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A single flexible filament can be actuated to escape from the scallop theorem and generate net propulsion
at low Reynolds number. In this work, we study the dynamics of a simple boundary-driven multi-filament
swimmer, a two-arm clamshell actuated at the hinged point, using a nonlocal slender body approximation
with hydrodynamic interactions. We first consider an elastic clamshell consisted of flexible filaments with
intrinsic curvature, and then build segmental models consisted of rigid segments connected by different
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mechanical joints with different forms of response torques. The simplicity of the system allows us to fully
explore the effect of various parameters on the swimming performance. Optimal included angles and
elastoviscous numbers are identified. The segmental models capture the characteristic dynamics of the
elastic clamshell. We further demonstrate how the swimming performance can be significantly enhanced
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1 Introduction

Reciprocal motions at low Reynolds number (Re) in Newtonian
fluids cannot generate net translations, a fact known as the
scallop theorem.™? Non-reciprocal kinematics that break time
reversal symmetry can lead to locomotion. In the biological
realm many microorganisms use elastic appendages to swim.
The bacteria flagella are helical and driven by rotary motors at
the base.® Eukaryotic flagella and cilia are internally actuated by
distributed molecular motors and can display various beating
patterns.”® For example, spermatozoa generate wavelike defor-
mations along their flagella.” For a ciliated microorganism, each
cilium beats asymmetrically: the cilium extends during the
power stoke pushing the fluids and bends with larger deforma-
tion, thus reducing the drag during the recovery stroke.® The
biflagellate alga Chlamydomonas adapts an effective gait during
locomotion that resembles ‘breaststroke’ swimming as its two
flagella asymmetrically bent during the power and recovery
strokes.”°

The design and optimization of artificial swimmers are
important research areas, related to biological locomotion,"
with applications to pumping, mixing, and cargo delivery at low
Re."®™'® Biologically inspired microswimmers with synthetic
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by the asymmetric beating patterns induced by biased torques.

appendages have been realized and tested experimentally.'” "

Simple swimmers using discrete degrees of freedom to generate
non-reciprocal motions have also been studied, as demon-
strated by Purcell’s three-link swimmer,"** the three-sphere
swimmer,”*** and the N-sphere swimmer.> For the optimization
of swimming and propulsion performance, earlier works include
finding the optimal waveform for flagellum*®**” and the optimal
geometry of the swimming cell.***° More recent studies on
swimming optimization have been devoted to the stroke patterns
of the threellink swimmer,*® beating patterns of cilia,>* and
swimming gaits of Chlamydomonas.*

A simple design strategy of artificial swimmers involves
elastic filaments with boundary actuations, such as angular
or positional oscillations at the filament’s ends, that send
travelling waves along the filaments.>* ™ The effects of various
mechanisms on swimming performance have been studied,
such as the hydrodynamic interactions,>*>® the number of
filaments,*® and the filament intrinsic curvature.*®**° It has
been demonstrated in experiments that the velocity of a
swimmer propelled by multiple filaments may be enhanced
by intrinsically curved filaments,*® which was subsequently
explored in numerical simulations based on discrete elastic
rod model.*® The enhanced swimming was attributed to the
alignment of the propulsion directions of the filaments and their
tilt angles. An elastic clamshell moving in two-dimensional
Stokesian fluid has been constructed using a bead-spring model
and found to translate from the hinge point to the open side.**
Spagnolie proposed a rigid clamshell that cleverly evades the
scallop theorem by a successive repositioning of the hinge point,
and generalized the design to include elasticity and multiple
segments.*? However, the mechanical design and optimization
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of low-Re swimmers with multiple filaments still remains largely
unexplored.

In this paper, we study the dynamics of a simple multi-
filament swimmer, a clamshell consisting of two arms hinged at
one common end without load, moving in a three-dimensional
Stokesian fluid. The slender and inextensible filaments are
modeled using a non-local slender body approximation with
hydrodynamic interactions (HIs).** We also construct a segmental
model with finite degrees of freedom by replacing the flexible
filaments with jointed rigid segments. As functions of the relative
deflection angle between the rigid segments, different forms of
passive response torques at the joints are considered, which add
rotational resistance to the filament dynamics. In particular, we
consider biased response torques that mimic flexible filaments
with nonzero intrinsic curvature. The asymmetric beating
patterns generated by the biased torques significantly increase
the swimming speed and efficiency.

We present the theoretical formulation of the elastic clam-
shell in Section 2.1 and that of segmental model in Section 2.2.
The derivation of boundary conditions and details on numerical
methods are included in Appendix A and B. We discuss our main
results in Section 3 and finally conclude this work with remarks
in Section 4.

2 Theoretical formulation
2.1 Elastic clamshell

Consider a slender, inextensible and elastic filament of radius
a, length L (with aspect ratio ¢ = a/L « 1), and bending rigidity
B, moving in a quiescent three-dimensional Stokesian fluid of
viscosity u with the filament’s motion confined to a two-
dimensional plane. The filaments have an intrinsic curvature
Ko, taken as constant along the filament. Denote the filament
centerline by r(s) with the signed arc length s € [—L/2, L/2]. The
unit tangent vector p = rs = cos 0X + sin 0y with 0 the tangent
angle. The unit normal vector p* = py/0s = —sin 0%+ cos 0. We
describe the filament as an Euler-Bernoulli beam with its
energy given by

1 L/2 5 1 L/2 5
6= fBJ (k — Ko)°ds + fJ T(|rg]” — 1)ds, (1)
2 ) p 2) 1

where the local curvature x = 0,. The first term is the bending
energy and the second term imposes the inextensibility of the
filament with T the filament tension. The filament force per
unit length f upon the fluid can be derived from the variation of
& with respect to a small and arbitrary shape deformation dr,

J“L/Z

Le., 08 = — “ip

f - ords, leading to,

f= —B[rssss + Ko(kP)s] + (TP)s- (2)

From non-local slender body theory,” the velocity of the
filament centerline r. is governed by a balance of filament
forces and viscous drag:

8nu(re — U) = [c(I + pp) + 2(T — pp)]{, (3)
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where ¢ = |In(¢%¢)| and U is the nonlocal flow field induced
by the filaments. Using the inextensibility condition,
Iy Ts = 0, eqn (3) can be manipulated to give the equation for
the tension,

2T — (¢ +2)03T = — 8nuUs - p — 6¢BOs> — (Tc + 2) BOyOsss

+(c+ Z)BOS4 —(c+ 2)BK0953 + 2K0Blsss .
(4)

The evolution equation of the tangent angle 6 can be derived
from 6, = rst-pL,

8mud; + (¢ 4 2)Blss, = SmuUs - p + (9¢ + 6)395295s
+ (Bc+2)T0s + (¢ +2)TOs (5

— (4c¢ + 4)io BOOss.

Eqn (3)-(5) are the governing equations of the dynamics of a
flexible filament with intrinsic curvature in Stokesian flow.

We construct a clamshell swimmer with two mirror-
symmetric flexible filaments jointed at s = —L/2 (Fig. 1). The
swimmer is driven by a sinusoidally-oscillating angle at the
hinged point between the filaments:

o(t) = agsin(2nt/7e) + 1], (6)

where 7, is the oscillation period, and «, is the actuation
amplitude and o € [0,2¢,]. Here, o, is limited to avoid filament
intersections. Due to the mirror symmetry, we only consider the
dynamics of the upper filament r(s,t). The background velocity
U in eqn (3) is the flow induced by the motion of the two
filaments, which are associated with distributions of funda-
mental solutions of Stokes equation along the filament center-
line and which capture nonlocal hydrodynamic interactions.
There are two contributions to U, U(s) = V4[f](s) + V,[f](s). The
flow field induced by the filament upon itself, V3, is given by

1 L/2
Vi =g

I+RR

() - LEPP ey
R] f(s) f(s)|ds’,  (7)

s =

where R = r(s) — r(s’). The flow field induced by the other

Fig. 1 Schematic of an elastic clamshell swimmer. Two flexible filaments
with intrinsic curvature are hinged at s = —L/2 and mirror-symmetric about
x axis. The swimmer is driven by a time-varying angle «(t) at s = —L/2 and
translating along x axis. The green dashed curves indicate the shapes of the
filaments at rest. The tangent angle 0 is defined to increase counter-
clockwise from —r to .
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filament is given by

V2 (3)

1 (*? T+RR
J 2R ), (8)

" 8mu) 1 (R

where R =1(s) — q(s’) and q is the position of the other filament.
The system can be non-dimensionalized using length L, force
B/L?, and time 1,. One resulting dimensionless parameter is the

B
elastoviscous number, n—L/( il

8mu
regime, the filaments are nearly rigid with elastic force dom-
inating viscous force; in the large n regime, the filaments are
very flexible with viscous stress dominating elastic stress.

The necessary constraints and resulting boundary conditions
are given in Appendix A. We solve the set of partial differential
equations given by eqn (3)-(5) numerically based on a second-order
finite difference scheme.** Due to the nonlinearity we use Newton’s
method to solve the tension equation. To avoid the stability limit
for the time-step size arising from the fourth-order derivative, we
use a second-order implicit/explicit backward differentiation
scheme for the time stepping and treat the fourth-order derivative
implicitly. More details of the numerical methods are given in
Appendix B. The control parameters include the oscillating ampli-
tude «,, elastoviscous number #, and the intrinsic curvature .

1/4
> . In the small #

2.2 Segmental model with rigid filaments

We develop a second model by replacing each flexible filament
with two rigid segments of different lengths (see schematic in
Fig. 2a). Below we use subscript integer to denote quantities
associated with segment 1 and 2. The total length of the two
segments is fixed, L; + L, = L, and we vary their length ratio, y =
Ly/L. The two segments are connected with different mechanical

(@ J

torsional spring

(b) o , linear torque
1 Up
on/K | | )
\ ) rectified slope K
slope K. : h o/ K
1
p ~—
1
it [
On limiting torque =5
L

Fig. 2 Segmental model of the elastic clamshell. (a) Rigid filaments are
connected using mechanical links such as torsional springs at Jo. (b) The
linear torque (blue dashed line), limiting torque (red line), and rectified
torque (green dotted line) applied at J; as functions of the deflected angle
0, — 0,. The inset shows a possible mechanical hinge that cannot open
outwards with a constraint torque.
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joints at J,. The orientation of segment 1 is kinematically driven
with the angle dynamics the same as eqn (6) and segment 2 is
passively responding (subjected to the rotational resistance
applied by the mechanical joint). The centerline of each segment
is described by a straight line r;, = 1§ + s;p; for k = 1, 2, where 1f. is
the center-of-mass (COM) position and py. = (cos 0,sin ;) with 0y
the segment orientation.

The dynamics of each rigid segment is governed by eqn (3)
with the constraint that the total x-component force is zero,

Ly/2 ! Ly/2
J frdsi + J frdsy = 0. )
—L/2 —1y/2

The COM velocity of segment 1 can be decomposed into two
components: the translation with J; and the COM rotation
around /;. Since J; only moves along the x-axis due to symmetry,
the y-component COM velocity of segment 1 is determined by
the rotation around J;,

o Ly,
3 = 7101 (1) cos 0y, (10)

where 0, is prescribed by eqn (6), 0; = o(t). The dynamics is
further subjected to the constraints that the velocities of the
two segments at J, are the same,

L. . L.
5P =0 5P (11)

i+
Finally, we balance the hydrodynamic torque acting upon
segment 2 with the response torques by the mechanical joints

at]l)

L,/2
J ) (52 + L2/2)p2 x frds, = 0'[01 s 02]2 (12)
—Ly/2

The simplest ¢ is a linear function of the relative angular
deflection (blue dashed line in Fig. 2b): ¢ = KAO, where A0 =
0; — 0,. The linear torque can be generated by a torsional spring
with elastic modulus K. Another variant is a limiting torque
implemented as a piecewise function (red line in Fig. 2b):

On, A < 64/K;
=< KAO, 0,/K<A0<o0,/K; (13)
Op, Al >0, /K.

The above torque may be generated by a mechanical joint similar
to the one in a ‘torque wrench’. We also consider a rectified
torque (green dotted line), which has a different elastic modulus
K when A0 > 0 and K’ « K. These different forms of torques do
not add a hard constraint on Af. To implement a locked hinge
similar to the one shown in Fig. 2 inset, a constraint torque o, is
needed to prevent 0, from increasing further when A0 becomes
smaller than a threshold 6,,, during the power stroke, i.e., ¢ = g
when A0 < 60, and 91 < 0; 0 = KAO otherwise. The constraint
torque is exactly the hydrodynamic torque needed to keep 0, = 0,
(A0 fixed), which can be written out explicitly if the nonlocal

Soft Matter, 2022, 18, 3605-3612 | 3607
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integral in eqn (3) is ignored,

n,uLz2 o - . 2,
=7 4(—x5 sin 0 + 35 cos 65) +§L291 : (14)

Compared with the infinite-dimensional elastic clamshell, the
segmental model has only 4 discrete degrees of freedom,
described by rf, 04, 0,.

We non-dimensionalize the system by scaling lengths on L,
time on 7,, and forces on uL?*t, '. The dimensionless control
parameters include the segment length ratio y, the elastovis-
cous number, 7 = L/(Kto/t)"?, and the torque-bias parameters
On, 0p, K/K', and 0Oy,. At each time step, a linear system from
eqn (3) and (9)-(12) is solved to determine ry,0y, and f;. The set
of ordinary differential equations thus obtained are then
evolved using a 4th-order Runge-Kutta scheme. For both the
elastic clamshell and the segmental model, the filaments are
not self-intersecting for the range of parameters explored in
this work.

3 Results and discussion
3.1 Elastic clamshell

The motion of the clamshell swimmer in each period consists
of a recovery stroke with the two filaments opening (& > 0) and
a power stroke with the two filaments closing (& < 0). The
filaments are bent inward due to the viscous drag during the
recovery stroke and the COM moves towards the +x direction;
during the power stroke, the filaments are bent outward and
the COM moves towards the —x direction. This asymmetry in
the filament’s deformation leads to a net translation after one
period (Fig. 3a). We compute the time-averaged COM velocity
(Ue) = (U)X, where the time-averaged swimming speed is
given by

1 L/2 (1o dad
U)=— r; - Xdsdz. 15
(Ue) LTOJ—L/ZJO ' (15)

Here, forward swimming is when (U.) < 0 and backward
swimming is when (U.) > 0. In Fig. 3b, we show the contour

(Ue)|
0.06

0.03

0

-05 0 05

xz/L
Fig. 3 (a) Time-lapse of the deformations of the elastic clamshell over
one oscillation period with n = 3, kg = 0, 2o = 1.1, and ¢ = 15.0 during the
recovery stroke (blue) and power stroke (red). Time runs from blue to red.
See ESI,t videos showing motions of the elastic clamshell with different
parameters. (b) Swimming speed |(Uc)| shown as a single-peaked function
of ag and n.
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plot of |(U.)| as a function of # and «, with zero intrinsic
curvature k, = 0. Given an included angle o, (U.) is maximized
around 1 ~ 2.7. At small 5, the filaments are relatively rigid.
The net translation over one period is small due to nearly
reciprocal motions; at large #, viscous force dominates and the
filament’s deformation is confined around the actuation point
(at s = —L/2) with the filament tail (at s = L/2) barely moving,
leading to small propulsion. On the other hand, given 7, there
exists an optimal value of a,. The optimal ¢, is around 1.1 when
n = 2.7. When o, approaches 1/2 (~1.57), the propulsions from
the two filaments nearly align with the y-axis and are opposite
to each other. The cancellation between them leads to a small
(U.) along x direction. At the opposite limit, where o, — 0,(U.)
is small due to small actuation amplitude.

The intrinsic curvature x, has a strong effect on the swimming
velocity (Fig. 4a). When x, < 0, the two filaments are curved
inward at rest, and |(U,)| is increased significantly. For x, = —1,
[(U¢)| is nearly tripled compared with «, = 0. Fig. 4b shows that
the beating pattern for x, = —1 resembles that of cilia: compared
with Fig. 3a, the filaments are bent significantly during the
recovery stroke, and the filaments stretch out straight during
the power stroke. Over one period, the net displacement along the
—x direction is larger than that of x, = 0. When x, > 0, |(U)|
decreases and the swimming direction is even reversed (backward
swimming) for sufficiently large «,. The beating patterns shown in
Fig. 4c indicate that the power strokes become ineffective with
larger deformation and thus yield less propulsion. But the recov-
ery strokes become stronger, leading to a net displacement along
+x direction. The above effect of the intrinsic curvature is con-
sistent with previous numerical simulations and the reverse
swimming at large x, is attributed to a closer alignment of the
propulsion force with the opposite direction.*®

3.2 Segmental model

In the segmental model when the response torque at J, is zero,
the motion is reciprocal and there is no net displacement over
one period, as shown by the beating patterns in Fig. 5a and the
COM location x.(¢) in Fig. 5d (dark curve). With a linear torque,
symmetric in both bending directions, the two-linked rigid
segments resemble a flexible filament of zero intrinsic curvature.
The beating patterns become non-reciprocal (Fig. 5b) and the
swimmer translates toward the —x direction (blue curve). As a
comparison, the displacement of the elastic clamshell with the
velocity-optimal parameters is also shown (purple curve). Its

() (b) o = -1 (c) Ko =1
n
o 38 .03# o
Z5 Orl®s5] .‘.. t
S o3 > / > 0
I .o’.:. ~
000°® %
-0.1 ..,0.0 . 7 |
Ko -1 0 1 z z

Fig. 4 (a) (U.) as a function of kg for three different values of #. (b and ¢)
Time lapse of the deformations of the upper filament for (b) kg = —1 and
(c) ko = 1 with n = 3.0. Blue: recovery stroke; red: power stroke.

This journal is © The Royal Society of Chemistry 2022
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(b) linear o (c) limiting o

) o
~-02r— ¢
8 S
—— linear
—— limiting
== limiting
04+ ——rectified
~———constraint
L

Hls|

—

1
1

1 )

0 elastica
1

1

nm

1 2 3 4 5
t/Tg

Fig. 5 Reciprocal and nonreciprocal motions of the clamshell swimmer
with y = 0.5, g = 1.1, and ¢ = 10.0. (a)-(c) Time lapse of the segmental
model for (a) zero o, (b) linear ¢ with n = 0.8, and (c) limiting with = 0.8,
g, = —1.0, and g, = 0.15. Blue: recovery stroke; red: power stroke. Time
goes from blue to red. Only half swimmer is shown due to symmetry. In (a),
recovery strokes overlap exactly with power strokes. See ESI,{ videos
showing motions of the segmental model with different parameters.
(d) The COM location x./L; as a function of time for the segmental model
with different forms of torques including the three cases shown in (a—c),
the rectified torque with n = 0.8 and K/K’ = 15, and the constraint torque
with # = 1.0 and 6, = 0. The elastic clamshellis also shown with n = 2.5 and
ko = 0. 'Hls = 1/0" corresponds to with and without hydrodynamic
interactions between filaments. The initial time period is discarded with
the positions at t = 1 shifted to the origin.

backward displacement along the +x direction during the
recovery stroke is larger than that of the linear-torque swimmer.
With the limiting torque and the rectified torque, the two-linked
rigid segments resemble a flexible filament with nonzero intrin-
sic curvature. During the recovery stroke, the positive torque is
limited by o, which is smaller than the torque applied by the
torsional spring when the relative deflection A0 > o,/K. This
allows A0 to reach larger values, and the orientation of segment
2 tends to align with its direction of translation, as shown in
Fig. 5¢c; therefore the viscous drag is reduced. As a result, the
swimmer displacement after a full recovery stroke is smaller and
even reversed toward the —x direction, leading to a larger
swimming speed. The beating patterns of the swimmer with
either the rectified torque or constraint torque are similar to
Fig. 5c. Below we mainly focus on the results of the limiting
torque.

The hydrodynamic interactions between filaments slightly
enhance the swimming performance of the elastic clamshell, as
shown by the difference between the dark dotted line and the
purple line in Fig. 5d. This is due to the fact that the velocity of
each filament is opposite to the local induced velocity by other
filament. When the clamshell opens, ie., two filaments are
moving away from each other, the HIs between them resist
their separation. This induces additional deformations in the

This journal is © The Royal Society of Chemistry 2022
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S5 2.0

0.76,1.5) (c) [(U.)]

Fig. 6 Contour maps of [(Uc)| and ( as functions of 5 and oo for the
segmental swimmer with y = 0.5 and ¢ = 15.0. (a and b) The linear torque.
(c and d) The limiting torque.

filaments that can reduce the viscous drag. However, in seg-
mental model, the effect of HIs is negligible (dark dashed line),
since the filaments are rigid and the torques due to HIs is small
compared with the applied torques at J,.

The time-averaged swimming speed of the segmental swimmer
is given by (U.) = 7&i + (1 — y)x5, where xi and x5 are the
x-component COM velocities of the two segments. Similar to
the definition in the previous work,*> we define the swimming
efficiency as the ratio of the work needed to drag the swimmer with
a fixed configuration at the average swimming speed (U.) to the
total work done by the displacements of the segments,

JH ot sy + [ 08 -bads

(16)

where D is the drag force experienced by the swimmer (without HIs)
when translating with the initial configuration, ie., 0; = 0, = o, at
the average speed (U.). From eqn (3), we obtain,

D = 4nc (Ue)[1 + (¢ — 2)(c +2) " sin® o). (17)

As shown by the contour maps in Fig. 6a and b, for the linear-
torque swimmer, both |(U.)| and ( have optimal values with
respect to o, and 5. For y = 0.5, the optimal efficiency is about
0.7% at (1, o) = (1.6, 0.64). For the swimmer with the limiting
torque, the swimming performance is significantly improved.
The swimming speed |(U,)| has an optimal value in # but increases
as o, is increased until the segments intersect each other. The
optimal ( is achieved at (1, ) = (1.2, 0.82) and is more than 40%
larger than that of the linear-torque swimmer.

The segment length ratio y also has a strong effect on the
swimming performance. As shown in Fig. 7, optimal values of
y exist, which is expected since the swimmer approaches a
reciprocal scallop as y — 0 and 1. For small y, L; < L,, and the
amplitude of motion at J, is small due to small rotation radius

Soft Matter, 2022, 18, 3605-3612 | 3609
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Fig. 7 Effect of the segment length ratio y on the swimming efficiency {
with #n = 1.0 and ¢ = 15.0 for linear torque (blue symbols), limiting torque
with ¢, = —1.0 and g, = 0.15 (red symbols), and rectified torque with K/K’ =
15.0.

around J;. This is in analogy with the elastic clamshell of large
n, in which the actuation is confined around J;. For large y,
L; > L,, the hydrodynamic torque upon segment 2 is small
due to small segment length, and so does the response torque
o(01, 0,), leading to small deflection angle |Af|. This is in
analogy with the elastic clamshell of small # with small
filament deformation.

We now look at the effect of the torque-bias parameters, g,
and o}, on the swimming efficiency {. As shown by the contour
plot in Fig. 8a, { has a maximum as a function of ¢, and o, at
(0n,0p) = (—0.3,0.17). During each period, ¢,, and ¢, control the
maximum and minimum deflections of segment 2 from segment
1, which can be measured by the maximum and minimum values
of A0 over one period. During the power stroke, as ¢,, decreases,
the resistance for 0, to be larger than 0, increases; therefore
min(A6) increases (Fig. 8b) and segment 2 becomes more aligned
with segment 1. However, for sufficiently small o, the

(b) min(Af)
0 sosess000se,
9,
Ak A-k—kA-k -k Ak o
-0.5 e,
TS RS
100,09 06 03
(:0.3,0.17)e 258 (c) max(Af)
I S 7 00.541.0415
0.85 '::‘a’-
= 157 Tesksp-4—4-4
.‘:f; N
-1.0 -0.6 02 05 e
In Op 041 0.3 0.5
(d) ,0000,
(e} e (o] o
. 5
~ o
06 o

em

Fig. 8 (a) Contour map of { of the segmental model with the limiting
torque as functions of g, and g, with y = 0.5, g = 0.8, and n = 1.0.
(b) min(A6) as a function of o, for different values of 5 (see legend in
(c) with fixed g, = 0.2. (c) max(A0) as a function of a,, for different values of
n with fixed o, = —0.5. (d) Effect of the threshold angle 6,, on { for the
constraint torque with n = 1.5, y = 0.5, and o = 1.1.
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hydrodynamic torque upon segment 2 may not reach o, and
min(A0) becomes independent of ¢,. The existence of optimal
values of g, suggests optimal configurations for the power stroke.
When 7 = 1.0 (orange triangles in Fig. 8b), the optimal min(Af) ~
—0.6 at o, = —0.3, Le., segment 2 is deflected about 34° counter-
clockwise relative to segment 1. Optimal power strokes are also
observed for the segmental model with constraint torque (Fig. 8d),
as min(A6) is controlled by the threshold angle 6,,. During the
recovery stroke, as g, increases, the resistance for 0, to be smaller
than 0, increases; therefore max(A6) decreases (Fig. 8c). Similar to
the effect of o, the existence of optimal values of o}, indicates
optimal configurations for the recovery stroke. When # = 1.0
(orange triangles in Fig. 8c), the optimal max(Af) ~ 1.7 at g, =
0.17, i.e, segment 2 is deflected about 97° clockwise relative to
segment 1, which is consistent with the observation from Fig. 5c.
Therefore, the controlled stroke patterns during power and recov-
ery strokes by g, and o}, are the key for the improved swimming
performance. Fig. 8b and c also reveal strong dependence of min/
max(Af) on u: for smaller values of 1, min/max(Af) can vary
appreciably by changing a,, or ap; but for sufficiently large » (small
K), they remain constant due to the domination of the linear part
in o (Fig. 2b).

Finally, we report the sets of parameters that optimize the
efficiency of the segmental model using the Nelder-Mead direct
search method implemented in the SciPy optimize.minimize()
routine.”” For the limiting torque, the optimal parameters are
7 = 0.49(1), o = 0.82(1), 0, = —0.29(1), ¢, = 0.16(1), and n =
0.99(1), with the optimized efficiency { = 1.10(1)%, where the
small uncertainties on the second decimal place are due to
different initial guesses and indicate the convergence to a
global maximum. For the rectified torque, the optimal para-
meters are y = 0.48(0), o = 0.80(1), n = 1.10(1), and K/K' =
5.17(2), with the optimized { = 1.22%.

4 Conclusions

In this work, we have numerically studied the dynamics of a
two-arm clamshell swimmer at low Re with hydrodynamic
interactions, including an elastic clamshell constructed using
flexible filaments and a segmental model constructed using
rigid segments. Optimal elastoviscous numbers and included
angles have been identified. In the segmental model, rigid
segments are connected by mechanical joints with different
response torques. The asymmetric beating patterns induced by
the biased response torques significantly enhance the swimming
performance. The effects of various parameters on the swimming
efficiency have been extensively studied. Our results may be useful
for the design and optimization of synthetic low-Re swimmers.
The swimming performance may be further improved by
optimizing the stroke pattern.*® The elastic clamshell may be
optimized by considering varying stiffness along the
filaments.*® Different from our coarse-grained model, a local
curvature-dependent elastic modulus that is distributed along
the arc length has been used in simulations to make the
bending of a cilium easier towards one direction than the other
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and generate asymmetric beating patterns.” Minimum models
have been constructed using rigid filaments and linear
torsional springs for anchored boundary conditions to capture
the main dynamics.*®*”™*° A linear torsional spring has also
been used to generate localized elasticity at the actuation point
in an attempt to improve the propulsion of a single boundary-
driven filament, but has been found to underperform com-
pared to an elastic filament with distributed elasticity.*® The
limbs of many crustaceans, like shrimp and crayfish, consist
of linked rigid segments and beat asymmetrically as our
segmental model. To mimic the asymmetric beating pattern,
rigid paddles are treated as impermeable during the power stroke
and permeable during the recovery stroke in simulations.”® The
effect of hydrodynamic interactions on the dynamics of the
segmental model has been shown to be negligible, but may
become important as the number of arms increases and the
separations between them decrease. Our work considers only
Newtonian fluids as the working medium, and the situation can
be quite different and surprising in non-Newtonian fluids. There,
clamshell swimmers can evade the scallop theorem by using time-
asymmetric strokes®>'> and non-Newtonian rheology can interact
variably with body elasticity.>
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Appendix
A Boundary conditions

First, at s = —L/2, we have,
0(s = —L/2) = a(t). (A1)

Take a variational derivative of the filament energy with respect
to an arbitrary shape deformation dr,

3¢ = B(rpt — wopt) - Eirs|f/L2/2

L2
— (Brgss + Brgkp — Tp) - 6I'LL/z (A2)

L)2
+ J [Brssss + BKO(KP)S_(TP)S] - ords.
_L2

With no constraints, the boundary conditions at s = L/2 can be

obtained from the first two terms on the r.h.s. of eqn (2),
0s =Ko, 0Oss=0, and T=0, ats=L/2. (A3)

At s = —L/2, the y-component of the filament force is cancelled
due to the mirror symmetry, so we require the x-component
force to be zero,

2(—Brgss — Brokp + Tp)-X = 0, (A4)
which can be interpreted as a boundary condition for T,

T = —BOgtan0 — BOS + Brols, ats=—L/2. (A5)
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To keep the separation of the two filaments fixed, we enforce
the y-component velocity of the filament at s = —L/2 to be zero,
¥¢ (s = —L/2) = 0, which generates a boundary condition for 6,

Osss = (14 2¢7 ) 7(50,05 — 210055 — 2¢ 10,04

1 N A6
+2B’1T)tan0+78n”3 '<'U-§ (4o
s cos ’

B Numerical methods

We solve the system of governing equations using a finite difference
method. Discretize the arc length with a uniform grid, s; = jIN — 1/2
with j =0, 1,..., N, and denote the quantities at s; with subscript ;.
The spatial derivatives are approximated using a second-order
scheme. We discretize time as ¢, = nAt and denote with superscript
n the quantities at the current time step ¢,. Given the filament
position 1, filament tension 7", and 03" = &, we solve for ¢"** and
T*'. The 0 equation [eqn (5)] is a fourth order partial differential
equation with a nonlinear boundary condition [eqn (6)]. To avoid the
strict fourth-order stability limit for the time-step size, we treat O
implicitly and use a second-order backward differentiation formula
for the time stepping. The remaining terms such as lower order
derivatives, tension, and the nonlocal integrals [eqn (7) and (8)] are
extrapolated from previous time steps. Schematically, we write,

0" + BO%ess = p™" 7, (B1)

where f is a constant depending on A¢. We then split 6 into
two terms,

0" = (0°)"" + (Osss)o 10", (B2)

with
(O + PlOssss)™ " = p"" 7, (B3)

and
0" + poti = o. (B4)

The boundary conditions of #° and 6" can be inferred from the
boundary conditions of 6 and are linear. With (0°)*** and (only need
to form once), we can form 0" if (0ys)6 ™ is known. Since both (0ss)o
and T, are nonlinear functions of (05), and (0ss)o, We solve the tension
equation [eqn (6)] together with eqn (5) and (6) for 7",(0)¢*, and
(0s)5™ using Newton’s method. Let superscript k denote current
solutions at the kth Newton’s iteration. We linearize the tension

equation and obtain a system of linear equations for the update 37,
8T, + MST = O, (B5)
with
8(Ts)o + mSTy = ¢* and 8Ty = 0, (B6)

where M, Qk, mk, qk are functions of the current solutions.
Solving for 8T, updating T,(0,)5, and (fs)%, and iterating until
converge, we obtain 7" and 0”*'. The above numerical scheme
is second-order accurate both in space and time. For most of
our simulations, we use N = 101 and Az = 10~ *-1072.
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