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Jacobi-Style Iteration for Distributed
Submodular Maximization

Bin Du, Kun Qian, Christian Claudel, and Dengfeng Sun

Abstract—This paper presents a novel Jacobi-style iteration
algorithm for solving the problem of distributed submodular
maximization, in which multiple agents determine their strategies
from the private sets so that a global, non-separable submodular
objective function is jointly maximized. Building on the multi-
linear extension of the submodular function, we expect to achieve
the solution from a probabilistic, rather than deterministic,
perspective, and thus transfer the considered problem from
the discrete domain into the continuous domain. Since it is
observed that an unbiased estimation of the gradient of multi-
linear extension function can be obtained by sampling the agents’
local strategies, a projected stochastic gradient algorithm is pro-
posed to solve the problem. Our algorithm enables simultaneous
updates among all individual agents and guarantees to converge
asymptotically to a desirable equilibrium solution. Such an equi-
librium solution is shown to be at least 1/2 suboptimal, which is
comparable to the state-of-art in the literature. The convergence
rate, which is characterized by the running average of gradient
mapping, is proved to be O(1/T ), where T is the number of
iterations. Moreover, we further enhance the proposed algorithm
by handling the scenario in which agents’ communication delays
are present. The enhanced algorithm admits a more realistic
distributed implementation of our approach. Finally, a movie
recommendation task is conducted on a real-world movie rating
dataset, to validate the numerical performance of our algorithms.

I. INTRODUCTION

In this paper, we focus on the distributed maximization of
submodular functions, involving a network of I agents, which
aims to cooperatively solve the following problem,

maximize F (a1, a2, · · · , aI)
subject to ai ∈ Ai, i = 1, 2, · · · , I.

(P)

In problem (P), each agent i ∈ I := {1, 2, · · · , I} is expected
to determine a strategy ai from the private finite set Ai, such
that the global objective function F : A1×A2×· · ·×AI → R
is jointly maximized. Here, we assume that the objective
function is submodular and additionally monotone (see def-
initions in Section II). In fact, such a (distributed) monotone
submodular maximization problem has gained increasing at-
tention in recent years, primarily due to the fact that it can
be widely adopted in numerous applications, including sensor
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selection [1], [2], resource allocation [3], [4], data summariza-
tion [5], [6], information gathering [7], [8], to name a few.

While the submodular maximization problem has success-
fully found so many applications, solving problem (P) is
known to be NP-hard [9], even from a standard centralized
perspective. As such, the approximation methods which are
able to guarantee suboptimal solutions are broadly studied in
the literature [10]–[14]. Among these various approximation
methods, the greedy algorithm [12]–[14] attracts the most
attention by researchers. The key idea of this greedy algorithm
is to determine the single best strategy at each time, by
maximizing the marginal gain of the submodular function.
It is shown in [13] that an 1/2-suboptimal solution can be
guaranteed by the greedy algorithm, i.e., the obtained solution
Ag is ensured to have F (Ag) ≥ 1/2 · F (A?) where A?

represents the global optimal solution. In particular, when
the considered submodular maximization problem has the
constraints of some specific forms [12], [14], the suboptimal
bound can be further improved to 1 − 1/e with e being the
natural constant. Nevertheless, it should be highlighted that the
greedy algorithm is inherently a sequential updating scheme,
also known as the Gauss-Seidel iteration, since the individual
agents need to determine their best strategies precisely one
by one. Considering that when one agent is making its own
decision, the greedy algorithm needs all other agents within
the network to be idled and wait for it, this is essentially a
waste of resources in the respect of distributed processing. In
addition, its poor scalability may also limit the applications
of the greedy algorithm, especially when a large number of
agents are involved in the problem.

In order to address such a sequential updating issue, recent
papers [15]–[17] have developed distributed variants of the
greedy algorithm in which the local strategies are determined
simultaneously in a parallel architecture. However, as shown
in [15], when it comes to the distributed setting where the
information exchange is limited to only neighboring commu-
nications, the suboptimal bound needs to be degraded from
1/2 to 1/(1 + β) where β is a constant related to the multi-
agent network topology. In the worst scenario, the constant
β could be as large as I − 1 such that only 1/I-suboptimal
bound can be guaranteed. Later, the authors in [16] and [17]
designed the best network topology to enhance performance
of the distributed greedy algorithm. Nevertheless, an upper
bound for the suboptimality guarantee provided in [16] shows
that the distributed greedy algorithm cannot achieve a solution
better than 1/α-suboptimal where α denotes the independence
number of the network. Given the facts that β ≥ 1 and α ≥ 2
hold for general network topologies, it can be concluded that
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the solution obtained by the distributed greedy algorithm has
to be worse than 1/2-suboptimal in general. As such, we are
expected to propose a new algorithm in this paper which works
under general network topologies and meanwhile achieves the
desired 1/2-suboptimal bound.

It is also worthy noting that some other distributed methods
have been devised in the literature to solve the submodular
maximization problem. The authors in [18] develop a new
distributed method while considering the application of multi-
agent task assignment. It is proved that the obtained solution is
at least 1/2-suboptimal. Moreover, the problem of distributed
submodular maximization is investigated in both discrete and
continuous settings [19], and the proposed algorithms are guar-
anteed to converge asymptotically to the (1−1/e)-suboptimal
bound. The similar algorithm is also developed in [20] which
further improves convergence performance. We remark that
the problem considered in our paper is significantly different
from the ones in [18]–[20], where a separable structure of the
global objective function is specifically assumed. Precisely,
in their problem setups, each agent (or task) maintains a
local utility function, and the global objective is to optimize
the summation/average of local functions. Such a specific
structure helps ease the acquisition of the global information
through local computations; for instance, a standard consensus
procedure is designed in [19], and more directly, the technique
of gradient tracking is utilized in [20]. On the contrary, in our
setup we consider the global objective function F (·) which
is non-separable in general. It should be noted that the same
problem is studied in [21] and a consensus based algorithm,
termed as CDCG, is developed herein. Although the CDCG
algorithm also achieves the (1 − 1/e)-suboptimal bound, a
critical concern here is that each agent is assumed to be able
to compute the full gradient of multi-linear extension of the
submodular function. Given that the multi-linear extension
function has combinatorial nature, the complexity of comput-
ing its full gradient is inherently equivalent to a brute-force
method to solve the submodular maximization problem. In
addition, as the consensus based algorithm requires each agent
to keep decisions from all agents within the network, this also
considerably limits the algorithm scalability.

To sum up, while the 1/2-suboptimal bound is known to be
the best result that one can achieve in our problem setup, there
is no existing distributed algorithm yet which guarantees such
a suboptimality bound when solving the problem with generic
network topologies. Motivated by this, it is the purpose of
this paper to devise such a distributed algorithm. Our main
contributions are summarized as follows. A novel Jacobi-style
algorithm is proposed for solving the problem of distributed
submodular maximization. Unlike existing works which are
primarily based on the greedy algorithm, e.g., [15]–[17], we
start from a new probabilistic perspective, build on the multi-
linear extension of the submodular function, and eventually
transfer the considered problem from a discrete domain into
a continuous domain. By leveraging the fact that an unbiased
estimation of the gradient can be achieved by simply sampling
the agents’ local strategies, we develop a projected stochastic
gradient algorithm without the need of evaluating the full
gradients. More precisely, in order to obtain the stochastic gra-

dient, each agent expects to evaluate the submodular function
for KM times, where K is the number of strategies in the
local candidate set and M denotes the predetermined sample
size. We note that this amount is significantly smaller than the
one for computing the full gradient. In addition, the usage of
stochastic gradients also helps protect the privacy of agents’
local candidate sets, since only a few sampled strategies, rather
than the entire candidate sets, need to be exchanged among
agents. It is proved that our algorithm converges at the rate of
O(1/T ) to an equilibrium solution which is guaranteed to be
at least 1/2-suboptimal. Moreover, by handling the scenario
where communication delays are present among agents, we
further enhance the proposed algorithm to be implementable in
a more realistic distributed architecture. The same convergence
performance is proved for the enhanced distributed algorithm
with general connected network topologies. Finally, the movie
recommendation task is conducted on a real-world movie rat-
ing dataset, and the simulation results validate the effectiveness
of our algorithms.

The remainder of this paper is organized as follows. Sec. II
formally defines the considered distributed submodular maxi-
mization problem. Sec. III develops the projected stochastic
gradient algorithm, and Sec. IV further enhances the pro-
posed algorithm by dealing with the communication delays.
Numerical simulations are presented in Sec. V. Lastly, Sec. VI
concludes this paper. For the readers’ convenience, the proofs
of propositions and theorems are provided in the Appendix.

II. PROBLEM STATEMENT

Let us first formalize the considered distributed submodular
maximization problem. For the sake of notational simplicity,
we here assume that each agent’s private set Ai has the same
size K, i.e., |Ai| = K, ∀i ∈ I. In addition, we stack all
agents’ local strategies as a vector A = [a1, a2, · · · , aI ]> ∈ A,
where the entire searching space A is the Cartesian product
of Ai’s, i.e., A :=

∏
i∈I Ai and |A| = KI . Based on the set

of collected strategies, the objective function in problem (P)
can be succinctly written as F (A). Note that we allow each
agent to choose the empty set as its strategy, i.e., ai = ∅; and
in particular, we assume F (∅) = 0 throughout the paper. With
slight abuse of notations, we say that the set of strategies A′ is
contained in A, denoted as A′ ⊆ A, if some component a′i in
A′ has a′i = ∅ and others have a′j = aj , ∀j 6= i. In this case,
we also denote A = A′ ∪ {ai}. Furthermore, we restrict the
objective function F (A) to satisfy the following assumption.

Assumption 1: The function F (A) is assumed to satisfy:
(A.1) (Monotone) If two sets A′ and A have A′ ⊆ A, then

it implies F (A′) ≤ F (A).
(A.2) (Submodular) If two sets A′ and A have A′ ⊆ A, then

F (A′∪{a})−F (A′) ≥ F (A∪{a})−F (A) for any a.
Clearly, the ultimate goal of problem (P) is to find the

group of optimal strategies A? = [a?1, a
?
2, · · · , a?I ]> ∈ A

such that F (A?) gives the maximal function value against all
other possible groups of strategies. However, as mentioned
before in Section I, achieving such a goal is NP-hard in
general. The challenges mainly come from the following two
aspects. First, the finite set Ai from which the agent chooses
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its strategy is inherently discrete. Thus, the well-developed
techniques of continuous optimization cannot be adopted for
solving the problem. Although the bright side of this fact
is that one can apply some search-tree based approaches
since the set Ai is anyway finite, the computational demand
during such a searching procedure is often costly or even
infeasible, especially when the individual searching space Ai
is in large-scale. This is also related to the second aspect of
the challenges. Note that the objective function F (A) can
be evaluated only when all individual agents have decided
their strategies. That is to say, the function F (A) mixes the
decisions of all agent within the network. In this sense, the size
of the entire searching space A also grows exponentially with
respect to the number of agents. This undoubtedly prohibits
the idea of using searching procedures to find the joint optimal
strategies A?, when a large number of agents are involved in
the problem.

In order to address the above two challenges, in this paper,
our ideas are: 1) utilizing the multi-linear extension of the
function F (A) (see definition in Section III-A) and transfer-
ring the considered problem into a continuous domain, so that
the techniques of continuous optimization can be exploited;
and 2) developing the Jacobi-style iteration to decompose
the mixing of individual agents’ decisions. In particular, the
algorithmic framework of our Jacobi-style iteration for each
individual agent i can be abstracted as the following mapping
Mi : A1 ×A2 × · · · × AI → Ai such that

a+i =Mi

(
a−i , A

r
−i

)
. (1)

Here, a−i is the i-th agent’s previous decision of the desired
strategy; Ar−i = [ar1, · · · , ari−1, ari+1 · · · arI ]> ∈ A−i is the
collection of the received decisions which have been made
by the other agents j 6= i; and a+i is the i-th agent’s
updated decision based on the previous a−i and the received
information arj ’s. It should be emphasized that, under such
a framework (1), each agent only needs to take charge of
its own decision, by receiving the information arj from other
agents. Thus, the computational complexity is expected to be
primarily reduced, compared to the aforementioned search-
ing procedure. In addition, another notable feature of the
framework is that individual agents can perform the update
of decisions simultaneously, so that overall processing time is
expected to be further saved. However, it is also worthy noting
that there are two potential issues regarding the framework.
First, the mapping Mi(·) suggests that an instantaneous all-
to-all communication is required, i.e., each agent i needs to
communicate with all other agents to receive the most updated
information arj ’s. Second, it is not clear what kind of solution
will be produced by the iteration (1). For the first concern,
we here remark that the communication requirement will be
eliminated later (see Section IV), so that our algorithm is im-
plementable in a distributed architecture with communication
delays. For the second one, we are interested in finding an
equilibrium solution Ae which is formally defined as below.
Interestingly, it can be proved that such an equilibrium is
guaranteed to be at least 1/2-suboptimal which is comparable
to the state-of-art in the literature (see Section I). Before

defining the equilibrium Ae, let us first introduce another
assumption related to the objective function F (A).

Assumption 2 (Maximum Distinguishable): It is assumed
that, once all other agents have decided their strategies A−i,
the i-th agent’s best strategy ai, which gives the maximum
function value F (ai;A−i), is unique.

Here, to concentrate on the effect of strategy ai on the
function, F (A) is expressed as the specific form F (ai;A−i).
We shall remark that the above Assumption 2 inherently en-
forces every equilibrium point to be strict in our problem; this
helps assure the stability of our algorithm proposed later. In
fact, Assumption 2 is naturally satisfied in many applications,
especially when some randomness is involved in the function
values. Typical examples here include the applications of
sensor placement [22], active information gathering [8], etc.
Furthermore, let us denote ∆max

i the maximum discrepancy of
function values between two individual strategies ai and a′i for
the agent i when other strategies A−i have been fixed, i.e.,

∆max
i = max

A−i∈A−i

{
max

ai,a′i∈Ai

{F (ai;A−i)− F (a′i;A−i}
}
. (2)

It is trivial to see that ∆max
i has to be strictly greater than

zero due to Assumption 2. In addition, we denote ∆max as
the maximum ∆max

i , i.e., ∆max := maxi∈I {∆max
i }. Next, we

formalize the definition of the equilibrium point Ae.
Definition 1: A point Ae = [ae1, a

e
2, · · · , aeI ]> ∈ A is said

to be the equilibrium to problem (P), if and only if it satisfies
the following condition:

aei = arg max
ai∈Ai

F (ae1, · · ·, aei−1, ai, aei+1, · · ·, aeI), i ∈ I. (3)

Remark that the uniqueness of aei in (3) is guaranteed by
the maximum distinguishable assumption of the objective
function F (A). Moreover, by the definition of the equilibrium
point, it is clear that Ae is not unique for problem (P) and A?

is just a specific equilibrium which has the maximal function
value. Next, we show, by the following proposition, that any
equilibrium Ae satisfying (3) must be at least 1/2-suboptimal
to our problem.

Proposition 1: Suppose that the function F (A) satisfies the
conditions in Assumption 1 and F (∅) = 0. Let A? be an
optimal solution to problem (P) and Ae be an equilibrium
point following Definition 1, then it holds that

F (Ae) ≥ 1

2
· F (A?). (4)

Proof: See Appendix A.

III. STOCHASTIC GRADIENT BASED METHOD

To seek the equilibrium point Ae, we develop a stochastic
gradient based solution method in this section. As an important
building block of our method, the multi-linear extension [23]
of the function F (A) is first introduced.

A. Multi-Linear Extension

Let us recall that A = [a1, a2, · · · , aI ]> is the set of I local
strategies in which each ai is chosen from the private set Ai.
Now, instead of expecting the individual agents to seek the de-
sired deterministic strategies from Ai’s, we assign each agent a
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discrete probability distribution pi = [pi(ai)]ai∈Ai
∈ [0, 1]K ,

where pi(ai) represents the probability of choosing ai as the
i-th agent’s strategy. On this account, we define the multi-
linear extension of F (A) as the function f(P ) : [0, 1]I·K → R,

f(P ) : =
∑
a1∈A1

p1(a1)
∑
a2∈A2

p2(a2) · · ·
∑
aI∈AI

pI(aI) · F (A),

(5)

where the argument P is a compact vector which stacks all
pi’s, i.e., P = [p>1 ,p

>
2 , · · · ,p>I ]> ∈ [0, 1]I·K . We shall

emphasize that a core property of the multi-linear extension (5)
is its natural connection to the original function F (A). That is,

f(P ) = Eãi∼pi,i∈I
[
F (Ã)

]
, (6)

where the expectation is taken from Ã = [ã1, ã2, · · · , ãI ]>
and each ãi is an independent random variable following the
discrete distribution pi. Moreover, consider that each pi has
to be subject to pi(ai) ≥ 0 and 1>pi = 1, let us express those
constraints as the following probability simplex S , i.e.,

pi ∈ S :=
{
p |1>p = 1, p ∈ [0, 1]K

}
. (7)

In particular, we say pi is a vertex of the simplex S if it has
‖pi‖∞ = 1. i.e., there is exactly one component pi(ai) which
equals one and all others are zeros.

With the help of this multi-linear extension function f(P ),
our goal now becomes to seek the desired probability distribu-
tion pi’s such that f(P ) is optimized. Therefore, the submod-
ular maximization problem can be equivalently written as,

maximize f(P ) = Eãi∼pi,i∈I
[
F (Ã)

]
subject to pi ∈ S, i ∈ I.

(8)

Recall that, in the original problem (P), we are interested in
seeking the equilibrium point Ae which is defined by Defini-
tion 1. Now, following the same path, we introduce a similar
equilibrium P e to problem (8), based on the defined Ae.

Definition 2: A solution P e = [pe1
>,pe2

>, · · ·,peI
>]> where

each pei is a vertex of simplex, i.e., there exists aei such that
pei (a

e
i ) = 1 and pei (ai) = 0 for ∀ai 6= aei , is said to be an equi-

librium to problem (8), if and only if Ae = [ae1, a
e
2, · · · , aeI ]>

is an equilibrium point to problem (P).
In fact, combining the above Definitions 1 and 2 together

establishes the equivalence between problems (P) and (8). In
other words, the desired equilibrium point Ae to problem (P)
can be easily resulted from the equilibrium solution P e by
considering problem (8). Note that such equivalence also
relies on Assumption 2, i.e., every equilibrium point Ae must
be strict. Next, we develop the projected stochastic gradient
algorithm to solve for the equilibrium solution P e.

B. Projected Stochastic Gradient Algorithm

Before proceeding to the development of our algorithm, let
us first investigate the gradient of function ∇f(P ). Recall that
the function f(P ) is a multi-linear extension of F (A) and can

be expressed as (5), thus the gradient of f(P ) with respect to
each single component pi(ai) can be represented as

∇pi(ai)f(P ) =
∑
a1∈A1

p1(a1) · · ·
∑

ai−1∈Ai−1

pi−1(ai−1)

∑
ai+1∈Ai+1

pi+1(ai+1) · · ·
∑
aI∈AI

pI(aI) · F (ai;A−i).

(9)
Since F (A) has its expectation interpretation as shown in (6),
the gradient ∇pi(ai)f(P ) can be also expressed as the follow-
ing expectation form,

∇pi(ai)f(P ) = Eãj∼pj ,j 6=i
[
F (ai; Ã−i)

]
. (10)

We remark that, to evaluate the gradient ∇pi(ai)f(P ) for
the i-th agent in the form of (9), it is required to sum all
possibilities that are governed by the probability distribution
pj’s for all other agents j 6= i. However, due to its expec-
tation form (10), a key observation here is that an unbiased
estimation of the gradient can be obtained by sampling the
strategies aj based on pj for ∀j 6= i. In this sense, we call
∇pi(ai)f(P ) the full gradient which is computed by (9), and
meanwhile denote the following ∇pi(ai)f̂(P ) as the sampled
stochastic gradient with the sample size M ∈ N+,

∇pi(ai)f̂(P ) =
1

M
·
M∑
s=1

F (ai; Â
s
−i), (11)

where Âs−i = [âs1, · · ·, âsi−1, âsi+1, · · ·, âsI ]> and each âsj , j 6= i
is the independent and identically distributed (i.i.d.) sampled
strategy based on the probability distribution pj . Taking ad-
vantage of this stochastic gradient ∇pi(ai)f̂(P ), our projected
stochastic gradient algorithm performs the following iteration,
with index k ∈ N+,

pk+1
i = ΠS

(
pki + γ · ∇pi f̂(P k)

)
, ∀i ∈ I. (12)

In (12), P k is the collection of pki ’s for all agents at the k-th
iteration, i.e., P k = [pk1

>
,pk2
>
, · · · ,pkI

>
]>; ∇pi f̂(P k) is a

vector which stacks the stochastic gradients for all ai ∈ Ai,
i.e., ∇pi

f̂(P k) = [∇pi(ai)f̂(P k)]ai∈Ai
; γ > 0 is a constant

step-size; and the operator ΠS(·) : RK → S defines the
projection on the probability simplex S , i.e.,

ΠS(p) := arg min
x∈S

‖x− p‖2. (13)

Our ultimate goal here is to drive the sequence {P k}k∈N+

generated by the iteration (12) to the desired equilibrium
solution P e as defined in Definition 2. Before proceeding to
the convergence analysis of our algorithm, let us first show, by
the following proposition, an alternative way to characterize
the equilibrium solution P e.

Proposition 2: Under Assumption 2, the probability dis-
tribution P e is an equilibrium solution to problem (8) (see
Definition 2), if and only if the following condition is satisfied
for ∀i ∈ I,

E
[∥∥pei −ΠS

(
pei + γ · ∇pi

f̂(P e)
)∥∥2] = 0. (14)

Note that the left-hand-side of (14) actually corresponds to
the expectation of gradient mapping which is commonly used
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in the analysis of projected gradient algorithms; see e.g., [24].
The above Proposition 2 shows that the desired equilibrium
solution P e is attained if and only if the gradient mapping
reaches zero. This verifies that the gradient mapping is a valid
metric to characterize the convergence of our algorithm. With
the help of such a result, we are now in the position to provide
the convergence of the projected stochastic gradient algorithm.

Theorem 1: Suppose that Assumption 2 is satisfied, and let
{P k}k∈N+

be the sequence generated by the iteration (12)
with a small enough constant step-size γ and a large enough
constant sample size M . Then, it holds for ∀i ∈ I that

lim
k→∞

E
[∥∥pki −ΠS

(
pki + γ · ∇pi

f̂(P k)
)∥∥2] = 0, (15)

and furthermore, the running average converges at the rate of
O(1/T ) where T is the number of iterations, i.e.,

1

T

T∑
k=0

E
[∥∥pki −ΠS

(
pki + γ · ∇pi f̂(P k)

)∥∥2] ≤ O( 1

T

)
.

(16)

The proofs of Proposition 2 and Theorem 1 are provided in
Appendix B and C, respectively; in addition, the detailed con-
ditions of the step-size γ and sample size M are also specified
in the proof. We here intend to provide a trial and error routine
to tune the parameters in practice; it should be noted that the
parameter tuning may affect the computational performance of
our algorithm. In principle, the larger step-size γ can accelerate
the convergence of algorithm, but too large γ would cause the
iterates pki ’s to jump wildly. Likewise, the larger sample size
M helps reduce the variance of stochastic gradients and thus
smoothen the evolution of the agents’ probability distribution,
however, it also brings heavier computational workload for
each agent to evaluate the gradients. Note that one can always
select an appropriate group of the parameters as long as γ is
sufficiently small and M is sufficiently large.

Combining Proposition 2 and Theorem 1, it has been shown
that the algorithm converges to the desired equilibrium P e.
The convergence rate characterized by the running average of
gradient mapping is proved to be O(1/T ). To sum up, we
outline our scheme as the following Algorithm 1.

Algorithm 1: Projected Stochastic Gradient Algorithm

Initialization: Each agent i initializes its own probability
distribution p0

i (not vertex), samples a set of M strategies
[âsi ]1≤s≤M based on p0

i , and sends it to all other agents.
Set the maximum iteration K, and initialize index k = 0.

while 0 ≤ k ≤ K is satisfied do
Each agent i simultaneously does
(S.1) Receive the sampled strategies âsj from all

other agents j, and evaluate the stochastic
gradient as (11);

(S.2) Update the distribution pk+1
i as (12);

(S.3) Sample the M strategies âsi ’s based on the
updated pk+1

i , and send it to other agents;
(S.4) Let k ← k + 1, and continue.

end

Remark 1: It is worth noting that the multi-linear exten-
sion function f(P ) is neither convex nor concave, thus the
considered problem (8) belongs to the category of nonconvex
optimization. In order to achieve the exact convergence for
solving such nonconvex optimization problem (normally to the
stationary point), typical stochastic gradient based approaches
follow two paths: 1) increasing the sample size with the
number of iterations [24]; and 2) applying the techniques
of variance reduction [25], [26]. One major novelty of our
algorithm here is the provable exact convergence with a
constant sample size. This primarily benefits from the fact that
the stochastic gradient is not only bounded but also has finite
possibilities in our problem.

Remark 2: It turns out that our algorithm has some connec-
tions to the well-known EXP3 algorithm [27]–[29] for solving
the multi-armed bandit problems. In fact, the iteration (12) of
our algorithm can be equivalently rewritten as

pk+1
i = arg min

x∈S

{
−〈∇pi f̂(P k), x〉+ 1

2γ
‖x−pki ‖2

}
. (17)

Once substituting the proximal term in (17) by the famous
Kullback–Leibler divergence regularization [30], one can im-
mediately obtain the following iteration (18) which has the
form of the standard EXP3 algorithm,

pk+1
i = arg min

x∈S

{
−〈∇pi

f̂(P k), x〉+ 1

γ

K∑
v=1

x[v] log
( x[v]

pki [v]

)}
.

(18)

In (18), x[v] and pki [v] are the v-th elements of the vector x
and pki , respectively. To understand the above connection, we
can view each agent as a player choosing the desired arm,
i.e., the strategy, from a bandit while the obtained reward,
i.e., the stochastic gradient, is dynamically affected by all
other players. Despite the connection, we shall remark that
the convergence analysis for our algorithm and its application
to the distributed submodular maximization is significantly
different from the EXP3 algorithm. More specifically, while
EXP3 studies the multi-armed bandit problem and helps find
the best action in hindsight by considering the stochastic gradi-
ents as rewards of the agent’s actions, our algorithm leverages
the stochastic gradients to enhance the cooperation among
multiple agents with the aim to the equilibrium solution.

IV. DISTRIBUTED ALGORITHM WITH
COMMUNICATION DELAYS

As mentioned before, one major concern of the proposed
Algorithm 1 is that individual agents are required to commu-
nicate with all others instantaneously in order to receive the
sampled strategies âsi ’s based on the most updated distributions
pki ’s. This undoubtedly brings restrictions on the algorithm
implementation. In this section, we relax such a requirement
and further enhance the proposed algorithm by considering the
scenario in which the communication delays are present.

Suppose that each individual agent can only receive oth-
ers’ strategies sampled from the time-delayed distributions.
Concretely, let us assume, at the k-th iteration, each agent i
receives the sampled strategy âsj from the agent j which is
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based on the distribution p
k−τij
j . Note that τij here represents

the length of time-delays when the agent i receives the infor-
mation from agent j. In addition, to ensure the informational
flow between any pair of agents, we restrict, in the following
assumption, that the time-delay τij is bounded for any i, j ∈ I.

Assumption 3: It is assumed that there exists a constant
D > 0 such that τij ≤ D for ∀i, j ∈ I.

We remark that the above Assumption 3 is quite standard
in the study of algorithms with delayed communications. It
inherently ensures that each agent receives others’ information
at least once within the time-window k ≤ t ≤ k +D − 1.

Since the agents’ strategies are sampled from the delayed
distributions, it is natural to see that the stochastic gradients
are also subject to the time-delays. Let us denote the delayed
stochastic gradient with respect to pi(ai) as

∇pi(ai)f̂δ(P
k−
i ) =

1

M
·
M∑
s=1

F (ai; Â
s
−i), (19)

in which we use P k−i to represent the delayed distributions
p
k−τij
j ’s associated with the agent i, and Âs−i is the set of

sampled strategies based on the delayed P k−i . As a result, the
iteration of our projected stochastic gradient algorithm with
communication delays becomes

pk+1
i = ΠS

(
pki + γ · ∇pi

f̂δ(P
k−
i )

)
, (20)

where ∇pi
f̂δ(P

k−
i ) is the vector that stacks ∇pi(ai)f̂δ(P

k−
i )’s

for all ai ∈ Ai.
Here, let us refer to the scheme (20) as our Algorithm 2. As

similar to Algorithm 1, in order to establish the convergence of
Algorithm 2, we first characterize the condition of equilibrium
solutions when communication delays are present.

Proposition 3: Suppose that Assumptions 2 and 3 hold,
and let PkD = [P k, P k+1, · · · , P k+D−1] be a collection of
probability distributions which are generated by Algorithm 2
within the time-window k ≤ t ≤ k + D − 1. Then, each
P t within the time-window is an equilibrium solution to
problem (8), if the following condition is satisfied for ∀i ∈ I,

k+D−1∑
t=k

E
[∥∥pti −ΠS

(
pti + γ · ∇pi

f̂δ(P
t−
i )
)∥∥2] = 0. (21)

Now, we establish the convergence of Algorithm 2 by the
following theorem.

Theorem 2: Suppose that Assumptions 2 and 3 hold, and let
{P k}k∈N+ be the sequence generated by Algorithm 2 with a
small enough constant step-size γ and a large enough sample
size M . Then, it holds for ∀i ∈ I that,

lim
k→∞

k+D−1∑
t=k

E
[∥∥pti −ΠS

(
pti + γ · ∇pi

f̂δ(P
t−
i )
)∥∥2] = 0,

(22)

and furthermore, the running average converges at the rate of
O(1/T ) where T is the number of iterations, i.e.,

1

T

T∑
k=0

E
[∥∥pti −ΠS

(
pti + γ · ∇pi

f̂δ(P
t−
i )
)∥∥2] ≤ O( 1

T

)
.

(23)

As earlier, we present the theoretical proofs of the above
Proposition 3 and Theorem 2 in Appendix D and E, respec-
tively; the detailed conditions of the step-size γ and sample
size M are also provided in the proof. In the end of this
section, we make a few remarks on the implementation of
the enhanced Algorithm 2 with delayed communications.

Remark 3: For the first D iterations, individual agents might
not be able to receive all others’ information, due to the
presence of communication delays. Under such circumstance,
our algorithm allows the agent to arbitrarily initialize the
received strategies, and the convergence of algorithm will not
be affected. For instance, each agent can choose the empty
as the corresponding strategy if no information is received. In
this sense, we remark that the delayed probability distribution
P k−i is actually well-defined for all k ≥ 0.

Remark 4: It is also noteworthy that, since the enhanced Al-
gorithm 2 is robust against the communication delays, one can
implement it in a fully distributed architecture where agents
only need to communicate with their immediate neighbors.
This helps i) relax the restriction of network topology; and ii)
more importantly, reduce the amount of communication that
is required to perform the algorithm. Suppose that the com-
munication channels among agents are governed by a general
connected network, represented by the graph G. Then, the
time-delay τij in Algorithm 2 corresponds to the distance δij
between node i and j, i.e., the minimum number of edges that
connect those two nodes. Therefore, as long as the graph G
is connected, meaning that δij is bounded, the performance of
our algorithm is still guaranteed.

V. SIMULATION

In this section, we evaluate the effectiveness of the proposed
algorithms by considering a real-world movie recommenda-
tion application [31], [32]. Our numerical simulations are
conducted based on the well-known MovieLens dataset [33],
which contains over 25 million ratings (ranging from 1 to 5)
applied to 62, 423 movies by 162, 541 different users. In
particular, we denote ri,j the rating submitted by the user i to
the movie j, and say that the movie j is liked by the user i if
ri,j ≥ r̄ where r̄ is some certain pre-defined threshold. Each
movie is associated with its tag information which indicates
the type of the movie, e.g., action, comedy, etc. As such, one
can divide the entire movie set into I subsets so that each
of them has a specific type and can be privately assigned to
one single agent. The objective here is to keep each agent’s
subset private and let the I agents cooperatively identify the
top I movies, such that those movies all have different types
and are liked by the maximum number of users. It should
be noted that the considered problem is non-trivial, since we
count each user only once for all the chosen I movies. For
example, suppose that the user i likes the movies j and j′ at
the same time and both of them are chosen as the top movies,
then the user i will be counted only once, rather than twice,
when counting the number of users for the top movies.

To formalize such a movie recommendation problem, let us
denote S = ∪Ii=1Si the set of all movies with each Si being
the subset associated with the same tag. Note that, since each
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Fig. 1: Multi-agent network topologies.

movie usually has multiple tags, different subsets may have
overlaps, i.e., all subsets Si’s do not necessarily form a strict
partition of the set S . Further, we use U(js) := {i | ri,js ≥ r̄}
to represent the set of users who like the movie js. Then,
the movie recommendation problem can be formulated as the
following maximization,

max
ji∈Si, i∈I

F (j1, j2, · · · , jI) :=
∣∣ ∪Ii=1 U(ji)

∣∣, (24)

where | · | denotes cardinality of the set. It can be verified that
the objective function F (·) is both monotone and submodular
(see definitions in Assumption 1). Thus, (24) is a well-defined
monotone submodular maximization problem which can be
solved by the proposed algorithms.

In our simulations, we specify the rating threshold as r̄ = 3
and aim to identify the top I = 10 movies by a network of 10
agents. In addition, to reduce the size of the entire candidate
set S , we pre-process the dataset and only consider the movies
which are liked by no less than 300 users. As a result, totally
1,160 movies are picked up to comprise the entire set S ,
which is then divided into 10 subsets Si’s with each associated
with the same tag. In this sense, each individual agent only
needs to privately take charge of one type of movies, such
that the entire network cooperatively finds the top 10 movies
with all different types. In the following, we conduct two
separate simulations which are corresponding to the two
proposed algorithms. In the first simulation, a fully-connected
network is assumed, i.e., the all-to-all communications are
available for each single agent, so that Algorithm 1 can be
implemented without time-delays. Additionally, in order to
take into account the delayed communications, we consider in
the second simulation two different network topologies: i) a
general connected, undirected graph as shown in Fig. 1(a); and
2) a specific string graph as shown in Fig. 1(b). In both cases,
agents only communicate with their neighbors. As mentioned
in Remark 4, the length of time-delays τij is governed by the
distance between the agent i and j presented in the network.

Fig. 2 first plots the evolution of individual agents’ proba-
bilities of choosing the final top 10 movies, in the case of the
fully-connected network. Note that the step-size and sample
size are set as γ = 0.00025 and M = 3. As one can observe
from Fig. 2, each agent decides its own choice after around
500 iterations, and it is confirmed that the collection of the top
10 movies is an equilibrium solution to problem (24). More
specifically, it turns out that the chosen top 10 movies are liked
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Fig. 2: Evolution of agents’ probabilities (fully-connected graph).
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Fig. 3: Averaged gradient mapping with different graphs.

by 10, 700 users, while totally 11, 842 users are involved in all
the 1,160 candidate movies. Although it is unknown how many
users are covered by the optimal collection of the ten movies,
given that this quantity has to be no larger than 11, 842, thus,
it is immediately confirmed that the 1/2-suboptimal bound is
achieved.

Furthermore, in order to evaluate the statistical performance
of our stochastic gradient based algorithm, we carry out the
Monte-Carlo simulation for 20 times. The simulation setting
is the same as before. Fig. 3 plots the running average of the
generated gradient mappings (blue curve), averaged by the 20
independent trials. Note that the running average of gradient
mappings Jk at each iteration k is computed as

Jk :=
1

k
·
k∑
t=1

I∑
i=1

‖pti − pt−1i ‖
2. (25)

According to Proposition 2, it is implied that the algorithm
converges to the desired equilibrium solution when Jk → 0.
Therefore, Fig. 3 validates the convergence of the proposed
Algorithm 1 and one can also observe a sublinear convergence
rate as stated in Theorem 1.

In the second simulation, we run the proposed Algorithm 2
with communication delays under the general graphs as shown
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Fig. 4: Evolution of agents’ probabilities.

in Fig. 1. It can be seen that from the graphs that the maximum
distance between two nodes is four and nine, respectively,
and thus the communication delays are bounded in both
cases. Fig. 4 shows the evolution of agents’ probabilities of
choosing the top 10 movies. One can conclude from the two
plots that Algorithm 2 also converges with the presence of
delayed communications. Moreover, more iterations will be
demanded to arrive at the final decisions for the case of larger
communication delays. Additionally, compared to the case
without delays as shown in Fig. 2, it also needs more iterations
to converge to the equilibrium solution.

Lastly, as similar to the first simulation, we also conduct
the Monte-Carlo simulation with 20 independent trails for the
second one. The averaged Jk’s for both network topologies are
demonstrated in Fig. 3; see the red curve for the general con-
nected graph and the black curve for the string graph. Based
on Proposition 3, it is confirmed that Algorithm 2 converges
to the equilibrium solution and a sublinear convergence rate
is shown as expected. In addition, we also observe from the
figure that a larger number of iterations are needed to obtain
the solution when larger communication delays are present in
the network.

VI. CONCLUSION

In this paper, we developed a projected stochastic gradient
algorithm for solving the distributed submodular maximization
problem. Unlike the traditional greedy algorithm which is
typically implemented in the centralized setting, our approach
employs multiple agents and enables all individual agents to
simultaneously make their decisions. It is proved that the
proposed projected stochastic gradient algorithm converges to
an equilibrium solution, which is guaranteed to be at least
1/2-suboptimal. Such a suboptimality bound is comparable to
the state-of-art in the literature. Furthermore, we enhanced the
proposed algorithm by handling the scenario in which agents’
communication delays are present. The similar convergence
result is proved for the enhanced distributed algorithm. Finally,
a real-world movie recommendation application is considered
to demonstrate the effectiveness of our algorithms. It should
be also remarked that, compared to the brute-force searching
scheme which has exponential complexity in terms of the num-
ber of agents I , the complexity of our distributed algorithms is
primarily reduced. We leave the rigorous complexity analysis
of the algorithms as our future work.

APPENDIX

A. Proof of Proposition 1

It should be noted that this Proposition 1 is a direct conse-
quence of Theorem 5 in [34]. For the sake of completeness,
we here present a pruned proof which follows the similar path
as the one in [13].

According to the definition of the function F (A), let us first
define its marginal function as

δ(a |A) := F ({a} ∪A)− F (A), (26)

It can be shown that the submodularity of function F (A)
implies that if A′ ⊆ A, then

δ(a |A′) ≥ δ(a |A). (27)

Recall that we use A−i to denote the set of elements aj’s in
A where j 6= i. In addition, we use A<i (or A≤i) to represent
the set of elements aj where j < i (or j ≤ i). Then, by the
definition of the equilibrium Ae (see Definition 1), we can
have

δ(aei |Ae−i) ≥ δ(ai |Ae−i), ∀ai ∈ Ai, i ∈ I. (28)

Now, based on Assumption 1 of the function F (A) (mono-
tonicity and submodularity), it holds that

F (A?)
(1a)

≤ F (A? ∪Ae)

= F (Ae) +
I∑
i=1

(
F (A?≤i ∪Ae)− F (A?<i ∪Ae)

)
(1b)
= F (Ae) +

I∑
i=1

δ(a?i |A?<i ∪Ae)

(1c)

≤ F (Ae) +
I∑
i=1

δ(a?i |Ae−i)

(1d)

≤ F (Ae) +
I∑
i=1

δ(aei |Ae−i)

(1e)

≤ F (Ae) +

I∑
i=1

δ(aei |Ae<i)

(1f)
= F (Ae) +

I∑
i=1

(
F (Ae≤i)− F (Ae<i)

)
(1g)
= 2F (Ae).

(29)
Note that (1a) comes from the monotonicity of F (A); (1b)
and (1f) is due to the definition of marginal function; (1c) and
(1e) comes from the submodularity of F (A); (1d) is based on
the inequality (28); and (1g) is due to the fact that F (∅) = 0.
Therefore, the proof is completed.

B. Proof of Proposition 2

We start the proof by investigating properties of the projec-
tion on the probability simplex S . According to the definition
of the projection ΠS(·), as shown in (13), it can be verified
in [35], [36] that the projection is computed as

ΠS(p) = [p− λ1]+, (30)
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where λ is the solution of the equation 1>[p − λ1]+ = 1.
Subsequently, we show the following two lemmas regarding
the projection ΠS(p).

Lemma 1: Suppose that p ∈ [0, 1]K is a vertex of the
simplex, i.e., ‖p‖∞ = 1, and let us denote its non-zero
component as p(n), i.e., p(n) = 1 and p(k) = 0 for ∀k 6= n.
Then, one can have p = ΠS(p + ∆p) if and only if ∆p(n)
is the maximum component of ∆p, i.e., ∆p(n) ≥ ∆p(k) for
∀k = 1, 2, · · · ,K.

Proof: Let us recall that ΠS(p+∆p) = [p+∆p−λ1]+.
Suppose that p = ΠS(p + ∆p), since p is a vertex of the
simplex and p(n) = 1, then the n-th component of vector
p+ ∆p− λ1 must be one, and all its other components must
be non-positive. It means that p(n) + ∆p(n) − λ = 1 and
p(k) + ∆p(k)− λ ≤ 0 for ∀k 6= n. The former equality tells
that ∆p(n) = λ and the latter yields ∆p(k) ≤ λ. Combining
those two proves the first half of the statement.

Conversely, assume ∆p(n) ≥ ∆p(k) for ∀k = 1, 2, · · · ,K,
then it holds that

(
p(n) + ∆p(n)

)
−
(
p(k) + ∆p(k)

)
≥ 1.

Thus, to satisfy the equation 1>[p+∆p−λ1]+ = 1, we must
have λ = ∆p(n). On this account, we can further have that
p(n)+∆p(n)−λ = 1 and p(k)+∆p(k)−λ ≤ 0 for ∀k 6= n,
and thus [p−∆p − λ1]+ = p. Therefore, the second part of
the statement is proved.

Lemma 2: Suppose that p ∈ [0, 1]K is not a vertex of the
simplex, and without loss of generality, let us assume its first
n components (2 ≤ n ≤ K) to be non-zeros. Then, one can
have p = ΠS(p + ∆p) if and only if there exists δ such that
∆p(k) = δ for k ≤ n and ∆p(k) ≤ δ for k > n.

Proof: Recall again that ΠS(p+∆p) = [p+∆p−λ1]+.
Let us assume p = ΠS(p+∆p), since the first n components
of p are non-zeros, then we have p(k) = p(k) + ∆p(k)− λ
for k ≤ n and ∆p(k)−λ ≤ 0 for k > n. Thus, simply taking
δ = λ proves the first half of the statement.

Conversely, suppose that ∆p has ∆p(k) = δ for k ≤ n and
∆p(k) ≤ δ for k > n. Since it is known that 1>p = 1, in
order to ensure the equation 1>[p+∆p−λ1]+ = 1, we must
have δ = λ. Thus, it holds that ΠS(p + ∆p) = [p]+ = p.

With the help of the above two lemmas, we are now ready
to prove the proposition in both directions separately.

Definition 2 ⇒ Equation (14):

Let us assume that P e = [pe1
>,pe2

>, · · ·,peI
>]> is an equi-

librium following Definition 2. According to the definition,
we know that each pei must be a vertex of the simplex S ,
i.e., there exists aei such that pei (a

e
i ) = 1 and pei (ai) = 0

for ∀ai 6= aei ; and in addition, the collection of aei ’s, i.e.,
Ae = [ae1, a

e
2, · · · , aeI ]>, is the equilibrium following Defini-

tion 1. Provided that P e is the collection of simplex vertices
and the stochastic gradient ∇pi f̂(P e) in (14) is sampled based
on the probability distributions pei ’s, thus it can be shown that
the stochastic gradient has the following fixed form

∇pi
f̂(P e) = [F (ai;A

e
−i)]ai∈Ai

, (31)

and we can simply get rid of the expectation in (14). Moreover,
by the definition of equilibrium Ae (see equation (3)), it holds
that, for ∀i ∈ I,

F (aei ;A
e
−i) ≥ F (ai;A

e
−i), ∀ai ∈ Ai. (32)

On this account, we know that each gradient ∇pi
f̂(P e) has

F (aei ;A
e
−i) as its maximum component. Therefore, based on

Lemma 1, it is proved that

pei = ΠS
(
pei + γ · ∇pi

f̂(P e)
)
, (33)

and thus the proof of the first half is completed.

Equation (14) ⇒ Definition 2:

Suppose that the point P e has already satisfied the con-
dition (14). Next, we first show that each pei in P e has to
be the vertex of the simplex S . In fact, suppose that pei is
not a vertex and let pei (a

1
i ) and pei (a

2
i ) be the two non-zero

components. Then, based on Lemma 2 and in order to ensure
the condition (14), we must have that for ∀ai ∈ Ai,

M∑
s=1

F (a1i ; Â
s
−i) =

M∑
s=1

F (a2i ; Â
s
−i)≥

M∑
s=1

F (ai; Â
s
−i), (34)

where Âs−i represents any possible sample of strategies. This
clearly contradicts the maximum distinguishable assumption
of the function F (A) (see Assumption 2). As a result, we have
proved that P e must be the collection of simplex vertices, and
the expectation in (14) can be removed. Next, let us assume
that each pei has pei (a

e
i ) = 1 and pei (ai) = 0 for ∀ai 6= aei ,

by the fact that it is simply a vertex. Applying Lemma 1 once
again, it can be shown that the gradient ∇pi

f̂(P e) has its
maximum component at F (aei ;A

e
−i), i.e.,

aei = arg max
ai∈Ai

F (ai;A
e
−i). (35)

Thus, the second half of the proposition is proved.

C. Proof of Theorem 1

We begin the proof by recalling that the stochastic gradient
∇pi f̂(P k) computed as (11) is an unbiased estimation of
the full gradient ∇pif(P k). In fact, this statement has been
verified in the derivation of our projected stochastic gradient
algorithm (see Section III-B). Thus, to facilitate the subsequent
proof, we here extract the statement as the following lemma
and omit the detailed proof.

Lemma 3: Suppose that the stochastic gradient ∇pi f̂(P ) is
defined as (11), then it holds that

Eâj∼pj ,j 6=i
[
∇pi

f̂(P )
]

= ∇pi
f(P ). (36)

Next, we formally introduce the notion of gradient mapping,
which is defined as below,

Gγ(g,p) =
1

γ
·
(
p−ΠS(p + γg)

)
. (37)

Here, g ∈ RK a general gradient, p ∈ S is a general point
from the probability simplex, and γ is a constant which repre-
sents the step-size. Recall that our projected stochastic gradient
algorithm performs the iteration (12), it can be equivalently
rewritten into the following gradient mapping form,

pk+1
i = pki − γ · Gγ(∇pi

f̂(P k),pki ). (38)

The iteration (38) can be interpreted as a standard line search
algorithm with the constant step-size γ, while the searching
direction is the gradient mapping Gγ(∇pi

f̂(P k),pki ).
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Associated with the gradient mapping, we next show the
following two lemmas, which will play key roles in the proof
of the theorem.

Lemma 4: Given the gradient mapping Gγ(g,p), for any
g ∈ RK , p ∈ S and γ ∈ R+, it holds that

−〈g, Gγ(g,p)〉 ≥ ‖Gγ(g,p)‖2. (39)

Proof: Recall that the projection on the probability sim-
plex ΠS(·) is defined as (13). Thus, within the gradient
mapping, the term ΠS(p + γg) can be computed as

ΠS(p + γg) = arg min
x∈S

{−〈g, x〉+
1

2γ
‖x− p‖2}. (40)

By noticing that the optimization problem in (40) is convex,
the optimality condition of solution ΠS(p+ γg) ensures that,
for ∀x ∈ S ,〈
− g +

1

γ

(
ΠS(p + γg)− p

)
, x−ΠS(p + γg)

〉
≥ 0. (41)

Now, let x = p, it can be shown that

−
〈
g, p−ΠS(p + γg)

〉
≥ 1

γ
‖p−ΠS(p + γg)‖2. (42)

Provided that the gradient mapping Gγ(g,p) is defined as (14),
thus the proof is completed.

Lemma 5: Given the gradient mapping Gγ(g,p), for any
g1,g2 ∈ RK , p ∈ S and γ ∈ R+, it holds that

‖Gγ(g1,p)− Gγ(g2,p)‖ ≤ ‖g1 − g2‖. (43)

Proof: Applying again the optimality condition (41) with
the gradient g substituted by g1 and g2 respectively, it yields
that,〈
− g1+

1

γ

(
ΠS(p+γg1)−p

)
, x−ΠS(p + γg1)

〉
≥ 0; (44a)〈

− g2+
1

γ

(
ΠS(p+γg2)−p

)
, x−ΠS(p + γg2)

〉
≥ 0. (44b)

Now, let x = ΠS(p + γg2) in (44a) and x = ΠS(p + γg1)
in (44b), summing both inequalities gives that〈

g2 − g1, ΠS(p + γg2)−ΠS(p + γg1)
〉

≥ 1

γ
‖ΠS(p + γg1)−ΠS(p + γg2)‖2

(45)

By the definition of gradient mapping Gγ(g,p) and Cauchy-
Schwartz inequality, the proof is completed.

It should be remarked that, while Lemma 3 verifies that
the stochastic gradient ∇pi

f̂(P k) is an unbiased estimation,
Lemma 4 and 5 both characterize the properties of the
gradient mapping. Next, let us show another lemma which
investigates the variance of the stochastic gradient. Before
stating the lemma, some more notations and a supporting
lemma are needed to be first introduced. Let us simply denote
∇f(P ) (also ∇f̂(P )) the stacked full (stochastic) gradient
for each agent i ∈ I, i.e., ∇f(P ) = [∇pif(P )]i∈I . Similarly,
we use G̃γ

(
∇f(P ), P

)
and Π̃S

(
P + γ · ∇f̂(P )

)
to denote

the stacked gradient mapping and also the updated probability
distributions respectively, i.e.,

P k+1 = Π̃S
(
P k + γ · ∇f̂(P k)

)
= P k − γ · G̃γ

(
∇f̂(P k), P k

)
.

(46)

Lemma 6: Suppose that the current iterate P k is a collection
of simplex vertices but not an equilibrium. Let the step-size
satisfy γ < 2/∆max, then the next iterate P k+1 generated by
Algorithm 1 must not be the collection of simplex vertices.

Proof: Let us first recall that the iterate P k is a collection
of pki ’s, i.e., P k = [pk1

>
,pk2
>
, · · · ,pkI

>
]>. Since it is assumed

that each pki is the simplex vertex, then we let pki = eni
with

eni ∈ RK being the unit vector whose ni-th component is one
and others are zeros. In addition, according to the iteration
of Algorithm 1 and the fact that the projection ΠS can be
computed as (30), thus we know

pk+1
i =

[
eni

+ γ · F−i − λ1
]+
, (47)

where λ is governed by the equation 1>pk+1
i = 1. Note

that here the sampled gradient is deterministic since P k is a
collection of vertices, thus we use F−i ∈ RK to represent
the sampled gradient based on the probability distribution
pkj , j 6= i. Furthermore, we denote F−i(n) the n-th component
of the vector F−i.

Given that P k is not an equilibrium, thus there exist indices
i ∈ I and nmax

i 6= ni, such that F−i(nmax
i ) > F−i(ni) and

F−i(n
max
i ) ≥ F−i(n), ∀n = 1, 2, · · · ,K. (48)

In fact, if F−i(ni)’s are the maximum components for ∀i ∈ I,
then P k must be the equilibrium by definition. Consequently,
according to the equation (47), we know that pk+1

i (nmax
i ) > 0

must be true. On this basis, in order to prove the lemma, it will
suffice to show that pk+1

i (nmax
i ) < 1 if γ < 2/∆max. Next, we

prove this statement by contradiction.
Suppose that pk+1

i (nmax
i ) < 1 is false, i.e., pk+1

i (nmax
i ) = 1.

Provided that nmax
i 6= ni, thus we have γ ·F−i(nmax

i )− λ = 1
and 1 + γ · F−i(ni) − λ ≤ 0. Substitute the former equation
to the latter one and get rid of λ, it yields,

2 + γ ·
(
F−i(ni)− F−i(nmax

i )
)
≤ 0. (49)

Recall the definition of ∆max (see equation (2)), and the fact
that F−i(nmax

i ) > F−i(ni), we have

0 < F−i(n
max
i )− F−i(ni) ≤ ∆max. (50)

Combining both (49) and (50) shows that γ ≥ 2/∆max. Thus,
the proof is completed.

Now, we are ready to show the following lemma which
characterizes the variance of stochastic gradients.

Lemma 7: Suppose that the sequence {P k}k∈N+ is the set of
iterates generated by Algorithm 1 and the initialization P 0 is
not a collection of simplex vertices. Let the step-size γ satisfy
the condition γ < 2/∆max, then there exist constants B0 > 0
and B1 > 0 such that the following holds,

T∑
k=0

E
[
‖∇f̂(P k)−∇f(P k)‖2

]
≤ B0

+B1/M ·
T∑
k=0

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
,

(51)
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where the expectation is taken with respect to the sampling of
stochastic gradient ∇f̂(P ) for all iterations 0 ≤ k ≤ T and
M is the sample size.

Proof: Before starting the proof, we first note that it is
only needed to consider the case when none of P k, 0 ≤ k ≤ T
is the equilibrium. In fact, it can be immediately verified that
the algorithm will stay at the equilibrium P e forever once it
reaches the point. In addition, due to the fact that

E
[
‖∇f̂(P e)−∇f(P e)‖2

]
= E

[
‖G̃γ

(
∇f̂(P e), P e

)
‖2
]

= 0,
(52)

thus we only need to prove the case in which the algorithm
has not reach the equilibrium.

Now, let us begin the proof by introducing an additional
notion, namely the reachable set of the iterates P k. We define
the reachable set Sk at each iteration k as follows,

Sk :=
{
P k |P t = Π̃S

(
P t−1 + γ · ∇f̄(P t−1)

)
, 1 ≤ t ≤ k

}
.

(53)

Note that here the gradient ∇f̄(P t−1) is any possible real-
ization of the stochastic gradient ∇f̂(P t−1). Due to the fact
that each ∇f̄(P t−1) only has finite possibilities and P 0 is
well initialized, thus we know each Sk is also a finite set,
but its cardinality grows quickly as the index k increases.
Subsequently, let us divide each of the reachable sets Sk into
two subsets, i.e., Sk = S̄k ∪ S̄kc where S̄k only contains the
iterates P k’s which are collections of the simplex vertices and
S̄kc is the complement set. On this account, we next prove the
following statements: there exists a constant ε > 0 such that

1) if it is known that P k+1 ∈ S̄k+1
c , then

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
≥ ε; (54)

2) if it is known that P k ∈ S̄k, then

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
≥ ε. (55)

Proof of statement 1): Recall again that the iterate P k is
the collection of pki ’s. Since it is known that P k+1 ∈ S̄k+1

c ,
then let us assume, without loss of generality, that pk+1

i has
two non-zero components pk+1

i (u) and pk+1
i (v) such that

pk+1
i (u) ≥ pk+1

i (v). Then, the expectation term in (54) has,

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

= 1/γ2 · E
[
‖P k − P k+1‖2

]
= 1/γ2 · E

[ I∑
i=1

‖pki − pk+1
i ‖2

]
≥ 1/γ2 · E

[
‖pki − pk+1

i ‖2
]
.

(56)
According to the iteration of Algorithm 1 and the computa-
tion (30) of the projection ΠS , then we have{

pk+1
i (u) = pki (u) + γ · F−i(u)− λ;

pk+1
i (v) = pki (v) + γ · F−i(v)− λ.

(57)

Note that F−i(u) and F−i(v) are the u-th and v-th components
of the sampled gradient ∇f̂(P k). Since we have assumed that
pk+1
i (u) ≥ pk+1

i (v) > 0, it can be verified that F−i(u) has to
be the maximum one against all other F−i(n)’s. Next, based
on the maximum distinguishable assumption, we know that

E[F−i(u)] has to be strictly greater than E[F−i(v)]. Then, let
∆ = E[F−i(u)]− E[F−i(v)] > 0, it holds that

E
[
‖pki − pk+1

i ‖2
]

(2a)

≥ ‖E
[
pki − pk+1

i

]
‖2

≥
(
γ · E[F−i(u)]− E[λ]

)2
+
(
γ · E[F−i(v)]− E[λ]

)2
=

1

2

(
2γE[F−i(v)] + γ∆− 2E[λ]

)2
+

1

2
γ2∆2

≥ 1

2
γ2∆2.

(58)

Note that (2a) follows from the Jensen’s inequality. Thus, the
proof of statement 1) is completed.

Proof of statement 2): According to the above Lemma 6,
we know that P k+1 must be not the collection of simplex
vertices, if the step-size γ is choose under the condition and
P k is the collection of vertices. In other words, P k ∈ S̄k
implies P k+1 ∈ S̄k+1

c , and conversely, P k+1 ∈ S̄k+1 implies
P k ∈ S̄kc . Therefore, the proof of statement 2) can be done
by following exactly the same path of statement 1).

Now, recall that the stochastic gradient ∇f̂(P k) is i.i.d.
sampled with the sample size M . Let us denote ∇f̂s(P k) as
the gradient decided by one single sample s = 1, 2, · · · ,M ,
thus we know

E
[
‖∇f̂(P k)−∇f(P k)‖2

]
= E

[∥∥∥ 1

M

M∑
s=1

(
∇f̂s(P k)−∇f(P k)

)∥∥∥2]

=
1

M2
·
M∑
s=1

E
[
‖∇f̂s(P k)−∇f(P k)‖2

]
.

(59)

Furthermore, by the definition of the function f(P ), it can
be immediately verified that its gradient ∇f(P k) is always
bounded for ∀P k, so is the i.i.d. sampled stochastic gradient
f̂s(P

k). Based on this, we can have that the variance term
E
[
‖∇f̂s(P k)−∇f(P k)‖2

]
is bounded. Therefore, the above

two statements can further imply the following two conditions:
there exists a constant B1 such that,

1) if it is known that P k+1 ∈ S̄k+1
c , then

E
[
‖∇f̂(P k)−∇f(P k)‖2

]
≤ B1/M · E

[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
;

(60)

2) if it is known that P k ∈ S̄k, then

E
[
‖∇f̂(P k−1)−∇f(P k−1)‖2 + ‖∇f̂(P k)−∇f(P k)‖2

]
≤ B1/M · E

[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
.

(61)

With the help of the above two inequalities (60) and (61),
we are now ready to prove the statement in the lemma. Let
us first denote qk the probability that P k is a collection of
simplex vertices, i.e.,

qk := Pr(P k ∈ S̄k). (62)
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For the notational convenience, we denote
Ik = E

[
E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
] ∣∣P k ∈ S̄k];

IIk = E
[
E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
] ∣∣P k∈ S̄kc , P k+1∈S̄k+1

c

]
;

IIIk = E
[
E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
] ∣∣P k+1 ∈ S̄k+1

]
.

(63)

It should be remarked that, in (63), while the inner expectation
is taken with respect to the stochastic gradient ∇f̂(P k), the
outer expectation is taken with respect to the randomness of
P k and P k+1. Consequently, it holds that, for ∀k ≥ 1,

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

= qk · Ik + (1− qk − qk+1) · IIk + qk+1 · IIIk

(3a)

≥ qkM/B1 · E
[
‖∇f̂(P k−1)−∇f(P k−1)‖2

]
+ (1− qk+1)M/B1 · E

[
‖∇f̂(P k)−∇f(P k)‖2

]
.

(64)

Note that (3a) is due to the inequalities (60), (61) and the fact
that IIIk ≥ 0. According to (64), we have

T∑
k=0

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

(4a)
= (1− q1) · II0 + q1 · III0

+
T∑
k=1

(
qk · Ik + (1− qk − qk+1) · IIk + qk+1 · IIIk

)
(4b)

≥ (1− q1)M/B1 · E
[
‖∇f̂(P 0)−∇f(P 0)‖2

]
+

T∑
k=1

qkM/B1 · E
[
‖∇f̂(P k−1)−∇f(P k−1)‖2

]
+

T∑
k=1

(1− qk+1)M/B1 · E
[
‖∇f̂(P k)−∇f(P k)‖2

]
= M/B1 ·

T∑
k=0

E
[
‖∇f̂(P k)−∇f(P k)‖2

]
− qT+1M/B1 · E

[
‖∇f̂(PT )−∇f(PT )‖2

]
(4c)

≥ M/B1 ·
T∑
k=0

E
[
‖∇f̂(P k)−∇f(P k)‖2

]
−MB0/B1.

(65)
Note that (4a) is due to the fact that the initialization P 0 is
not the collection of vertices, i.e. q0 = 0; (4b) comes from the
inequality (64); and (4c) is based on the fact that the variance
term E

[
‖∇f̂(PT )−∇f(PT )‖2

]
can be upper bounded by the

constant B0. Rearranging the inequality (65) and noticing the
definition (46) of the stacked gradient mapping complete the
proof of the lemma.

After showing the above lemmas, we are now in the position
to prove the theorem. Since the Hessian of the function f(P )
is always bounded, it can be immediately verified that the
gradient of f(P ) is Lipschitz continuous, so is the gradient of

−f(P ). Thus, there exists a constant L > 0 such that,

− f(P k+1)

≤ −f(P k) +
〈
−∇f(P k), P k+1 − P k

〉
+
L

2
‖P k+1 − P k‖2

(5a)
= −f(P k) + γ

〈
∇f(P k)±∇f̂(P k), G̃γ

(
∇f̂(P k), P k

)〉
+
γ2L

2
‖G̃γ

(
∇f̂(P k), P k

)
‖2

(5b)

≤ −f(P k) + (
γ2L

2
− γ)‖G̃γ

(
∇f̂(P k), P k

)
‖2

+ γ
〈
∇f(P k)−∇f̂(P k),

G̃γ
(
∇f̂(P k), P k

)
± G̃γ

(
∇f(P k), P k

)〉
(5c)

≤ −f(P k) + (
γ2L

2
− γ)‖G̃γ

(
∇f̂(P k), P k

)
‖2

+ γ
〈
∇f(P k)−∇f̂(P k), G̃γ

(
∇f(P k), P k

)〉
+ γ‖∇f(P k)−∇f̂(P k)‖2.

(66)
Note that (5a) is due to the definition of gradient mapping;
(5b) comes from Lemma 4; and (5c) is due to the Cauchy-
Schwartz inequality and Lemma 5. Now, let us take expecta-
tion on the inequality (66), with respect to the random sam-
pling of stochastic gradient ∇f̂(P k) by given the probability
distribution P k. Since ∇f̂(P k) is the unbiased estimation of
the full gradient ∇f(P k) according to Lemma 3, it holds that

E
[
f(P k+1)

]
− f(P k) ≥(γ−γ

2L

2
) · E

[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

− γ · E
[
‖∇f(P k)−∇f̂(P k)‖2

]
.
(67)

Consequently, summing up the above inequality (67) for all
0 ≤ k ≤ T and taking the expectation with respect to the
random sampling for all iterations, we have

E
[
f(PT+1)

]
− f(P 0)

≥ (γ − γ2L

2
) ·

T∑
k=0

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

− γ ·
T∑
k=0

E
[
‖∇f(P k)−∇f̂(P k)‖2

]
(6a)

≥ −γB0 + (γ−B1γ

M
−γ

2L

2
) ·

T∑
k=0

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
.

(68)
Note that (6a) follows from Lemma 7. Now, suppose that
P ? is the optimal solution for solving problem (8), i.e.,
E
[
f(PT+1)

]
≤ f(P ?), ∀T ∈ R+. Then, the above inequal-

ity (68) implies that, if the sample size M and step-size γ are
chosen satisfying M > B1 and γ − B1γ/M − γ2L/2 > 0,
the non-negative sequence

{
E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]}
k∈N+

is summable, i.e.,

∞∑
k=0

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
≤ f(P ?)− f(P 0) + γB0

γ −B1γ/M − γ2L/2
.

(69)



13

Thus, E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

converges to zero; and further-
more, its running average converges at the rate of O(1/T ).

D. Proof of Proposition 3

Let us first remark that the condition (21) simply implies
that the following equation holds for all k ≤ t ≤ k +D − 1,

E
[∥∥pti −ΠS

(
pti + γ · ∇pi

f̂δ(P
t−
i )
)∥∥2] = 0, ∀i ∈ I. (70)

According to the iteration (20), it can be immediately verified
that P t+1 = P t is true for all k ≤ t ≤ k +D − 2. Therefore,
to prove the statement in Proposition 3, it will suffice to show
that P k+D−1 is an equilibrium solution.

Since each P t is identical within the entire time-window
k ≤ t ≤ k+D− 1, then let t = k+D− 1, the equation (70)
implies that, for all i ∈ I,

E
[∥∥pk+D−1i −ΠS

(
pk+D−1i + γ · ∇pi

f̂(P k+D−1)
)∥∥2] = 0.

(71)

Note that, in (71), the stochastic gradient ∇pi
f̂(P k+D−1)

is evaluated without time-delays. As a result of the above
Proposition 2, we know that P k+D−1 has to be an equilibrium.
Therefore, the proof is completed.

E. Proof of Theorem 2

As similar to the previous proof, let us first mention that the
iteration (20) of Algorithm 2 can be compactly expressed as,

P k+1 = P k − γ · G̃γ
(
∇f̂δ(Pk−D ), P k

)
, (72)

where G̃γ
(
∇f̂δ(Pk−D ), P k

)
is the stacked gradient mapping

and Pk−D = [P k−i ]i∈I collects the delayed distributions P k−i
for all i ∈ I . Now, according to the Lipschitz continuous
gradient of the function−f(P ), we invoke the descent lemma
again and it holds that,

− f(P k+1)

≤ −f(P k) +
〈
−∇f(P k), P k+1 − P k

〉
+
L

2
‖P k+1 − P k‖2

= −f(P k) + γ
〈
∇f̂δ(Pk−D ), G̃γ

(
∇f̂δ(Pk−D ), P k

)〉
+ γ
〈
∇f(P k)−∇f̂δ(Pk−D ), G̃γ

(
∇f̂δ(Pk−D ), P k

)〉
+
γ2L

2
‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖2

(7a)

≤ −f(P k) + (
γ2L

2
− γ)‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖2

+ γ
〈
∇f(P k)−∇fδ(Pk−D ), G̃γ

(
∇f̂δ(Pk−D ), P k

)〉
+ γ
〈
∇fδ(Pk−D )−∇f̂δ(Pk−D ), G̃γ

(
∇f̂δ(Pk−D ), P k

)〉
.

(73)
Note that the inequality (7a) is due to Lemma 4; furthermore,
we use ∇fδ(Pk−D ) to denote the full gradient which is based
on the delayed probability distributions Pk−D . It should be em-
phasized that the sampled gradient ∇f̂δ(Pk−D ) is an unbiased
estimation of the full gradient ∇fδ(Pk−D ). Thus, according to

the Cauchy-Schwartz inequality and Lemma 5, the above (73)
can be continued as
− f(P k+1)

≤− f(P k) + (
γ2L

2
− γ)‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖2

+ γ
〈
∇f(P k)−∇fδ(Pk−D ), G̃γ

(
∇f̂δ(Pk−D ), P k

)〉
+ γ
〈
∇fδ(Pk−D )−∇f̂δ(Pk−D ),

G̃γ
(
∇f̂δ(Pk−D ), P k

)
± G̃γ

(
∇fδ(Pk−D ), P k

)〉
≤− f(P k) + (

γ2L

2
− γ)‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖2

+ γ
∥∥∇f(P k)−∇fδ(Pk−D )

∥∥∥∥G̃γ(∇f̂δ(Pk−D ), P k
)∥∥

+ γ
〈
∇fδ(Pk−D )−∇f̂δ(Pk−D ), G̃γ

(
∇fδ(Pk−D ), P k

)〉
+ γ
∥∥∇fδ(Pk−D )−∇f̂δ(Pk−D )

∥∥2.
(74)

Now, taking the expectation on both sides and summing up
the inequalities for all 0 ≤ k ≤ T , it holds that

E
[
f(PT+1)

]
− f(P 0)

≥ (γ − γ2L

2
) ·

T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖2
]

− γ ·
T∑
k=0

E
[
‖∇fδ(Pk−D )−∇f̂δ(Pk−D )‖2

]
︸ ︷︷ ︸

:=T1

− γ ·
T∑
k=0

E
[
‖∇f(P k)−∇fδ(Pk−D )‖‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖︸ ︷︷ ︸

:=T2

]
.

(75)
As shown in the above inequality, let us denote the last two
summation terms as T1 and T2, respectively. Next, we prove
the following two lemmas which upper bound T1 and T2 by
the summation of gradient mappings.

Lemma 8: Suppose that the sequence {P k}k∈N+
is the set of

iterates generated by Algorithm 2 and the initialization P 0 is
not a collection of simplex vertices. Let the step-size γ satisfy
the condition γ < 2/∆max, then there exist constants C0 > 0
and C1 > 0 such that the following holds,

T1 ≤ C0 + C1/M ·
T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖2
]
. (76)

Proof: This proof can be done by following exactly the
similar path of Lemma 7, and thus we omit the details.

Lemma 9: Suppose that the conditions on Lemma 8 are
satisfied, then there exist constants C2 > 0 and C3 > 0 such
that the following holds,

T2 ≤ γC2 + γC3 ·
T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖2
]
. (77)

Proof: We first recall that ∇fδ(Pk−D ) represents the
stacked full gradient with respect to the delayed probability
distributions Pk−D . Precisely, let us denote

∇fδ(Pk−D ) = [∇pif(P k−i )]i∈I , (78)



14

where P k−i captures all the delayed distributions associated
with the i-th agent. On this account, we can have

‖∇f(P k)−∇fδ(Pk−D )‖2

=
I∑
i=1

‖∇pi
f(P k)−∇pi

f(P k−i )‖2

(8a)

≤
I∑
i=1

L2
i ‖P k − P k−i ‖

2

=
I∑
i=1

I∑
j 6=i

L2
i ‖pkj − p

k−τij
j ‖2

(8b)

≤
I∑
i=1

I∑
j 6=i

L2
i

τij−1∑
t=0

‖pk−tj − pk−t−1j ‖2,

(79)

where (8a) is due to the fact that each gradient ∇pi
f(P )

is Li-Lipschitz continuous and (8b) comes from the triangle
inequality. In addition, according to Lemma 4 and Cauchy-
Schwartz inequality, it holds that

‖Gγ
(
∇pi f̂δ(P

k−
i ),pki

)
‖2

≤ −
〈
∇pi

f̂δ(P
k−
i ), Gγ

(
∇pi

f̂δ(P
k−
i ),pki

)〉
≤ ‖∇pi

f̂δ(P
k−
i )‖ · ‖Gγ

(
∇pi

f̂δ(P
k−
i ),pki

)
‖,

(80)

and thus for ∀k ∈ N+,

‖pk+1
i − pki ‖2 = γ2‖Gγ

(
∇pi f̂δ(P

k−
i ),pki

)
‖2

≤ γ2‖∇pi f̂δ(P
k−
i )‖2.

(81)

Note that the above inequality also shows that the gradient
mapping is always bounded by the stochastic gradient. Next,
based on the inequalities (79), (81) and the facts that the
gradient ∇pi

f̂δ(P
k−
i ) is bounded and τij ≤ D, ∀i, j ∈ I,

we know that there must exist a constant β > 0 such that

‖∇f(P k)−∇fδ(Pk−D )‖ ≤ γβ. (82)

Consequently, the summation term T2 can be bounded by

T2 ≤ γβ ·
T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖
]
. (83)

Now, the rest of the proof follows the similar path of the
proof in Lemma 7 (or Lemma 8). It can be shown that there
exist two constants ρ0 > 0 and ρ1 > 0 such that

T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖2
]

≥ 1

ρ1
·
T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖
]
− ρ0
ρ1
.

(84)

Combining the inequalities (83) and (84), we can have

T2 ≤ γβρ0 + γβρ1 ·
T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖2
]
. (85)

Therefore, let C2 = βρ0 and C3 = βρ1 respectively, the proof
is completed.

Next, we prove the statement in Theorem 2. Taking into
account Lemma 8 and Lemma 9 together, the inequality (75)
can be continued as

E
[
f(PT+1)

]
− f(P 0)

≥ (γ − γC1

M
− γ2C3 −

γ2L

2
) ·

T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖2
]

− γC0 − γ2C2.
(86)

As a result, it holds that,
∞∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D ), P k

)
‖2
]

≤ f(P ?)− f(P 0) + γC0 + γ2C2

γ − γC1/M − γ2C3 − γ2L/2
.

(87)

Therefore, if the sample size M and step-size γ are chosen
satisfying M > C1 and γ−γC1/M−γ2C3−γ2L/2 > 0, then
we can have that E

[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

converges to zero;
and furthermore, its running average converges at the rate of
O(1/T ).
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