshold helps to
improve the fairness with comparable accuracy. However the
improvement is not as significant as that of the group-wise
version because it is impossible to achieve perfect fairness
with a single threshold as the intersection of f1a and f0a

differs by a. Figure 6 shows the trend of learned ✓ based on �
values. We see a single threshold version (black) lies between
two thresholds of group-aware GSTAR in most cases. This
implies that the single threshold converges to some point that
gives up some of the fairness.

Quality of Estimated Distribution

The performance of GSTAR relies on the quality of esti-
mated distribution. For the benchmark datasets, we empir-
ically found that the distribution of logits resembles some
parametric distributions. Thus, we estimate the distribution
with generally used parametric distributions such as Student’s
t-distribution by measuring the negative log-likelihood (NLL)
in the training data. Note that GSTAR can be extended to a
wide range of other distributions, even non-parametric distri-
butions.

For further analysis, we add new experiments by sweeping
the parameters of parametric distribution to see the effect of
the estimation quality. In COMPAS dataset, the best estimate

(a) Variation of estimated distribution of f by the noise factor ↵.

(b) The influence of the noise factor ↵ and NLL of corresponding
estimated distribution to the performance and fairness of GSTAR.

Figure 8: Variation of estimated distributions by the noise ↵
and its impact on the performance of GSTAR.

(i.e., smallest NLL) of group (y = 0, a = 0) with Student’s
t-distribution has parameters of df = 2.235, loc = -0.567, scale
= 0.756 based on scipy package. To generate variations as in
Figure 8(a) of distributions with varying estimation qualities,
we add noise ↵ 2 [�0.1, 100] to the scale of this distribution.

In figure 8(b), we illustrate the trend of NLL (black), fair-
ness violation (the lower the better), and accuracy (the higher
the better) with varying noise (↵, x-axis). The color of lines
follows the main paper. Dashed lines indicate the quantity
of baseline model (✓ = 0). From this, we observed that the



ACC (train) DP (train) EOd (train) ACC (test) DP (test) EOd (test)
GSTAR (DP) 0.679 0.001 0.089 0.639 0.017 0.018
GSTAR (EOd) 0.714 0.071 0.030 0.0643 0.032 0.034

GSTAR (DP + EOd) 0.705 0.050 0.030 0.641 0.027 0.025

Table 2: Comparison of fairness and performance measure in training and testing set with different fairness constraints.

Figure 9: Distribution of synthetic dataset and its kernel den-
sity estimation.

accuracy is the most sensitive to the change of estimation
quality, while fairness is relatively stable.
However, for our experiments, we assume the estimation

is reliable and the guarantee on the estimation reliability is
beyond our focus of this paper.

Interpretation of Results on COMPAS

In COMPAS in Figure 3(c), we observe improvements in total
fairness violation with multiple fairness constraints employed.
We deduce this could happen due to: 1) generalization of
the estimated distribution from training data to testing data;
2) difference in the training and testing data distributions.
For the training set, we achieve better fairness violation on
the model with a single constraint, compared to the multi-
constrained version or other single-constrained versions. In
the training set of COMPAS data, we have the results as in
the Table 2.

Empirical Result on Convergence of GSTAR

In Theorem 4, we showed that convergence proof given the
conditions that 1) GSTAR satisfies Jacobian conditioning;
and 2) initial solution ✓

0 is sufficiently close to ✓
⇤. To ver-

ify the convergence in practice, we illustrate the change of
Lfair and Lper values by epochs as in Figure 10 in COM-

Figure 10: Convergence analysis of GSTAR on COMPAS
dataset with different � values.

PAS dataset. We found that it takes longer to converge as �
grows. However, regardless of �, we observed that GSTAR
successfully converged. Considering the difference between
initial and converged values of Lfair and Lper, it seems that
✓
⇤ differs from ✓

0 by a larger amount as � grows, and this
leads to longer convergence time (epochs).

Complicated Distribution Estimation with Kernel

Density Estimation

We can generalize our density estimation to non-parametric
by kernel density estimation (KDE) method. Given the logit
distribution h(X), we build a histogram with B bins. Denote
Tb as the mean logit value of b-th bin and wb as normalized
weight indicates how many samples belong to b-th bin, where
b 2 {1, · · · , B} and

P
b
wb = 1. Then our kernel density

estimator of distribution h(X) is

f(x) =
X

b

wbK(x� Tb), (27)

where K is kernel function and we employ normal distri-
bution with standard deviation as 0.5. As non-parametric
density estimation of h(x) can be expressed as linear com-
bination of parametric distributions, we can easily apply the
optimization step demonstrated in the Section .

To validate the KDE method for GSTAR, we generate syn-
thetic data that each logit distribution hya consist of mixture
of three gaussian distributions with additional standard nor-
mal noise. Specifically, each distribution is configured with
mean µ, variation �

2, and weight w and number of samples
n as in Table 3. For example, we generate the samples from
a group (Y = 0, A = 0) by sampling n00 samples x on h00

and add noise N (0, 12) as below:

h00 =
X

i2{0,1,2}

w
(i)
00 · N (µ(i)

00 ,�
(i)
00

2
),
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fair (b) Lfair = LEOd
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fair

Figure 11: Trend of performance and fairness measure by the change of � values. Color of the lines indicates the measure of
performance and fairness as in the legend. Solid lines indicate GSTAR results and dotted lines indicate baseline (✓ = (0, 0))
respectively. It is lower the better for fairness and higher the better for accuracy.

(a) Lfair = LDP

fair (b) Lfair = LEOd

fair (c) Lfair = LDP+EOd

fair

Figure 12: Trend of converged group-aware threshold ✓ achieved by GSTAR.

l
(k) ⇠ h00, ✏

(k) ⇠ N (0, 12),

x
(k) := l

(k) + ✏
(k)

, k 2 {1, · · · , n00}
where i is the index of gaussian distributions in Table 3 and
k is the index of sampling instance.

µ �2 w n
h00 [-7.0, -2.0, 1.1] [3.0, 1.5, 2.0] [0.3, 0.5, 0.2] 5000
h01 [-4.5, -1.2, 1.2] [1.2, 1.5, 2.0] [0.3, 0.5, 0.2] 10000
h10 [-1.8, 1.5, 6.0] [1.2, 1.3, 2.0] [0.2, 0.5, 0.3] 15000
h11 [-1.1, 2.3, 7.0] [1.2, 1.5, 2.0] [0.2, 0.4, 0.4] 10000

Table 3: Configuration of each synthetic data distribution
hya.

Figure 9 illustrates histograms of logit h distributions of
synthetic data and their KDE results in colored lines. The
top plot is about positive samples i.e., h11 and h10, and the
bottom plot is about positive samples i.e., h00 and h01 re-
spectively. We could observe that KDE accurately estimated
the density function h that cannot be fitted with parametric
distribution.

Moreover, we conduct experiments to validate GSTAR can
achieve the proposed goal. Given 4 probability distributions
and number of samples for each group as in Table 3, we
divide the dataset into training (70%), validation (15%), and
testing (15%) set. We train GSTAR on training set and find

the best ✓ by selecting one that has minimum validation loss
and report the result on testing set.
In Figure 11 and 12, we quantitatively evaluate GSTAR

with KDE method with different � values on fairness con-
straint Lfair. In Figure 11, color of the lines are performance
and fairness measure as described in the legend. Dotted lines
indicate baseline (✓ = (0, 0)) and solid lines indicate the
measures of GSTAR. Note that GSTAR improve target fair-
ness significantly with small lose of accuracy. In DP+EOd
constraint, we even achieve almost perfect equal opportunity
i.e., Eq. Opp ⇡ 0 with high enough � values.
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